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In the presence of sufficiently strong disorder or quasiperiodic fields, an interacting many-body
system can fail to thermalize and become many-body localized. The associated transition is of
particular interest, since it occurs not only in the ground state but over an extended range of
energy densities. So far, theoretical studies of the transition have focused mainly on the case of
true-random disorder. In this work, we experimentally and numerically investigate the regime close
to the many-body localization transition in quasiperiodic systems. We find slow relaxation of the
density imbalance close to the transition, strikingly similar to the behavior near the transition in
true-random systems. This dynamics is found to continuously slow down upon approaching the
transition and allows for an estimate of the transition point. We discuss possible microscopic origins
of these slow dynamics.

Introduction.— An isolated quantum system of in-
teracting particles can be nonergodic and fail to thermal-
ize in the presence of sufficiently strong disorder [1–16]
or quasiperiodic fields [13, 17, 18]. This phenomenon –
called many-body localization (MBL) – presents a generic
alternative to thermalization [19–21] and has attracted
an immense amount of interest in recent years; see, e.g.,
Refs. [9, 10] for reviews. More recently, theoretical stud-
ies started to address the phase transition from the ther-
malizing to the MBL phase itself (reviewed in Refs. [22–
24]). This transition is of particular interest, since, in
contrast to conventional quantum phase transitions [25]
the MBL transition happens over a wide range of en-
ergy densities. Furthermore, a good understanding of
the transition may give new insight into thermalization
in closed quantum systems [26].

So far, theoretical studies of the transition have fo-
cused on spin models with true-random disorder where
the nature of the transition is still under discussion [27].
Renormalization group schemes [28, 29] have predicted a
Griffiths regime [30] on the thermal side of the transition.
In this regime, the dynamics is dominated by rare, locally
critical or insulating inclusions in the thermalizing bulk,
resulting in subdiffusive transport and power-law relax-
ation of global density patterns. Indeed, exact diagonal-
ization (ED) studies of small systems have found slow
power-law relaxation processes close to the MBL transi-
tion [31–35], but with scaling behaviors in violation of the
Harris-Chayes criterion [36–38]. This is potentially due
to finite size limitations preventing access to the scaling
regime, suggesting that current numerics cannot accu-
rately capture the properties of the true-random MBL
transition [27]. Recently, however, it has been pointed

out that finite size limitations might be less severe in
quasiperiodic systems [39], as rare regions should a pri-
ori be absent in a deterministic potential [40].

In this work, we experimentally and numerically
investigate the MBL transition in a one-dimensional
Fermi-Hubbard model with a quasiperiodic on-site
potential. We find a slow relaxation dynamics of the
density imbalance [13] on the experimentally accessible
time scales. These dynamics continuously slow down
upon approaching the transition before stopping in the
MBL phase, a behavior which is strongly reminiscent of
a recent numerical study on true-random systems [34].
As an important result of the analysis of the dynamics,
we are able to give an improved estimate of the critical
point compared to previous values [13]. Finally, we
discuss possible microscopic explanations for the ob-
served slow dynamics, including both rare regions in the
initial state [34] and atypical transition rates between
single-particle states [41].

Experiment.— Our experimental setup effectively
implements the interacting Aubry-André model [18, 42],
which describes spinful fermions on a lattice with nearest-
neighbor tunneling of amplitude J ≈ h × 500 Hz and
on-site interactions of strength U . The fermions are sub-
jected to a quasiperiodic correlated disorder potential of
the form ∆ cos(2πβi + φ), where ∆ and φ denote the
strength and relative phase of the potential, i numbers
the lattice sites and the irrational β gives the disorder
periodicity (see Ref. [43] for details). This model has
a localization transition at ∆U=0

c = 2J in the absence
of interactions [42], and was shown numerically and ex-
perimentally to exhibit MBL above a critical disorder

ar
X

iv
:1

61
2.

07
17

3v
2 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 3

0 
Ja

n 
20

18



2

strength [13].

We prepare a high energy initial charge-density wave
(CDW) state, where up and down spin atoms are
randomly distributed on even lattice sites, while odd
lattice sites are empty. During the preparation, doubly
occupied lattice sites are suppressed by strong repulsive
interactions. The CDW in the central tube is approxi-
mately 200 sites long and contains about 80 atoms. In
contrast to previous experiments [13], in this work we
only mildly confine the atom cloud during the ensuing
time evolution in order to reduce the effects of the overall
harmonic trapping potential. After a variable evolution
time, we extract the imbalance I = (Ne−No)/(Ne +No)
between the populations of even (Ne) and odd (No) sites
using a band mapping technique [44]. The imbalance
has an initial value close to one and, in a thermalizing
system, will ultimately relax to zero. In contrast, a
finite imbalance indicates a memory of the initial state
and signals that the system has not fully thermalized
yet. Since the imbalance is a local probe and does
not require global mass transport to relax, it exhibits
a short intrinsic relaxation timescale of O(τ) in the
nondisordered case, where τ = ~/J is the tunneling
time. This allows for an experimental observation of
slow, disorder induced dynamics. Global observables,
on the other hand, are expected to show hydrodynamic
tails in the ergodic phase [45], which would mask the
slow relaxation processes. For details of the setup and
the experimental sequence, see Refs. [13, 43].

Finite-Time Imbalance.— Fig. 1 shows measure-
ments of the imbalance at various disorder strengths ∆
for both the noninteracting case and at an interaction
strength of U = 4 J . The measurements were taken after
10 τ (called short), which is nonetheless long enough for
a clean system to relax, and after 40 τ (called long). In
this work, we generally refrain from accessing imbalances
at times longer than 40 τ , since then background decays,
which limit the lifetime of the imbalance to O(103 τ),
become increasingly relevant [43, 46, 47].

From the interacting data we can distinguish three
different regimes, as indicated by the gray background
shading. In the regimes of weak (∆ . 1.5 J) and strong
(∆ & 4 J) disorder, the imbalances measured after short
and long times agree up to the effect of background de-
cays [43, 46, 47]. The weak disorder regime is thermal,
with the imbalance quickly relaxing to zero. The strong
disorder regime shows many-body localization indicated
by a rapid approach of the imbalance to a finite station-
ary value. In the gray shaded regime of intermediate
disorder strength (1.5 J . ∆ . 4 J), we observe a signif-
icant difference between the interacting short and long
term imbalance, indicating the presence of relaxation dy-
namics on a slow timescale. A similar trend, but much
less pronounced, also exists in the noninteracting case in
the vicinity of ∆U=0

c . The fact that this regime extends
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FIG. 1. Imbalance at finite times: Measurements of the
imbalance I after 10 τ (light points) and 40 τ (dark points)
for the noninteracting system and at U = 4 J . The noninter-
acting data is vertically offset by 0.15 for clarity. The data
represents averages over 12 disorder phases φ with error bars
indicating the uncertainty of the mean. Solid lines are guides
to the eye. In the interacting system, we observe a regime
(gray shaded), where the imbalance after 40 τ is significantly
lower than after 10 τ , indicating a dynamical evolution of the
system. A similar, but much less pronounced, feature is also
present in the noninteracting case.

to larger disorder strengths in the interacting case com-
pared to the noninteracting case demonstrates that inter-
actions give rise to an additional relaxation (thermaliza-
tion) process. This additional process acts in addition to
the critical slowing down present close to the noninter-
acting localization transition and hence shifts the MBL
transition point to larger disorder strengths.

In the following, we present a detailed characterization
of the slow dynamics in the interacting system. The
equivalent analysis of the noninteracting system can be
found in the supplemental material [43].

Imbalance Time Traces.— We monitor the dy-
namics in the interacting system via the time evolution
of the imbalance for various disorder strengths above the
noninteracting transition (see Fig. 2a). The imbalance
is shown on a log-log plot for times between 3 − 40 τ ,
which omits the rapid initial decay from its starting value
close to one [13]. After initial oscillations have ceased at
around 8 τ , we observe slow relaxations of the imbalance,
well reproduced by ED simulations (shown in Fig. 2a,
solid lines), which model our system on 20 sites [43].
Upon increasing ∆ this relaxation smoothly slows down
until, for ∆ & 4 J , the imbalance remains approximately
constant, suggesting that the system becomes localized.
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FIG. 2. Time evolution of the imbalance close to the
MBL transition: Decay of an initially prepared charge-
density wave at a fixed interaction strength of U = 4 J . Points
mark experimental data, averaged over six disorder phases φ,
with error bars indicating the uncertainty of the mean. The
corresponding ED simulations for S = 20 sites [43] are indi-
cated as solid lines. During the first three tunneling times
(not shown), the imbalance quickly decays from its initial
value close to one. During this initial decay, the imbalance
shows strong oscillations, which cease after ∼ 8 τ . Thereafter,
we observe a much slower further decay. a) Time traces for
various disorder strengths with power-law fits. b) Long term
decay at intermediate disorder strengths on a logarithmic y-
axis with an exponential fit (left) and on a double-log plot
with a power-law fit (right).

This dynamics in the quasiperiodic potential is remi-
niscent of the dynamics computed in numerical studies of
true-random spin models [34]. In the true-random spin
models, slow relaxation, which takes the form of power-
laws, has been argued to result from rare, locally critical
or insulating regions immersed in an otherwise thermal
system [28, 29]. However, the deterministic quasiperiodic
potential in our system does not allow for such rare re-
gions, raising the question of the microscopic mechanism
and the functional form of the observed decays.

Fig. 2b shows the time trace at ∆ = 2.5 J , to slightly
longer evolution times of up to 100 τ . The data is
presented on a lin-log (left panel) and a log-log (right
panel) plot together with an exponential (red line)
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FIG. 3. Power-law exponent of imbalance decay: Ex-
perimental and theoretical (ED, S = 20, see [43]) fitted ex-
ponents α as a function of disorder strength ∆ at a fixed
interaction strength of U = 4 J . Errorbars indicate the uncer-
tainty of the fit to the experimental data. The purple shading
denotes an estimate of the uncertainty on the simulated ex-
ponents based on finite size effects. For the largest disorder
strengths, systematic errors due to finite time and size do not
allow an accurate estimation of α and the actual uncertainty
is likely underestimated [43]. The gray shading marks the
regime of slow dynamics as observed in Fig 1. At large disor-
der strengths, the experimental value saturates at a nonzero
offset αo, consistent with the independently observed back-
ground lifetime [43, 46, 47]. The finite value of α in ED for
large disorder strength is likely caused by finite size effects.
The corresponding exponents for the noninteracting data can
be found in the supplemental material [43].

and a power-law (yellow line) fit to the experimental
data. We find that the power-law fit describes the data
slightly better than the exponential fit (see [43] for
fit residuals), a trend that is more pronounced in the
numerical simulations. We attribute this difference to
the background decay, present only in the experiment,
that always contributes an exponential decay compo-
nent, potentially altering the actual functional form.
The numerical result is also consistent with a recent
numerical study on spin models with quasiperiodic po-
tentials [48], which also finds imbalance decays that are
well described by power laws on intermediate time scales.

Relaxation Exponent.— Motivated by the above
analysis and the similarity to true-random systems [34],
we characterize the observed decays via power laws
I(t) ∼ t−α. The exponents α are extracted using linear
fits of log(I) versus log(t) between 8−40 τ to the experi-
mental data. Fig. 3 shows the experimental values in very
good agreement with the results of ED simulations, where
we choose a fitting range of 20−80 τ , as initial oscillations
in the imbalance cease slower than in the experiment and
affect the fitted exponent [43]. Above the single-particle
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localization transition at ∆U=0
c = 2J , we observe that

α decreases monotonously until the experimental values
saturate at a nonzero offset αo. This offset is consistent
with the expected effect of background decays in our sys-
tem [43, 46, 47], suggesting that α could indeed vanish in
an isolated system. This suggests that the closed-system
dynamics indeed smoothly changes from slow decays to
a stationary finite imbalance at the MBL transition. We
note though, that even in the MBL phase there may be
a regime of slow, possibly logarithmic relaxation towards
the stationary value of the imbalance [49], potentially
contributing to a finite effective value of αo.

As in Ref. [34], the exponents can be used to estimate
the location of the MBL critical point as the disorder
strength where the exponent becomes zero. In the ex-
periment, however, this behavior is masked by the offset
in the exponent resulting from the coupling to external
baths. As the effects of external baths on the power-law
exponents (i.e. whether external decays result in a simple
offset or a more complicated interplay) remain unclear,
this prevents an accurate determination of ∆MBL

c . How-
ever, the disorder strength where the exponents become
compatible with the background decay does serve as a
lower bound of ∆MBL

c & 3.8 ± 0.5 J . The numerical re-
sults for small system sizes indicate that the actual crit-
ical disorder strength might be located at larger lattice
depths and a simple linear extrapolation of the expo-
nents gives a best guess for the critical disorder strength
of ∆MBL

c ≈ 4.3± 0.5 J . Previously performed DMRG for
the localized phase suggest an upper bound for the MBL
transition of ∆MBL

c . 5 J [50]. For completeness, we also
performed an equivalent analysis of the slow dynamics us-
ing exponential decays [43]. While the individual fits are
not quite as good as the power-law fits, similar bounds
on the critical disorder strength can be obtained, fur-
ther showing that the slowing down of the dynamics is a
generic feature that captures the MBL transition in our
system.

The lower bound for the transition exceeds the es-
timate of previous experimental work of ∆MBL

c ≈
2.5 J [13]. This value was extracted based on a finite-
time measurement of the imbalance, a method that can
become problematic in the presence of increasingly slow
dynamics. The analysis based on the relaxation expo-
nents given here takes into account the full dynamical
evolution of the system and, hence, gives an improved
estimate of the critical disorder strength.

The presented estimates of the critical point locate the
MBL transition near the upper edge of the intermediate
regime of slow dynamics in Fig. 1. We note, that the
upper edge of the noninteracting intermediate regime
in Fig. 1 would slightly overestimate the known critical
point of ∆U=0

c = 2 J [42], as it neglects the initial
dynamics on the localized side. Such a dynamics would,
however, be much slower and possibly logarithmic in the
MBL phase [49], and might, therefore, be masked by the

background decay in the experiment.

Discussion.— We have experimentally observed a
slow, interaction-induced relaxation dynamics close to
the MBL phase transition in the interacting Aubry-
André model, in very good agreement with ED simu-
lations. Specifically, we observe that the relaxation of
an initial charge-density wave continuously slows down
when approaching the MBL transition. On the experi-
mentally accessible time scales, the decays are consistent
with power laws whose exponents α smoothly vanish at
the transition, thereby allowing for an estimation of the
critical disorder strength based on the dynamics.

As the dynamics observed in this experiment behave
very similar to those found in numerical studies of true-
random systems [28, 29, 31–34], it is tempting to spec-
ulate whether the two systems share a common mech-
anism that underlies the slow dynamics. However, the
Griffiths mechanism suggested to cause power-law dy-
namics in true-random systems [28, 29] cannot apply to
quasiperiodic systems, as rare regions in the disorder pat-
tern cannot exist in a deterministic potential. Given the
wide regime of subdiffusive dynamics calculated in sys-
tems with true-random disorder [34, 35], it is nonetheless
possible that additional mechanisms are also at play in
generating slow dynamics there. It was suggested that
one such mechanism could be strong local fluctuations in
the initial state [34], which are also present in our system.
For instance, a region containing only one spin species
would initially be noninteracting and, hence, insulating
once the single-particle localization length is smaller than
its size. The slow thermalization of such rare regions via
their surroundings could give rise to power-law relaxation
on intermediate time scales. On longer time scales, how-
ever, thermalization ultimately removes such regions and
accelerates the imbalance relaxation. The melting of rare
regions in the initial state might be further enhanced by
the delocalized spin dynamics in our SU(2) symmetric
system [51–53].

Our results are consistent with two recent numerical
studies on quasiperiodic systems that also find power-law
decays of the imbalance on intermediate time scales [48]
and subdiffusive transport [41]. However, those proper-
ties have been found to exist also in the absence of ran-
domness in the initial state, suggesting that rare regions
in the initial state are at least not the sole cause of the
slow dynamics. Instead, a further mechanism was pro-
posed based on atypical transition rates between single-
particle states [41].

A similar mechanism was also suggested to explain the
subdiffusive spreading of bosonic atoms in a quasiperi-
odic geometry observed in a previous experiment [54],
which was performed in the absence of lattices along the
orthogonal directions. Since this experiment was per-
formed at a disorder strength where our system would
appear localized, the dynamics likely emerged due to the
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bathlike effects of the delocalized orthogonal dimensions.

Our experimental and numerical results cannot dis-
tinguish which mechanism is relevant to the observed
dynamics. The origin and exact functional shape of
the slow dynamics pose an interesting open problem
for future studies. Experimentally, future studies could
address the problem of a finite bath coupling via a
systematic analysis of its effects [47], allowing for a fur-
ther improvement in the determination of the transition
point and potentially enabling access to the universal
scaling regime.
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Supplementary Material

Comparison to the noninteracting system

We perform a detailed comparison of the inter-
acting and noninteracting slow relaxation dynamics.
Fig. S1 compares the imbalance time traces for disorder
strengths below and close to the noninteracting transi-
tion point (∆U=0

c = 2 J), as well as below and close to
the estimated interacting transition. The data omits the
fast initial decay of the imbalance, and shows a slow,
further decay in the time window spanned by the ’short’
(10 τ) and ’long’ (40 τ) observation times of Fig. 1.

Below the noninteracting transition (at ∆ = 1.75 J)
the interacting and noninteracting imbalance behave very
similar and quickly decay to zero. This indicates that the
dynamics is dominated by the spreading of single parti-
cles. This picture changes upon approaching the single-
particle localization transition (at ∆U=0

c = 2 J), where
the noninteracting system already shows a significantly
slower decay. We attribute this to the fact that the non-
interacting system is already localized, and the observed
imbalance decay is part of the initial relaxation during
which the particles spread within their single-particle
localization length. Further beyond the single-particle
transition (at ∆ = 2.75 J), where the single-particle lo-
calization length is small, the noninteracting system is
completely frozen and its imbalance remains stationary.
Yet, the interacting system continues to show a slow de-
cay, as is discussed in the main text (see Fig. 2). The
decay in the interacting system only stops at even larger
disorder strengths (∆ & 4 J) when the system becomes
many-body localized. In the MBL regime, the interacting
imbalance still lies slightly below the noninteracting val-
ues, likely indicating an increased localization length. In
addition, however, the effects of external bath couplings,
which are larger in the presence of interactions [46, 47],
also lower the interacting imbalance. Furthermore, in-
termediate, possibly logarithmic decays towards a finite
imbalance, which have been found to occur in the MBL
phase [49], could contribute.

We note that the above comparison is difficult to per-
form with theoretical data, as the noninteracting system
exhibits strong oscillations (see Fig. S2). In the exper-
iment these oscillations quickly dephase due to averag-
ing over many 1D tubes with slightly different tunneling
rates and disorder strengths. While the functional form
of the averaged noninteracting dynamics is not clear, on
the accessed time scales the tube-averaged decays can be
well fitted with power laws, enabling a direct comparison
of the interacting and noninteracting exponents α shown
in Fig. S3. Both the interacting and the noninteract-
ing exponents decrease with increasing disorder strength
around the noninteracting localization transition until
eventually both saturate at their respective offset values.
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FIG. S1. Interacting vs. noninteracting time traces:
Comparison between the decay of an initially prepared charge-
density wave in the absence and presence of interactions for
various disorder strengths ∆. Each point is the average over 6
disorder phases φ, with error bars indicating the uncertainty
of the mean. During the first three tunneling times (not
shown), the imbalance quickly decays from its initial value
close to one before the dynamics crosses over into the shown,
much slower regime.

The offset value of the noninteracting system is slightly
smaller than the offset of the interacting system, which is
expected as external couplings have a stronger influence
on the interacting system [46, 47]. We find the satura-
tion of the noninteracting exponents to occur at a slightly
larger disorder strength than ∆U=0

c = 2J . We attribute
this to the slow spreading of single particles to their local-
ization length, which is larger than one lattice site close
to the transition. Full freezing of the particles only hap-
pens when the localization length drops below one lattice
site. In the interacting system, we believe that similar ef-
fects impact our analysis of the critical point much less,
as such intermediate relaxations above the MBL critical
point are expected to be logarithmically slow [52].

Interaction dependence of the power-law exponents

In this work, we performed the analysis of the inter-
acting system at a fixed interaction strength of U = 4 J .
The value was chosen, since here we expect the strongest
interaction shift of the MBL transition compared to the
noninteracting localization transition [13]. Fig. S4 shows
the extracted power-law exponents as a function of in-
teraction strength at ∆ = 2.5 J . We find that the ex-
ponent shows a behavior reminiscent of the interaction
dependence observed in Ref. [13]: We find a maximum
interaction effect around U = 5 J and values approaching
the noninteracting limit in the regime of hard core inter-
actions. This is expected due to an exact mathematical
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FIG. S2. Simulation of noninteracting time traces: Im-
balance decay of an initial CDW of noninteracting particles
for ∆ = 1.75 J and ∆ = 2.5 J on a system with 200 sites,
averaged over 1000 phases φ. The fast initial decay of the im-
balance from its starting value is omitted. We observe much
stronger oscillations than in the experiment, but reproduce
the general trend. This is illustrated by the yellow lines, which
show fits to the experimental data on the time scales of the
experiment.
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FIG. S3. Interacting vs. noninteracting exponents:
Exponents of a power-law fit to the interacting and nonin-
teracting time traces between 8− 40 τ . Errorbars denote the
covariance error of the fit. Solid lines are guides-to-the-eye.

mapping from hardcore fermions to free fermions in the
absence of doubly occupied lattice sites [13].

Details of the experimental setup

We start our experiments by cooling an equal mix-
ture of the two lowest lying hyperfine states (denoted as
|↑〉,|↓〉) of 40K atoms to a temperature of 0.15T/TF in
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0.4

®

¢=2.5 J

FIG. S4. Power-law exponents versus interaction
strength: Fitted experimental exponents as a function of the
interaction strength U at a disorder strength of ∆ = 2.5 J .

a dipole trap, where TF is the Fermi temperature. The
cold gas is then loaded into a three dimensional optical
lattice, where the formation of doublons is suppressed to
below ≈ 8% by strong repulsive interactions.

The optical lattice consists of two deep λ⊥ ≈ 738 nm
lattices along the orthogonal directions at a strength of
40 E⊥r , creating an array of one-dimensional tubes. Here
Eir = h2/(2mλ2

i ) denotes the recoil energy, where λi is
the respective lattice’s wavelength and m is the mass of
40K. In the tubes, we employ a primary λp ≈ 532 nm
lattice, which is superimposed by a weaker, incommen-
surate λd ≈ 738.2 nm disorder lattice, to implement the
Aubry-André model [42] with on-site interactions [18].

Ĥ =− J
∑
j,σ

(ĉ†j+1,σ ĉj,σ + h.c.)

+ ∆
∑
j,σ

cos(2πβj + φ)n̂j,σ + U
∑
j

n̂j,↑n̂j,↓,
(S01)

The operators ĉ†j,σ and ĉj,σ are the creation and anni-
hilation operators for spin σ ∈ {|↑〉 , |↓〉} on site j, the
respective number operators are given by n̂j,↑ and n̂j,↓.
J ≈ h × 500 Hz denotes the tunneling rate in the pri-
mary lattice. The strength of the correlated disorder ∆
and its phase φ is controlled by the depth and relative
phase of the disorder lattice. The incommensurable ratio
is given by β = λd/λp. Additionally, we achieve inde-
pendent control of the interaction strength U via a Fes-
hbach resonance centered around 202.1 G [55]. We note
that there are small deviations between our setup and
an ideal Aubry-Andreé model as, e.g. the disorder lat-
tice not only modulates the on-site energies, but also the
hopping rates by . 10%. Details of these deviations can
be found in Ref. [13].
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FIG. S5. Residuals of exponential and power-law fits:
Residuals of the Imbalance at ∆ = 2.5 J calculated as log(I)−
log(Ifit) for experiment and theory for exponential and power-
law fits as in Fig. 2b. Theory data (lines) is only shown from
20 τ , as earlier oscillations strongly affect the fit.

We create the initial charge-density wave using an
additional superlattice with respect to the primary
lattice with λl ≈ 1064 nm, by following the same loading
procedure as in Ref. [13]. After the evolution time, the
superlattice is employed again to extract the imbalance
I via a band mapping technique [44].

Power-law versus exponential fits

Fig. S5 shows the residuals of the exponential and
power-law fits to the imbalance decay at ∆ = 2.5 J
shown in Fig. 2b. In the experimental data the residuals
of the power-law fit scatter symmetrically around zero.
The exponential residuals are below zero in-between
20 − 40 τ and above zero beyond 80 τ , indicating that
a power-law fit captures the data slightly better. A
similar trend can be seen in the theory, where only the
exponential residuals show a systematic trend.

Analysis of the dynamics using exponential fits

Fig. S6 shows an analysis of the slow dynamics using
simple exponentials of the form I(t) ∼ e−γt. The
decay rates γ are extracted via linear fits of log(I)
versus t. The analysis is equivalent to the power-law
analysis presented in Fig. 3 in the main text. We
find that the qualitative results of increasingly slow
dynamics with increasing disorder strengths, as well as
the saturation to an offset value due to external decays
do not change. Also, the quantitative estimation of the
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FIG. S6. Exponential fit analysis of the slow dynamics:
Analysis of the slow dynamics equivalent to Fig. 3 in the main
text, but using exponential fits. Plotted is the decay rate γ.
Errorbars indicate uncertainty of the fit to the experimental
data, the purple shaded region an estimate of the finite size
error of the theoretical simulations. For the largest disorder
strengths, systematic finite time and size errors do not allow
an accurate fit of the simulation data and the uncertainty is
likely underestimated. The gray shading marks the regime
of slow dynamics from Fig. 1 in the main text. As in the
analysis with power-law fits, we observe a saturation of the
experimental data to an offset value of 1/τ0 at large disorder
strengths due to finite background decays.

lower bound of the critical disorder strength to a value
of ∆MBL

c & 3.8± 0.5 J is unchanged.

Analysis of background decay

In the analysis of the power-law exponents (see Fig. 3)
we find that at large ∆, the exponents saturate at a
nonzero offset value αo. This behavior is consistent
with an underlying exponential long-term decay I(t) ∼
e−(Γbgt)

b

of the imbalance. Here, Γbg is the imbalance
lifetime and b the stretching exponent. Such stretched
exponential decays have been found to arise in our sys-
tem due to external bath couplings [46, 47], such as pho-
ton scattering and residual tunnel couplings between the
one dimensional tubes. Fig. S7 shows the result of fitting
a power-law decay in the experimental time window of
8 − 40 τ to a stretched exponential decay with b = 0.6
(a value we often found in previous works [46, 47]) and
various Γbg. We find, that the observed offset of our
exponents αo corresponds to an imbalance lifetime of
1/Γbg ≈ 400 − 500 τ , which is consistent with previous
results [46, 47].
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FIG. S7. Effect of background decay: Exponents ex-
tracted by a power-law fit in the experimental time window
of 8−40 τ to a stretched exponential decay with rate Γbg and
stretching exponent b = 0.6. The offset of αo ≈ 0.1 we find
in Fig. 3 corresponds to a background decay with a lifetime
of 1/Γbg ≈ 400− 500 τ , as is indicated by the dashed lines.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

¢ (J)

0.0

0.1

0.2

0.3

0.4

0.5

®

Exponents set
Time-traces set

FIG. S8. Power law exponent extracted from time
traces in Fig. 2: Exponents extracted from the dataset used
in Fig. 2 (Time-traces set) and in Fig 3 (Exponents set).

Usage of two different sets of data

In this work we use two different sets of data for the ex-
ponents in Fig. 3 and the time-traces in Fig. 2. The two
sets were taken under the same experimental conditions,
but approximately half a year apart and are compared
in Fig. S8. We find that the two sets agree within exper-
imental noise. The two datasets were employed as one
of them contains more disorder strengths while the other
uses finer time steps.

Details of exact diagonalization simulations

We follow the time evolution of the wave-function
|Ψ(t)〉 = exp(−iHτ)|Ψ(0)〉 from an initial CDW state
|Ψ(0)〉 in the Krylov space Km(H, |Ψ(0)〉), using a paral-
lel solver as implemented in the SLEPc library [56]. The
time evolution is essentially exact, with a convergence en-
sured by using small times steps, dτ in between 0.1 and
1 (we set J = 1 in the simulations). We use chains of
size S = 12, S = 16 and S = 20, taking open boundary
conditions and fixing β = 0.721. We work at zero mag-
netization and quarter-filling (S/4 up spin and S/4 down
spin fermions) with Hilbert space sizes 48400 (S = 12),
3312400 (S = 16), and larger than 240 Millions (S = 20).
The initial state is a product state chosen of CDW form,
with a random repartition of up and down spins. We
average results for the imbalance I(τ) = 〈Ψ(τ)|I|Ψ(τ)〉
over between 80 and 200 combinations of initial states
and random values of the phase φ (chosen uniformly in
[0, 2π]). For the direct comparison to the experimental
traces in Fig. 2, we scale the simulated imbalances by a
factor of 0.9 to account for the independently measured
initial imbalance in the experimental CDW state.

Fig. S9 shows exemplary traces, as well as the fit-
ted power laws. The fits have been performed between
20−80 τ , as at shorter times the initial oscillations in the
imbalance heavily affect the fit. In the experiment, this is
not a problem, as the initial oscillations dephase quicker
due to averaging over many 1D tubes with slightly dif-
ferent J [13]. We observe that the power-law fits de-
scribe the behavior well until the imbalance decay be-
comes steeper (at around 100 τ for the smaller disorder
strengths). In the picture of state-induced rare regions
this might be due to a redistribution of atoms and spins
resulting in a ”melting” of rare regions and therefore a
faster decay at later times. Such a redistribution could
occur by parts of the system thermalizing or due to a
delocalized spin sector [52]. However, a recent study
on quasiperiodic systems without initial state disorder
has also observed power laws only on intermediate time
scales [48]. Understanding this regime will require addi-
tional work.

Fig. S10 shows time traces for ∆ = 3 J and system
sizes of S = 12, 16, 20. We observe a slightly faster decay
for larger system sizes. Due to the limited sizes available,
we cannot extrapolate to infinite size. However, we find
for all S investigated, a systematic decrease of 1/z with
increasing the disorder strength. We estimate the finite
size error of the exponents indicated in Fig. 3 as the dif-
ference between the result of the S = 16 and the S = 20
sites simulation. We find that this error decreases with
increasing disorder strength. However, in the regime of
large disorder (∆ & 4J) close to the transition, we cannot
reach long enough times and large enough S to correctly
estimate α, and hence the systematic error of the expo-
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FIG. S9. ED time traces: Decay of an initial charge-density
wave as simulated on systems with 20 sites and 10 atoms.
Thickness of the lines denotes the statistical error after aver-
aging over random initial conditions. The yellow lines illus-
trate fits to the data between 20 − 80 τ , used to extract the
exponents shown in Fig. 3. At longer times and for smaller
values of disorder, a deviation from this power-law regime is
observed.
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FIG. S10. Size dependence of ED traces: Time evolution
of the imbalance for various system sizes at ∆ = 3 J and
U = 4 J . Thickness of the lines denotes the statistical error
after averaging over random initial conditions. Yellow lines
indicate power-law fits between 20 − 80 τ . We find a faster
decay for larger system sizes.

nent is much larger than the indicated finite size error,
likely on the order of the exponent α ≈ 0.05 itself.
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