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In this Letter, we provide evidence for a new double-copy structure in one-loop amplitudes of the open
superstring. Their integrands with respect to the moduli space of genus-one surfaces are cast into a form
where gauge-invariant kinematic factors and certain functions of the punctures—so-called generalized
elliptic integrands—enter on completely symmetric footing. In particular, replacing the generalized elliptic
integrands by a second copy of kinematic factors maps one-loop open-string correlators to gravitational
matrix elements of the higher-curvature operator R4.
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Introduction.—Recent investigations of scattering ampli-
tudes revealed a variety of hidden relations between field
theories of seemingly unrelated particle content. The oldest
and possibly most prominent example of such connections
is the double-copy structure of gravity [1–3] whose
scattering amplitudes can be reduced to squares of gauge-
theory building blocks. This kind of double copy is
geometrically intuitive from the realization of gravitons
and gauge bosons as vibration modes of closed and open
strings, respectively. Its first explicit realization at the level
of scattering amplitudes in string theory was pinpointed by
Kawai, Lewellen, and Tye (KLT) in 1985 [1].
The first loop-level generalization of the gravitational

double copy was found by Bern, Carrasco, and Johansson
(BCJ) [3]: Gauge-theory ingredients in a suitable gauge can
be conjecturally squared togravitational loop integrands at the
level of cubic diagrams. The gauge dependence of the BCJ
construction has been recently bypassed through a general-
ized double copy [4]—seeRef. [5] for an impressive five-loop
application—and a one-loop KLT formula in field theory [6].
It has been recently discovered that tree-level amplitudes

of the open superstring admit a double-copy representation
[7] which mimics the field-theory version of the KLT
formula [8]: Gauge-theory trees are double copied with
moduli-space integrals whose expansion in the inverse
string tension α0 suggests an interpretation as scattering
amplitudes in effective scalar field theories [9].
One-loop open-string amplitudes exhibit two sorts

of invariances that are intertwined through a similar

double-copy structure: While gauge invariance is also
required for field-theory amplitudes, string-theory correla-
tors defined over a Riemann surface of genus one must be
additionally invariant under monodromy variations, i.e.,
transporting their punctures around the homology cycles.
In this Letter, we introduce a one-to-one map between

gauge-invariant kinematic factors of the external states and
doubly periodic functions on genus-one Riemann surfaces,
and the latter will be traced back to so-called generalized
elliptic integrands. The examples given up to six points
provide evidence for a double-copy structure in one-loop
open-string amplitudes. In particular, when the generalized
elliptic integrands are double copied to their gauge-
invariant kinematic counterparts, we obtain gravitational
tree-level matrix elements: those with a single insertion
of the higher-curvature operator R4 from an effective
Lagrangian ∼Rþ R4 along with its supersymmetrization.
The results of this Letter yield the first manifestly

supersymmetric representations of seven-point integrands
for open- and closed-string one-loop amplitudes, and we
will report on cross-checks and higher-multiplicity results
in Ref. [10].
Open-string correlators.—Color-stripped one-loop

amplitudes of n open-string states are given by the
moduli-space integral

A1−loop
open ðλÞ ¼

Z
dDl

Z
DðλÞ

dτ
Yn
j¼2

dzjjInjKn: ð1Þ

Following the chiral-splitting techniques of Ref. [11],
the integrations of Eq. (1) involve D-dimensional loop
momenta l. The integration domainDðλÞ for the moduli zj,
τ depends on the topology of the genus-one world sheet—
the cylinder and the Möbius strip—represented by λ. Both
of these topologies can be derived from a torus via suitable
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involutions [12], and its usual parametrization depicted in
Fig. 1 requires the quantities jInjKn to be doubly periodic
functions as z → zþ 1 and z → zþ τ—at least after
integration over l.
Koba-Nielsen factor and the correlators.—A universal

contribution to genus-one integrands in Eq. (1) is furnished
by the Koba-Nielsen factor jInj with

In≡exp

�Xn
i<j

sij lnθðzij;τÞþ
Xn
j¼1

zjðl ⋅kjÞþ
τl2

4πi

�
ð2Þ

and zij ≡ zi − zj. Here, sij ≡ ki · kj are the Mandelstam
invariants in units 2α0 ¼ 1 built from lightlike external
momenta kj, and θ is the odd Jacobi theta function:

θðz; τÞ≡ sinðπzÞ
Y∞
n¼1

ð1 − e2πiðnτþzÞÞð1 − e2πiðnτ−zÞÞ: ð3Þ

Finally, the correlators Kn in Eq. (1) are the main subject of
this Letter’s investigations: They comprise kinematic fac-
tors for the external states written in pure-spinor superspace
as well as meromorphic functions of the moduli to be
introduced as generalized elliptic integrands. We will
provide evidence via explicit examples at n ≤ 6 points
that the kinematic factors and generalized elliptic inte-
grands satisfy identical relations and that their composition
can be viewed as a double copy.
By virtue of chiral splitting, the moduli-space integrands

of closed-string one-loop amplitudes follow as the holo-
morphic square Kn → jKnj2 along with jInj → jInj2 [11].
Hence, the double-copy structure to be described for Kn
immediately propagates to the closed string.
Kinematic factors from pure spinors.—In the pure-spinor

formulation of the superstring [13], the gauge invariance

and supersymmetry of the amplitudes are unified to an
invariance under the Becchi-Rouet-Stora-Tyutin (BRST)
operator Q. A classification of BRST-invariant kinematic
factors of various tensor ranks that can arise from the one-
loop amplitude prescription has been given in Ref. [14].
The simplest scalar BRST invariants can be expressed in
terms of gauge-theory trees [15], e.g.,

C1j2;3;4 ¼ s12s23Atree
YMð1; 2; 3; 4Þ;

C1j23;4;5 ¼ s45½s34Atree
YMð1; 2; 3; 4; 5Þ − ð2 ↔ 3Þ�; ð4Þ

and further examples of various tensor ranks are available
for download in Ref. [16]. For instance, the bosonic
components of a vector invariant Cm

1j2;3;4;5 (with Lorentz
indices m; n ¼ 0; 1;…; D − 1 in D spacetime dimensions)
involve tensor structures such as em1 t8ð2; 3; 4; 5Þ and
ðkm2 =s12Þt8ð12; 3; 4; 5Þ. The t8 tensor with multiparticle
insertions is defined in Ref. [6], and ei denotes the
polarization vector of the ith gluon. Here and in the
following, groups of external-state labels in a subscript that
are separated by a comma (rather than a vertical bar) can be
freely interchanged; e.g., C1j23;4;5 ¼ C1j23;5;4 ¼ C1j4;23;5.
In addition to BRST-invariant kinematic factors, the six-

point correlator [17] gives rise to pseudoinvariants with
nonvanishing BRST variations,

QCmn
1j2;3;4;5;6 ¼ −ηmnV1Y2;3;4;5;6;

QP1j2j3;4;5;6 ¼ −V1Y2;3;4;5;6; ð5Þ
where V1 denotes an unintegrated vertex operator and
Y2;3;4;5;6 is related to the anomaly kinematic factor ∼ε10F5

of the gluon field strength [18]. The BRST variation of the
correlator localizes on the boundary of moduli space, and
the cancellation of the hexagon anomaly [19] thus follows
as usual in the integrated amplitude Eq. (1).
The construction of (pseudo)invariants from Berends-

Giele currents [14] gives rise to the shuffle symmetries
within the individual groups of labels; e.g.,

C…
1j23;…¼−C…

1j32;…; C…
1j234;…þcycð2;3;4Þ¼0: ð6Þ

Double-copy representations.—In order to exemplify
the main result of this work, the correlators for open-
string amplitudes Eq. (1) up to multiplicity six can be
written as [10]

K4 ¼ C1j2;3;4E1j2;3;4;

K5 ¼ Cm
1j2;3;4;5E

m
1j2;3;4;5 þ ½s23C1j23;4;5E1j23;4;5 þ ð2; 3j2; 3; 4; 5Þ�;

K6 ¼
1

2
Cmn
1j2;…;6E

mn
1j2;…;6 − ½P1j2j3;4;5;6E1j2j3;4;5;6 þ ð2 ↔ 3;…; 6Þ� þ ½s23Cm

1j23;4;5;6E
m
1j23;4;5;6 þ ð2; 3j2; 3;…; 6Þ�

þ f½s23s45C1j23;45;6E1j23;45;6 þ cycð3; 4; 5Þ� þ ð6 ↔ 5; 4; 3; 2Þg
þ f½s23s34C1j234;5;6E1j234;5;6 þ cycð2; 3; 4Þ� þ ð2; 3; 4j2;…; 6Þg: ð7Þ

FIG. 1. Parameterization of a torus as a lattice C=ðZþ τZÞwith
discrete identifications z ≅ zþ 1 ≅ zþ τ of the punctures and
modular parameter τ in the upper half plane.
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Throughout this Letter, ði1;…; ipji1;…; iqÞ denotes a
sum over the (qp) choices of p indices i1;…; ip out of
i1;…; iq. The entire dependence of the correlators Eq. (7) on
the external polarizations is captured by the above (pseudo)
invariants, and they are accompanied by generalized elliptic
integrands E…

1j… to be spelled out in the next section. In

particular, the two kinds of ingredients in Eq. (7) will be
shown to enter on completely symmetric footing and to be
freely interchangeable. This symmetry is at the heart of the
double-copy structure of one-loop open-string amplitudes.
Generalized elliptic integrands.—At tree level, the

double-copy structure of the open superstring arises from
a relation between kinematic factors and world sheet func-
tions defined on a disk [8]. The same Kleiss-Kuijf and BCJ
relations among gauge-theory amplitudes Atree

YMð1; 2;…; nÞ
[2,20] are satisfied by the disk integrals of the so-called
Parke-Taylor factors ðz12z23…zn−1;nzn;1Þ−1, where zj re-
present the locations of the punctures on the disk boundary.
In this section, we will introduce the notion of gener-

alized elliptic integrands (GEIs) to specify the E…
1j… in the

correlators Eq. (7). They refer to functions on genus-one
Riemann surfaces that play a similar role in one-loop open-
string amplitudes as the Parke-Taylor factors at tree level.
Key definition.—By the quasiperiodicity θðzþ τ; τÞ ¼

−e−iπτ−2πizθðz; τÞ of the theta function Eq. (3), the Koba-
Nielsen factor Eq. (2) by itself is not a doubly periodic
function of the punctures. However, its monodromies as
zj → zj þ τ can be compensated by a shift in the loop
momentum l → l − 2πikj:

Injl→l−2πikj
zj→zjþτ ¼ In: ð8Þ

We refer to meromorphic functions of zj, l, τ invariant
under ðzj;lÞ→ ðzjþτ;l−2πikjÞ and ðzj;lÞ → ðzj þ 1;lÞ
as GEIs. After integrating the loop momentum in Eq. (1),
GEIs give rise to doubly periodic but generically non-
meromorphic functions of zj and τ. Since In transforms by
a complex phase under zj → zj þ 1, the quantity jInj in
Eq. (1) is a GEI.
Scalar GEIs.—A variety of GEIs can be generated from

the Kronecker-Eisenstein series [21],

Fðz; α; τÞ≡ θ0ð0; τÞθðzþ α; τÞ
θðα; τÞθðz; τÞ ≡X∞

n¼0

αn−1gðnÞðz; τÞ; ð9Þ

whose expansion in α defines meromorphic functions such
as gð0Þðz; τÞ ¼ 1 and gð1Þðz; τÞ ¼ ∂z ln θðz; τÞ as well as

2gð2Þðz;τÞ¼ ½∂z lnθðz;τÞ�2þ∂2
z lnθðz;τÞ−

θ000ð0;τÞ
3θ0ð0;τÞ : ð10Þ

The importance of the Kronecker-Eisenstein series to the
description of one-loop open-string integrands has been

recently emphasized in Ref. [22], where it was shown to
reproduce the spin-sum identities of Ref. [23].
The quasiperiodicity Fðzþ τ; α; τÞ ¼ e−2πiαFðz; α; τÞ

implies that the functions gðnÞðz; τÞ are not elliptic,

gðnÞðzþ τ; τÞ ¼
Xn
k¼0

ð−2πiÞk
k!

gðn−kÞðz; τÞ; ð11Þ

for example, gð1Þðzþ τ; τÞ ¼ gð1Þðz; τÞ − 2πi. However,
these monodromies cancel in cyclic products,

Fðz12; α; τÞFðz23;α; τÞ…Fðzk−1;k; α; τÞFðzk;1; α; τÞ

≡ α−k
X∞
w¼0

αwVwð1; 2;…; kÞ; ð12Þ

which define elliptic functions Vw in k variables with w
simultaneous poles as zj → zjþ1 such as V0ð1;2;…;kÞ¼1

and V1ð1; 2;…; kÞ ¼ P
k
j¼1 g

ð1Þ
j;jþ1, as well as

V2ð1; 2;…; kÞ ¼
Xk
j¼1

gð2Þj;jþ1 þ
Xk
i<j

gð1Þi;iþ1g
ð1Þ
j;jþ1; ð13Þ

with gðnÞij ≡ gðnÞðzi − zj; τÞ and zkþ1 ≡ z1. Therefore, the
following functions are elliptic:

E1j23;4;5 ≡ V1ð1; 2; 3Þ; E1j234;5;6 ≡ V2ð1; 2; 3; 4Þ;
E1j23;45;6 ≡ V1ð1; 2; 3ÞV1ð1; 4; 5Þ: ð14Þ

In addition to the above scalar elliptic functions, we also
introduce the formal definition E1j2;3;4 ≡ 1 and

E1j2j3;4;5;6 ≡ ∂z1g
ð1Þ
12 þ s12ðgð1Þ12 Þ2 − 2s12g

ð2Þ
12 ; ð15Þ

which exhaust the scalar GEIs in the correlators Eq. (7).
Tensorial GEIs.—Open-string integrands at (n ≥ 5)

points also involve loop momenta from the zero modes
of certain world sheet fields. Appearances of l will be
combined with the coefficients gðnÞ of the Kronecker-
Eisenstein series Eq. (9) to form GEIs such as

Em
1j2;3;4;5 ≡ lm þ km2 g

ð1Þ
12 þ km3 g

ð1Þ
13 þ km4 g

ð1Þ
14 þ km5 g

ð1Þ
15 ;

Em
1j23;4;5;6 ≡ ðlm þ km4 g

ð1Þ
14 þ km5 g

ð1Þ
15 þ km6 g

ð1Þ
16 ÞV1ð1; 2; 3Þ

þ ½km2 ðgð1Þ13 g
ð1Þ
23 þ gð2Þ12 − gð2Þ13 − gð2Þ23 Þ − ð2 ↔ 3Þ�;

Emn
1j2;3;4;5;6 ≡ lmln þ ½kðm2 knÞ3 g

ð1Þ
12 g

ð1Þ
13 þ ð2; 3j2;…; 6Þ�

þ ½lðmknÞ2 g
ð1Þ
12 þ 2km2 k

n
2g

ð2Þ
12 þ ð2 ↔ 3; 4; 5; 6Þ�:

ð16Þ
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Vector indices are symmetrized according to lðmknÞ2 ¼
lmkn2 þ lnkm2 , and the notation for the permutations is
explained below Eq. (7).
One can explicitly check that the above E…

1j… constitute
GEIs after using Eq. (11) and momentum conservation.
These GEIs suffice to describe open-string correlators
Eq. (7) up to six points, and higher multiplicities or tensor
ranks will be addressed in Ref. [10].
Shuffle symmetries from Fay identities.—Similar to the

kinematic factors, GEIs obey shuffle symmetry within the
individual groups of labels; e.g.,

E…
1j23;…¼−E…

1j32;…; E…
1j234;…þcycð2;3;4Þ¼0: ð17Þ

These shuffle symmetries can be traced back to the

symmetry gðnÞij ¼ ð−1ÞngðnÞji and the components of the
Fay relations [21],

Fðz1; α1ÞFðz2; α2Þ ¼ Fðz1;α1 þ α2ÞFðz2 − z1; α2Þ
þ ð1 ↔ 2Þ; ð18Þ

such as [22] gð1Þ12 g
ð1Þ
23 þ gð2Þ13 þ cycð1; 2; 3Þ ¼ 0.

Double-copy structure.—In this section we will show
surprising relations between the BRST-invariant kinematic
factors and GEIs that underpin the double-copy structure of
theopen superstring at one loop.When trading theGEIs in the
correlators Eq. (7) for another copy of kinematic factors,
gravitational matrix elements of R4 will be seen to emerge.
BRST-invariant kinematic factors versus GEIs.—Given

the GEIs defined above, one can show that

km2 E
m
1j2;3;4;5 þ ½s23E1j23;4;5 þ ð3 ↔ 4; 5Þ� ¼ 0 ð19Þ

up to a total world sheet derivative [ð∂ ln I5Þ=ð∂z2Þ] that
vanishes under the integrals of Eq. (1). Rather surprisingly, in
2014 the following kinematic identity of identical structure
was proven in the cohomology of the BRST operator [14],

km2 C
m
1j2;3;4;5 þ ½s23C1j23;4;5 þ ð3 ↔ 4; 5Þ� ¼ 0; ð20Þ

as can be explicitly verified with the data provided on the
website [16]. Note that Eq. (20) enters the field-theory
amplitudes of Ref. [24] as a kinematic Jacobi identity [3].
The striking resemblance between the identities Eq. (19)

on a genus-one Riemann surface and Eq. (20) in the
cohomology of the kinematic BRST operator motivates us
to search for further instances. Indeed, the symmetry proper-
ties [14]

C2j34;1;5 ¼ C1j34;2;5 þ C1j23;4;5 − C1j24;3;5;

C2j13;4;5 ¼ −C1j23;4;5;

Cm
2j1;3;4;5 ¼ Cm

1j2;3;4;5 þ ½km3 C1j23;4;5 þ ð3 ↔ 4; 5Þ� ð21Þ

hold for their dual GEIs in identical form,

E2j34;1;5 ¼ E1j34;2;5 þ E1j23;4;5 − E1j24;3;5;

E2j13;4;5 ¼ −E1j23;4;5;

Em
2j1;3;4;5 ¼ Em

1j2;3;4;5 þ ½km3 E1j23;4;5 þ ð3 ↔ 4; 5Þ�; ð22Þ

as can be verified from their explicit expressions above.
Similarly, the kinematic identities at six points [14],

km23C
m
1j23;4;5;6 ¼ P1j2j3;4;5;6 − P1j3j2;4;5;6 þ ½s24C1j324;5;6

− s34C1j234;5;6 þ ð4 ↔ 5; 6Þ�; ð23Þ

km1 C
mn
1j2;3;4;5;6 ¼ −½kn2P1j2j3;4;5;6 þ ð2 ↔ 3; 4; 5; 6Þ�; ð24Þ

ηmnCmn
1j2;3;4;5;6 ¼ 2½P1j2j3;4;5;6 þ ð2 ↔ 3; 4; 5; 6Þ�; ð25Þ

all have a direct counterpart in terms of GEIs up to boundary
terms in moduli space. Under C…

1j… → E…
1j…, Eqs. (23) and

(24) translate into total derivatives with respect to the
punctures zj that can be immediately discarded. The GEI
analogue of Eq. (25) additionally involves a τ derivative,

ηmnEmn
1j2;…;6 ¼ 2½E1j2j3;4;5;6 þ ð2 ↔ 3;…; 6Þ� þ 4πi

∂ ln I6

∂τ ;

ð26Þ

resulting in the expected BRST anomaly QðK6I6Þ∼
½ð∂I6Þ=ð∂τÞ�.
The above identities among GEIs can be derived from the

antisymmetry gð1Þij ¼ −gð1Þji , momentum conservation, and
the Fay identity Eq. (18). Together with the shuffle sym-
metries Eq. (6), these relations signal a fascinating duality
between BRST invariants and GEIs which will be shown on
a case-by-case basis to persist at higher points [10].
The duality even extends to anomalies: The BRST

variations Eq. (5) can be mapped to a modular anomaly
in the l integral over Emn

1j2;…;6 and E1j2j3;4;5;6 [10], which

cancels by the kinematic identity Eq. (25) dual to Eq. (26).
Comparison with R4.—In the low-energy limit, one-loop

amplitudes of the closed string are known to yield matrix
elements of higher-curvature operators R4 [25]. Up to and
including six points, they have been expressed in terms of
the above BRST (pseudo)invariants [17]:
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MR4

4 ¼ C1j2;3;4C̃1j2;3;4;

MR4

5 ¼ Cm
1j2;3;4;5C̃

m
1j2;3;4;5 þ ½s23C1j23;4;5C̃1j23;4;5 þ ð2; 3j2; 3; 4; 5Þ�;

MR4

6 ¼ 1

2
Cmn
1j2;…;6C̃

mn
1j2;…;6 − ½P1j2j3;4;5;6P̃1j2j3;4;5;6 þ ð2 ↔ 3;…; 6Þ� þ ½s23Cm

1j23;4;5;6C̃
m
1j23;4;5;6 þ ð2; 3j2; 3;…; 6Þ�

þ f½s23s45C1j23;45;6C̃1j23;45;6 þ cycð3; 4; 5Þ� þ ð6 ↔ 5; 4; 3; 2Þg
þ f½s23s34C1j234;5;6C̃1j234;5;6 þ cycð2; 3; 4Þ� þ ð2; 3; 4j2;…; 6Þg: ð27Þ

The tilde refers to a second copy of the superspace
kinematic factors, where the gravitational polarizations can
be reconstructed from the tensor product of the gauge-
theory polarizations. The double-copy structure of the
above MR4

n is shared by the open-string correlators
Eq. (7) which are converted to Eq. (27) by trading the
GEIs for another copy of their kinematical correspondents:
E ↔ fC̃; P̃g. This motivates us to conjecture that

Kn ¼ MR4

n jC̃;P̃→E ð28Þ
for arbitrary multiplicities n, where all the vector indices
and external-particle labels in the subscripts are understood
to be inert under the replacements. At multiplicity n ¼ 7,
Eq. (28) leads to a new supersymmetric expression for K7;
i.e., the results of this Letter allow us to probe uncharted
terrain of multiparticle string amplitudes (see Ref. [10] for
details and consistency checks).
Conclusions and outlook.—In this Letter, we have

presented evidence for a duality between GEIs and
BRST-invariant kinematic factors: identities among GEIs
that vanish up to boundary terms in moduli space are
mapped to identities among kinematic factors that vanish
up to BRST-exact terms. This duality has been exploited to
reveal a double-copy structure in the one-loop amplitude
of the open superstring. Trading GEIs in open-string
correlators by another copy of BRST-invariant kinematic
factors leads to gravitational matrix elements of super-
symmetrized R4 operators.
The duality between elliptic functions and BRST invar-

iants presented here turns out to be even richer. Alternative
double-copy representations of the above open-string
correlators will be given in Ref. [10], which manifest their
locality instead of gauge invariance. These representations
will illustrate further aspects of the duality between
kinematic factors and world sheet functions, in closer
contact with conformal-field-theory techniques.
It is a fascinating possibility that the duality between

kinematic invariants and (generalized) elliptic functions is a
generic feature of string-theory correlators. At genus g ¼ 2,
3, the low-energy limits of closed-string amplitudes have
been recently computed with the pure-spinor formalism,
resulting in matrix elements ofD2gR4 [26]. It is conceivable
that their double-copy structure applies to open-string
correlators at the respective loop order.

The new double-copy structures unraveled in this
Letter should lead to great simplification of higher-order
calculations in string theory, deducing the structure of the
integrands from effective-field-theory quantities. Moreover,
the study of GEIs is expected to trigger conceptual advances
in the mathematics of string theory related to the interplay of
higher-genus geometry and algebra. Finally, the α0 → 0 limit
of our string-theory results yields new representations of
field-theory amplitudes and will shed further light on the
BCJ double copy at loop level [27].
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