
A GPU aware mixed precision solver for low rank algebraic
Riccati equations

Peter Benner1,3, Ernesto Dufrechou2, Pablo Ezzatti2, Alfredo Remón1, Jens Saak1

1 Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany.
{benner,remon,saak}@mpi-magdeburg.mpg.de

2 Instituto de Computación, Universidad de la República, 11300–Montevideo, Uruguay.
{edufrechou,pezzatti}@fing.edu.uy

3 Institut für Analysis und Numerik, Fakultät für Mathematik, Otto-von-Guericke Universität Magdeburg, Germany.
peter.benner@ovgu.de

SUMMARY

We investigate different alternatives for the solution of algebraic Riccati equations on hybrid hardware
platforms (i.e., CPUs+GPUs). We evaluate a mixed precision approach which uses single precision
arithmetic to obtain an approximation to the solution and later improves it to the desired precision applying
some steps of an economic iterative refinement. This method exploits the higher performance of the hardware
to accelerate the solver when single precision arithmetic is employed and simultaneously obtains a high
accuracy solution with the iterative refinement. We extend this approach to exploit the low rank property of
the equation, when possible, to further improve its efficiency. The experimental evaluation shows that the
mixed precision approach reports time and energy savings and also provides similar or even more accurate
solutions than well-known methods like the sign function iteration or the structure-preserving doubling
algorithm. Copyright c© 2018 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Algebraic Riccati Equations; Low Rank; Matrix Equations; Mixed precision; Graphics
Processing Units

1. INTRODUCTION

The solution of continuous time algebraic Riccati equations (AREs) is required in several scientific
and engineering applications, e.g., in linear quadratic optimal control (LQOC) and model order
reduction problems. It is a computationally intensive operation that in general involves O(n3)
floating-point operations (flops) and therefore, the use of high performance computing techniques
and hardware is necessary whenever n takes moderate to large values (n > 1 000) and further
structure like sparsity in the coefficients cannot be exploited. Two of the most widespread methods
to tackle this sort of equations are the sign function iteration and the structure-preserving doubling
algorithm. Software packages such as MESS [1], PLiC [2], or the MATLAB Control System
ToolboxTM, which is partly based on the SLICOT library [3], provide support for the solution of
AREs.

In the last decade, the use of hybrid hardware platforms, i.e. machines that include multicore
processors combined with hardware accelerators (e.g., Graphics Processing Units, GPUs), has been
growing within the scientific computing field in general, and in the high performance computing

∗Correspondence to: Jens Saak, Max Planck Institute for Dynamics of Complex Technical Systems, 39106–Magdeburg,
Germany. E-mail: saak@mpi-magdeburg.mpg.de.

2 P. BENNER, E. DUFRECHOU, P. EZZATTI, A. REMÓN, J. SAAK

(HPC) community in particular. GPUs were originally developed to perform the graphics processing
in computers, avoiding the use of the CPU, thus, allowing the CPU to concentrate on the remaining
computations. However, GPUs have been progressively employed as a powerful intrinsically parallel
hardware architecture to efficiently implement applications involving, e.g. vector operations. This
is true especially since NVIDIA released CUDA [4, 5] in 2007, presenting a framework for general
purpose computing that enables the use of parallel processing cores in NVIDIA GPUs to solve a
wide variety of computational problems more efficiently than using a CPU only. Different studies
have demonstrated the benefits of using GPUs to accelerate the computation of matrix equations
[6, 7, 8] and matrix Riccati equations in particular [9, 10].

Additionally, energy consumption has become one of the major restrictions for the design of
future supercomputers because of the economic costs of electricity, the negative effect of heat on
the reliability of hardware components, and the negative environmental impact. While the advances
in the performance of the hardware platforms in the Top500 list [11] show that an Exascale system
may be available in the next quinquennium [12, 13, 14], a system of that capacity built over
current technology would dissipate ridiculously large amounts of energy [15]. This has turned the
decrease of the energy consumed by widely used algorithms into a critical line of work in the HPC
community [14].

Considering the previously described situation, in [16] we studied preliminary the use of mixed
precision methods to solve AREs for full rank problems. More in detail, we discussed a two stage
method, where the first step is based on a low precision SDA method, while the second stage refines
the approximate solution following a Newton procedure.

In this paper, we extend and enhance our previous developments including a low rank variant of
the previously studied two stage–mixed precision solver. Specifically, the principal contributions of
the present effort are:

• Evaluating in depth the full rank mixed precision algorithm to solve AREs.
• Extending the two stage method to solve AREs in order to leverage the low rank property of

the solution of several problems.
• Experimentally studying the novel low rank mixed precision AREs solver, from performance

and energy consumption perspectives.

The rest of the paper is structured as follows. In Section 2, we revisit the principal strategies to
solve AREs, in particular we study the sign function method, the structure-preserving doubling
algorithm and the Newton iteration as refinement procedure. Later, in Section 3, we detail the
mixed precision approaches, studying and developing the low rank variant of each stage. This
is followed by the experimental analysis carried out to empirically evaluate the proposed mixed
precision methods in Section 4. Finally, Section 5 summarizes the main concluding remarks of this
effort and delineates future research directions.

2. SOLUTION OF ARES

In this article we consider the solution of continuous time algebraic Riccati equations (AREs) of the
following form:

0 = Rc (X) := Q+ATX +XA−XGX, (1)

where A, Q and G ∈ Rn×n are given, and X ∈ Rn×n is the sought-after solution. Under certain
conditions [17], the ARE (1) has a unique c-stabilizing solution Xc, which is symmetric positive
semidefinite. (Here, Xc c-stabilizing means that Ac := A−GXc is c-stable; i.e., it has all its
eigenvalues in the open left half plane.)

A number of methods have been proposed for the solution of AREs (e.g., see [18]). In this section
we briefly review two of the most popular: the sign function and the structure-preserving doubling
algorithm (SDA) methods. Additionally, we review an iterative refinement scheme that is able to
improve the precision of an acceptable initial solution by means of a Newton iteration.

A GPU AWARE MIXED PRECISION SOLVER FOR LOW RANK ALGEBRAIC RICCATI EQUATIONS 3

2.1. The Sign Function method

Algorithm 1: GECRSG: Sign function to solve algebraic Riccati equations.
Input: Matrices A,G,Q from (1)
Output: Approximation to the stabilizing solution Xc

1 Y0 := H =

[
A G
Q −AT

]
2 for k = 0, 1, 2, . . . until convergence do
3 Yk+1 := 1

2

(
Yk + Y −1k

)
(16n3flops)

4 Solve
[

Y01
Y11 + In

]
X = −

[
In + Y00
Y10

]
(13n3flops)

The solution of an ARE (1) can be defined by the invariant subspaces of the Hamiltonian matrix
H defined as

H =

[
A G
Q −AT

]
.

Additionally, it can be shown that from a basis of the H-invariant subspace corresponding to the n
eigenvalues in the open left half of the complex plane, the c-stabilizing solution of the associated
ARE [19] can be obtained. This solution can be computed by calculating the Sign Function of H ,

sign(H) = Y =

[
Y00 Y01
Y10 Y11

]
,

and then resolving X from the deflating subspace property

[sign(H) + I2n]

[
In
X

]
= 0

by solving an overdetermined linear system (e.g., via the least squares method). The procedure is
summarized in Algorithm 1.

Note that the dimension of H doubles that of A and hence, a high performance matrix inversion
kernel is mandatory to enable the solution of large problems. However, since the loop in GECRSG
implements a Newton procedure, it exhibits a remarkable convergence rate that makes it very
appealing, providedH has no eigenvalues on or very close to the imaginary axis. As the convergence
criterion we use the one proposed in [6]. It is especially attractive, since it is computed concurrently
with the update of the matrix for the next iteration.

2.2. The Structure-Preserving Doubling Algorithm

In the last years, the SDA has received considerable attention as an ARE solver because of its
simplicity, efficiency, and convergence properties [20]. Note that the algorithm originally works
on the discrete-time ARE, such that we need to apply a Cayley transformation first, to turn the
continuous-time ARE (1) into its discrete-time counterpart. Here we will review only the practical
aspects of its implementation, referring the reader interested in the theory behind this method to the
above reference.

Algorithm 2 (GESDA) reflects a basic implementation of the SDA for the solution of an ARE.
The major operations (from the computational point of view) are annotated to their right with the
processing cost of a basic implementation. Let us consider only the iterative loop:

• The cost of the algorithm is (2/3 + 16)n3 flops per iteration. Its high cost can be partially
compensated by the parallel efficiency of the operations involved in the routine, namely,
matrix-matrix products and linear system solves.

4 P. BENNER, E. DUFRECHOU, P. EZZATTI, A. REMÓN, J. SAAK

• A practical convergence criterion is to check during the iteration for

‖Yk‖F
‖Yk+1‖F

< τS , (2)

with τS =
√
ε · n, and perform then 2 additional steps. The convergence of the iteration is

asymptotically quadratic, which ensures the maximum attainable accuracy.

Algorithm 2: GESDA: SDA method for the solution of algebraic Riccati equations.
Input: Matrices A,G,Q from (1)
Output: stabilizing solution Xc = Xk+1

/* Transformation */
1 γ := max(1, 2 ‖A‖F)
2 Aγ := A− γIn
3 Q̂ := QA−1γ ((2

3 + 2)n3flops)

4 Ŵ := (ATγ + Q̂G)−1 (4n3flops)
/* Initialization */

5 A0 := In + 2γŴT

6 G0 := 2γ(A−1γ G)Ŵ ((2
3 + 4)n3flops)

7 X0 := 2γŴ Q̂ (2n3flops)
/* Main loop */

8 for k = 0, 1, 2, . . .until convergence do
9 Ŵ := GkXk (2n3flops)

10 Â := (In + Ŵ)−1Ak ((2
3 + 2)n3flops)

11 Yk := ÂXkAk (4n3flops)
12 Xk+1 := Xk + Yk
13 if not converged then
14 Gk+1 := Gk +AkGk(In + ŴT)−1ATk (6n3flops)

15 Ak+1 := AkÂ (2n3flops)

It should be highlighted that this method is rich in BLAS-3 operations, and these kinds of
operations are most appropriate for modern hardware platforms.

2.3. An iterative refinement for AREs solutions

In Benner et al. [21], the authors describe an iterative method for the solution of an ARE.
Specifically, given an approximation to the solution of the ARE, X0, the procedure in Algorithm 3
(GEIR) performs an iterative refinement that successively approximates the solution X until the
desired precision is reached. At every step, the GEIR method solves a Lyapunov equation.

Algorithm 3: GEIR: Newton method for the iterative refinement.
Input: Matrices A,G,Q from (1) and initial guess X0 for the solution
Output: improved solution Xk

1 for k = 0, 1, 2, . . . until convergence do
2 Pk := Q+ATXk +XkA−XkGXk

3 Solve (A−GXk)
T
Nk +Nk (A−GXk) = Pk

4 Xk+1 := Xk +Nk

In practice, provided a relatively accurateX0, a few steps of algorithm GEIR are enough to get the
desired solution as this procedure is a variant of Newton’s method for AREs, indicating quadratic

A GPU AWARE MIXED PRECISION SOLVER FOR LOW RANK ALGEBRAIC RICCATI EQUATIONS 5

convergence. The suitability of GEIR requires a cheap method to compute the initial guess X0 and
an efficient Lyapunov solver.

3. MIXED PRECISION ARE SOLVERS

In this section we propose mixed precision approaches for solving AREs. We start by revisiting the
full rank mixed precision method and later describe the details of the design and implementation of
our new low rank version.

3.1. Full rank mixed precision AREs solver

Our first approach to define a mixed precision solver for AREs is a direct extension of the iterative
refinement described in Section 2.3.

Specifically, the initial approximation X0 can be efficiently obtained executing some steps of the
GESDA method, which can even be performed using single precision (SP) arithmetic. This way, the
solver benefits from the better performance that the hardware offers in SP arithmetic computations
(Intel CPUs are 2× faster and this factor is larger for NVIDIA GPUs). Our implementation of this
method leverages the GPU to compute highly parallel BLAS-3 or LAPACK operations, employing
the CPU to address the operations with a lower parallelism degree.

For the second stage, i.e. the iterative refinement, we implement a Newton procedure using
double precision (DP) arithmetic. More in detail, we exploit the efficient Lyapunov equation solver
presented in [22]. The solver implements the sign function iteration (Algorithm 1) and relies on a
tuned CPU-GPU matrix inversion kernel.

3.2. Low rank mixed precision solver

It is frequent in optimal control problems that one can only influence the system under investigation
by very few control inputs and take only a small number of measurement outputs compared to the
total number of degrees of freedom. Then, the matrices G and Q in (1) have low rank, since they are
given as G = BBT and Q = CTC, where B ∈ Rn×m and C ∈ Rp×n, with p and m much smaller
than n. In these situations, a fast decay of the singular values of the stabilizing solution Xc can be
expected [23], which motivates the approximation of Xc by a low rank factorization. Note that we
assume both B and C to be of full column and row rank, respectively, such that e.g. the Cholesky
decomposition in (6) is well defined.

The previous mixed precision solver is unable to leverage the low rank properties of this kind
of problems, i.e. it always works with the full dense n× n matrices. In the following sections
we modify the existing algorithms such that they do work with the much smaller B and C
factors, without forming G and Q explicitly. Consequently, we aim to obtain a factorized low rank
approximation of the stabilizing solution Xc.

3.2.1. Low rank SDA solver

Our low rank variant of the SDA procedure is based on Algorithm 2. As the previous method, it
begins by applying the Cayley transform [24] to the input data, so that the main iteration computes
the solution to the discrete-time ARE instead of solving the continuous-time one.

We modified this procedure to take advantage of the low rank structure of the equation. The
expressions for the matrices Ŵ and A0 of Algorithm 2 can be derived from the previous expressions
in a straight-forward way. However, in order to leverage the low rank properties of G and Q, and to
modify the iteration so that it produces a factored low rank approximation to the stabilizing solution,
the expressions for G0 and X0 have to be replaced by their respective low rank factors B0 and C0.

To obtain a symmetric factorization of the matrix

G0 = 2γ(A−1γ BBT)Ŵ = B0B
T
0 , (3)

6 P. BENNER, E. DUFRECHOU, P. EZZATTI, A. REMÓN, J. SAAK

Algorithm 4: LRSDA: Low rank variant of the SDA
Input: Matrices A,B,C forming (1) with G = BBT and Q = CTC
Output: Low rank factored solution Xc = CTk+1Ck+1

/* Apply Cayley transform to obtain the DARE from the CARE */
1 γ = max(1, 2 ‖A‖F)
2 Aγ = A− γ ∗ In
3 W = (Aγ +BBTA−Tγ CTC)−1

4 A0 = 2γW + In

5 Ŵ = CWB

6 ZGZ
T
G ← Im − (CA−1γ B)T Ŵ (Cholesky factorization)

7 B0 =
√

2γA−1γ BZTG
8 m = num columns(B0)

9 ZXZ
T
X ← Ip − Ŵ (CA−1γ B)T (Cholesky factorization)

10 C0 =
√

2γZXCA
−1
γ

11 p = num rows(C0)
12 for k = 0, 1, 2, . . . until convergence do
13 KkK

T
k ← Im +BTk C

T
k CkBk (Cholesky factorization)

14 LkL
T
k ← Ip + CkBkBk

TCTk (Cholesky factorization)
15 Ak+1 = A2

k −AkK
−1
k BkB

T
k K

−T
k CTk CkAk

16 Bk+1 = [Bk, AkBkK
−1
k]

17 Ck+1 = [CTk , (L
−1
k CkAk)T]T

18 apply column compression to Bk+1 and Ck+1

19 m = num columns(Bk+1)
20 p = num rows(Ck+1)

without forming it explicitly, since that matrix would be of size n× n, we first applied the Sherman-
Morrison-Woodbury formula (SMWF) to Ŵ which yields

Ŵ = A−Tγ −A−Tγ CTC(Aγ +BBTA−Tγ CTC)−1BBTA−Tγ . (4)

Expanding Ŵ in (3) and rearranging adequately, we obtain

G0 = 2γA−1γ BBT (A−Tγ −A−Tγ CTCŴBBTA−Tγ)

= 2γA−1γ B(BTA−Tγ −BTA−Tγ CTCŴBBTA−Tγ)

= 2γA−1γ B(Im − (CA−1γ B)TCŴB)BTA−Tγ .

(5)

Then, since G0 should be symmetric and positive semi-definite (with a definite central factor by
our assumptions on B and C) we perform a Cholesky factorization of the central factor (of size
m×m) to obtain

ZGZ
T
G = Im − (CA−1γ B)TCŴB. (6)

We can now rewrite G0 = B0B
T
0 , where

B0 =
√

2γA−1γ BZG. (7)

A similar procedure is followed to form the matrix C0. This time we obtain a symmetric
factorization of

X0 = 2γŴCTCAγ . (8)

A GPU AWARE MIXED PRECISION SOLVER FOR LOW RANK ALGEBRAIC RICCATI EQUATIONS 7

Algorithm 5: Column compression method for an LDLT factored matrix.
Input: Matrices L,D and compression tolerance τ
Output: Compressed matrices L̂, D̂

1 Q,R← qr fact(L)

2 V ΛV T ← eigendecomposition of RDRT with eigenvalues sorted by decaying magnitude
3 Set r to the number of eigenvalues with magnitude greater than τ
4 L̂ = QV1:r

5 D̂ = diag(diag(Λ)1:r)

By replacing Ŵ with the SMWF expansion and rearranging the expression we obtain

X0 = 2γ(A−Tγ −A−Tγ CTCŴTBBTA−Tγ)CTCA−1γ)

= 2γ(A−Tγ CTCA−1γ −A−Tγ CTCŴTBBTA−Tγ CTCA−1γ)

= 2γA−Tγ CT (CA−1γ − CŴTBBTA−Tγ CTCA−1γ)

= 2γ(CA−1γ)T (Ip − CŴTB(CA−1γ B)T)CA−1γ .

(9)

Then, as before, we perform the Cholesky factorization (of size p× p)

ZXZ
T
X = Ip − CŴTB(CA−1γ B)T . (10)

We now have X0 = CT0 C0, where

C0 =
√

2γZTXCA
−1
γ . (11)

After the initial matrices A0, B0 and C0 have been computed, the recurrences for the matrices A,
B and C are given by

Ak+1 = A2
k −AkK−1k BkB

T
k K

−T
k CTk CkAk,

Bk+1 = [Bk, AkBkK
−1
k],

Ck+1 = [CTk , (L
−1
k CkAk)T]T ,

(12)

where Kk and Lk are the Cholesky factors of Im +BTk C
T
k CkBk and Ip + CkBkBk

TCTk
respectively. Note that these recurrences are equivalent to the ones for G and X in Algorithm 2
if we write Xk = CTk Ck and Gk = BkB

T
k . The resulting procedure is outlined in Algorithm 4.

As in the full rank version, we use single precision arithmetic to compute this stage. Additionally,
the GPU is employed to perform the most computationally demanding operations, i.e. the Cholesky
factorizations and BLAS-3 operations.

3.2.2. Low rank variant of the refinement

Our low rank variant of the Newton method is based on a loop with two main stages (Algorithm 3).
The first stage takes the current approximation to the stabilizing solution Xk = LkDkLk as input
and returns a low rank approximation to the residual Rc (Xk) of the ARE, such that Rc (Xk) ≈
ŴkŜkŴ

T
k with Ŝk diagonal. To achieve this, we assemble block matrices Wk and Sk so that

Rc (X) = WkSkW
T
k . Here Sk is not diagonal, but we immediately compress these matrices using

the LDLT compression method described in Algorithm 5, which retrieves a Ŵk matrix with
fewer columns than Wk and a diagonal Ŝk matrix. Obviously, the quality of the approximations
can be controlled by the compression tolerance τ . As providing an efficient massively parallel
implementation of the compression technique is itself a demanding endevour, in this version we
execute the compression step entirely in the CPU, setting the optimization of this stage as future
work.

8 P. BENNER, E. DUFRECHOU, P. EZZATTI, A. REMÓN, J. SAAK

Algorithm 6: Low rank variant of the iterative refinement.
Input: Matrices A,B,C forming (1) with G = BBT and Q = CTC, p the number of rows in

C, and a factored solution approximation L0, D0

Output: Improved factored solution Lk+1, Dk+1

1 for k = 0, 1, 2, . . . do
2 D̃ = DkL

T
kBB

TLTkDk

3 Wk =
[
Lk ATLk CT

]
4 Sk =

−D̃ Dk 0
Dk 0 0
0 0 Ip

5 Compress Wk and Sk into Ŵk and Ŝk using Algorithm 5
6 Â = A−BBTLkDkL

T
k

7 Solve Lyapunov equation ÂL̂kD̂kL̂
T
k + L̂kD̂kL̂

T
k Â

T = ŴkŜkŴ
T
k for L̂k and D̂k

8 Lk+1 = [Lk L̂k]

9 Dk+1 =

[
Dk 0

0 D̂k

]
10 Compress Lk+1 and Dk+1 using Algorithm 5

The second stage consists of solving the same Lyaunov equation as in Algorithm 3, only that this
time Gk, Xk and Pk are in factorized form. We utilize a variant of the sign function Lyapunov
solver, that also delivers a factorized aproximation Nk = L̂kD̂kL̂

T
k to the solution. This solver

presents a straightforward adaption of the factored method proposed in [25] to the LDLT structure.
Consequently, the update of the solution Xk+1 is replaced by appending adequately the L̂k and
D̂k factors of the Lyapunov solution to the previous Lk and Dk matrices. The resulting process is
summarized in Algorithm 6. From an implementation perspective, we extended the GPU hybrid
LLT factored Lyapunov solver so that it can manipulate the new LDLT matrices and preserve their
structure.

4. EXPERIMENTAL EVALUATION

The following paragraphs summarize the experimental evaluation performed for the novel mixed
precision (MP) ARE solvers presented in this work. This evaluation focuses not only on the runtime
required to solve the Riccati equations but also on the energy consumption implied by the different
methods.

In order to provide a baseline to analyze the performance of the new methods, we also run
experiments for two other GPU-based ARE solvers that use double precision (DP) arithmetic for
their computations. The main details of the four methods are:

Sign function based solver This solver is built with the GECRSG procedure. Additionally, the
variant employed presents a highly optimized CPU-GPU matrix inversion kernel, see [22]
for details.

SDA-based solver The implementation evaluated in this work executes the most time consuming
operations on the GPU, i.e. the O(n3) operations, while operations that exhibit a fine-grain
parallelism are performed on the CPU. Whenever it is possible, both processors concurrently
perform their tasks, resulting in significant time savings. Finally, the computation of inverses
is replaced by the use of the LU factorization of the related matrix.

Full rank mixed precision This is the full rank variant of the mixed precision method described in
Section 3. The implementation offloads the most time consuming operations to the GPU, in

A GPU AWARE MIXED PRECISION SOLVER FOR LOW RANK ALGEBRAIC RICCATI EQUATIONS 9

Processor NVIDIA K40 “Kepler” GK110B
Cores 2,880

G
PU

Memory 12 GB GDDR5

C
PU

Processor i7-4770
Cores 4
Frequency 3.40 GHz
Main memory 16 GB DDR3
Compiler icc 14.0.0

SW CUDA Version 6.5
Table I. Platform employed in the experimental evaluation.

other words theO(n3) operations in the single precision SDA and the double precision matrix
inversions in the Newton procedure.

Low rank mixed precision Low rank variant of the method described in Section 3. The
implementation also uses the GPU to accelerate some of the most computationally demanding
kernels similar to the full counterpart.

The rest of this section includes the description of the test cases employed, the main aspects of
the hardware platform used for the experiments and, finally, the experimental results themselves and
their analysis.

4.1. Test cases

Three test-cases of dimension n = 1 357, 5 177, and 9 669 are employed to evaluate the routines.
The test-cases evaluated were extracted from the Oberwolfach† benchmark collection. In particular,
two instances of the STEEL PROFILE (with n = 1 357 and 5 177) and another from the FLOW METER
problem (n = 9 669).

It should be noted that in all three cases, G = BBT and Q = CTC, where B ∈ Rn×m and
C ∈ Rp×n andm, p� n. For both instances of the STEEL PROFILE problem we havem = 7, p = 6,
while for the FLOW METER problem m = 1 and p = 5.

4.2. Evaluation platform

The hardware platform used to perfom the experiments is based on an NVIDIA K40 GPU. This sort
of graphics cards offers a theoretical performance in double precision arithmetic much higher than
average consumer cards.

In a previous effort [16], we compared the performance of some of the solvers on two different
GPU-based platforms, an NVIDIA K40 and an NVIDIA TitanX from the Maxwell generation.
While the former is a HPC GPU, with improved double precision performance, the latter is a
powerful consumer GPU with a remarkable performance in single precision, but 32× slower when
working in double. The conclusion extracted from this effort is that our mixed precision method
(only the-full rank variant in this work) takes the most advantage of consumer GPUs, since our
method leverages the single precision (SP) performance in the first stage. Taking this behaviour
into account, this time we only include the results extracted in the more restrictive hardware for the
mixed precision paradigm.

Table I details the hardware and software employed in our tests.
Power/energy was measured via RAPL to gauge the consumption from the servers package and

DRAM, and the NVML library to obtain the energy dissipation from the GPU.

†Available at http://cise.ufl.edu/research/sparse/matrices/Oberwolfach/index.html, see
also https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark

10 P. BENNER, E. DUFRECHOU, P. EZZATTI, A. REMÓN, J. SAAK

4.3. Performance evaluation

We first evaluate the computational performance of the sign function and the SDA fixing the number
of iterations of each solver so that they reach comparable accuracy results. The residual error is
computed as

RRes = ‖Rc (X∗)‖F /(‖Q‖F + 2 ‖A‖F ‖X
∗‖F + ‖G‖F ‖A‖

2
F). (13)

The results summarized in Tables II and III show that the two solvers behave similarly for all
test cases. Specifically, the SDA solver slightly outperforms the sign function solver, being 10%
faster for the medium size instance and 20% faster for the larger one. This behaviour is explained
by noting that the formulation of the SDA, strongly based on matrix products, is in general better
suited to exploit the GPU than the sign function counterpart.

PROBLEM # STEPS SIGN FUNC. SOLVER TOTAL REL. RES.

RAIL 1357 10 3.99 0.33 4.36 1.51E-17
RAIL 5177 11 70.93 10.71 82.17 4.96E-17
FLOW 9669 13 410.46 68.64 481.04 2.12E-10
Table II. Runtimes (in sec.) and relative residuals of the Sign Function solver.

PROBLEM # STEPS TIME REL. RES.

RAIL 1357 24 2.17 4.96E-16
RAIL 5177 27 86.69 4.61E-16
FLOW 9669 24 419.60 7.99E-12

Table III. Runtimes (in sec.) and relative residuals of the SDA solver.

To evaluate our mixed precision schemes, we modified the number of SDA and iterative
refinement steps. We fixed the parameters so that a comparable accuracy with the traditional DP
methods is reached. The differing iteration numbers for the corresponding loops give an impression
how they influence the total execution time. The optimization of these values for minimum execution
time, while at the same time guaranteeing maximum accuracy, is a topic for another work, though.

The results for the full rank version are summarized in Table IV, where the column Lyap shows
the number of iterations of the sign function method performed to solve the corresponding Lyapunov
equation at each step of the GEIR algorithm. The configuations displayed in the table are those that
reach an accurancy level similar to the one reached by traditional double precision variants of the
Sign Function and SDA solvers. Considering the runtimes summarized in that table, it is clear that
the mixed precision solver offers significant runtime reductions (for the larger test case almost 80%).
In the medium size case, the differences are less drastic ranging between 20% and 30%. Finally, the
full rank mixed precision variant does not offer any benefits for the smallest case. These results
show that this variant offers scalability in the problem dimension and is better than the traditional
approaches (sign function and SDA) when the dimension of the addressed problems is larger than a
certain threshold, i.e. when the use of mixed precision can compensate its overhead.

Given that during the SDA, the sign function Lyapunov solver, and the Newton iteration of the
low rank variant, the number of columns/rows of the factor of the respective solutions grows with
each iteration, we consider a column/row compression technique to reduce the size of the factors.
This compression can imply a considerable amount of runtime, since it involves the computation
of the eigenvalues of the modified square center matrix, and can affect the accuracy of the result
since typically some information is lost during the compression. However, for the compression
tolerance used in these experiments (relative values of 10−7 and 10−16 for single and double
precision procedures, respectively), we did not observe any significant impact on the accuracy when
compressing the factors in all steps.

A GPU AWARE MIXED PRECISION SOLVER FOR LOW RANK ALGEBRAIC RICCATI EQUATIONS 11

#STEPS RUNTIMES
PROBLEM GESDA GEIR Lyap. GESDA GEIR TOTAL Rel. res.

RAIL 1357

10 1 10 - - - 1.75E-14
10 2 8 - - - 1.62E-14
15 1 9 - - - 9.10E-15
15 2 8 - - - 1.78E-15
20 1 9 1.16 1.09 2.25 6.92E-16
20 2 8 1.15 1.87 3.02 3.70E-16

RAIL 5177

10 1 10 - - - 6.53E-15
10 2 9 - - - 4.99E-15
15 1 10 - - - 1.44E-15
15 2 9 - - - 1.00E-15
20 1 10 33.03 17.24 50.27 7.42E-16
20 2 9 33.45 29.89 63.34 1.31E-16

FLOW 9669

10 1 7 - - - 2.44E-09
10 2 7 101.56 114.87 216.43 3.94E-13
15 1 7 - - - 2.15E-09
15 2 7 150.68 115.09 265.77 3.73E-13
20 1 10 - - - 5.39E-10
20 2 8 187.44 128.94 316.38 7.21E-15

Table IV. Runtimes (in sec.) and relative residuals reported by the mixed precision full rank solver.

Regarding the runtime dedicated to the compression, we noticed that compressing the solution
every time that the factors are expanded turns out to be beneficial. The reason is that although
skipping the compression step saves time in the current iteration, the compression step will be more
costly in the next one, as this cost scales rapidly with the size of the factors. Considering that the
accuracy reached by the different methods is not significantly affected, we utilize this strategy for
all the experiments.

Table V summarizes the achieved accuracy of the low rank solver for different configurations of
single precision SDA iterations, refinement steps, and sign function iterations inside the Lyapunov
solver. The data shows that the effect of the number of steps performed by the SP solver on
the accuracy reached diminishes as the dimension of the problem grows. As a consequence, the
refinement steps have a strong impact on the final accuracy. This is specially relevant in the larger
instance. Regarding the comparison between the accuracy obtained by the full and low rank solvers
with the same number of iterations, it can be noted that the full rank solver obtains slightly better
results, specially in the smaller cases. The execution times of the low rank solver are presented
in the same table. The results show that the MP (i.e. mixed precision) low rank solver is able to
significantly improve the execution times of the full rank counterpart. The analysis of the results
reveals that the performance associated with this method has a similar behavior but improves the
values reached by the full rank counterpart. Specifically, the resolution of the smallest case with the
low rank variant implies more runtime than when the full rank version is employed. In the case of
medium size, the differences in the runtime are limited but with values near to a 50% improvement
when the low rank MP solver is compared with the sign function or SDA methods. Finally, for the
largest case, the novel method outperfoms the traditional methods with acceleration values in the
order of 3×. These results are aligned with the theory, since the benefits of the low rank variant
become more important when the difference between the dimension n of the problem and the ranks
m and p of the factors B and C is large enough to hide the overhead implied by the reshaping and
compression of intermediate matrices.

12 P. BENNER, E. DUFRECHOU, P. EZZATTI, A. REMÓN, J. SAAK

#STEPS RUNTIMES
PROBLEM GESDA GEIR Lyap. GESDA GEIR TOTAL Rel. res.

RAIL 1357

10 1 10 - - - 1.74E-08
10 2 8 - - - 5.98E-12
15 1 9 - - - 8.52E-09
15 2 8 - - - 7.98E-12
20 1 9 - - - 3.99E-10
20 2 8 - - - 2.19E-14
5 3 6 0.46 4.05 4.51 2.94E-16

RAIL 5177

10 1 10 - - - 4.47E-09
10 2 9 - - - 5.57E-13
15 1 10 - - - 9.86E-10
15 2 9 - - - 7.18E-13
20 1 10 - - - 6.43E-10
20 2 9 - - - 4.52E-13
5 3 6 9.28 42.26 51.54 1.37E-16

FLOW 9669

10 1 7 - - - 1.87E-09
10 2 7 - - - 9.92E-11
15 1 7 - - - 1.06E-09
15 2 7 - - - 3.26E-11
20 1 10 152.43 79.72 232.15 3.77E-12
20 2 8 147.06 129.16 276.22 1.45E-16
8 3 4 59.08 92.93 152.01 5.02E-12

Table V. Runtimes (in sec.) and relative residuals reported by the low rank mixed precision solver.

4.4. Energy evaluation

In a second experiment, we measure the energy consumption related with the best configuration
of each method in our experimental hardware platform. Tables VI, VII and VIII show the energy
consumption of the four solvers.

SOLVER PROBLEM # STEPS ENERGY (J) RUNTIME (S)

SIGN FUNC.
RAIL 1357 10 668.36 4.36
RAIL 5177 11 14,855.00 82.17
FLOW 9669 13 93,936.00 481.04

SDA
RAIL 1357 24 457.43 2.17
RAIL 5177 27 18,568.00 86.69
FLOW 9669 24 96,166.00 419.60

Table VI. Energy of the double precision solvers.

PROBLEM
#STEPS ENERGY (J) RUNTIME (S)

GESDA GEIR Lyap. GESDA GEIR TOTAL Total
RAIL 1357 20 1 9 202.94 148.93 351.87 2.25
RAIL 5177 20 1 10 6,044.80 3,278.40 9,323.20 50.27
FLOW 9669 10 2 7 16,545.00 24,737.00 41,282.00 216.43

Table VII. Energy of the mixed precision full rank solver.

Considering the traditional methods, i.e. sign function and SDA, the results suggest that the sign
function method is more efficient than the SDA from the energy consumption perspective. Note that

A GPU AWARE MIXED PRECISION SOLVER FOR LOW RANK ALGEBRAIC RICCATI EQUATIONS 13

PROBLEM
#STEPS ENERGY (J) RUNTIME (S)

GESDA GEIR Lyap. GESDA GEIR TOTAL TOTAL

RAIL 1357 5 3 6 58.64 546.29 604.93 4.51
RAIL 5177 5 3 6 1,216.80 5,935.80 7,152.60 51.54
FLOW 9669 8 3 4 8,098.90 14,281.00 22,379.90 152.01

Table VIII. Energy of the mixed precision low rank solver.

the differences between the runtimes of both methods are larger than the differences in their energy
consumption.

Regarding the mixed precision methods, the data extracted from the experiments shows that
this strategy signifies important energy savings compared to the traditional methods evaluated. The
difference between the energy consumption of the mixed precision and the double precision methods
is larger than the difference in runtime, which indicates that the mixed precision strategy demands
less power. Additionally, the improvement seems to increase with the dimension of the problem. It
should be highlighted that in the largest case, FLOW 9669, the differences in energy consumption
between the low rank MP version and the DP solvers are more than fourfold, while the runtime
difference is only threefold.

Comparing the two versions of the mixed precision solver, it can be noticed that the low rank
variant consumed less power than the full rank counterpart to reach similar levels of accuracy. This
becomes more evident for the larger case, where the low rank variant strongly outperforms the full
rank method in runtime (1.4× in FLOW 9669), making the differences in energy consumption even
more important (1.8× in the same test case).

5. CONCLUDING REMARKS AND FUTURE WORK

In this work, we have addressed the use of mixed precision techniques for the numerical solution
of algebraic Riccati equations. Specifically, we have extended our preliminary study, in which
we presented a full rank mixed precision method to solve AREs, and we have developed and
implemented a novel mixed precision solver for AREs able to leverage the low rank characteristics
of a large number of problems. Additionally, both approaches exploit the computational power
offered by the NVIDIA GPUs offloading the most demanding computation stages to this
coprocessor.

The experimental results show that the mixed precision strategy manages to outperform well
known methods to solve this kind of equations, like the SDA and the Sign Function methods, both
in terms of runtime and energy consumption. Moreover, the low rank variant of our method is
clearly superior to the original full rank version for problems that present this characteristic. The
gains become larger with larger problems, showing the suitability of this strategy for large problems.

As part of future work we intend to perform a more detailed study in order to develop an
automatic mechanism to select the optimal compression configuration. We are also interested
in exploring other kinds of hardware platforms, as well as more levels of arithmetic precision.

REFERENCES

1. Benner P, Köhler M, Saak J. Matrix Equation Sparse Solver (MESS) library. URL http://www.
mpi-magdeburg.mpg.de/projects/mess/.

2. Benner P, Quintana-Ortı́ ES, Quintana-Ortı́ G. PLiC library. URL http://www3.uji.es/˜quintana/
plic/plic/.

3. SLICOT. http://www.slicot.org.
4. Kirk D, Hwu W. Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann, 2010.
5. Farber R. CUDA Application Design and Development. Morgan Kaufmann, 2011.
6. Benner P, Ezzatti P, Kressner D, Quintana-Ortı́ ES, Remón A. A mixed-precision algorithm for the solution of

Lyapunov equations on hybrid CPU-GPU platforms. Parallel Computing 2011; 37(8):439–450, doi:10.1016/j.
parco.2010.12.002.

14 P. BENNER, E. DUFRECHOU, P. EZZATTI, A. REMÓN, J. SAAK

7. Raczyński D, Stanisławski W. Controllability and observability Gramians parallel computation using GPU. Journal
of Theoretical and Applied Computer Science 2012; 6(1):47–66.

8. Dufrechu E, Ezzatti P, Quintana-Ortı́ ES, Remón A. Accelerating the Lyapack library using GPUs. The Journal of
Supercomputing 2013; 65(3):1114–1124, doi:10.1007/s11227-013-0889-8.

9. Peinado J, Ibañez JJ, Arias E, Hernández V. Speeding up solving of differential matrix Riccati equations
using GPGPU computing and MATLAB. Concurr. Comput. : Pract. Exper. Aug 2012; 24(12):1334–1348, doi:
10.1002/cpe.1835.

10. Benner P, Ezzatti P, Mena H, Quintana-Ortı́ E, Remón A. Solving matrix equations on multi-core and many-core
architectures. Algorithms 2013; 6(4):857–870, doi:10.3390/a6040857.

11. The top500 list 2017. Available at http://www.top500.org.
12. Bergman K, Borkar S, Campbell D, Carlson W, Dally W, Denneau M, Franzon P, Harrod W, Hill K, Hiller J,

et al.. Exascale computing study: Technology challenges in achieving exascale systems. DARPA IPTO ExaScale
Computing Study 2008.

13. Dongarra J, Beckman P, Moore T, Aerts P, Aloisio G, Andre JC, Barkai D, Berthou JY, Boku T, Braunschweig B,
et al.. The international ExaScale software project roadmap. Int. J. of High Performance Computing & Applications
2011; 25(1):3–60, doi:10.1177/1094342010391989.

14. Duranton M, Black-Schaffer D, De Bosschere K, Maebe J. The HiPEAC vision for advanced computing in Horizon
2020 2013. URL http://www.hipeac.net/v13.

15. The Green500 list 2017. Available at http://www.green500.org.
16. Benner P, Dufrechou E, Ezzatti P, Remón A. Studying mixed precision techniques for the solution of algebraic

Riccati equations. 2nd Workshop on Power-Aware Computing 2017 (PACO2017), Ringberg Castle, Germany, 5-8
July 2017, 2017, doi:10.5281/zenodo.815496.

17. Lancaster P, Rodman L. Algebraic Riccati equations. Oxford Science Publications, The Clarendon Press, Oxford
University Press: New York, 1995.

18. Bini DA, Iannazzo B, Meini B. Numerical solution of algebraic Riccati equations, Fundamentals of Algorithms,
vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012, doi:10.1137/1.
9781611972092.

19. Benner P, Byers R, Quintana-Ortı́ E, Quintana-Ortı́ G. Solving algebraic Riccati equations on parallel computers
using Newton’s method with exact line search. Parallel Computing 2000; 26(10):1345–1368, doi:10.1016/
S0167-8191(00)00012-0.

20. Chu EKw, Fan HY, Lin WW. A structure-preserving doubling algorithm for continuous-time algebraic Riccati
equations. Linear Algebra and its Applications 2005; 396:55–80, doi:10.1016/j.laa.2004.10.010.

21. Benner P, Byers R. An exact line search method for solving generalized continuous-time algebraic Riccati
equations. IEEE Trans. Autom. Control. 1998; 43(1):101–107, doi:10.1109/9.654908.

22. Benner P, Ezzatti P, Quintana-Ortı́ E, Remón A. Matrix inversion on CPU-GPU platforms with applications in
control theory. Concurrency and Computat.: Pract. Exper. 2013; 25(8):1170–1182, doi:10.1002/cpe.2933.

23. Benner P, Bujanović Z. On the solution of large-scale algebraic Riccati equations by using low-dimensional
invariant subspaces. Linear Algebra and its Applications 2016; 488:430–459, doi:10.1016/j.laa.2015.09.027.

24. Li T, Chu EKw, Lin WW, Weng PCY. Solving large-scale continuous-time algebraic Riccati equations by doubling.
Journal of Computational and Applied Mathematics 2013; 237(1):373 – 383, doi:10.1016/j.cam.2012.06.006.

25. Benner P, Quintana-Ortı́ ES, Quintana-Ortı́ G. Balanced truncation model reduction of large-scale dense systems
on parallel computers. Math. Comput. Model. Dyn. Syst. 2000; 6(4):383–405, doi:10.1076/mcmd.6.4.383.3658.

