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Monte Carlo experiments with frequency-wavenumber spectra
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Hans von Storch, Max-Planck-lnstitut fiir Meteorologie, Hamburg , FRG
Yoshikazu Hayashi, Geophysical Fluid Dynamics Laboratory, Princeton,
USA

Abstract

We consider the ability of two—sided frequency wavenumber spectral analysis to
infer the moving and standing wave variance from the spectral parameters of a
bivariate, first order autoregressive process. This is done by applying the
decomposition to known spectra and to spectra estimated from samples
generated from processes with specified spectra. In particular, a series of Monte
Carlo experiments is conducted with different sets of process parameters.

When the true spectra are known, the decomposition generally produces results
which are easily interpreted in terms of standing and travelling waves. However,
in the case of a damped, migrating, nonisotropically forced oscillation, the
derived travelling wave variance is not necessarily non-negative. In this case the
scheme's implicit assumption of statistical independence of standing and
travelling waves is violated.

When the spectra are estimated from finite samples of time series, the results are
less satisfactory. While the estimate of the frequency wavenumber spectrum
appears fairly realistic, the separation into standing and travelling wave variance
introduces systematic errors if the available data is limited. This is mainly due to
the scheme's inability to identify a zero coherence.



1. Introduction

Space—time spectral analysis in meteorology was developed by Deland (1964) by
relating the time quadrature spectrum of the zonal sine and cosine coefficient
time series to the intensity of travelling waves. Kao (1968, 1970) estimated the
space—time spectra by expanding the time series into a series of cosines and sines
under the assumption of temporal periodicity. Since the latter assumption is not
fulfilled in meteorological applications, Hayashi (1971, 1982) modified the
procedure by taking into account the statistical characater of the time series

The space—time spectral analysis is done in four steps, namely:

a) Expansion of global fields along latitudes into a finite series of trigonometric
functions (i.e. Fourier analysis)

b) Spectral analysis of the resulting bivariate time series of sine and cosine
coefficients.

c) Separation into east- and westward moving components.
d) Interpretation of the coherent part of the east- and westward moving

components as a standing waveform. The remaining variance is attributed to
travelling waves.

The spatial decomposition into zonal wavenumbers,step (a), is not critical,
because it may be seen as a fully reversible coordinate transformation. The
condition of periodicity is fulfilled; so the initial information may be precisely
reconstructed from the Fourier coefficients.

In practice, the analysis of temporal behaviour, step b), is potentially misleading,
since it is associated with the estimation of statistical parameters by means of a
finite time series, which is known to be difficult (e g Jenkins and Watts, 1968).

The question is, to what extent the result of the analysis may be distorted by
sample details, i.e. whether it is possible to extract reliable estimates of the true

spectra.

The algorithm to split up the waves first into east— and westward moving
components (step (c)) and secondly into standing and travelling parts (step (d))
has been derived from space—time series, which are periodic in space and time
(Hayashi, 1971, 1973, 1977). Step (d) involves a working assumption that
standing and travelling waves are incoherent, which is certainly fulfilled if they
are of different origin or are far away from the same originActual time series do



not fulfill the condition of (temporal) periodicity. Instead, they have to be seen
as random realisations of bivariate stochastic processes. The question is, whether
the concept may be used to interpret in a useful manner finite time series of
Fourier coefficients generated by stochastic processes

For this purpose, we study bivariate autoregressive processes of order one
(Jenkins and Watts, 1968).

x; , Ax + nI

where A = (aij), i,j = 1,2 is a 2x2 matrix and xt = (Ct, St), nt = (21, zt') are two—
dimensional vectors. Ct and St may be identified with cosine and sine Fourier
coefficients. The components of nt are white noise with predetermined variances
OZZ- and 0%. Their ratio is denoted by

We assume that 2t and 2f are independent. This assumption is-no limitation in
our study. If this is not fulfilled, the 2-dimensional coordinates may be
transformed such that in the new coordinate system the noise appears
uncorrelated.

After presenting and briefly discussing the basic formulae proposed by Hayashi
in Section 2, we calculate the 2x2 spectral matrix of the process (1.1) for a
number of predetermined matrices A and ratios b and calculate the standing and
travelling waveparts. Since matrix A and ratio b are known, the result can be
considered with regard to the validity ofthe decomposition.

The estimation problem mentioned previously is considered in Section 3 of this
paper. For this purpose random time series are generated by means of (l .l‘) with
matricesAwith predetermined values Since the "true” wave decompositions are
known from the analysis discussed in Section 2, one may assess the problems
connected with the estimation of parameters by means of time series of finite
length.



2. Known stochastic processes

A spatially periodic space time series hxt (0 ; x 1: 2n ) may be expanded into a
Fourier series in space:

i; : V H e
r! — int

I77,

The spatial Fourier coefficients Hmt form a complex time series and may be
represented by real coefficients:

(C — :15“ ) <2 2)

In the following we consider only one spatial wavenumber m at a time.
Therefore, we skip the index m in the formulae for the sake of clarity and
convenience.

The frequency-wavenumber spectrum Fh is defined as (time) spectrum I‘HH of
the complex spatial Fourier coefficient Ht (Hayashi, 1982). In real quantities, it is
expressed in terms of the power spectra FCC and [‘55 of the real spatial Fourier
coefficients C and S and their quadrature-spectrum 05:

lFhlf) = FHHm : rCCif) + rssm - 2 cW

The spectral densities at positive (negative) frequencies f are attributed to the
variance of westward (eastward) moving components.

The standing part St is defined as that part of the east-and westward moving
components which are coherent and of equal amplitude:

51%)) : 2 - [rHHkim : 2 [r,1<+ n I‘hl _ m co/IHHM

The coherence of the east— and westward moving components is measured by
the coherence spectrum CohHw of the complex spatial Fourier coefficient H and
its complex conjugate H*. It is given by



with

KM#M—Z(%d —F$mi
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where K denotes the co—spectrum and Q the quadrature—spectrum. From (2.5) it
becomes clear that there are two necessary conditions for the coherence
spectrum to be zero, namely equal autospectra for the cosine and the sine
coefficient time series and a zero co-spectrum c.

As the coherence spectrum the standing wave spectrum is symmetric, i.e. St(f) =
St(-f).The remaining variance is assigned to travelling waves:

munzrun_

It also contains irregularly varying components.

The phase spectrum is useful for the standing wavepart only and is defined only
if the standing wave variance is nonzero, which is equivalent to KHH*(f).i0 or
QHH*(f)= O Ifthis condition is fulfilled the following definition is adequate:

tan'l (-QHHir/KHHt) = tan-1 (ZKijg/I‘Cc-I‘SS) if FCC 1 F55 and KCS I 0
[1/2 lfFCCZI‘gS and KCS>O

PhHH*: -H/2 If FCC: F53 and KCS<O
O ifFCC>F35and KCSZO
r1 lfrcc<Fgga d KC5=O

Interpreting this phase spectrum in physical space, an extreme of a standing
zonal wavenumber m wave has to be assigned to PHH*(f)/2m. A zonal
wavenumber 1 standing sine wave has a phase of 1800 but its extreme at 90‘? The
definition is useful, as is shown by the following examples. If Fcczl‘ss, the sine
and the cosine are of the same importance and an extreme at 450 is identified. If
Fcczfgs and Kcs :0, no in-phase relationship between Ct and St exists and all



standing variance has to be attributed to the dominant pattern, sine or cosine.
That is, if FCC>F55 the cosine is dominant and we have an extreme at 0°, and if
FCC<F55 the standing component is given by the sine with PhHH* = n. and has its
first extreme at n/Zm.

The question is, whether the decomposition (23-4, 6-7) is useful for interpreting
a time series of Fourier coefficients generated by bivariate stochastic processes
The spectral matrix of the bivariate autoregressive process (1.1) is (Jenkins and
Watts, 1968):

rm :1[ _ A1352”)

In this expression I‘ n is the spectral matrix of the noise vector nt (see 1.1) and l is
the identity matrix. From (2.8), the spectra of real autoregressive processes Ct
and St of order one are derived to be:

_ ‘2 ‘. 3FCC(/‘) — 2) — 2a cos a+ b a 12)L 2‘2

2
11l\‘

;
[(JFSSW : B in 14- b (1 + a 2allcosZrI )

rCSm : K6301 — iQCSm

with

)

02
:- ' '_ ”7 '—KCSU‘) D{a21cos2H/‘ a21a22+b(a12cosun/ allul‘ZJI

a
QCSm = ’D— {(12152712nf— balzsinZHf

— a ”a )2 01.94 Hf21

(211)
—ana12a21—a a a, 1 2.00.9a2 2

_ mm + “22 + “116122 11 '22 22 12 21



In the following we consider a number of particular cases of (1.1) and perform
the space—time spectral analysis on it. A list of the considered cases is given in
Table 1.
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2.1 Standing oscillations and noise

We consider the case that one of the components Ct or St is dominant:

so that

{/4 ll (I

The formalism (2 3-7) establishes

B(/)+b 2
Film Oz, Coh

HH* (f)

(2137
and "i l iiBl —b| 2 _ for b < Blf)

Sim: ‘—-—2 02 and Wa (f) =

_—’o for b > B(/)

with
l

Bi/‘l =
l .L t:; -— 1-3:! i'm; 2 m"

B(f) is symmetric with respect to frequency f. Thus, D, (f) and Wa (f) are also
symmetric. This is reasonable as (2.12) contain no mutual dependence of SI and
CC, which could lead to a preference of either westward or eastward travelling
waves. Because of the independence of Ct and St, the co-spectrum c is zero
Generally the coherence CohHHk becomes positive and a standing waveform is
obtained, the phase of which is that of a sine if FCC<F55 and of a cosine if
FCC>F55. If I‘cc = F55 the phase is undefined, since the standing wave amplitude
is zero.

In the particular case b :0, the sine coefficient, St, is constantly zero and the
cosine coefficient, Ct, is given by an autoregressive process of order one, Since
one component is fixed, the bivariate random variable (Ct, St) is restricted to a



one«dimensiona| subspace, i.e. the phase is fixed Thus, this process ought to be
identified as a purely standing wave. Insertion of b :0 in (2.13) leads actually to
St(f) = NH), PhHH*(f) = O, and Wa(f) = 0‘



2.2 Purely noisy behavior

Now the sine and cosine Fourier coefficients Ct and St are considered, which are
generated by two independent autoregressive processes of the first order. In
particular, we assume

The time evolution of the sine and the cosine coefficients is described by

w y (214on-ac, 1+2, ~ )

Sf -' (1354+ 2

Because of the lack of any cross—relationship between St and Ct the amplitude
and phase of the two-dimensional (Ct, St) vector vary irregularly : Thus, the
analysis should identify a zero standing component and distribute all variance
equally to eastward and to westward propagating disturbances. indeed, this is
the scheme's result:

therefore Sti =0 Waff) = 2 0;

9
' l+a“—2acos2nfWith B'lf) :

1 + 4(12 + a4 — 4(a + a3)0032nf+ 2a2cos4nf

Because of zero off-diagonal elements of A, the co-spectrum Kcs and thus the
quad-spectrum QHH* are zero (2.10 and 25) independently of the value of b. If
b = 1, the cosine and sine autospectra are identical and the co-spectrum KHH*
vanishes, leading to the useful result ofan undefined phase.

If the variance ratio b is not equal to 1, the co—spectrum KHH* becomes positive
(b< 1) or negative (b >1) and nonzero coherence CohHH* is obtained leading to a
standing component, given by the cosine (b< 1) or the sine (b >1) pattern.



2.3 Travelling waves

If the coefficients of the matrix A fulfil the condition

c111:a22=2>0, an: —a21=m (216)

the eigenfunctions of the matrix A reflect a damped oscillation with frequency
fo=tan<1 (co/2) / 2n. For positive (negative) coefficients co the wave moves
westward (eastward).

The frequency-wavenumber spectra are given by:

B"(/) ‘)

F,(, = J“
(1/) 4 (I

.1)

11-5! {iE—o)£)2+4iwcos‘2nf— (1)212] f (217)

i 1+5Coh * 1/) : _ _
HH (E +' m'l' —‘1~|—I:J\-{’?2|=I.ll’_ I

[tan w - J"I|.\'ji€i’]i . i -) if b:1

, _ E — m‘ V

PhHH _ i undefined if b=1

ll + hi iii 4- mg 2 ins-iii 2111”} 9
with B"(/) = i) and E = 1 + a“ — 28C0$2Hf

and D given by (2.11).

For co > 0 and fEO, we find Fh (f) 1—? I‘h (—f). That is for w > O the westward
travelling waves dominate the eastward travelling waves. For co < 0, most of the
variance is assigned to eastward travelling waves. For a process with a variance
ratio b = 1, the coherence spectrum is zero everywhere and the space time
spectral analysis correctly identifies a purely travelling wave.

If the coefficients agj do not fulfill the condition (2.14) exactly or the variance
ratio b is smaller than one, the real time series Ct and Si are correlated and have
different autospectra Fcc and F53. Therefore a non«zero coherence and phase
spectrum is obtained and a standing wave is identified.



A basic condition that a fully statisfactory scheme to separate travelling and
standing waves should fulfill is that St(f);0 and Wa(f):O. The standing wave
spectrum is nonnegative according to (2.4). Wa(f):0 is not automatically
fulfilled, but equivalentto the nontrivial condition(see(2,6)):

V (2i8)
6 f) _< I‘M-fl

9

For some combinations of parameters (2.18) is violated. To demonstrate this,
(218) is rewritten using (2.3—5):

2 ,2 ‘3' 7 1< .,. _~) [heigl+ K , _ (r r 3‘ "QL'SJ(r _F) cs CC 5.C C SS

A variance ratio b clearly different from 1 leads to large differences of FCC-F88.
and large 00 numbers to large c0 and quadrature-spectra Kcs and 03, Which are
both proportional to u) (2.10). One example represents the combination of the
parameters b :01, 2 :05 and a) 20.8. It leads to negative spectral densities of
the travelling waves at the negative maximum frequency, f0 = -O.17, accounting
for 5% of Fh(fo).



3.Unknown stochastic processes

For the estimation ofthe spectral matrix, two approaches are generally used:
* estimation of the cross—covariance function at as many lags as possible and

calculation of the spectrum as a discrete Fourier transformation of the
estimated cross-covariance function.
fitting a bivariate autoregressive process to the data and the use of the
spectral matrix of that fitted autoregressive process (Maximum Entropy
Method (MEM)).

We use the MEM-approach, which is quite economic and asymptotically
unbiased and yields a fine spectral resolution for a short time series (Hayashi,
1981).

We want to find out to what extent the potential merits of the procedure, as
described in Section 2, are affected by the necessity to estimate unknown
parameters. For this purpose, we perform a number of Monte Carlo
experiments, in which we consider finite time series which are generated by
means of process (1.1) with prescribed matrices A.

Processes (1.1) which were found in Section] to be connected with standing
wave and noise, purely noisy behavior, purely travelling wave and mixed
waveform are considered (Table 1). For each example, an ensemble of 50
independent time series of record length L is generated Each of these 50 time
series is fitted to an autoregressive process of order M. In that way, 50
independent spectra are formed. Sample means and standard deviations of the
spectral density are calculated. That is, the mean spectra are the mean of 50
sample spectra and not the spectra of the averaged spectral matrix.ln the
diagrams the estimated mean spectra are plotted as light lines and the
theoretical spectra,which were found in Section 2, as heavy lines. To indicate the
inter-sample variability, a vertical line centered at the mean with a length equal
to twice the standard deviation of the estimate is added. Thus, about 70% of all
of the samples are inside the hatched band.

In Section 3.1 to 3.4 the order M of the fitting process is set to 1, which is the
order of the generating process, and the time series length is L = 60 In Section
3.5, the sensitivity of the frequency wavenumber analysis to overestimating the
correct order by M is tested by considering one example with M=8 The



generating process order M = 1 is used in Section 3.5, where the effect of an
increased time series length, L = 300, is studied.



3.1 Standing oscillation and noise

We study the case "standing wave plus noise" (case 1 in Table 1) by considering a
Monte Carlo simulation using the parameters a =O.9, b=1 and M = 1. The
frequency-wavenumber spectrum is well analyzed (not shown).

The coherence spectrum is weakly overestimated, as is demonstrated by Figure
1A. The heavy line shows the true coherence spectrum (2.13). The vertical
hatching indicates the 70% band centered at the mean estimated coherence
spectrum containing about 70% of all individual estimated spectra. The dotted
area refers to estimates with M :8 and will be discussed in Section 3.5 The
overestimation of the coherence spectrum is largest where the true spectrum is
close to zero. That is reasonable, and will be found in the other cases considered
in the next subsections, because coherence squared can be thought of as a
correlation coefficient squared. That is, if the true correlation at some frequency
is zero, the estimated correlation squared will always be positive.

To indicate the intersample variability of the coherence and phase estimation,
we show the 50 normalized estimated co- and quadspectra KHH* and QHH* at the
maximum frequency fo=0 in Figure 2. Each estimation is given by a clot. The
length of a vector pointing from the origin to the dots is the coherence, and the
angle spanned by the horizontal axis and the vector is the phase. The true values
CohHH*(fo)=1 and PhHH*(fo)=O are depicted by an open circle. Clearly, all
estimates are in a close neighbourhood of the true point. For higher frequencies
the estimates of the phase becomes less reliable (not shown).



Fig.1.:
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Coherencespca(CohHHJ onwthnesenesmnthlength L = 60.Heavy
solid line: theoretical coherence spectrum. 70% of all estimated sample
spec a for autoregresmve process order N1 =
hauhed(do ed)band.
(A) standing wave superimposed with noise, a=0.9, b=1 (case 1 of
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Fig.2. Standing wave and noise (case 1 ofTable 1; see Section 3.1):

Sample variability of the SO estimated co—and quadrature-spectra KHH—

and QHH* normalized by (FHHFH'H*)V2 at the maximum frequency to.
Each estimation is given by a clot. The length of a vector pointing from
the origin to the dots is the coherence, and the angle spanned by the
horizontal axis and the vector is the phase. The true values CohHH~(fo)

and PhHH~(fo) are depicted by an open circle.



3.2 Purely noisy behavior

Case 2 in Table 1, "purely noisy behavior”, is considered by means of a Monte
Carlo example with a = 0 9, b :1 and M = 1 (Fig.3). Not only the mean but most of
the individual estimated frequency wavenumber spectra appear symmetric,
which is in accordance with the true spectrum of this case (see (2.15)). The low-
frequency Fh-variance is considerably underestimated. This might be related to
the general experience that the estimated parameters of an autoregressive
process tend to stay away from the boundary of the region of stationarity and
the parameter used here, a = 0.9, is quite close to the boundary at a = 1.

After having found step (c), mentioned in the Introduction, behaving relatively
well, we get unfavorable results for step (d), the separation into travelling and
standing wave variance: As the true coherence spectrum CohHw is zero
everywhere (see (2.15)) we might expect the estimated coherence to be
overestimated everywhere. That is indeed the case and mean coherencies of as
much as 60% are identified erroneously at low frequencies (Fig. 18). As a
consequence the analysed system is incorrectly described as being composed
totally of non-standing waves. In fact, a significant standing component is
filtered out (Fig.3).

In Section 2.2 we found the phase to be undefined. A plot, similar to Fig 2 of the
50 coherencies and phases at the maximum frequency to = 0 derived from the 50
Monte Carlo experiments reveals that there is no systematic error in the phase
estimate (not shown): The distribution of the dots is uniform with respect to the
angle. However, ifjust one sample is available one has to expect large errors. The
variability is nearly the same for all frequencies.



Fig.3.: Frequency—wavenumber spectra (Fh), the spectra of standing (St) and
travelling (Wa) wavepart of red noise (a :09) discussed in Section 2.2
and 3.2.(case 2 in Table 1). Time series length L = 60 and order of the
fitted process M = 1.
Heavy solid line: theoretical spectrum
Light solid line: mean estimated spectrum
The vertically hatched band is centered at the mean estimate and
contains roughly 70% of all estimated sample spectra
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3.3 Purely travelling waves

The Monte Carlo example used to study case 3 of Table 1, ”purely travelling
waves", is run with the parameters a = 0.8, a) = 0.6 and b = 1 (no diagrams shown).
Similar to Section 3.2, the shape of the frequency wavenumber spectrum is
interpreted correctly, even in most ofthe individual cases: Most of the variance is
attributed to westward moving waves, and the maximum frequency of the
ensemble mean spectrum has the right location, fo=tan-l(m/9)2n (see Section
2.3). Also similar to Section 3.2, the general level of the variance is too low and
partly underestimated by as much as 50%.

Because of b = 1, the true coherence spectrum is zero everywhere (see (2.17)).
Not unexpectedly the coherence estimator is positively biased (Fig. 1C) and the
analysis generates an artificial standing wave component, the phase of which is
uniformly distributed.



_22_

3.4 Mixed waveforms

Asa final example case 40f Table 1 is considered using aH = 0.6, a22 = 0.5, a12 = -
O 5 and a2, = 0.4, b :1 and M :1. Calculating the theoretical spectrum, we find
that most of the variance is due to an eastward travelling wave and a minor
portion is contributed by a standing wave (Fig.4). The travelling wave's
maximum frequency is fo=-O.12, and that of the standing eastward travelling
wave at f0 = i 0.12. The frequency wavenumber spectrum is very well estimated
(Fig.4). As opposed to the results from the preceding subsections, the
quantitative separation into standing and travelling waves is not too bad (Fig.4),
because of a coherence spectrum only weakly overestimated (Fig 1D).

Coherences and phases of the true spectrum (open circles) and the 50 estimates
(dots) at the maximum frequency f0 = —O.12 are shown in Figure 5. The theoretical
values (CohHH*(f0)=O.2, PhHH*(fo)=22°) are given by the open circle. The
estimates vary considerably, but there is a preferred area characterized by a line
linking the origin and the true value.



Figs 4.: Frequency-wavenumber spectrum (1‘5),the spectra of standing (St) and
travelling (Wa) wavepart of an eastward travelling wave with a small
standing part discussed in Section 3.4 (case 4 in Table 1) Time series
length L: 60 and order ofthe fitted process M = 1. Symbols: see Fig 3.

o'.3 ' 0.5
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Fig. 5.: Eastward travelling wave with a small standing wavepart (case 4 of
Table 1; see Section 3.4):
Sample variability of the 50 estimated co-and quadrature-spectra KHH'

and QHH* normalized by (FHHI‘wwM/Z at the maximum frequency f0.

Each estimation is given by a dot. The length of a vector pointing from
the origin to the dots is the coherence, and the angle spanned by the
horizontal axis and the vector is the phase. The true values CohHH*(fo)
and PhHH*(fo) are depicted by an open circle.

10 —



Fig.6.: Eastward travelling wave with a small standing part (case 4 in Table 1):

Sample variability of the SO estimated co- and quadrature-spectra n

and QHH* normalized by (FHHFHH~)1/2 at the maximum frequency f0 =

-O.12 (same as Fig.5).

Crosses (solid dots) refer to estimates using L=60 samples and M :8

fitting processes (L = 300, M = 1).

The open dotisthe theoretical value.
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3.5 Sensitivity to process order M

In practice, the appropriate process fitting order M is unknown. Thus, one will
generally overestimate this order, since the algorithms (Akaike and Bayesian
information criterions) given in the literature to select the "correct order” are
only of limited reliability.

To study the effect of overestimating the correct order, the ”mixed waveform”
example (case 4 of Table 1) discussed in Section 3.4 is considered again with a
fitting process order M = 8 The frequency wavenumber spectrum (Fh) estimator
is unbiased but its variance (not shown) is increased if compared with the Monte
Carlo results from the M :1 analyses in Section 3.4. The bias of the coherency
estimate is about 50% at all frequencies (see dotted band in Figure 1D) and

clearly worse than the estimate using the correct order M :1 (dashed band in
Figure 10). The intersample variability of coherence and phase, which is shown
at the maximum frequency f0: -0.12 in Figure 6 (crosses), is considerably
increased if M = 8 instead of the correct M :1 (Fig.5) is used.

This unfavorable effect of an increased expected error of the coherence
spectrum, and thus of the variance of standing waves, is common to all examples
of Table 1. As a demonstration of this, the M = 8 estimates of the coherence are
added to the results obtained with the correct order M :1 in Figure 1 as dotted
band.
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3.6 Sensitivity to time series length L and ensemble size

it is generally accepted that the ME spectra estimator is consistent, i.e. that an
increase of record length L causes a reduction of sample variance and bias. This
turns out to be valid for the frequency wavenumber analysis as well. We
demonstrate this by examining once again the "mixed waveform” case 4 of
Table 1. Here, the estimations are based on time series of lengths L=300, in
contrast to Section 3.4, where L = 60 was used. The order of the fitting process is
chosen to be the correct one, M = 1. Not only the mean frequency wavenumber
estimate but also the mean estimated coherence spectrum coincide well with the
true spectrum (not shown). The intersample variability is significantly decreased,
if compared with the L=60 case. This is clearly demonstrated by the
phase/coherence diagram at the maximum frequency f0 shown in Fig.6 by solid
dots.

Up to this point we have considered the characteristics of spectral estimates
when only one single time series is given. If the total data given may be
subdivided in a number of chunks, the coherence could be obtained from the
averaged auto—and cross spectra derived from the chunks. If this method is used,
the bias of the coherence estimate does in fact reduce, and a trustworthy
separation into standing and travelling waves is gained (not shown).



Conclusion

We have examined the utility of space-time spectral analysis for inferring the
characteristics of wavy components in stochastic time series.

For stochastic processes with known spectra, the space—time spectral analysis
yields a reasonable decomposition in all but one of the examples considered. It
fails when used to analyse a damped oscillation forced with nonisotropic white
noise. In this case the scheme's working assumption of the standing and
travelling waves being statistical independent is significantly violated leading to
travelling wave variance spectra, which is partly negative.

If only finite time series are available, estimated spectra have to be inserted into
the formulae. We find the frequency-wavenumber spectra reasonably estimated
although the (total) variance was sometimes underestimated. The results
indicate that the separation into east- and westward moving components is
adequate. However, the separation into standing and travelling components by
means of the estimated coherence spectrum turns out to be critical: The
coherence spectrum is often greatly overestimated resulting in a corresponding
positive bias of the standing wave variance. The overestimation of coherence is
most severe ifthe true coherence is close to zero. Since coherence may be seen as
a correlation squared, this deficiency appears unavoidable.

This problem with bias is most pronounced when only one short time series is
available and the order of the fitted autoregressive process is overfitted. In that
case the analysis of standing and travelling waves becomes useless. For longer
time series or greater ensembles of short time series, the results gradually
improve. if, for example, midlatitude winter 500 mb along a certain latitude
were to be considered, it would not be useful to calculate the standing and
travelling wave variance for just one winter. However, if a multiyear time series
or data from a number of winters were available, the ensemble averaged
information derived from space-time spectral analysis would appear to be useful.








