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Abstract
In this paper we propose an algebraic formulation of group field theory 
and consider non-Fock representations based on coherent states. We show 
that we can construct representations with an infinite number of degrees of 
freedom on compact manifolds. We also show that these representations break 
translation symmetry. Since such representations can be regarded as quantum 
gravitational systems with an infinite number of fundamental pre-geometric 
building blocks, they may be more suitable for the description of effective 
geometrical phases of the theory.

Keywords: group field theory, quantum gravity, quantum field theory, spin 
foam models

Introduction

Many contemporary approaches to quantum gravity see spacetime and geometry as collec-
tive phenomena of more fundamental degrees of freedom. In such theories, a transition from 
fundamental and non-geometric to the effective geometric level is often associated with a 
phase transition and requires control over many degrees of freedom. A key goal is then to 
provide a consistent description of this phase transition. In algebraic quantum field theory 
different phases are associated with inequivalent representations of the operator algebra of 
observables; the study of phase transitions becomes the study of the operator algebra and its 
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inequivalent representations. In this paper we will investigate the operator algebra for group 
field theory (GFT) and provide examples of inequivalent representations for GFT on a com-
pact base manifold.

Group field theory [1–3] is one candidate theory that aims at the description of emergence 
of geometry. It is a statistical quantum field theory in which space-time geometry and dynam-
ics of general relativity suppose to arise as an effective field theory. It is closely related to 
canonical loop quantum gravity (LQG) [4–7] and its covariant formulation in terms of spin 
foams [8, 9]; for details on this relation, see [10]. On the other hand, it can also be seen as a 
group-theoretic enrichment of random tensor models [11–13], in which tensor indices over 
finite sets are replaced by field arguments [13–17].

The quanta of GFT models formally describe point particles labeled by a (generally non-
abelian) Lie group in the same way that quanta of ordinary field theories are formally labeled 
by points of spacetime. However, canonical quantization and the resulting Hamiltonian 
dynamics or evolution which entirely relies on a time variable cannot be applied here since 
time does not (yet) exist. Still, a Hilbert space for ‘particles on the group’ can be defined 
guided by a discrete geometric intuition; in particular, the GFT quanta can be understood as 
quantized simplices (tetrahedra in 4 dimension), whose quantum algebra and single particle 
Hilbert space are obtained by geometric quantization of a classical discrete geometry (see for 
example [18–20]). Applying second quantization techniques, one can construct a Fock space 
of quantum simplices that serves as the Hilbert space for GFT. The simplicial building blocks 
that are populating the Fock space admit a dual interpretation in terms of spin network vertices 
[19–21].

Nevertheless, the Fock vacuum provides trivial topology and geometry and therefore, can 
be intuitively considered ‘far away’ from any state that carries information about non-trivial 
smooth spacetime geometry. On the other hand, finitely many-particle states in GFT have a 
discrete geometric interpretation, shared with loop quantum gravity and simplicial quantum 
gravity, and provide a notion of generalized piecewise-flat geometries [10]. However, for a 
description of smooth geometries the number of degrees of freedom, or GFT quanta, should 
be very large and states with an infinite particle number are likely to be needed.

In turn, the interactions among large numbers of GFT quanta, i.e. their collective behavior, 
may give rise to phase transitions, as in any other non-trivial quantum field theory (see for 
example [22]). New questions, then, arise: which phase of a given GFT model, if any, admits a 
geometric interpretation and a description in terms of effective field theory and general relativ-
ity? Which quantum representation of the fundamental GFT is appropriate to the description 
of such geometric physics? 

This prompts us to study the definition of new representations in GFT, taking full advan-
tage of its field-theoretic structures, and complementing parallel work on GFT renormali-
zation [23–29]. Our approach provides a GFT counterpart of similar studies, with identical 
motivations, carried out in the context of canonical loop quantum gravity, spin foam models, 
tensor models and dynamical triangulations [30–39].

Our work is motivated by the use of GFT coherent states in the extraction of an effective 
continuum dynamics [40–46], and the requirement of an infinite number of degrees of free-
dom that is needed for description of smooth geometries. To study these two requirements 
we construct coherent state representations with an infinite number of GFT quanta and study 
their relation with the Fock representation. The idea is to avoid the limiting procedures of the 
particle number for thermodynamical potentials but instead define directly representations 
that correspond to an infinite system.

Using this approach we can explicitly formulate the theory on Hilbert spaces with infinite 
particle number. Such Hilbert spaces could be better suitable for a description of geometrical 
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states. The structure of the constructed representations is however still very simple and more 
realistic representations with richer structure have to be understood in future work.

In the first part of this paper (section 1) we set up the algebraic formulation of GFT. Using 
this formulation in the second part (section 2) we show how one can construct inequivalent 
representations for GFT and provide simple examples of representations associated to infinite 
systems with breaking of translation symmetry.

Notation

In this paper we will use the following notation and conventions. The base manifold of GFT 
is considered to be G×n with G = SU (2) and some fixed n ∈ N; it will be denoted, M .

= G×n. 
A generalization of statements from this paper to compact Lie groups other than SU (2) is 
straightforward, but a treatment of non-compact base manifold requires more care. Throughout 
the whole paper the letter h is reserved as an element of G, and dh refers to the Haar measure 
on G, the Haar integral on G is denoted by 

∫
G (·) dh. The Haar measure is normalized to 1, ∫

G dh = 1, and is invariant under left and right multiplication and inversion on G, that is for 
an integrable function f and h1, h2 ∈ G

∫

G
f (h1h h2) dh =

∫

G
f (h) dh. (1)

∫

G
f
(
h−1) dh =

∫

G
f (h) dh. (2)

It is a unique measure on G with this properties.
The letters x and y are reserved for elements of M, and dx refers to the Haar measure on M, 

the Haar integral on M is denoted by 
∫

M (·) dx. The Haar measure dx is, as above, normalized 
to 1 and invariant under left and right multiplication as well as inversion on M. Whenever nec-
essary, we will use subscripts for the components of x and write x = (x1, x2, · · · , xn) ∈ M. We 
denote the Lie algebra of M by m and by convention choose it to be isomorphic to the space 
of right invariant vector fields on M.

We denote the space of square integrable functions on M by L2 (M, dx) and define the 
bracket (·, ·)L2, such that for any f , g ∈ L2 (M, dx),

( f , g)L2 =

∫

M
f (x) g (x) dx. (3)

The real and imaginary part of expressions are referred to as Re (·) and Im (·), respectively. 
The Dirac-delta distribution on M is denoted δ (·) and satisfies

f (y) =
∫

M
δ
(
y x−1) f (x) dx, (4)

where y x−1 denotes the group product between y and x−1.
Throughout the paper we will use different norms on several different spaces. We will 

introduce them in the text whenever we use them, but here we summarize the notation for 
better overview:

‖ · ‖L2 =
√
(·, ·)L2  is the L2 norm, ‖ · ‖k,∞ is the family of semi norms with respect to which 

the space of smooth functions is complete, in particular ‖ · ‖∞ is the supremums norm for 
smooth functions, ‖f‖∞ = supx∈M |f (x)|, ‖ · ‖� refers to the C�-norm, ‖ · ‖H refers to the 
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Hilbert space norm for whatever Hilbert space is in question, and ‖ · ‖op = supx∈H ‖ · x‖H is 
the operator norm for bounded linear operators on the Hilbert space H.

1. Group field theory

1.1. Operator formulation of GFT

Group field theory is a field theoretical description of spin networks and simplicial geometry. 
It can be formulated in terms of functional integrals [1, 3, 47, 48] or in operator language [49]. 
In the latter, the natural starting point is a Fock space spanned by creation and annihilation 
operators ϕ† (x) ,ϕ (x), acting on the Fock vacuum of zero quanta |o), such that

ϕ† (x) |o) = |x), ϕ (x) |o) = 0. (5)

In models with a simplicial or more general topological interpretation, like the ones related 
to loop quantum gravity and simplicial quantum gravity, one requires the operators to be 
invariant under the right multiplication by an arbitrary element of the group G, such that for 
all h ∈ G we have

ϕ (x1,x2, · · · , xn) = ϕ (x1h, x2h, · · · , xnh) . (6)

This symmetry requirement is called the closure constraint [18–21, 50]. The functions that 
satisfy the closure constraint are called gauge invariant functions. The canonical commutation 
relation (CCR) between the fields without closure constraint is given by,

[
ϕ (x) ,ϕ† (y)

]
= δ

(
x y−1) . (7)

And for gauge invariant fields the CCR read

[
ϕ (x) ,ϕ† (y)

]
=

∫

G

n∏
j=1

δ
(

xjhy−1
j

)
dh. (8)

The Fock space created by these operators can be understood as a kinematical Hilbert space 
Hkin, formed by generic quantum states on which no dynamics has yet been imposed. As in any 
background-independent formulation of quantum gravity, one expects the quantum dynam-
ics to be encoded in a finite set of constraint operators Ci : Hkin → Hkin for i ∈ {1, · · · , N}. 
Following the idea of Dirac quantization the role of Ci is twofold: first to select the space of 
physical states formally as

Hphys = {|ψ) ∈ Hkin |Ci|ψ) = 0 ∀i ∈ {1, · · · , N}} , (9)

and second, select the relevant observables O by

[Ci,O] = 0 ∀i ∈ {1, · · · , N} . (10)

Any concrete choice of such operators Ci defines a different GFT model. In analogy to this, 
the constraint operators in LQG would be the diffeomorphism constraints and the Hamiltonian 
constraint, but the GFT constraints cannot be directly interpreted as diffeomorphisms or 
Hamiltonian constraints, since the degrees of freedom of the GFT theory do not live on a con-
tinuous spacetime manifold where diffeomorphisms would be defined and act as symmetry 
transformations.

A treatment of constraint systems can be technically challenging [3, 51, 52]. In particular, 
if the zero eigenvalue lies in the continuous part of the spectrum of Ci the states |ψ), that satisfy 
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Ci|ψ) = 0, are not contained in the kinematical Hilbert space, and one needs to generalize the 
construction using the notion of rigged Hilbert spaces [53]. This is already the case for finite-
dimensional systems in the presence of gauge symmetries like reparametrization invariance, 
and it is an even more severe issue in continuum quantum gravity. There, it can be partially 
tackled by the method of refined algebraic quantization [3, 54], but experience with quantum 
field theories tells us that we need Hilbert spaces other than Fock to describe an infinite num-
ber of interacting degrees of freedom [22]. Hence, GFT combines both types of difficulties: a 
constrained system without explicit Hamiltonian evolution, and the need to study an infinite 
number of degrees of freedom.

To approach this problem and establish its rigorous operator formulation, we use the alge-
braic formalism for quantum statistical mechanics in GFT. In the following we will put the 
above formulation of GFT in algebraic terms and construct Hilbert spaces with infinite parti-
cle number as representations of the GFT algebra of observables. This will require the defini-
tion of a Weyl algebra for GFT.

1.2. Algebraic formulation of GFT

The first step in the construction of an algebraic formulation is the construction of the algebra 
of observables. In GFT, by convenience, we choose this algebra to be the Weyl algebra. The 
later is a C�-algebra that is constructed over a symplectic space of the classical theory. For that 
reason we start our discussion of the algebraic construction with a definition of the suitable 
symplectic space in GFT.

1.2.1. Symplectic space of GFT. We begin with the space of smooth, complex valued func-
tions on M that we denote by S = C∞ (M). Let Lx : M → M  denote the left and Rx : M → M 
the right multiplication on M by x ∈ M  and denote the pull-back of f ∈ S by Lx (respectively 
Rx) as

L�
x f = f ◦ Lx (respectively R�

x f = f ◦ Rx) . (11)

Lemma 1. S  is closed under translations; that is for any y ∈ M  and f ∈ S the functions 
L�

y f  and R�
y f  are again in S . Moreover, L�

y  and R�
y  leave the L2-bracket, (·, ·)L2, invariant.

Proof. The first statement follows from smoothness of the maps Lx and Rx. The second 
statement is a direct consequence of the left (respectively right) invariance of the Haar meas-
ure dx. That is for f , g ∈ S and y ∈ M ,

(
L�

y f , L�
y g
)

L2 =

∫

M
f (yx) g (yx) dx

=

∫

M
f (x) g (x) dx

= ( f , g)L2 .

And similar for R�
y f . □ 

Let Xi ∈ m be a Lie algebra element of M, then Xi acts as a derivation on smooth functions 
such that for f ∈ S , I ⊂ R an interval containing zero and t ∈ I,

Xif (x)
.
= ∂t f

(
etXi x

)
|t=0, (12)

where etXi denotes the exponential map on M [55].

A Kegeles et alClass. Quantum Grav. 35 (2018) 125011
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Lemma 2. S  equipped with topology induced by the family of semi-norms

{‖f‖k,∞ = ‖X1 · · ·Xkf (g) ‖∞ : X1, · · · , Xk ∈ m;∀k ∈ N} ,

is a complete, topological, locally convex, vector space.

Proof. See4 [55]. □ 

When the topology of S  will be important in our discussion we will denote this topological 
space by S∞.

Since M is compact, every smooth function on it is finite integrable and we can equip S  
with the norm-topology induced by the norm,

‖f‖2
L2 =

∫

M
f̄ (x) f (x) dx. (13)

Lemma 3. S  equipped with the norm topology is not complete and its completion is the 
space of square integrable functions on M.

Proof. See [55]. □ 

To distinguish this topological space from the above, we will denote it SL2 whenever this 
will be necessary.

Let h ∈ G and D : G → M be a diagonal map such that Dh ≡ D (h) = (h, · · · , h). We say 
f satisfies the closure constraint (or f is gauge invariant) if

R�
Dh

f = f ∀h ∈ G. (14)

We denote the space of functions that satisfy the closure constraint by SG .

Proposition 4. S  can be decomposed in complementary subspaces SG  and SNG such that

S∞ = SG + SNG, (15)

and SG ∩ SNG = {0}. Where SG  is a space of gauge invariant functions and SNG is a space of 
functions that do not satisfy the closure constraint.

Proof. Let P define an operator on S  and pointwise acting as

(Pf ) (x) =
∫

G

(
R�

Dh
f
)
(x) dh.

P is linear since it is a composition of linear operators, R�
Dh

 and 
∫

G (·) dh. We show that the 
image of P is in S∞. By [55, lemma 2.1] it is enough to show that ‖Pf‖k,∞ < ∞ for any 
k ∈ N. For an arbitrary fixed k we get

‖Pf‖k,∞ = sup
x∈M

|X1 · · ·Xk (Pf ) (x)|

= sup
x∈M

∣∣∣∣X1 · · ·Xk

∫

G

(
R�

Dh
f
)
(x) dh

∣∣∣∣ .

4 In this reference the authors define the lie algebra by left invariant vector fields as opposed to our definition as 
right invariant vector fields. For that reason in the original paper equation (12) is defined by right multiplication 
with the exponential map. This small change, however, does not change the results of the paper.
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By lemma 1 the integrand is a smooth function and can be upper bounded by supx∈M

∣∣(R�
Dh

f
)
(x)

∣∣. 
Hence, by dominant convergence theorem

‖Pf‖k,∞ �
∫

G
sup
x∈M

∣∣X1 · · ·Xk
(
R�

Dh
f
)
(x)

∣∣ dh

For any fixed h ∈ G we have

X1 · · ·Xk
(
R�

Dh
f
)
(x) = ∂t1 · · · ∂tk f

(
et1X1 · · · etkXk x Dh

)
,

where all derivatives are taken at zero. Since x Dh ∈ M  it follows that

sup
x∈M

∣∣X1 · · ·Xk
(
R�

Dh
f
)
(x)

∣∣ = sup
x∈M

|X1 · · ·Xk f (x)|

and we obtain

‖Pf‖k,∞ � ‖f‖k,∞.

Therefore, P : S∞ → S∞, is a continuous linear operator on S .
Further, by right invariance of the Haar measure it follows that P2f  =  Pf. By [56, theorem 

1.1.8] it follows that S∞ can be decomposed as

S∞ = SG + SNG,

where SG = PS∞ and SNG = (1 − P)S∞ and SG ∩ SNG = {0}. □ 

Lemma 5. P is an orthogonal projector on L2 (M, dx).

Proof. P is bounded on SL2 since for any f ∈ S we have by right invariance of the Haar 
measure

‖Pf‖2
L2 =

∫

M

∫

G
|f (x Dh)| dh dx =

∫

M
|f (x)| dx = ‖f‖2

L2 .

Let f , g ∈ S. Then by Fubini and the invariance of the Haar measure under right multiplica-
tion and inversion, we have

( f , Pg)L2 =

∫

M
f (x)

(∫

G

(
R�

Dh
g
)
(x) dh

)
dx

=

∫

M

(∫

G

(
R�

Dh
f
)
(x) dh

)
g (x) dx

= (Pf , g)L2 .

And for h1, h2 ∈ G we have

(PPf ) (x) =
∫

G

∫

G

(
R�

D(h1)
R�

D(h2)
f
)
(x) dh1 dh2

=

∫

G

∫

G

(
R�

D(h1)
R�

D(h2)
f
)
(x) dh1 dh2

=

∫

G

∫

G

((
RD(h1h2)

)�
f
)
(x) dh1 dh2

=

∫

G

(
(RDh)

� f
)
(x) dh = (Pf ) (x) .

A Kegeles et alClass. Quantum Grav. 35 (2018) 125011
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Therefore, P is an orthogonal projection on the dense domain of L2 (M, dx) and extends 
uniquely to the whole L2 (M, dx) by continuity. □ 

Theorem 6. The space SG = PS  is dense in PL2 (M, dx)—the image of the orthogonal 
projection P on L2 (M, dx).

Proof. Since PL2 (M, dx) is given by the projection P, it is a closed subspace of L2 (M, dx). 
By lemma 3 the set PL2 (M, dx) ∩ S is dense in PL2 (M, dx). Further, any f ∈ PL2 (M, dx) ∩ S  
is an almost-everywhere gauge invariant function that is smooth. Define g  =  f  −  Pf. Then g 
vanishes almost everywhere and is smooth. Hence g is zero everywhere, and we get f ∈ SG 
and PL2 (M, dx) ∩ S ⊆ SG. The opposite inclusion, SG ⊆ PL2 (M, dx) ∩ S, is obvious since 
any f ∈ SG is square integrable and SG ⊆ S  by lemma 4. □ 

To proceed with the construction of the symplectic space we equip S∞ with a symplectic 
form s : S × S → R defined for any f , g ∈ S by

s ( f , g) = Im [( f , g)L2 ] . (16)

Restricting S  to the subspace SG  we obtain the symplectic form on SG  that we denote by the 
same symbol s.

The above theorem ensures that after quantization, the one particle Hilbert space, that is 
given by the L2 closure of the SG  will be that of a quantized polygon [50]. However, the sym-
plectic structure of our space is different from the symplectic structure of a single polygon.

Remark 7. The space SG  is not closed under right multiplication, meaning that in general 
for f ∈ SG and y ∈ M  not of the diagonal form (that is y �= Dh for any h ∈ G), the function 
R�

y f  will not be gauge invariant. To see this we observe
(
R�

y f
)
(x) = f (xy) ,

which is in general not equal to

f (xDhy) =
(
R�

y f
)
(x Dh) . (17)

For this reason we choose the definition of the Lie algebra to be given by right invariant vec-
tor fields on M (generated by left translation) to ensure that for any f ∈ SG, the function Xif 
stays in SG .

1.2.2. The Weyl algebra of GFT. To define the Weyl algebra from the space S  we follow the 
standard procedure presented for example in [51, 52] and that we recall below for convenience.

First we define a �-algebra A (S) such that:

 1.  The elements of A (S) are complex valued functions on S  with support consisting of a 
finite subset of S . It follows that A (S) is a vector space.

 2.  Then we define a �1 norm on A (S) by

‖A‖1 =
∑
f∈S

|A ( f ) |.

  The sum on the right hand side is well defined since each element in A (S) is supported 
on a finite subset of S .

 3.  For f ∈ S we define functionals W( f ) ∈ A (S) such that for any g ∈ S

A Kegeles et alClass. Quantum Grav. 35 (2018) 125011
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W( f ) (g) =
{

1 if f = g pointwise
0 otherwise

.

  These functionals form a dense linear subspace in A (S).
 4.  We then define the multiplication on that subspace by

W( f ) · W(g) = e−
ı
2 s( f ,g) W( f+g).

  and extend it to the full A (S) by linearity.
 5.  Finally, we define the involution W�

( f ) = W(−f ).

Closing A (S) in the �1 norm provides a Banach �-algebra A (S). This algebra can be 
represented by bounded linear operators on some Hilbert space. Denoting the space of all 
non-degenerate, irreducible representations of A (S) by Irreps, we define the Weyl algebra.

Definition 8. The Weyl algebra is a C�-algebra over S  obtained by completion of A (S) in 
the C�-norm

‖W( f )‖� := sup
π∈Irreps

‖π
(
W( f )

)
‖H. (18)

We denote it A (S).

Lemma 9. For any x ∈ M  the maps αx and βx from A (S) to A (S) defined such that for 
any f ∈ S

αx
(
W( f )

)
= W(L�

x f ), βx
(
W( f )

)
= W(R�

x f ), (19)

and extended to the whole A (S) by linearity are �-automorphisms.

Proof. By definition αx and βx are linear. Further let f , g ∈ S, then by lemma 1

αx
(
W( f )W(g)

)
= αx

(
W( f+g)e−

ı
s Im( f ,g)L2

)

= e−
ı
2 Im( f ,g)L2 W(L�

x f+L�
x g)

= e−
i
2 Im(L�

x f ,L�
x g)L2 W(L�

x f+L�
x g)

= W(L�
x f )W(L�

x g)

= αx
(
W( f )

)
αx

(
W(g)

)
.

Also

αx

(
W�

( f )

)
= αx

(
W(−f )

)
= W(−L�

x f ) =
[
αx

(
W( f )

)]�
.

We can similarly address βx. □ 

Restricting S  to SG  we obtain a subset AG  defined as

AG = span
{

W( f ) ∈ A (S) | f ∈ SG
}‖.‖A(S)

, (20)

where ◦‖.‖A(S) denotes the closure in the A (S)-C�-algebra norm.
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Theorem 10. AG  is a maximal C�-sub-algebra of A (S) that satisfies ∀A ∈ AG ,  
βDh (A) = A for any h ∈ G.

Proof. AG  is spanned by Weyl elements of the form W( f ) with f ∈ SG ⊂ S, hence, 
AG ⊂ A (S). Since SG  is closed under addition, and multiplication by real numbers, AG  is 
closed under multiplication and involution,

W( f )W(g) = W( f+g)e−
ı
2 Im( f ,g) ∈ AG, W�

( f ) = W(−f ) ∈ AG.

To show that AG  is invariant under βDh  for any h ∈ G let (An)n∈N be a Cauchy sequence in 
AG  such that

An =

n∑
i=0

ciW( fi) with ci ∈ C, fi ∈ SG

and that converges to A ∈ AG. Choose h ∈ G. Then by lemma 9 βDh  is a �-automorphism 
on A (S) and the sequence (βDh (An))n∈N is a Cauchy sequence in A (S) that converges to 

βDh (A) ∈ A (S). However, if fi ∈ SG then βDh

(
W( fi)

)
= W(

R�
Dh

fi
) = W( fi) and the two se-

quences are identical in AG . Thus, the limit points have to be equal and we get, βDh (A) = A. 
The fact that AG  is maximal follows from proposition 4 and the fact that we can decompose, 
S = SG + SNG with SG ∩ SNG = {0}. □ 

Corollary 11. The Weyl algebra over SG , denoted A (SG), is a maximal C�-sub-algebra of 
A (S) whose elements are invariant under βDh  for any h ∈ G.

Proof. This follows from the fact that η : A (S) → A (SG) defined on Weyl elements by

η
(
W( f )

)
= W(Pf ), (21)

and extended to A (S) by linearity is an invertible �-homomorphism from AG  to A (SG). The 
later is obvious since on AG , η acts as an identity. □ 

This concludes our construction of the Weyl algebra for GFT. In the following we will not 
distinguish between the algebra A (S) and A (SG) since all the following statements equally 
apply to both cases. For that reason we will use A  to refer to the Weyl algebra (gauge invariant 
or not) and use S  for the space of smooth function (gauge invariant or not). S∞ and SL2 then 
refer to the corresponding topological spaces (gauge invariant or not). In section 2.4, however, 
we will use the gauge invariant algebra A (SG) since it is more relevant for GFT’s with sim-
plicial interpretation.

1.3. Algebraic states

In order to deal with states directly at the level of the algebra, we briefly introduce the con-
cept of algebraic states. An algebraic state is a linear, positive, normalized functional on the  
algebra A ,

ω : A → C
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such that for any A ∈ A we get

ω (A�A) � 0ω (1) = 1.
 

(22)

The first inequality is the condition of positivity and the second is the normalization. 
Specifically for the Weyl algebra the positivity condition reads as follows:

Definition 12. The functional ω : A → C is positive if, for any finite N ∈ N and any set of 
complex coefficients {cn}n∈{0,··· ,N} and test functions { fn ∈ S}n∈{0,··· ,N}, the following holds

N∑
n,m

cnc̄m ω
(
W( fn−fm)

)
e−ı

Im( fn ,fm)
2 � 0.

By the GNS construction, every algebraic state provides a triple (Hω ,πω , |Ω)), where Hω 
is a Hilbert space, πω : A → L (Hω) is a representation of A  in terms of bounded linear opera-
tors on Hω, and the state vector |Ω) ∈ Hω, such that ∀A ∈ A

ω (A) = (Ω|πω [A] |Ω) . (23)

This representation is unique, up to unitarily equivalence [57].
The algebra of observables πω (A (S)) on the GNS Hilbert space Hω is a sub-algebra 

of bounded linear operators on Hω, that we denote M. The commutant of M is a subset of 
bounded linear operators of L (Hω) on Hω such that

M′ = {A ∈ L (Hω) | ∀B ∈ M AB = BA} . (24)

Usually, M is not closed in the strong operator topology on Hω. This is because the C�- 
norm (equation (18)) is stronger than the operator norm. The closure of M in the strong (or 
equivalently, weak) operator topology is called the von Neumann algebra and is equal to the 
bicommutant of M by the von Neumann theorem (see for example [58]). We denote the von 
Neumann algebra of the ω-GNS representation M

′′
.

The center of the von Neumann algebra is then defined as Z = M′ ∩M
′′
. A state is called 

factor if the center of its von Neumann algebra contains only multiples of identity.
A state ω is called pure if it can not be written as a convex combination of two or more 

states

ω = λω1 + (1 − λ)ω2 0 < λ < 1

where ω1,ω2,ω are pairwise distinct. Otherwise it is called mixed. The GNS representation of 
a state is irreducible if and only if the state is pure [58, theorem 2.3.19]. The GNS representa-
tion of a state is irreducible if the state is factor.

Most algebraic states are mere mathematical artifacts, and one needs a prescription for 
selecting interesting specific states that can be considered of physical relevance. One strategy 
is to rely on the quantum dynamics, encoded in a constraint operator. From the algebraic point 
of view the constraint operator is therefore related to the choice of the folium, or conversely, 
information about the constraint operator is partly encoded in the algebraic state.

We will not discuss the constraint operator explicitly, since little is known at present about 
the constraint operators underlying specific GFT models. Instead and reasonably, using the 
following criteria starting from the Fock representation of GFT, we consider state sequences 
that satisfy two conditions:
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 1.  All states in the sequence are coherent states.

  This is mainly motivated by the use of GFT coherent states in the extraction of an effective 
continuum dynamics in the series of works [40, 43, 44, 46]. Of course, coherent states are 
also key for the classical approximation of any QFT, and routinely used in particle physics, 
many-body systems and condensed matter theory, which provides further motiv ation.

 2.  The particle number of the limit state diverges.

  As described above, it is reasonable to expect that quantum states that describe smooth 
geometries contain infinitely many particles. This is only possible if the particle number 
operator in the corresponding representation is formally divergent and by consequence, if 
the corresponding representation is non-Fock.

In the next section we provide simple explicit examples for GFT representations that sat-
isfy these two properties.

2. States and representations

2.1. Fock states and the Fock representation

The Weyl algebra A  admits the Fock representation, which is given by the GNS representation 
of the algebraic state

ωF
(
W( f )

)
= e−

‖f‖2
L2

4 . (25)

Since the above state is regular, i.e. the function Ω (t) := ωF
(
W(tf )

)
 for t ∈ I ⊂ R and any 

fixed f ∈ S is smooth, the generator of the Weyl operator exists by Stone’s theorem [59]. 
Denoting the corresponding GNS triple by (HF,πF, |o)), we can write

(o|πF
[
W( f )

]
|o) = (o|eıΦF( f )|o), (26)

where ΦF ( f ) is an essentially self-adjoint generator of πF
[
W( f )

]
 in the Fock representation, 

defined on the dense domain

D (ΦF) =

{
N∑
i

ci πF
[
W( fi)

]
|o)| ci ∈ C, fi ∈ S , N ∈ N

}
.

We can obtain the action of ΦF ( f ) on D (ΦF) by differentiation. For any |ψ) ∈ D (ΦF) and 
appropriate set of complex coefficients {ci}i∈{0,··· ,N} and test functions { fi}i∈{0,··· ,N} such that

|ψ) =
N∑

i=0

ci πF
[
W( fi)

]
|o), (27)

we get

(o|ΦF ( f ) |ψ) = −ı∂t ωF

(
W(tf )

N∑
i=0

ci W( fi)

)
|t=0. (28)

In particular we obtain for any f ∈ S

(o|ΦF ( f ) |o) = 0, (29)

and

A Kegeles et alClass. Quantum Grav. 35 (2018) 125011



13

‖ΦF ( f ) |o)‖2
H = (o|ΦF ( f ) ΦF ( f ) |o) = 1

2
‖f‖2

L2 . (30)

By similar calculations it follows that the operators ΦF ( f ) satisfy the commutation relation, 
for any f , g ∈ S

[ΦF ( f ) ,ΦF (g)] = ıIm [( f , g)L2 ] . (31)

We call ΦF ( f ) the field operator of GFT.
We can also define the creation and annihilation operators by

ψF ( f ) =
1√
2
[ΦF ( f ) + ıΦF (ıf )] (32)

ψ†
F ( f ) =

1√
2
[ΦF ( f )− ıΦF (ıf )] , (33)

with ψF ( f ) † = ψ†
F( f ), such that ψF ( f ) is anti-linear in f, ψ†

F ( f ) is linear in f, both are closed 
on D (ΦF) and fulfill the canonical commutation relations

[ψF ( f ) ,ψF (g)] =
[
ψ†

F ( f ) ,ψ†
F (g)

]
= 0 (34)

and [
ψF ( f ) ,ψ†

F (g)
]
= ( f , g) . (35)

From equations (32), (28) and (30) it follows that

‖ψF ( f ) |o)‖2
H = (o|ψ†

F ( f )ψF ( f ) |o) = 0,

and therefore

ψF ( f ) |o) = 0, (36)

for all f ∈ S. Hence, |o) is the Fock vacuum with respect to the annihilation operator ψF ( f ) 
and the space HF is spanned by polynomials of creation operators ψ†

F ( f ) applied on |o).
The Fock state is pure and hence the GNS representation of ωF  is irreducible [60]. Also 

the Fock representation is the unique representation (up to unitary equivalence) in which the 
particle number operator N exists, formally given by

N =
∑
i∈N

ψ†
F ( fi)ψF ( fi) (37)

for some complete orthonormal basis { fi}i∈N  of L2 (M, dx).

2.2. Coherent states and non-Fock representations

Usually coherent states are characterized as eigenstates of the annihilation operators in the 
Fock representation, and hence require a notion of the Hilbert space for their very definition. 
In the algebraic approach, this characterization is avoided by introducing a generalized notion 
of coherent states directly at the level of the algebra. This is described in [61, 62]. Below we 
briefly summarize some of the results of that work that will be important for our discussion.

Definition 13. Let Γ : S∞ → C be a continuous linear form on S∞. A state ω defined on 
the Weyl elements as
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ωΓ

(
W( f )

)
= ωF

(
W( f )

)
eı

√
2Re[Γ( f )],

 (38)

and extended to A (S) by linearity, is called a coherent state. It is pure and regular [61].

With this definition the Fock state is the special case of the above family of coherent states 
for Γ = 0.

Any linear functional Γ corresponds to a well defined state [61]. It should be noticed that 
there exist even more general definitions of coherent states, but this is the one that most closely 
reflects the condition of being an eigenfunction of the annihilation operator.

Proposition 14 ([62, proposition 2.5]). The state ω of the above form is equivalent to 
the Fock state, if and only if Γ is continuous on SL2.

The detailed proof of this proposition is presented in [62], but we provide an intuitive 
sketch.

Assume that Γ is a continuous functional on SL2, and hence, it extends by continuity to 
L2 (M, dx). Then by the Riesz lemma there exists an γ ∈ L2 (M, dx) such that for any f ∈ SL2

Γ ( f ) =
∫

M
f (x) · γ̄ (x) dx, (39)

and
‖Γ‖op = ‖γ‖L2 . (40)

The state ωΓ provides a GNS triple (HΓ,πΓ, |Γ)). It is not difficult to see that in this case 
the GNS Hilbert space is Fock and that L ( f ) is the eigenvalue of the state vector |Γ) [61], i.e.

ψΓ ( f ) |Γ) = Γ ( f )|Γ) = ( f , γ)L2 |Γ). (41)

Since the representation is Fock, the particle number operator, equation (37), exists and its 
expectation value is given by

(Γ|N|Γ) =
∑
i∈N

|Γ ( fi)|2 = ‖γ‖ = ‖Γ‖op. (42)

That is, the particle number is given by the L2 norm of γ or equivalently the operator norm of 
Γ. When Γ is discontinuous on SL2 and, hence, unbounded on L2 (M, dx) the global particle 
number is ill-defined and the representation can not be Fock.

The non-Fock coherent states are hence classified by functionals Γ which are continuous 
on S∞ but discontinuous on SL2, sometimes called the space of tempered microfunctions.

By the Riesz–Markov theorem every functional Γ on S∞ is of the form

Γ ( f ) =
∫

M
f (x) dν (x) , (43)

for some Baire measure ν.
From this we can easily state

Corollary 15. If  Γ is invariant under left multiplication i.e. for any y ∈ M , Γ
(
L�

y f
)
= Γ ( f ) 

for any f ∈ S , then the coherent state ωΓ is Fock.

Proof. Let Γ be invariant under left translations. Then for any f ∈ S we have

Γ
(
L�

y f
)
=

∫

M
L�

y f (x) dν (x) = Γ ( f ) =
∫

M
f (x) dν (x) , (44)
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hence the measure ν is a left-invariant measure on M. By uniqueness of the Haar measure, 
dν = c · dx, for some c ∈ R. Then by Hölder’s inequality |Γ ( f )| � c‖f‖L2, and hence Γ is 
continuous on L2 (M, dx). □ 

2.2.1. Remarks on the discontinuity of Γ. From the above discussion it follows that in order 
to have inequivalent coherent state representations we need the integrand in equation (43) to 
diverge on some square integrable functions on M. There are two reasons for which the func-
tional in equation (43) can become unbounded on L2 (M, dx), which are related to the long 
(IR) and short (UV) scale behavior of the measure dv.

The IR divergences appear when the integral becomes infinite due to regions with arbitrary 
large measure. This is what happens in ordinary many-body physics. On a compact manifold, 
however, IR divergences can not occur. But the UV divergence can.

Physically, an IR divergent state can be understood as a state with an infinite number of 
quanta but with a finite density. On finite regions of the base manifold the particle number is, 
however, finite. This is the typical situation in condensed matter physics [63]. A UV divergence, 
on the other hand, corresponds to a state in which infinitely many particles are concentrated at a 
single point on the base manifold and, correspondingly, the density at this point blows up. The 
particle number operator is defined globally except for such a local region with infinite density. 
From the point of view of field theory on spacetime, this situation is clearly not physical: an infi-
nite number of particles in a finite region corresponds to an infinite energy density. Accordingly, 
quantum field theories on compact spacetimes require a finite particle number and hence forces 
us to stay in the Fock representation. This requirement is usually captured in the statement that 
no phase transition can occur in field theories in a finite volume (for example [22]).

In GFTs, however, the notion of energy is not present and the base manifold does not 
relate to local regions of space-time. Thus, even in the compact case, the restriction to the 
Fock representation would not be well-motivated. In fact, UV divergences in the above sense 
could even be desirable from the point of view of the interpretation of GFT quanta as ‘build-
ing blocks of spacetime and geometry’. Heuristically, these types of coherent states would 
correspond to condensates with a collective wave-function sharply peaked on a given value of 
the underlying discrete connection. Wave functions of this type have been used for condensate 
states more general than coherent states, in [41, 42], while hints of similar divergences of the 
GFT particle number were found in the GFT condensate cosmology context in [45].

To summarize: GFT models on the compact manifold can exhibit inequivalent representa-
tions due to UV divergences, even though the IR divergences can not occur.

Remark 16. A fundamental difference between UV and IR divergences is their behavior 
under translations. Whereas the IR divergence can be generated by translation invariant meas-
ures as in the example of the Bose–Einstein condensation, the UV divergences on the compact 
manifold cannot, by corollary 15.

2.3. Example

Our procedure to construct inequivalent representations is fairly straightforward. By the above 
discussion, we simply need to construct a sequence of continuous functionals Γn on S∞ that 
converge pointwise to a functional Γ∞ unbounded on L2 (M, dx). Here we provide a very 
simple example in which the sequence of regular measures converges to a pure point measure. 
It should be clear, however, that any measure that satisfies the property of being unbounded on 
L2 (M, dx) leads to a new inequivalent representation.
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Let us first define the Dirac measure νD, such that for any open U ⊂ M  and 1 ∈ M denoting 
the identity on M,

νD (U) =

{
1 if 1 ∈ U
0 otherwise

. (45)

It follows that on smooth functions f ∈ S we have,

νD ( f ) = f (1) . (46)

Such a Riesz functional is continuous on S∞, since

|νD ( f )| = |f (1)| � ‖f‖∞. (47)

However, it is unbounded on L2 (M, dx) due to the possible singular behavior of functions at 
sets of Haar measure zero.

Assume further a contracting sequence of open sets {Un}n∈N around the identity 1 ∈ M, 
such that Un+1 ⊂ Un and ∩n∈NUn = {1}, and consider a sequence of measures defined as

dνn =
χUn

|Un|
dx, (48)

where χUn is the characteristic function on Un,

χUn (x) =
{

1 if x ∈ Un

0 otherwise
, (49)

and |Un| =
∫

Un
dx .

Lemma 17. On S  the sequence of functionals defined by (48) converges to the Dirac meas-
ure in the distributional sense. That is for any f ∈ S

lim
n→∞

νn ( f ) = νD ( f ) = f (1) . (50)

Proof. Since f is continuous, we can find for some ε > 0 a neighborhood Nε (1) around 1 
on M such that ∀x ∈ Nε (1) f (x) is in an ε-ball around f (1) in C. Since the sequence is con-
tracting ∃N ∈ N such that ∀n > N , Un ⊂ Nε (1) then

|νn ( f )− νD ( f )| =
∣∣∣∣

1
|Un|

∫

M
f (x) χUn (x) dx − f (1)

∣∣∣∣

=
1

|Un|

∣∣∣∣
∫

M
χUn (x) ( f (x)− f (1)) dx

∣∣∣∣

�
1

|Un|

∫

M
χUn (x) |f (x)− f (1)| dx

� ε. □ 

At every finite n the measure νn is absolutely continuous with respect to the Haar measure 
and by the above proposition 14 every state

ωn
(
W( f )

)
:= ωF

(
W( f )

)
· eı

√
2Re[Γn( f )], (51)

is equivalent to the Fock one. Where Γn ( f ) .
=

∫
M f (x) dνn . From the convergence of the 

measure, the convergence of the algebraic sequence is obvious.

Lemma 18. The sequence of states ωn converges in the w�-topology to ω1
D , defined on Weyl 
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elements such that for each f ∈ S

ω1
D

(
W( f )

) .
= ωF

(
W( f )

)
· eı

√
2Re(Γ[ f ](1)), (52)

and extended by linearity to the whole A .

Proof. For any W( f ) ∈ A we have
∣∣ωn

(
W( f )

)
− ω1

D

(
W( f )

)∣∣ = ∣∣ωF
(
W( f )

)∣∣
∣∣∣eı

√
2�[

∫
f dνn] − eı

√
2�[

∫
f dνD]

∣∣∣
=

∣∣ωF
(
W( f )

)∣∣ ∣∣∣eı
√

2�[
∫

f dνn−
∫

f dνD] − 1
∣∣∣

→ 0.

By linearity of the state and the product property of the Weyl algebra, this extends to the whole 
algebra A . □ 

At finite n the representation is Fock, the particle number operator exists and the particle 
number of the nth member of the sequence is given by

‖Γn‖op =
1

|Un|
. (53)

But with increasing n the particle number grows since the volume of Un shrinks. At the 
limit point the total particle number diverges and the corresponding representation becomes 
inequivalent to the Fock one.

We can define states ωx
D peaked at points x ∈ M  using the automorphisms αx−1 introduced 

in the previous section such that

ωx
D = ω1

D ◦ αx−1 . (54)

We will show in the next section that each of the states ωx
D leads to an inequivalent representa-

tion and breaks translation invariance.

2.4. Explicit representations

In this section we will focus on the algebra A (SG), since it is more relevant for GFT’s with 
simplicial interpretation, however, all the constructions can be directly applied to A (S) lead-
ing to similar results.

We now construct an explicit representation that is generated by the above algebraic state 
following the construction in [64].

Take L2 (M, dνx
D) to be the space of L2 functions with respect to the Dirac measure concen-

trated at x ∈ M , i.e. for any f ∈ SG

νx
D ( f ) = f (x) . (55)

The space L2 (M, dνx
D) is one-dimensional. For any f ∈ SG define commuting operators A ( f ) 

and B ( f ) on L2 (M, dνx
D) such that for any ϕ ∈ L2 (M, dνx

D) and f ∈ SG

[Ax ( f )ϕ] (x) = f (x)ϕ (x) [Bx ( f )ϕ] (x) = f̄ (x)ϕ (x) .

We define the state vector
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|Ωx
D) ≡ |o)⊗ 1 (56)

where 1 is the constant function on M and |o) is the Fock vacuum. Further we define unitary 
operators

Wx
( f ) = e

ı√
2 [ψF( f )+ψ†

F ( f )] ⊗ e
ı√

2
[A( f )+B( f )], (57)

where ψF ( f ) ,ψ†
F ( f ) are the Fock operators. We denote the closure of the space generated 

by polynomials of operators Wx
( f ) acting on |Ωx

D) by Hx. It follows that the operator algebra 
spanned by Wx

( f ) for f ∈ SG is equivalent to M (the ωx
D-GNS representation of the Weyl alge-

bra A (SG)) since the expectation values coincide,

(Ωx
D|Wx

( f )|Ω
x
D) = e−

‖f‖2
L2

4 · eı
√

2Re[ f (x)]. (58)

Irreducibility and cyclicity of this representation are inherited from the Fock representation 
since PL2 (M, νD) is one-dimensional.

Let fy be a real valued function on M defined such that for some fixed a ∈ R

fy (x) =
{

a if ∃h ∈ G such that x = y Dh

0 else
, (59)

clearly fy ∈ PL2 (M, dx) and is zero almost everywhere with respect to the Haar measure.

Lemma 19. Let { fn| fn ∈ SG}n∈N  be a sequence that converges to fy in the L2-norm. Then 
the limit limn→∞ Wx

( fn)
 exists in M. We call this element Wx

( fy)
. Moreover, Wx

( fy)
 is in the center 

and there exists a complex number c ∈ C such that Wx
( fy)

= c1.

Proof. Since fy ∈ PL2 (M, dx) and SG  is dense in PL2 (M, dx) there exists a Cauchy se-
quence { fn| f ∈ SG} that converges to fy. Then for n and m large enough and any g ∈ SG we 
get by direct calculation

‖
(

Wx
( fn) − Wx

( fm)

)
Wx

(g)|Ω
x
D)‖H = 2(Ωx

D|Ωx
D)− 2Re

[
e−

‖fn−fm‖2
L2

4 eı
√

2Re[ fn(x)−fm(x)]
]

× Re
[
e−

ı
2 Im[( fn−fm,g)L2+(−fm−g,fn+g)L2 ]

]
� ε.

Since |Ωx
D) is cyclic we can reach every element of Hx acting on it by polynomials of Weyl 

operators. Hence, the sequence 
{

Wx
( fn)

| fn ∈ SG

}
 is a Cauchy sequence in the strong operator 

topology and therefore converges to an element in the von Neumann algebra M
′′
. We call this 

element Wx
( fy)

. For any f ∈ SG we have

Wx
( f )W

x
( fy) = lim

n→∞
Wx

( f+fn)e
− ı

2 Im[( f ,fn)] = Wx
( f+fy) = Wx

( fy)W
x
( f ),

where the second equality follows from the fact that Wx
( f+fn)

 is a Cauchy sequence and fy is 
zero almost everywhere. Hence, the element Wx

( fy)
 is in the center of the von Neumann algebra 

M
′′
. Since the state ωx

D is pure the center contains only multiples of identity, thus there exists 
a c ∈ C such that W( fy) = c1. □ 
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2.4.1. Breaking of translation symmetry. We show that for any x ∈ M  the state ωx
D breaks 

translation symmetry in the sense that for any non-trivial y ∈ M  the translation automorphism 
αy can not be represented by a unitary operator on Hx.

Corollary 20. Let x, y ∈ M with y �= 1, then the states ωx
D and ωyx

D  are inequivalent.

Proof. ωx
D and ωyx

D  are pure states and therefore factor. By [58, proposition 2.4.27] factor 
states ωx

D and ωyx
D  are (quasi)-equivalent if and only if the state ω = 1

2 (ω
x
D + ωyx

D ) is factor as 
well. Therefore it is enough to show that the center of the von Neumann algebra of ω is non-
trivial. For some fixed a �= 0 ∈ R define the function

fyx (z) =
{

a if ∃h ∈ G M � z = yx Dh

0 else
. (60)

The GNS triple of ω is given by
(
H = Hx ⊕Hyx,πω = πωx

D
⊕ πωyx

D
, |ΩD) = |Ωx

D)⊕ |Ωyx
D )

)
,

By lemma 19 there exists an element W( fxy) in the von Neumann algebra of ω as a limit of an 
appropriate sequence of operators W( fn), and W( fyx) is in the center of the von Neumann alge-
bra. However, a direct calculation shows that

(ΩD|W( fxy)|ΩD) =
1
2

[
(Ωx

D|Wx
( fyx)

|Ωx
D) + (Ωyx

D |Wyx
( fyx)

|Ωyx
D )

]
=

1
2

(
1 + eı

√
2a
)

.

Hence, W( fy) �= 1 and the GNS representation of ω is not factor. By theorem [58, proposition 
2.4.27] the states ωx

D and ωyx
D  are inequivalent. □ 

Since ωx
D and ωyx

D  are inequivalent, the translation automorphism αy can not be imple-
mented by an unitary operator for any non-trivial y ∈ M . Hence, the translation symmetry 
is broken and moreover for x, z ∈ M  not of the diagonal form the states ωx and ωz, lead to 
inequivalent representations since they are related by translation y = zx−1 ∈ M .

Notice that the automorphism αx implements the isometry of the base manifold and hence 
the above representations break the isometry transformation. This is rather different from 
ordinary field theory, in which Poincaré symmetry is not allowed to be broken [57, 60, 64, 
65]. Again, this is possible because no spacetime interpretation is attached to the GFT base 
manifold.

3. Interpretation of new representations

Let us pontificate on the interpretation of the newly found non-Fock representations, expand-
ing on some of the points above.

The state ωx
D contain infinitely many GFT quanta carrying a label (or equivalently have the 

property) x. It is instructive to think about the label x as one of the ‘continuous modes’ of the 
theory. Let us call this mode the ‘basic mode’. In this case the representation described above 
is very similar to the usual case of Bose–Einstein condensation [64]. The creation and annihi-
lation operators of particles in the basic mode x are given by A and B operators respectively. 
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They commute since the number of particles in this mode is infinite, which is the manifesta-
tion of the usual Bogoliubov argument (for example [60, 64]). States of the Hilbert space are 
then created by excitations of other ‘modes’ on top of the basic one and hence can be consid-
ered quantum fluctuations over a background that is created by infinitely many particles in the 
basic mode.

We can now have the following interpretation. If we relate the group elements of GFT 
with the basic notion of holonomy/curvature, which is well-justified at the discrete level we 
could think about the ground state of new representations as a truly infinite gas of particles 
that all carry the same geometrical information. The resulting continuum geometry would be 
then reconstructed from such an infinite particle state. This could be a generic geometry, since 
approximately equal curvature building blocks can be used, if they also have progressively 
vanishing size, to approximate any geometry, as in Regge calculus [66]. Another possibility is 
that they could generate a homogeneous background with the constant holonomy (curvature) 
x. Choosing x = 1 we would obtain a flat background on top of which excitations are created 
by ψF ( f ) and ψ†

F ( f ). The type of states created/annihilated on top of such a condensate back-
ground would be formally analogous to the fundamental spin network states or cylindrical 
functions that are also found in the Fock Hilbert space of the theory. Importantly, though, in 
these representations the role of the Fock creation and annihilation operators is that of collec-
tive excitations and not of single building blocks of quantum geometry. The origin of inequiv-
alent representations for different x’s stems from the fact that the corresponding Hilbert spaces 
are created by excitations over backgrounds with different geometry than the fully degenerate 
one corresponding to the Fock vacuum. Being a specific case of the condensate state with 
Γ = 0, the Fock representation corresponds to the case in which the background consists of 
no GFT quanta at all.

The above description provides a useful intuition, but it does not amount yet to a compel-
ling nor complete, physical interpretation. In fact:

 1.  The basic mode x in our case is not selected by any physical principle such as energy 
minimization, entropy maximization or the enforcement of a specific physical symmetry. 
It is rather postulated by hand, which makes the construction non-unique. In contrast to 
this, we recall, the ground mode in condensed matter physics is selected as the minimum 
of the Hamiltonian. A detailed analysis of the constraint operator underlying interesting 
GFT models is necessary, before assigning any physical interpretation to the above repre-
sentations.

 2.  The states |Ωx
D) are quantum states, whose physical properties should be ascertained 

by computing expectation values of observables with a clear macroscopic, geometric 
meaning. This obscures the interpretation of the elements x ∈ M  in terms of holonomy/
curvature of the reconstructed geometry.

 3.  The form of the constraint operator at this moment is not fully understood, however if it 
is symmetric under the described translation automorphisms the inequivalent states for 
different x’s should be physically indistinguishable and any association of geometrical 
properties to the points x in the inequivalent states ωx would be incorrect.

4. Conclusions

We have constructed an algebraic formulation for GFT. We believe that this formulation has 
potential, not only allowing us to formulate problems in a rigorous way, but also to efficiently 
tackle some conceptual and technical issues related to the problem of phase transitions and 
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continuum limits in this class of quantum gravity models. We have used the algebraic form-
ulation to construct inequivalent, non-Fock representations of the GFT algebra of observables 
and studied its operator algebras in absence of dynamics in the case when the base manifold 
of the GFT is compact. In particular, we focused on coherent state representations. We have 
given a partial symmetry characterization of the non-Fock representations, and attempted a 
preliminary geometric interpretation of them, leaving a more complete analysis to future work.

For the non-compact base manifolds the analysis requires different techniques since the 
closure constraint can not be imposed in the same way as we did in this paper, since the Haar 
measure for non-compact groups is not normalized. Nevertheless, we believe that for GFT’s 
without the closure constraint similar results regarding the construction of the operator alge-
bra and definition of its inequivalent representations will hold true even for non-compact base 
manifolds. We leave a careful and rigorous discussion of the non-compact case for future 
work.
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