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We consider the special case of random tensor networks (RTNs) endowed with gauge symmetry
constraints on each tensor. We compute the Rényi entropy for such states and recover the Ryu-Takayanagi
(RT) formula in the large-bond regime. The result provides first of all an interesting new extension of the
existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it
in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for
realizing the tensor network/geometry duality in the context of background-independent quantum gravity,
and for importing quantum gravity tools into tensor network research.
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I. INTRODUCTION

Tensor networks [1] have developed into a powerful and
ubiquitous formalism in quantum information and in the
analysis of quantum many-body systems. It is first of all a
very efficient way to capture the entanglement properties of
such many-body systems, as well as quantum field theories
(including lattice gauge theories), and it provides a general
framework for describing (and identifying) quantum states
characterized by area laws, which indeed include the ground
states of several interesting quantummany-body systems [2].
Somewhat surprisingly, it also provides a natural framework
for investigating the nature of spacetime at the Planck scale.
This comes about from two main directions. First, different
theoretical frameworks, from background-independent
quantum gravity to string theory, hint at a scenario, where
continuum spacetime geometry is replaced, at a more
fundamental level, by pregeometric quantum degrees of
freedom, often of purely combinatorial and algebraic nature.
In (tensorial) group field theories (GFTs) [3] and random
tensor models [4], as well as in loop quantum gravity (LQG)
and spin foam models [5], pregeometric quantum degrees of
freedom are encoded in random combinatorial network
structures, labeled by algebraic data. In particular, they
are encoded in spin networks, graphs labeled by irreps of
SUð2Þ and endowed with a gauge symmetry at each node.
These type of quantum states, in fact, are very close to tensor
networks [6], and tensor network techniques have found
already a number of quantum gravity applications [7]. A

discrete spacetime and geometry is naturally associated, at a
semiclassical level, to such structures and their quantum
dynamics is directly related to (noncommutative) discrete
gravity path integrals [8]. The outstanding issue is then to
show the emergence of continuum spacetime and geometry
from the full quantum dynamics of the same pregeometric
degrees of freedom, which in fact describe a quantum space-
time as a peculiar sort of quantummany-body system [9]. It is
natural to expect that the entanglement between the funda-
mental entities constituting spacetime is crucial for its
emergence and for understanding the quantum nature of
geometry at the Planck scale, and thus that tensor network
techniqueswill provide relevant tools in this context. Second,
a different, but probably related relation between entangle-
ment and geometry has been unraveled in the context of
holographic gauge/gravity duality, and also here tensor
network states recently acquired a prominent role. One
key example is the Ryu-Takayanagi (RT) formula, which
relates the entanglement entropy of a region of the boundary
gauge field to the area of the minimal surface in the bulk
homologous to the same region [10]. The same holographic
area scaling behavior has been reproduced in the so-called
anti–de Sitter/multiscale entanglement renormalization
ansatz (AdS/MERA) scheme [11], where the hyperbolic
structure of the MERA tensor network algorithm used to
represent the vacuum of a boundary lattice conformal field
theory state is directly associated to the dual spatial geometry.
More recently, a lot of interest focused on random tensor

network (RTN) states, a class of algorithms shown to satisfy
the Ryu-Takayanagi formula, as well as quantum error cor-
rection properties, in the large-bond-dimension limit [12].
Networks of random pure tensor states are nearly maximally
entangled states [13] and can be used as toy models of a
thermal state [14,15]. This allows to use statistical field
theory techniques to compute the typical entropies and other
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quantities of interest for these states via the evaluation of
partition functions of classical statistical models [12].
In this particular context, the generalization of the tensor

network decomposition techniques in terms of GFTs pro-
vided in Ref. [6], allows to map specific GFT partitions
functions to tensor network states with a specific probability
measure, providing a direct relation between the auxiliary
tensor network bulk geometry and discrete gravity.
Along this direction, the present work aims at extending

the formalism of RTN to incorporate one key feature of the
random networks appearing in quantum gravity—the
gauge symmetry constraint [16]—and deriving the RT
formula in this extension.
The paper is organized as follows. In the next section, we

recall the definition of tensor network states, and that of
their random version. Then, we introduce the symmetric
random tensor networks that we use in the rest of the paper.
Having done so, we compute the second Rényi entropy for
random tensor networks endowed with a local gauge
symmetry constraint and derive the RT formula for them.
We end with some concluding remarks.

II. TENSOR NETWORK STATES AND
HOLOGRAPHIC BEHAVIOR

A tensor network is a collection of tensors associated to
nodes of a network, connected by contraction operations,
associated to links of the same network.
Generically, a rank-v (or v-valent) tensor T is a multi-

dimensional array of complex numbers with v indices λ,
each taking values from a set of dimension (“size”) Djλj ∈
Nþ [16]. For simplicity, all indices are assumed to have the
same size Djλj ¼ D.
At the quantum level, to each leg of the tensor one

associates a Hilbert space HD, with dimension D, so that a
covariant tensor of rank v is a multilinear form on the
Hilbert space of the vertex T∶ Hn ≡ H⊗v

D . Given an
orthonormal basis jλni, n ¼ 1;…; D in HD, we can gen-
erally define a tensor state as

jTi ¼
X
λ1;…λd

T̂λ1…λv jλ1i ⊗ � � � ⊗ jλvi; ð1Þ

and identify the tensor with the state components

T̂λ1…λv ≡ Tðλ1;…; λvÞ: ð2Þ
We can then represent any such tensor state as a single
vertex graph with v open links emanating from it.
A state corresponding to a set of unconnected vertices is

given by a tensor product of individual tensor states

jT N i≡⊗
n
jTni: ð3Þ

In a connected network graph, individual tensor states
are glued by links, to each end of which we associate a
Hilbert space HD. The Hilbert space of the link l is then
Hl ¼ H⊗2

D while a link state can be generally written as

jMi ¼ Mλ1λ2 jλ1i ⊗ jλ2i ð4Þ

where the coefficients Mλ1λ2 indicate generic quantum
correlations between the links ends.1 One could picture
this gluing as the joining of two of the open links emanating
from the original vertices (along their open ends), to form a
link of the resulting network.
The entanglement of links encode the information on the

connectivity of the graph: two nodes are connected if their
corresponding states contract with an entangled link state,

jT 12i≡ hMjjT1ijT2i
¼ Tð1Þ

λ1…λa…λv
M̄λaλbT

ð2Þ
λ0
1
…λb…λ0u

⊗
v

i≠a
jλii ⊗ ⊗

u

j≠b
jλ0ii: ð6Þ

Accordingly, given a networkN with N nodes and L links,
the corresponding tensor network state is given by the
contraction

jΨN i≡⊗
L

l
hMlj⊗

N

n
jTni: ð7Þ

As all but the open links of the network are contracted
with nodes, jΨN i can be thought of as an element of the
Hilbert space H∂N associated to the open links comprising
the boundary of the network graph.
In lattice gauge theory, formulated in terms of tensor

networks, the open links carry the physical degrees of
freedom of the theory, while the fully contracted internal
graph is interpreted as a virtual structure, whose correlation
structure can be tuned to match the desired properties of the
boundary lattice state jΨN i in H∂N [17]. In quantum
gravity formalisms based on spin networks (and thus on
tensor networks), like GFT and LQG, the internal graphs
carry the degrees of freedom of a spatial manifold, while
the open links are associated to its boundary (corners of the

1One can observe it by defining a density matrix ρM ≡ jMihMj
and tracing out one of the Hilbert spaces (without losing
generality, tracing out HD of jλ2i), and then computing the
von Neumann entropy of the reduced density matrix
ρ1 ≡ Tr2ρM ¼ M†M. The entropy S ¼ Trρ1 ln ρ1 is nonzero
unless Mλ1λ2 can be split as Mλ1λ2 ¼ Aλ1Bλ2 . Notice that the
definition in Eq. (4) provides a slightly more general version of a
link state than that used in the tensor network literature. There a
link usually does not carry additional structure which means that
indices in connected tensors get identified and summed over. For
simplicity, in the next sections we will also assume that the link
state is maximally entangled, i.e.,

jMi ¼ 1ffiffiffiffi
D

p δλ1λ2 jλ1i ⊗ jλ2i: ð5Þ

The latter corresponds to the simplest type of gluing—imposing
gauge invariance—in the spin network states used in quantum
gravity, and forming indeed a special type of tensor networks
[6,16].
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spacetime manifold) and carry indeed additional degrees of
freedom, related to the breaking of diffeomorphism sym-
metry on the same boundary [18].

A. Random tensor network states

Recently, a lot of interest has focused on the study of
networks of large-dimensional random tensors (RTNs).
A convenient way to deal with RTNs is to consider the

tensors T̂λ1…λv on each node as unit complex vectors Tμ

chosen independently at random in their respective Hilbert
spaces HT ≃ H⊗v

D (Dv-dimensional vector spaces), with
inner product T̄μT 0

μ. One can represent these vectors by
choosing a map such that Tμ ≡ Tλ1…λv , with

μ ¼
Xv
a¼1

λaDv−a ¼ 0; 1;…; Dv − 1: ð8Þ

Moreover, with jTi ∈ Hn being normalized, one has as well

hTjTi ¼ T̄λ1…λvTλ1…λv ¼ T̄μTμ ¼ 1: ð9Þ

Notice also that the Hilbert space HT corresponds to the
fundamental representation of the group UðDvÞ. Given an
arbitrary reference state T0

μ, a group element U ∈ UðDvÞ
will transform T0

μ to a new vector TU
μ ≡ ðUT0Þμ. A random

tensor Tλ1…λv corresponds then to a random choice of the
group element U ∈ UðDvÞ defining TU

μ ,
2 where the group

element Un is independently chosen for each node of the
network.
Idealized versions of RTNs, so-called pluperfect tensors,

have been used to define bidirectional holographic codes,
which simultaneously satisfy the RT formula for a subset of
boundary states, error correction properties of bulk local
operators, a kind of bulk gauge invariance, and the
possibility of sub-AdS locality.
More recently, in particular, building on the statistical

properties of large-dimensional random tensor networks,
the technique of random state averaging was used in
Ref. [12] to compute Rényi entropies and other quantities
of interest in the corresponding tensor network states, by
means of a mapping to the evaluation of partition functions
of classical statistical models, like generalized Ising models
with boundary pinning fields.
In what follows, we shall reconsider the random

state averaging technique for a specific class of large-
dimensional random tensor networks endowed with extra
symmetry constraints.

III. RANDOM TENSOR NETWORK STATES WITH
GAUGE SYMMETRY CONSTRAINTS

Now let us consider a tensor Tλ1…λv which satisfies the
following symmetry:

Tλ1…λv ¼ T ½λ1þl�D…½λvþl�D; ∀ l ∈ Z: ð10Þ
The square bracket ½� � ��D denotes the modular arithmetic:
for all k ∈ Z and D ∈ Zþ

½k�D ≡ kmodD; ½k�D ∈ Z=D ð11Þ
where Z=D is the set of integers modulo D. The symmetry
in Eq. (10) is described by the ZD group. The Fourier
transform of T is given by the intertwiner of the ZD group.
Such a tensor can be considered as a particular case of a
GFT tensor field, with arguments/indices taking values on a
finite group.
For all k1, k2 ∈ Z and D ∈ Zþ, it satisfies

½k1�D þ ½k2�D ¼ ½k1 þ k2�D;
½½k1�D þ ½k2�D�D ¼ ½k1 þ k2�D;

½D�D ¼ 0: ð12Þ
In the presence of the symmetry (10), only Dv−1

components are independent. We choose a new map

μ ¼ λ1Dv−1 þ
Xv
a¼2

½λa − λ1�DDv−a ð13Þ

such that

Tμ ¼

0
BBBBB@

Tμ0

Tμ1

..

.

TμD−1

1
CCCCCA

≡ Tλ1…λv ð14Þ

where Tμi are Dv−1-dimensional vectors and

Tμi ¼ Tμj ; ∀ i; j ¼ 0; 1;…; D − 1: ð15Þ
From now on, for simplicity, we denote the tensor with

the symmetry (10) with two indices: μ and i ¼ λ1 ∈ Z=D
as Tμi ¼ Tλ1…λv , with

μi ¼
Xv
a¼2

½λa − λ1�DDv−a ∈ Z=Dv−1: ð16Þ

For a given i, the vector Tμi is lying on a Dv−1-
dimensional space, which is a fundamental representation
space of the group UðDv−1Þ. Because T̄μTμ ¼ 1 and given
Eq. (10), Tμi is also normalized

T̄μiTμi ¼ D−1; ∀ i ¼ 0; 1;…; D − 1: ð17Þ

2The random average of an arbitrary function fðjVxiÞ of the
state jVxi is equivalent to an integration over U according to the
Haar probability measure

R
dUfðUj0xiÞ, with normalizationR

dU ¼ 1.
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Then the random nature of the tensor Tλ1…λv implies that,
with respect to the same Tμ

0, the group element Un ∈
UðDv−1Þ is randomly chosen for each node.

IV. ENTANGLEMENT ENTROPY
OF A RTN SUBREGION

For the specific class of RTN states defined in Sec. III,
we shall investigate the effect of the symmetry constraint on
the holographic behavior of the entanglement entropy. We
follow a similar procedure as in Ref. [12].
Given our tensor network state,

jΨN i≡⊗
L

l
hMlj⊗

N

n
jTni ∈ H∂N ; ð18Þ

with tensor states satisfying the relation given in Eq. (10),
we consider a bipartition of the boundary Hilbert space

H∂N ¼ HA ⊗ HB ð19Þ

associated to the definition of two (a priori not adjacent)
boundary subregions A and B (see Fig. 1).
A measure of the entanglement between the two sub-

systems is given by the von Neumann entropy of the
reduced density matrix of the subsystem, either A or B,
defined by partial tracing over the full system Hilbert space.
Focusing on subsystem A, for ρ≡ jΨN ihΨN j, we have

ρA ¼ TrBðρÞ; ð20Þ

and the entanglement entropy between A and B is given by
the von Neumann entropy

SEEðAÞ ¼ −Tr½ρ̂A ln ρ̂A�; ð21Þ

where now

ρ̂A ≡ ρA
Trρ

ð22Þ

is the normalized reduced density matrix.
Following Ref. [12], we compute the entanglement

between A and B in terms of the Rényi entropy.
Contracting N copies of the reduced density matrix ρA
and taking the logarithm of the trace of ρNA , one obtains the
Nth-order Rényi entropy

SNðAÞ ¼ −
1

N − 1
ln Trρ̂NA ≡ −

1

N − 1
ln

TrρNA
ðTrρÞN : ð23Þ

In the limit N → 1, the Rényi entropy SN coincides with
the von Neumann entropy of region A,

SEEðAÞ ¼ lim
N→1

SNðAÞ ð24Þ

and thus it provides a convenient measure of the entangle-
ment entropy between regions A and B.
We define the partition functions for the N replicas of the

reduced and full boundary states by

ZðNÞ
A ≡ TrρNA ¼ Tr½ρ⊗NPðπ0A;N; dÞ�;

ZðNÞ
0 ≡ ðTrρÞN; ð25Þ

where Pðπ0A;N; dÞ is the 1-cycle permutation operator
acting on the states in region A,

Pðπ0A;N; dÞ ¼
YN
s¼1

δ
μ
ð½sþ1�N Þ
A μðsÞA

; ð26Þ

d is the dimension of the Hilbert space in the same region
A, and μðsÞ is the sth replica of the index. In general,
Pðπ;N; dÞ denotes the d-dimensional representation matrix
of permutation element π in the N-permutation group SN .
With respect to the original open graph, described by the

state ρ≡ jΨN ihΨN j, the two partition functions ZðNÞ
A ; ZðNÞ

0

define new tensor network observables associated to closed
graphs obtained by a specific trace scheme.

A. Derivation of the second Rényi entropy

As a first step, let us write down the second-order Rényi
entropy, S2, for a generic tensor network state jΨN i inH∂N .
We rewrite states in the following synthetic index notation:

jΨN i ⇔ ΨfλAgfλBg ≡ΨAB; ð27Þ

⊗
n
jTni ⇔

�
⊗
n
Tn

�
fλAgfλBgfλCg

≡ T ABC; ð28Þ

⊗
l
hMlj ⇔

�
⊗
l
M̄l

�
fλCg

≡MC: ð29ÞFIG. 1. Boundary ∂N of network N divided into two parts A
and B.
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Based on the definition (7), the tensor network state is
rewritten as

ΨAB ¼ MCT ABC ð30Þ

where A and B label the two regions of the boundary ∂N .
All internal links are contracted with nodes. The density

matrix corresponding to ΨAB is

ρĀAB̄B ¼ Ψ̄ABΨAB: ð31Þ

Then S2 is defined as

e−S2 ¼ Zð2Þ
A

Zð2Þ
0

ð32Þ

with Zð2Þ
0 ¼ Tr½ρ⊗2� and Zð2Þ

A ¼ Tr½ρ⊗2
A �.

In particular, forN ¼ 2, the cyclic group Sn only has two
elements—the identity 1 and swap operator F—so that

Pðπ0A; 2; dÞ≡ F ðAÞ ≡Y2
s¼1

δ
μ
ð½sþ1�2Þ
A μðsÞA

: ð33Þ

Then

Zð2Þ
A ¼ Tr½ρ⊗2

A � ¼ Tr½ρ⊗2F ðAÞ�
¼ ρĀ1A1B̄1B1

ρĀ2A2B̄2B2
F ðAÞ
Ā1A1Ā2A2

1ðBÞB̄1B1B̄2B2
; ð34Þ

Zð2Þ
0 ¼ Tr½ρ⊗2�

¼ ρĀ1A1B̄1B1
ρĀ2A2B̄2B2

1ðAÞ
Ā1A1Ā2A2

1ðBÞB̄1B1B̄2B2
: ð35Þ

B. Self-averaging and large-bond-dimension limit

Due to its random nature, our tensor network behaves
analogously to systems with quenched disorder, charac-
terized by self-averaging quantities, i.e., quantities for
which the average over the random couplings produces
typical configurations in the thermodynamic limit (see e.g.,
Ref. [19] and references therein).
In this sense, one can expect the entropy of the boundary

state to be typical, namely to be arbitrarily well approxi-
mated by its expectation value, in the large-bond-dimension
limit, namely for D ≫ 1.
Following Ref. [12], we then consider the expansion

of the expectation value Eð·Þ of the entropy average in

powers of the fluctuations δZð2Þ
A ¼Zð2Þ

A −EðZð2Þ
A Þ and δZð2Þ

0 ¼
Zð2Þ
0 − EðZð2Þ

0 Þ, so that

EðSNðAÞÞ ¼ −E
�
log

EðZð2Þ
A Þ þ δZð2Þ

A

EðZð2Þ
0 Þ þ δZ0

�

¼ − log
EðZð2Þ

A Þ
EðZð2Þ

0 Þ
þ fluctuations: ð36Þ

For large enough bond dimensions D, building on the proof
given in Ref. [12], as a direct consequence of the concen-
tration of measure phenomenon [20], we assume in our case
that the statistical fluctuations around the average value in
Eq. (36) are exponentially suppressed. Within this
assumption, we can approximate the second Rényi entropy

with the logarithm of the ratio between the averages of Zð2Þ
A

and Zð2Þ
0 ,

EðS2ðAÞÞ ≃ − log
EðZð2Þ

A Þ
EðZð2Þ

0 Þ
: ð37Þ

We proceed then by computing EðZð2Þ
A Þ and EðZð2Þ

0 Þ
separately.

C. Random state averaging

Let us first consider the case without the gauge symmetry
(10) for a given graph with only one node. The corre-
sponding density matrix is

ρμμ̄ ≡ TμT̄ μ̄: ð38Þ
Consider N copies of the density matrix ρ⊗N . If T is
uniformly distributed, then the average ρ⊗N over T is
given by

ETðρ⊗NÞ≡
Z
UðDvÞ

dU
YN
s¼1

ðUT0ÞμðsÞ ðUT0Þμ̄ðsÞ : ð39Þ

Because of Schur’s lemma, since HDv is the irrep of UðDvÞ,
the result of the average is the identity matrix on the
symmetric subspace ofH⊗n

Dv .WhenTrρ ¼ 1, the result is then

ETðρ⊗NÞ ¼ 1

Dv½N�
X
π∈SN

YN
s¼1

δμðsÞμ̄ðπðsÞÞ

≡ 1

Dv½N�
X
π∈SN

Pðπ;N;DvÞ ð40Þ

where

Dv½N�≡DvðDv þ 1Þ…ðDv þ N − 1Þ: ð41Þ
SN is the symmetric group on N objects and

Pðπ;N;DvÞ≡YN
s¼1

δμðsÞμ̄ðπðsÞÞ ð42Þ
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which is the representation matrix of π ∈ SN on H⊗N
Dv .

Using the gauge (8) or (13), we can get the relation between
representations on HDv and H⊗v

D

δμðsÞμ̄ðπðsÞÞ ≡
Yv
a¼1

δ
λðsÞa λ̄ðπðsÞÞa

: ð43Þ

Then we have

Pðπ;N;DvÞ ¼
Yv
a¼1

Pðπa;N;DÞ: ð44Þ

If T is a random vector, with Gaussian distribution, then
the average is

ETðρ⊗NÞ≡
Z

DTe−βjTj2
YN
s¼1

TμðsÞ T̄ μ̄ðsÞ : ð45Þ

If we ask that ETðρÞ ¼ 1=Dv and T ¼ xT̂, where jT̂j ¼ 1,
then β ¼ Dv and the average ETðρ⊗NÞ becomes

Z
dxjxj2Ne−Dvjxj2

Z
dU

YN
s¼1

ðUT̂0ÞμðsÞ ðUT̂0Þμ̄ðsÞ

¼ ðDvÞ−N
X
π∈SN

YN
s¼1

δμðsÞμ̄ðπðsÞÞ : ð46Þ

Now let us consider the case with the symmetry (10).
The corresponding density matrix is

ρμμ0 ≡ TμT̄ μ̄ ¼ Tμi T̄ μ̄ī ≡ ρ̃μiμ̄ī : ð47Þ

The expression for the N copies of the density matrix reads

ρ⊗N ¼
YN
s¼1

ρ̃μiðsÞμ̄īðsÞ ¼
YN
s¼1

TμiðsÞ T̄ μ̄īðsÞ : ð48Þ

If T is uniformly distributed, then the average of ρ⊗N

over T is

ETðρ⊗NÞ ¼
Z
UðDv−1Þ

dU
YN
s¼1

ðUT0ÞμiðsÞ ðUT0Þμ̄īðsÞ : ð49Þ

As shown in the first case, the result of the integral is the
identity matrix in the symmetric subspace of H⊗N

Dv−1

ETðρ⊗NÞ ∝
X
π∈SN

YN
s¼1

δμiðsÞμ̄īðπðsÞÞ

≡ X
π∈SN

PfiðsÞgfīðsÞgðπ;N;Dv−1Þ ð50Þ

where PfiðsÞgfīðsÞgðπ;N;Dv−1Þ is the representation matrix

of π ∈ SN on H⊗N
Dv−1 with a set of fiðsÞgfīðsÞg. Similarly,

when Tμ is a Gaussian vector, the result of the average is the
same as the above equation up to a normalization. The
details of the matrix in Eq. (50) are given in the Appendix.
By using the gauge (13), one can show the relation

between the representations μi and λa. Because of Eq. (13),
δμiðsÞμ̄īðs0Þ is not zero only when

½λaðsÞ − iðsÞ�D ¼ ½λ̄aðs0Þ − īðs0Þ�D: ð51Þ

Because of the modular rules (12), the above equation can
be rewritten as

½λaðsÞ − λ̄aðs0Þ�D ¼ ½iðsÞ − īðs0Þ�D: ð52Þ

If ½iðsÞ − īðs0Þ�D ¼ l ∈ Z=D, then

δμiðsÞμ̄īðs0Þ ¼
Yv
a¼1

δ½λaðsÞ−λ̄aðs0Þ�D;l ¼
Yv
a¼1

δ½λaðsÞ−l�D;λ̄aðs0Þ:

Notice that l is a uniform shift for all legs of each node as
long as the step ½iðsÞ − īðs0Þ�D ¼ l is fixed. Finally, we
define for later use the trace on a tensor T fμðsÞgfμ̄ðsÞg, as

TrT ¼ T fμðsÞgfμ̄ðsÞg
YN
s¼1

δμðsÞμ̄ðsÞ ; ð53Þ

which becomes, with the symmetry (10),

TrT ¼
X
fiðsÞg
fīðsÞg

TfμiðsÞgfμ̄īðsÞg
YN
s¼1

δμiðsÞμ̄īðsÞδiðsÞīðsÞ: ð54Þ

D. Second Renyi entropy with symmetry constraint

Coming back to the case ofN ¼ 2, we can now explicitly
write down the expression for the average of the single
symmetric tensor defined in Eq. (10),

ETðρ⊗2
Tn
Þ ¼ 1

D2Dv−1½2�
X
mð1Þ
mð2Þ

ð1mð1Þmð2Þ þ Fmð1Þmð2ÞÞ: ð55Þ

Given Eq. (41), Dv−1½2� ¼ Dv−1ðDv−1 þ 1Þ, we can define
the normalization as D2 ¼ D2Dv−1½2�. Therefore, for the
density matrix of a tensor network with N nodes we have
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ETðρ⊗2Þ ¼ TrC½⊗
n
ETðρ⊗2

Tn
Þρ⊗2

M �

¼ 1

DN
2

TrC

�
⊗
N

n

X
mnð1Þmnð2Þ

ð1mnð1Þmnð2Þ

þ Fmnð1Þmnð2ÞÞρ⊗2
M

�

¼ 1

DN
2

X
fmnð1Þgfmnð2Þg

× TrC
h
⊗
n
1mnð1Þmnð2Þ⊗

n0
Fmn0 ð1Þmn0 ð2Þρ

⊗2
M

i
: ð56Þ

In the case of a network of N nodes, the above sum is
naively given by a sum of ð2D2ÞN terms, with 2D2 choices
for each node, but with several terms vanishing.
In order to calculate Eq. (56) explicitly, we consider the

cases of internal and boundary links separately. For any
internal links connecting two nodes, we find the following
three main cases:
(1) 1mð1Þmð2Þ and 1m0ð1Þm0ð2Þ,

Tr½1mð1Þmð2Þρ
⊗2
Ml

1m0ð1Þm0ð2Þ� ¼ D2δmð1Þm0ð1Þδmð2Þm0ð2Þ:

ð57Þ
(2) Fmð1Þmð2Þ and Fm0ð1Þm0ð2Þ,

Tr½Fmð1Þmð2Þρ
⊗2
Ml

Fm0ð1Þm0ð2Þ� ¼ D2δmð1Þm0ð1Þδmð2Þm0ð2Þ:

ð58Þ
(3) 1mð1Þmð2Þ and Fm0ð1Þm0ð2Þ,

Tr½1mð1Þmð2Þρ
⊗2
Ml

Fm0ð1Þm0ð2Þ�
¼ Dδ½mð1Þþmð2Þ�D;½m0ð1Þþm0ð2Þ�D: ð59Þ

On the boundary of region A, for F ðAÞ ¼ F00 at one end
of the boundary link, we have instead only two cases:
(1) F ðAÞ and Fm0ð1Þm0ð2Þ,

Tr½F ðAÞρ⊗2
Ml

Fm0ð1Þm0ð2Þ� ¼ Tr½F00ρ
⊗2
Ml

Fm0ð1Þm0ð2Þ�
¼ D2δ0m0ð1Þδ0m0ð2Þ: ð60Þ

(2) F ðAÞ and 1m0ð1Þm0ð2Þ,

Tr½F ðAÞρ⊗2
Ml

1m0ð1Þm0ð2Þ� ¼ Tr½F00ρ
⊗2
Ml

1m0ð1Þm0ð2Þ�
¼ Dδ0;½m0ð1Þþm0ð2Þ�D: ð61Þ

Finally, on the boundary of region B, where 1ðBÞ ¼ 100 at
one end of the boundary link, we find two cases:
(1) 1ðBÞ and Fm0ð1Þm0ð2Þ,

Tr½1ðBÞρ⊗2
Ml

Fm0ð1Þm0ð2Þ� ¼ Tr½100ρ⊗2
Ml

Fm0ð1Þm0ð2Þ�
¼ Dδ0;½m0ð1Þþm0ð2Þ�D: ð62Þ

(2) 1ðBÞ and 1m0ð1Þm0ð2Þ,

Tr½1ðBÞρ⊗2
Ml

1m0ð1Þm0ð2Þ� ¼ Tr½100ρ⊗2
Ml

1m0ð1Þm0ð2Þ�
¼ D2δ0m0ð1Þδ0m0ð2Þ: ð63Þ

Notice how the different scaling behavior seen in
Eqs. (57)–(63) gives a good idea as to why connected
patterns form. Connected configurations are characterized
by a higher degree of divergence, and hence they are
ultimately favored from an entropic point of view.

E. Remarks on the calculation

With the general scaling behavior in hand, the averaging

Zð2Þ
A and Zð2Þ

0 over T is equivalent to defining a class of
networks where to each node is assigned a matrix 1mð1Þmð2Þ
or a matrix Fmð1Þmð2Þ, while the two boundary regions are

respectively labeled by matrices F ðAÞ and 1ðBÞ for Zð2Þ
A , and

1ðAÞ and 1ðBÞ for Zð2Þ
0 .

We find that, for all matrices 1mð1Þmð2Þ and Fmð1Þmð2Þ, the
ones with ½mð1Þ þmð2Þ�D ≠ 0 will never contribute to Zð2Þ

A

andZð2Þ
0 . Indeed, if one node has ½mð1Þ þmð2Þ�D ≠ 0, it will

make its neighboring node satisfy ½mð1Þ þmð2Þ�D ≠ 0, and
these nodes will force their neighboring nodes to satisfy
½mð1Þ þmð2Þ�D ≠ 0. Because all nodes connect to the
boundary via a certain number of links, the consequence
is that the boundary should be ½mð1Þ þmð2Þ�D ≠ 0, but we
have assumed that the boundary is assignedby100 or F00, i.e.,
½mð1Þ þmð2Þ�D ¼ 0. Therefore, noneof thematrices at each
node can satisfy ½mð1Þ þmð2Þ�D ≠ 0. Therefore, the full
calculation can be reduced to considering only matrices
Fmð1Þmð2Þ and 1mð1Þmð2Þ with ½mð1Þ þmð2Þ�D ¼ 0.
If a node is Fmð1Þmð2Þ, then its neighboring nodes can only

be Fm0ð1Þm0ð2Þ or 1m0ð1Þm0ð2Þ with ½m0ð1Þ þm0ð2Þ�D ¼ 0. So
the network ends up being divided into several regions,

FIG. 2. The network with the boundary conditions A ¼ F ðAÞ

and B ¼ 1ðBÞ is divided into regions. The nodes in the red regions
are associated with F and the ones in the blue regions are
associated with 1.
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wherein all nodes are associated with the same matrix. If a
region is associated with Fmð1Þmð2Þ, its neighboring region
can only be associated with 1m0ð1Þm0ð2Þ, and vice versa. An
example is shown in Fig. 2. In this sense, each region ends
up being labeled with F or 1 and the boundaries between
these regions can be interpreted as domain walls [12]. Each
link crossing a domain wall is then assigned with F at one
end and with 1 at the other.
As shown in Fig. 2, such domain walls form different

global patterns P for the network. For a given pattern,
changing a region’s label from Fmð1Þmð2Þ to Fm0ð1Þm0ð2Þ will

not change the value of its corresponding term in Zð2Þ
A or

Zð2Þ
0 . This implies a degeneracy. The degeneracy of the

region that does not connect to the boundary is D, which is
the number of possible choices of the pair ðmð1Þ; mð2ÞÞ.
Therefore we have

ETðZð2Þ
A Þ ¼ 1

DN
2

X
PA

dPA
Zð2Þ
PA
; ð64Þ

ETðZð2Þ
0 Þ ¼ 1

DN
2

X
P0

dP0
Zð2Þ
P0

ð65Þ

where dP is the degeneracy of the pattern, which is the
product of the degeneracies of each region in this pattern.

Zð2Þ
P is given as

Zð2Þ
P ¼ D2ðL−LPÞDLP ¼ D2L−LP ð66Þ

where L is the total link number in a given network N ,
including links across ∂N ; LP is the number of links across
the domain walls in P.

F. Holographic behavior and Ryu-Takayanagi formula

The main contribution of ETðZð2Þ
A Þ is given by the pattern

with the least number of links through the domain walls.
We call the domain wall with the least number of links the
minimal surface. One can show that this is true even after
the degeneracy dP is taken into account.
In fact, all patterns can be generated from the minimal

surface one by deforming the minimal surface or adding
new regions. Starting from the pattern corresponding to a
minimal surface, any deformation will lead to a surface
which is not minimal. Adding a new region will multiplyD
to the degeneracy dP, while will divide Dv to ZP , where
v > 1 is the number of boundary links of the new region,
and thus in total one has to consider the product D1−v < 1

to the original Zð2Þ
P . This gives a contribution that is smaller

than the original one. So the main contribution to ETðZð2Þ
A Þ

necessarily comes from the minimal surface pattern. In this
pattern there are only two regions, which are labeled by
F ðAÞ and 1ðBÞ, respectively, as shown in Fig. 33:

ETðZð2Þ
A Þ ¼ 1

DN
2

D2L−Lminð1þOðD−1ÞÞ: ð67Þ

In this sense, in agreement with the results in Ref. [12], we
find that the main contribution of ETðZð2Þ

0 Þ is given by the
patternwithout any domainwall. This is because its boundary
condition is 1ðAÞ ¼ 1ðBÞ ¼ 100. Such a pattern exists and all
its nodes are assigned 100, as shown in Fig. 4. Then

ETðZð2Þ
0 Þ ¼ 1

DN
2

D2Lð1þOðD−1ÞÞ: ð68Þ

Finally, collecting the above results, we find that the
leading contribution to S2 is given as

ETðe−S2Þ ∼
ETðZð2Þ

A Þ
ETðZð2Þ

0 Þ
¼ D−Lminð1þOðD−1ÞÞ; ð69Þ

which gives, when D ≫ 1,

S2 ¼ Lmin lnDþOðD−1Þ: ð70Þ

This is the Ryu-Takayanagi formula for S2.

FIG. 3. The pattern with only the minimal surface σmin.
Boundary condition: A ¼ F ðAÞ and B ¼ 1ðBÞ.

FIG. 4. The pattern without the minimal surface. Boundary
condition: A ¼ 1ðAÞ and B ¼ 1ðBÞ.

3A more extensive description of the configuration pattern can
be found in Ref. [12] as well as in a related work by the authors [6].
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The Nth Rényi entropy SN can be calculated in a similar
way, and with an analogous result.

V. CONCLUSIONS

We have computed the Rényi entropy and derived the
Ryu-Takayanagi entropy formula, for random tensor net-
works with an additional gauge invariance property. This is
an interesting extension of existing derivations. On the one
hand it shows the generality of the holographic behavior of
(random) tensor network states, and thus their role in the
entanglement/geometry correspondence, and confirms their
interest also for applications in a quantum gravity context.
On the other hand, the type of gauge symmetry we imposed
is suggested by the correspondence with GFT and LQG
states, and it is indeed required for the exact matching with
the spin network states used in these quantum gravity
approaches. Thus our results will facilitate the application
of techniques from quantum gravity to quantum many-
body systems (beyond the AdS=CFT framework), and the
exploration of the same entanglement/geometry correspon-
dence in new quantum gravity contexts.
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APPENDIX: STRUCTURE OF THE
MATRIX OF ETðρ⊗nÞ

In this appendix we analyze the structure of the matrix in
Eq. (50)

M≡X
π∈Sn

Yn
s¼1

δμiðsÞμ̄īðπðsÞÞ ¼
X
π∈Sn

PfiðsÞgfīðsÞgðπ;n;Dv−1Þ: ðA1Þ

The sum over Pðπ; n;Dv−1Þ is proportional to the projector
operator Pn;Dv−1

sym which projects vectors in H⊗n
Dv−1 into its

symmetric subspace,

Pn;Dv−1

sym ¼ 1

n!

X
π∈Sn

Pðπ; n;Dv−1Þ: ðA2Þ

Given a set of fiðsÞg ¼ fið1Þ; ið2Þ;…; iðnÞg and fīðsÞg ¼
fīð1Þ; īð2Þ;…; īðnÞg where iðsÞ and īðsÞ are from 0 to

D − 1, there is a projector Pn;Dv−1

sym , which is a Dðv−1Þn ×
Dðv−1Þn matrix. Write Eq. (50) as a matrix, with fiðsÞg
labeling its rows and fīðsÞg labeling its columns:

M ¼ n!

0
BBB@

Pn;Dv−1

sym � � � Pn;Dv−1

sym

..

. . .
. ..

.

Pn;Dv−1

sym � � � Pn;Dv−1

sym

1
CCCA: ðA3Þ

This matrix is a Dn ×Dn block matrix.
The trace of M is

TrM ¼
X
fiðsÞg
fīðsÞg

X
π∈Sn

Yn
s¼1

δμiðsÞμ̄īðπðsÞÞδμiðsÞμ̄īðsÞδiðsÞīðsÞ

¼
X
fiðsÞg

X
π∈Sn

Yn
s¼1

δμiðsÞμ̄iðπðsÞÞδμiðsÞμ̄iðsÞ

¼
X
fiðsÞg

X
π∈Sn

Yn
s¼1

δμiðsÞμiðπðsÞÞ

¼
X
fiðsÞg

n!TrPn;Dv−1

sym

¼ DnDv−1½n� ðA4Þ
where we use the trace of the projector Pn

sym

TrPn;Dv−1

sym ¼
�
Dv−1 þ n−

n

�
: ðA5Þ

The matrix M can be written as a sum of matrices

M ¼
X
π∈Sn

Yn
s¼1

δμiðsÞμ̄īðπðsÞÞ

¼
X
fmðsÞg

X
π∈Sn

Yn
s¼1

δμ½iðsÞ−mðsÞ�D μ̄īðπðsÞÞ
δiðsÞīðπðsÞÞ ðA6Þ

¼
X
fmðsÞg

X
π∈Sn

Yn
s¼1

δ½μðsÞ−mðsÞDv−1�Dv ;μ̄ðπðsÞÞ ðA7Þ

¼
X
fmðsÞg

X
π∈Sn

Yn
s¼1

Yv
a¼1

δ½λaðsÞ−mðsÞ�D;λ̄aðπðsÞÞ: ðA8Þ

Let us define a class of new matrices PðπÞfmðsÞg as

PðπÞfmðsÞg ≡
Yn
s¼1

Yv
a¼1

δ½λaðsÞ−mðsÞ�D;λ̄aðπðsÞÞ

¼
Yn
s¼1

δ½μðsÞ−mðsÞDv−1�Dv ;μ̄ðπðsÞÞ : ðA9Þ

Then the matrix M becomes

M ¼
X
fmðsÞg

X
π∈Sn

PðπÞfmðsÞg: ðA10Þ

When mðsÞ ¼ 0 for all s, PðπÞf0g ¼ Pðπ; n;DvÞ, the

representation matrix of π ∈ Sn on H⊗n
Dv .
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