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Abstract

Our work considers leveraging crowd signals for detecting
fake news and is motivated by tools recently introduced by
Facebook that enable users to flag fake news. By aggregat-
ing users’ flags, our goal is to select a small subset of news
every day, send them to an expert (e.g., via a third-party fact-
checking organization), and stop the spread of news identified
as fake by an expert. The main objective of our work is to
minimize the spread of misinformation by stopping the propa-
gation of fake news in the network. It is especially challenging
to achieve this objective as it requires detecting fake news with
high-confidence as quickly as possible. We show that in order
to leverage users’ flags efficiently, it is crucial to learn about
users’ flagging accuracy. We develop a novel algorithm, DE-
TECTIVE, that performs Bayesian inference for detecting fake
news and jointly learns about users’ flagging accuracy over
time. Our algorithm employs posterior sampling to actively
trade off exploitation (selecting news that directly maximize
the objective value at a given epoch) and exploration (selecting
news that maximize the value of information towards learning
about users’ flagging accuracy). We demonstrate the effective-
ness of our approach via extensive experiments and show the
power of leveraging community signals.

Introduction
Fake news (a.k.a. hoaxes, rumors, etc.) and the spread of
misinformation have dominated the news cycle since the
US presidential election (2016). Social media sites and
online social networks, especially Facebook and Twitter,
have faced scrutiny for being unable to curb the spread
of fake news. There are various motivations for generat-
ing and spreading fake news, for instance, making politi-
cal gains, harming the reputation of businesses, as clickbait
for increasing advertising revenue, and for seeking atten-
tion1. As a concrete example, Starbucks recently fell vic-
tim to fake news with a hoax advertisement claiming that
the coffee chain would give free coffee to undocumented
immigrants2. While Starbucks raced to deny this claim by

*Work performed while at ETH Zurich.
1Snopes compiles a list of top 50 fake news stories:

http://www.snopes.com/50-hottest-urban-legends/
2http://uk.businessinsider.com/fake-news-\

\starbucks-free-coffee-to-undocumented-\
\immigrants-2017-8

responding to individual users on social media, the lighten-
ing speed of the spread of this hoax news in online social
media highlighted the seriousness of the problem and the
critical need to develop new techniques to tackle this chal-
lenge. To this end, Facebook has recently announced a series
of efforts towards tackling this challenge (Facebook 2016;
2017).

Detection via expert’s verification. Fake news and mis-
information have historically been used as tools for making
political or business gains (Ewen 1998). However, traditional
approaches based on verification by human editors and ex-
pert journalists do not scale to the volume of news content
that is generated in online social networks. In fact, it is this
volume as well as the lightening speed of spread in these
networks that makes this problem challenging and requires
us to develop new computational techniques. We note that
such computational techniques would typically complement,
and not replace, the expert verification process—even if a
news is detected as fake, some sort of expert verification is
needed before one would actually block it. This has given
rise to a number of third-party fact-checking organizations
such as Snopes3 and Factcheck.org4 as well as a code of
principles (Poynter 2016) that should be followed by these
organizations.

Detection using computational methods. There has
been a recent surge in interest towards developing computa-
tional methods for detecting fake news (cf., (Conroy, Rubin,
and Chen 2015) for a survey)—we provide a more detailed
overview of these methods in the Related Work section. These
methods are typically based on building predictive models to
classify whether a news is fake or not via using a combina-
tion of features related to news content, source reliability, and
network structure. One of the major challenges in training
such predictive models is the limited availability of corpora
and the subjectivity of labelling news as fake (Wang 2017;
Rubin, Chen, and Conroy 2015). Furthermore, it is diffi-
cult to design methods based on estimating source reliability
and network structure as the number of users who act as
sources is diverse and gigantic (e.g., over one billion users
on Facebook); and the sources of fake news could be nor-
mal users who unintentionally share a news story without

3http://www.snopes.com/
4http://factcheck.org/
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realizing that the news is fake. A surge of interest in the
problem and in overcoming these technical challenges has
led to the establishment of a volunteering based association—
FakeNewsChallenge5—comprising of over 100 volunteers
and 70 teams to organize machine learning competitions re-
lated to the problem of detecting fake news.

Leveraging users’ flags. Given the limitation of the cur-
rent state-of-the-art computational methods, an alternate ap-
proach is to develop hybrid human-AI methods via engaging
users of online social networks by enabling them to report
fake news. In fact, Facebook has recently taken steps towards
this end by launching a fake news reporting tool in Germany
(Facebook 2017), as shown in Figure 1. The idea of this tool
is that as news propagates through the network, users can flag
the news as fake.

Figure 1: Facebook has launched tools in Germany to report
fake news. Image source: (Facebook 2017).

As proposed by Facebook (2017), the aggregated users’
flags as well as well as other available signals can be used
to identify a set of news which potentially is fake. These
news can then be sent to an expert for review via a third-party
fact-checking organization. If an expert labels the news as
fake, it could be removed from the network or marked as
disputed making it appear lower in news-feed ranking.

Our Contributions
In this paper, we develop algorithmic tools to effectively
utilize the power of the crowd (flagging activity of users) to
detect fake news. Given a set of news, our goal is to select
a small subset of k news, send them to an expert for review,
and then block the news which are labeled as fake by the
expert. We formalize our objective as to minimize the spread
of misinformation, i.e., how many users end up seeing a
fake news before it is blocked. We design our algorithm
DETECTIVE, which implements a Bayesian approach for
learning about users’ accuracies over time as well as for
performing inference to find which news are fake with high
confidence. In short, our main contributions include:

• We formalize the problem of leveraging users’ flagging ac-
tivity for detection of fake news. We showcase the need to

5http://www.fakenewschallenge.org/

learn about users’ accuracy in order to effectively leverage
their flags in a robust way.

• We develop a tractable Bayesian algorithm, DETECTIVE,
that actively trades off between exploitation (selecting
news that directly maximize the objective value) and ex-
ploration (selecting news that helps towards learning about
users’ flagging accuracy).

• We perform extensive experiments using a publicly avail-
able Facebook dataset to demonstrate the effectiveness of
our approach. We plan to make the code publicly available
so that other researchers can build upon our techniques for
this important and timely problem of detecting fake news.

Connections to Existing Results
To conclude the overview of our results, we would like to
point out a few relevant papers. In a recent work, contem-
porary to ours, (Kim et al. 2018) study a similar problem
of detecting fake news via leveraging users’ flagging activ-
ity. They introduce a flexible representation of the above
problem using the framework of marked temporal point pro-
cesses. Then, they develop an online algorithm, CURB, to
select which news to send for fact-checking via solving a
novel stochastic optimal control problem. Below, we high-
light key technical points of how our approach differs from
these existing results:
• We learn about flagging accuracy of individual users in an

online setting; they consider all users to be equally reliable
and estimate the flagging accuracy of the population of
users from historical data.

• Our algorithms are agnostic to the actual propagation dy-
namics of news in the network; they model the actual
propagation dynamics as a continuous-time dynamical sys-
tem with jumps and arrive at an algorithm by casting the
problem as an optimal control problem.

• We use discrete epochs with a fixed budget per epoch
(i.e., the number of news that can be sent to an expert
for reviewing); they use continuous time and consider an
overall budget for the algorithm.

The Model
We provide a high-level specification of our model in Pro-
tocol 1. There is an underlying social network denoted as
G = (U,E) where U is the set of users in the network.
We divide the execution into different epochs denoted as
t = 1, 2, . . . , T , where each epoch could denote a time win-
dow, for instance, one day. Below, we provide details of our
model—the process of news generation and spread, users’ ac-
tivity of flagging the news, and selecting news to get expert’s
labels.

News Generation and Spread
We assume that new news, denoted by the set Xt, are gener-
ated at the beginning of every epoch t (cf., line 3).6 In this

6For the simplicity of presentation, we treat every news gener-
ated in the network to be unique. In real-world setting, same news
might be posted by multiple users because of externalities, and it is
easy to extend our model to consider this scenario.



Protocol 1: High-level specification of our model
1 Input: social network graph G = (U,E); labeling budget per epoch = k.
2 Initialize: active news A0 = {} (i.e., news for which expert’s label is not acquired yet).

foreach t = 1, 2, . . . , T do
/* At the beginning of epoch t */

3 News Xt are generated with ox ∈ U as the origin/source of x ∈ Xt.
4 Update the set of active news as At = At−1 ∪Xt. ∀x ∈ Xt, do the following:
5 Initialize users exposed to the news x as πt−1(x) = {}.
6 Initialize users who flagged the news x as ψt−1(x) = {}.

/* During the epoch t */
7 News At continue to propagate in the network. ∀a ∈ At, do the following:
8 News a propagates to more users ut(a) ⊆ U \ πt−1(a); i.e., πt(a) = πt−1(a) ∪ ut(a).
9 News a is flagged as fake by users lt(a) ⊆ ut(a); i.e., ψt(a) = ψt−1(a) ∪ lt(a).

/* At the end of epoch t */
10 Algorithm ALGO selects a subset St ⊆ At of up to size k to get expert’s labels given by y∗(s) ∈ {f, f̄} ∀ s ∈ St.
11 Block the fake news, i.e., ∀s ∈ St s.t. y∗(s) = f , remove s from the network.
12 Update the set of active items as At = At \ St

Note that news s ∈ St s.t. y∗(s) = f̄ remain in the network, continue to propagate, and being flagged by users

paper, we consider a setting where each news has an under-
lying label (unknown to the algorithm) of being “fake"(f )
or “not fake" (f̄ ). We use random variable Y ∗(x) to denote
this unknown label for a news x and its realization is given
by y∗(x) ∈ {f, f̄}. The label y∗(x) can only be acquired
if news x is sent to an expert for review who would then
provide the true label. We maintain a set of “active" news
At (cf., line 4) which consists of all news that have been
generated by the end of epoch t but for which expert’s label
have not been acquired yet.
Each news x is associated with a source user who seeded
this news, denoted as ox (cf., line 3). We track the spread of
news in the set At via a function πt : At → 2U . For a news
a ∈ At, the function πt(a) returns the set of users who have
seen the news a by the end of epoch t. During epoch t, let
ut(a) ⊆ U \ πt−1(a) be the set of additional users (possibly
the empty set) to whom news a ∈ At propagates in epoch t,
hence πt(a) = πt−1(a) ∪ ut(a) (cf., line 8).

Users’ Activity of Flagging the News
In epoch t, when a news a ∈ At propagates to a new user
u ∈ ut(a), this user can flag the news to be fake. We denote
the set of users who flag news a as fake in epoch t via a set
lt(a) ⊆ ut(a) (cf., line 9). Furthermore, the function ψt(a)
returns the complete set of users who have flagged the news
a as fake by the end of epoch t.7 For any news x and any user
u ∈ U , we denote the label user u would assign to x via a
random variable Yu(x). We denote the realization of Yu(x)
as yu(x) ∈ {f, f̄} where yu(x) = f signifies that user has
flagged the news as fake. In this paper, we consider a simple,
yet realistic, probabilistic model of a user’s flagging activity
as discussed below.
User abstaining from flagging activity. Reflecting the be-
havior of real-world users, user u might abstain from ac-

7Note that as per specification of Protocol 1, for any news x, the
source user ox doesn’t participate in flagging x.

tively reviewing the news content (and by default, does not
flag the news)—we model this happening with a probability
γu ∈ [0, 1]. Intuitively, we can think of 1 − γu as the en-
gagement of user u while participating in this crowdsourcing
effort to detect fake news: γu = 1 means that the user is not
participating at all.
User’s accuracy in flagging the news. With probability (1−
γu), user u reviews the content of news x and labels the news.
We model the accuracy/noise in the user’s labels, conditioned
on that the user is reviewing the content, as follows:

• αu ∈ [0, 1] denotes the probability that user u would not
flag the news as fake, conditioned on that news x is not
fake and the user is reviewing the content.

• βu ∈ [0, 1] denotes the probability that user u would flag
the news as fake, conditioned on that news x is fake and
the user is reviewing the content.

User’s observed activity. Putting this together, we can quan-
tify the observed flagging activity of user u for any news x
with the following matrix defined by variables (θu,f̄ , θu,f ):[

θu,f̄ 1− θu,f
1− θu,f̄ θu,f

]
= γu

[
1 1

0 0

]
+(1−γu)

[
αu 1− βu

1− αu βu

]
where 

θu,f̄ ≡ P
(
Yu(x) = f̄ | Y ∗(x) = f̄

)
1− θu,f̄ ≡ P

(
Yu(x) = f | Y ∗(x) = f̄

)
θu,f ≡ P

(
Yu(x) = f | Y ∗(x) = f

)
1− θu,f ≡ P

(
Yu(x) = f̄ | Y ∗(x) = f

)
The two parameters (αu, βu) allow us to model users of
different types that one might encounter in real-world settings.
For instance,

• a user with (αu ≥ 0.5, βu ≤ 0.5) can be seen as a “news
lover" who generally tends to perceive the news as not



fake; on the other hand, a user with (αu ≤ 0.5, βu ≥ 0.5)
can be seen as a “news hater" who generally tends to be
skeptical and flags the news (i.e., label it as fake).

• a user with (αu = 1, βu = 1) can be seen as an “expert”
who always labels correctly; a user with (αu = 0, βu = 0)
can be seen as a “spammer” who always labels incorrectly.

Selecting News to Get Expert’s Label
At the end of every epoch t, we apply an algorithm ALGO—
on behalf of the network provider—which selects news St ⊆
At to send to an expert for reviewing and acquiring the true
labels y∗(s) ∀s ∈ St (cf., line 10). If a news is labeled as
fake by the expert (i.e., y∗(s) = f ), this news is then blocked
from the network (cf., line 11). At the end of the epoch, the
algorithm updates the set of active news as At = At \St (cf.,
line 12). We will develop our algorithm in the next section;
below we introduce the formal objective on minimizing the
spread of misinformation via fake news in the network.

Objective: Minimizing the Spread of Fake News
Let’s begin by quantifying the utility of blocking a news
a ∈ At at epoch t—it is important to note that, by design,
only the fake news are being blocked in the network. Recall
that |πt(a)| denotes the number of users who have seen news
a by the end of epoch t. We introduce |π∞(a)| to quantify
the number of users who would eventually see the news
a if we let it spread in the network. Then, if a news a is
fake, we define the utility of blocking news a at epoch t as
valt(a) = |π∞(a)| − |πt(a)|, i.e., the utility corresponds to
the number of users saved from being exposed to fake news a.
If an algorithm ALGO selects set St in epoch t, then the total
expected utility of the algorithm for t = 1, . . . , T is given by

Util(T,ALGO) =

T∑
t=1

E
[ ∑
s∈St

1{y∗(s)=f}valt(s)
]

(1)

where the expectation is over the randomness of the spread of
news and the randomness in selecting St ∀t ∈ {1, . . . , T}.
In this work, we will assume that the quantity valt(a) in
Equation 1 can be estimated by the algorithm. For instance,
this can be done by fitting parameters of an information
cascade model on the spread πt(a) seen so far for news a,
and then simulating the future spread by using the learnt
parameters (Du et al. 2013; Zhao et al. 2015; Rizoiu et al.
2017).
Given the utility values valt(·), we can consider an oracle
ORACLE that has access to the true labels y∗(·) for all the
news and maximizes the objective in Equation 1 by simply
selecting k fake news with highest utility. In the next sec-
tion, we develop our algorithm DETECTIVE that performs
Bayesian inference to compute y∗(·) using the flagging activ-
ity of users as well as via learning users’ flagging accuracy
{θu,f̄ , θu,f}u∈U from historic data.

Our Methodology
In this section we present our methodology and our algo-
rithm DETECTIVE. We start by describing how news la-
bels can be inferred for the case in which users’ parame-
ters are fixed. Next, we consider the case in which users’

parameters are unknown and employ a Bayesian approach
for inferring news labels and learning users’ parameters.
Given a prior distributions on the users’ parameters and a
history of observed data (users’ flagging activities and ex-
perts’ labels obtained), one common approach is to compute
a point estimate for the users’ parameters (such as MAP)
and use that. However, this can lead to suboptimal solutions
because of limited exploration towards learning users’ pa-
rameters. In DETECTIVE, we overcome this issue by em-
ploying the idea of posterior sampling (Thompson 1933;
Osband, Russo, and Van Roy 2013).

Inferring News Labels: Fixed Users’ Params
We take a Bayesian approach to deal with unknown labels
y∗(·) for maximizing the objective in Equation 1. As a warm-
up, we begin with a simpler setting where we fix the users’
labeling parameters (θu,f̄ , θu,f ) for all users u ∈ U . Let’s
consider epoch t and news a ∈ At for which we want to
infer the true label y∗(a). Let ω be the prior probability that
a news is fake; then, we are interested in computing:

P (Y ∗(a) = f | {θu,f̄ , θu,f}u∈U , ω, ψt(a), πt(a))

∝ ω ·
∏

u∈ψt(a)

P
(
Yu(a) = f | Y ∗(a) = f, θu,f

)
·

∏
u∈πt(a)\ψt(a)

P
(
Yu(a) = f̄ | Y ∗(a) = f, θu,f

)
= ω ·

∏
u∈ψt(a)

θu,f ·
∏

u∈πt(a)\ψt(a)

(1− θu,f )

where the last two steps follow from applying Bayes rule
and assuming that users’ labels are generated independently.
Note that both users’ parameters {θu,f̄ , θu,f}u∈U affect the
posterior probability of a news being fake as the normal-
ization constant depends on both P (Y ∗(a) = f | ·) and
P (Y ∗(a) = f̄ | ·).
At every time t ∈ {1, . . . , T}, we can use the inferred poste-
rior probabilities to greedily select k news St ⊆ At, |St| = k
that maximize the total expected utility, i.e.,∑

s∈St

P (Y ∗(s) = f | ·) · valt(s). (2)

This greedy selection can be performed optimally by selec-
tion k news with the highest expected utility. This is imple-
mented in our algorithm TOPX, shown in Algorithm 2.

Inferring News Labels: Learning Users’ Params
In our setting, the users’ parameters {θu,f̄ , θu,f}u∈U are un-
known and need to be learnt over time.
Learning about users. We assume a prior distribution over
the users’ parameters (Θf̄ ,Θf ) shared among all users. For
each user u ∈ U , we maintain the data history in form of the
following matrix:

Dtu =

[
dt
u,f̄ |f̄ dt

u,f̄ |f
dt
u,f |f̄ dtu,f |f

]
.



Algorithm 2: Algorithm TOPX
1 Input:

• Active news At; information valt(·), lt(·), πt(·)
• budget k; news prior ω
• users’ parameters {θu,f̄ , θu,f}u∈U .

2 Compute p(a) for all a ∈ At as
P (Y ∗(a) = f | {θu,f̄ , θu,f}u∈U , ω, lt(a), πt(a))

3 Select
St = arg maxS⊆At,|S|≤k

∑
a∈S p(a)valt(a)

4 Return: St

The entries of this matrix are computed from the news for
which experts’ labels were acquired. For instance, dt

u,f̄ |f̄
represents the count of how often the user u labeled a news
as not fake and the acquired expert’s label was not fake.
GivenDtu, we can compute the posterior distribution over the
users’ parameters using Bayes rules as follows:

P (θu,f̄ | Θf̄ ,Dtu) ∝ P (Dtu | θu,f̄ ) · P (θu,f̄ | Θf̄ )

= (θu,f̄ )d
t
u,f̄|f̄ · (1− θu,f̄ )d

t
u,f|f̄ · P (θu,f̄ | Θf̄ )

Similarly, one can compute P (θu,f | ·).
Inferring labels. We can now use the users’ parameters pos-
teriors distributions to infer the labels, for instance, by first
computing the MAP parameters

θMAP
u,f̄ = arg max

θu,f̄

P (θu,f̄ | Θf̄ ,Dtu)

(and θMAP
u,f similarly) and invoking the results from the previ-

ous section.8
Then, at every epoch t we can invoke TOPX with a point
estimate for the users’ parameters to select a set St of news.
However this approach can perform arbitrarily bad compared
to an algorithm that knows the true users’ parameters (we re-
fer to this algorithm as OPT) as we show in our analysis. The
key challenge here is that of actively trading off exploration
(selecting news that maximize the value of information to-
wards learning users’ parameters) and exploration (selecting
news that directly expected utility at a given epoch). This
is a fundamental challenge that arises in sequential decision
making problems, e.g., in multi-armed bandits (Chapelle
and Li 2011), active search (Vanchinathan et al. 2015;
Chen et al. 2017) and reinforcement learning.

Our Algorithm DETECTIVE

In this section, we present our algorithm DETECTIVE, shown
in Algorithm 3, that actively trades off between exploration
and exploitation by the use of posterior sampling aka Thomp-
son sampling (Thompson 1933; Osband, Russo, and Van Roy
2013). On every invocation, the algorithm samples the users’

8Note that a fully Bayesian approach for integrating out uncer-
tainty about users’ parameters in this case is equivalent to using the
mean point estimate of the posterior distribution.

Algorithm 3: Algorithm DETECTIVE

1 Input:
• user priors Θf ,Θf̄ ; users’ histories {Dtu}u∈U .

2 Sample
θu,f̄ ∼ P (θu,f̄ | Θf̄ ,Dtu), θu,f ∼ P (θu,f | Θf ,Dtu)

3 St ← Invoke TOPX with parameters {θu,f̄ , θu,f}u∈U
4 Return: St

parameters from the current users’ posterior distributions
and invokes TOPX with these parameters. Intuitively, we
can think of this approach as sampling users’ parameters
according to the probability they are optimal.
Analysis. We analyze our algorithms in a simplified variant
of Protocol 1, in particular we make the following simplifica-
tions:

1. There are M sources o1, . . . , oM , each generating news
every epoch t.

2. For any news x seeded at epoch t, valτ (x) > 0 only for
τ = t. This means that news x reaches it maximum spread
at the next timestep t + 1, hence the utility of detecting
that news drops to 0.

To state our theoretical results, let us introduce the regret of
an algorithm ALGO as

Regret(T,ALGO) = Util(T,OPT)− Util(T,ALGO).

We can now immediately state our first theoretical result,
highlighting the necessity of exploration.

Proposition 1. Any algorithm ALGO using deterministic
point estimates for the users’ parameters suffers linear regret,
i.e., Regret(T,ALGO) = Θ(T ).

Proof sketch. The proof follows by considering a simple
problem involving two users, where we have perfect knowl-
edge about one user with parameters (0.5 + ε, 0.5 + ε) and
the other user either has parameters (1, 1) or (0, 0) (expert or
spamer). The key idea here is that any algorithm using point
estimates can be tricked into always making decisions based
on the first user’s flagging activities and is never able to learn
about the perfect second user.

The above result is a consequence of insufficient explo-
ration which is overcome by our algorithm DETECTIVE, as
formalized by the following theorem.

Theorem 1. The expected regret of our algo-
rithm DETECTIVE is E[Regret(T,DETECTIVE)] =

O(C
√
M ′T log(CM ′T )), where M ′ =

(
M
k

)
and C is a

problem dependent parameter. C quantifies the the total
number of realizations of how M news can spread to U
users and how these users label the news.

Proof sketch. The proof of this theorem follows via interpret-
ing the simplified problem setting as a reinforcement learning
problem. Then, we can apply the generic results for reinforce-
ment learning via posterior sampling of Osband, Russo, and



Van Roy (2013). In particular, we map our problem to an
MDP with horizon 1 as follows. The actions in the MDP
correspond to selecting k news from the M sources, the re-
ward for selecting a set of news S is given by Equation 2
(evaluated using the true users’ parameters).

Given that the regret only grows as O(
√
T ) (i.e., sublinear

in T ), this theorem implies that DETECTIVE converges to
OPT as T → ∞. However, as a conservative bound on C
could be exponential in |U | and M , convergence may be
slow. Nevertheless, in practice we observe competitive per-
formance of DETECTIVE compared to OPT as indicated in
our experiments. Hence, DETECTIVE overcomes the issues
in Proposition 1, and actively trades off exploration and ex-
ploitation.

Experimental Setup
Social network graph and news generation. We consider
the social circles Facebook graph (Leskovec and Mcauley
2012), consisting of 4,039 users (nodes) U and 88,234 edges,
computed from survey data collected by using a Facebook
app for identifying social circles. Every user can be the seed
of news as described shortly and to every user a probability is
assigned with which it (hypothetically) generates fake news
in case it seeds news. In particular, 20% of the users generate
fake news with probability 0.6, 40% of the users generate
fake news with probability 0.2 and the remaining 40% of the
users generate fake news with probability 0.01 (the class of
a user is assigned randomly). For determining the seeds of
news, we partition the users into users Un which commonly
spread news and users Ur = U \Un which only occasionally
spread news. That is, in every iteration of Protocol 1, we
select M = 25 users for generating news, where users in Un
are selected with probability 0.5

|Un| and users in Ur are selected
with probability 0.5

|Ur| . Hence, in our experimental setup this
corresponds to a prior for seeding fake news of about 20%,
i.e., ω ≈ 0.2.
News spreading. In our experiments, news spread accord-
ing to an independent cascade model (Kempe, Kleinberg,
and Tardos 2003), i.e., the diffusion process of every news
is a separate independent cascade with infection probabil-
ity 0.1 + U [0, 0.1] (fixed when the news is seeded). In every
epoch of Protocol 1, we perform two iterations of the indepen-
dent cascade models to determine the news spread at the next
epoch. We estimate the number of users who would eventu-
ally see news a, i.e., |π∞(a)|, by executing the independent
cascade models for each news for 600 iterations.
Users’ parameters. In our experiments we consider three
types of users, i.e., good users (αu = βu = 0.9), spammers
(αu = βu = 0.1) and indifferent users (αu = βu = 0.5).
Unless specified otherwise, each user is randomly assigned to
one of these three types. Also, we set γu = 0 unless specified
otherwise (note that 1 − γu quantifies the engagement of a
user).
Algorithms. We execute Protocol 1 for T = 100 epochs. In
every epoch of Protocol 1, the evaluated algorithms select
k = 5 news to be reviewed by an expert. In our experiments

we compare the performance of DETECTIVE, OPT (unrealis-
tic: TOPX invoked with the true users’ parameters), ORACLE
(unrealistic: knows the true news labels). In addition, we
consider the following baselines:

• FIXED-CM. This algorithm leverages users’ flags without
learning about or distinguishing between users. It uses
fixed users parameters θu,f̄ = θu,f = 0.6 for invoking
TOPX.

• NO-LEARN. This algorithm does not learn about users
and does not consider any user flags. It greedily se-
lects those news with highest valt(·), i.e., St =
arg maxS⊆At,|S|=k

∑
s∈S valt(s).

• RANDOM. This algorithm selects a random set St ⊆
At, |St| = k of active news for labeling by experts.

Experimental Results
In this section we demonstrate the efficiency of our proposed
algorithm for fake news detection in a social network. All
reported utilities are normalized by Util(T,ORACLE) and all
results are averaged over 5 runs.
Learning about users and and exploiting user’s flags.
In this experiment we compare the average utility, i.e.,
1
tUtil(t,ALGO) (cf., Equation 1), achieved by the different
algorithms at epoch t for t = 1, . . . , T . The results are shown
in Figure 2a. We observe that DETECTIVE and OPT achieve
performance close to that of ORACLE. This is impressive, as
these algorithms can only use the users’ flags and the users’
parameters {θu,f̄ , θu,f}u∈U (or their beliefs about the users’
parameters in case of DETECTIVE) to make their predictions.
We also observe that the performance of DETECTIVE con-
verges to that of OPT as DETECTIVE progressively learns the
users’ parameters. The algorithms NO-LEARN and RANDOM
achieve clearly inferior performance compare to DETECTIVE.
Users’ engagement in flagging. In this experiment, we vary
the engagement 1 − γu of the users. We report the utilities
Util(T,ALGO) in Figure 2b. We observe that with increasing
engagement the performance of DETECTIVE and OPT im-
proves while the performance of the other shown algorithms
is not affected by the increased engagement. Importantly, note
that also with a low engagement DETECTIVE can effectively
leverage crowd signals to detect fake news.
Robustness against spammers. In this experiment we con-
sider only two types of users, i.e., good users and spammers.
We vary the fraction of good users relative to the total number
of users. We report the utilities Util(T,ALGO) achieved by
the different algorithms in Figure 2c. We also plot the addi-
tional baseline FIXED-CM. Observe that the performance of
FIXED-CM degrades with a decreasing fraction of good users.
DETECTIVE (thanks to learning about users) is effective even
if the majority of users is adversarial. This highlights the fact
that it is crucial to learn about users’ flagging accuracy in
order to robustly leverage crowd signals.

Related Work
Computational methods for detecting fake news. There
is a large body of related work on rumor detection and in-
formation credibility evaluation (with a more recent focus
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Figure 2: Experimental results. (a) Learning about users: DETECTIVE achieves average utility competitive compared to that
of ORACLE (which knows the true news labels). The average utility of DETECTIVE converges to that of OPT as DETECTIVE
progressively learns the users’ parameters. (b) Users’ engagement in flagging: even with low engagement DETECTIVE can
effectively leverage crowd signals to detect fake news. (c) Robustness against spammers: DETECTIVE is effective even if the
majority of users is adversarial, highlighting the importance of learning about users’ flagging accuracy for robustly leveraging
crowd signals.

on fake news detection) that are applicable to the problem
of detecting fake news. These methods are typically based
on building predictive models to classify whether a news is
fake. At a high-level level, we can categorize these meth-
ods as follows: (i) based on features using news content
via natural language processing techniques (Zhao, Resnick,
and Mei 2015; Wei and Wan 2017; Volkova et al. 2017;
Gupta et al. 2014); (ii) via learning models of source re-
liability and trustworthiness (Li et al. 2015; Tabibian et
al. 2017; Lumezanu, Feamster, and Klein 2012); (iii) by
analyzing the network structure over which a news propa-
gated (Ciampaglia et al. 2015); and (iv) based on a com-
bination of the above-mentioned features, i.e., linguistic,
source, and network structure (Kwon, Cha, and Jung 2017;
Castillo, Mendoza, and Poblete 2011; Wu et al. 2016;
Kumar, West, and Leskovec 2016). As we pointed out in
the Introduction, there are several key challenges in building
accurate predictive models for identifying fake news includ-
ing limited availability of corpora, subjectivity in ground
truth labels, and huge variability in the sources who generate
fake news (often constituting users who do it unintention-
ally). In short, these methods alone have so far proven to be
unsuccessful in tackling the challenge of detecting fake news.

Leveraging crowd signals for web applications. Crowd-
sourcing has been used in both industrial applications and
for research studies in the context of different applications re-
lated to web security. For instance, (Moore and Clayton 2008)
and (Chia and Knapskog 2011) have evaluated the potential
of leveraging the wisdom of crowds for assessing phishing
websites and web security. Their studies show a high variabil-
ity among users—(i) the participation rates of users follows a
power-law distribution, and (ii) the accuracy of users’ reports
vary, and users with more experience tend to have higher
accuracy. The authors also discuss the potential of voting
fraud when using users’ reports for security related applica-
tions. Wang et al. (2013) performed a crowdsourcing study on

Amazon’s Mechanical Turk for the task of sybil detection in
online social networks. Their studies show that there is a huge
variability among crowd users in terms of their reporting accu-
racies that needs to be taken into account for building a prac-
tical system. Zheleva, Kolcz, and Getoor; Chen et al. (2008;
2015) present a system similar to that of ours for the task of fil-
tering email spam and SMS spam, respectively. The authors
discuss a users’ reputation system whereby reliable users
(based on history) can be weighted more when aggregating
the reports. However, their work assumes that users’ repu-
tation/reliability is known to the system, whereas the focus
of our paper is on learning users’ reputation over time. Free-
man (2017) discusses the limitations of leveraging user feed-
back for fake account detection in online social networks—
via data-driven studies using Linkedin data, the authors show
that there is only a small number of skilled users (who have
good accuracy that persists over time) for detecting fake
accounts.

Crowdsourcing with expert validation On a technical
side, our approach can be seen as that of a semi-supervised
crowdsourcing technique where users’ answers can be val-
idated via an external expert. Hung et al.; Liu et al. (2015;
2017) present probabilistic models to select specific news
instances to be labeled by experts that would maximize the
reduction in uncertainty about users’ accuracy. With a sim-
ilar flavor to ours, Zhao et al. (2012) presents a Bayesian
approach to aggregate information from multiple users, and
then jointly infer users’ reliability as well as ground truth la-
bels. Similar to our approach, they model users’ accuracy via
two separate parameters for false positive and false negative
rates. However, their approach is studied in an unsupervised
setting where no expert validation (ground truth labels) are
available.



Conclusions
In our paper we considered the important problem of leverag-
ing crowd signals for detecting fake news. We demonstrated
that any approach that is not learning about users’ flagging be-
haviour is prone to failure in the presence of adversarial/spam
users (who want to “promote” fake news). We proposed the
algorithm DETECTIVE that performs Bayesian inference for
detecting fake news and jointly learns about users over time.
Our experiments demonstrate that DETECTIVE is competi-
tive with the fictitious algorithm OPT, which knows the true
users’ flagging behaviour. Importantly, DETECTIVE (thanks
to learning about users) is robust in leveraging flags even if a
majority of the users is adversarial.
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