Rationality

Psychological and philosophical
perspectives

Edited by K.I. Manktelow and D.E. Over

N

London and New York



First published in 1993
by Routledge
11 New Fetter Lane, London EC4P 4EE

Simultaneously published in the USA and Canada
by Routledge
29 West 35th Street, New York, NY 10001

© 1993, Selection and editorial matter, K.1. Manktelow and
D.E. Over; individual chapters, the contributors.

Typeset in Times by J&L Composition Ltd, Filey, North
Yorkshire.

Printed and bound in Great Britain by
Mackays of Chatham pLc, Chatham, Kent.

All rights reserved. No part of this book may be reprinted or
reproduced or utilized in any form or by any electronic,
mechanical, or other means, now known or hereafter
invented, including photocopying and recording, or in any
information storage or retrieval system, without permission
in writing from the publishers.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British
Library

Library of Congress Cataloging in Publication Data
Rationality: psychological and philosophical perspectives /
edited by K.I. Manktelow and D.E. Over.
. cm. - (International library of psychology)
Includes bibliographical references and index.
1. Reasoning (Psychology). 2. Cognitive psychology.
3. Logic. 4. Psychology and philosophy.

I. Manktelow, K.I., 1952~ . II. Over, D.E., 1946~
III. Series.

BF442 R38 1993

153.4'3-dc20 9247072

CIP
ISBN 0-415-06955-6



Chapter 11

The bounded rationality of probablhsttc
mental models

G. Gigerenzer

Imagine you are a subject in a psychological experiment. In front of you
is a text problem, and you begin to read:

Linda is 31 years old, single, outspoken and very bright. She majored
in philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in antinuclear
demonstrations. Which of two alternatives is more probable?

(a) Linda is a bank teller.

(b) Linda is a bank teller and is active in the feminist movement.

Which alternative would you choose? Assume you chose (b}, just as most
subjects in previous experiments did. The experimenter explains to you
that (b) is the conjunction of two events, namely that Linda is a bank teller
and is active in the feminist movement, whereas (a) is one of the
constituents of the conjunction. Because the probability of a conjunction
of two events cannot be greater than that of one of its constituents, the
correct answer is (a), not (b), the experimenter says. Therefore, your
judgement is recorded as an instance of a reasoning error, known as the
conjunction fallacy. You may be inclined to admit that you have committed
a reasoning error. The experimenter now explains that these reasoring
errors are like visual illusions: once the error is pointed out, people like
you show insight, but this knowledge does not necessarily help. People see
the same illusion again, or continue to reason in the same way, despite
showing insight. Therefore, in analogy to visual illusions, stable reasoning
errors such as the conjunction fallacy have been labelled cogunitive illusions.

Cognitive illusions, and their explanations, cognitive heuristics, are the
stock-in-trade of a research programme known as the heuristics-and-biases
programme (for example, Tversky and Kahneman, 1974, 1983). Cognitive
illusions ‘seem reliable, systematic, and difficult to eliminate’ (Kahneman
and Tversky, 1972: 431). Stable cognitive illusions are not the first assault
on human rationality by psychologists. Sigmund Freud’s attack on human
rationality is probably the best-known: the unconscious desires and wishes
of the Id are a steady source of intrapsychical conflict that may manifest
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itself in all kinds of irrational fears, beliefs, and behaviour. But the
cognitive-illusion assault is stronger than the psychoanalytic. It does not
need to invoke unconscious wishes or desires to overwhelm human
rationality. Cognitive illusions are seen as a straightforward consequence
of the laws of human reasoning. Humans do not possess the proper mental
algorithms.

Paleontologist Stephen J. Gould, referring to the ‘Linda problem’, puts
the message clearly: ‘Why do we consistently make this simple logical
error? Tversky and Kahneman argue, correctly I think, that our minds are
not built (for whatever reason) to work by the rules of probability’ (Gould,
1992: 469). The purpose of this chapter is to evaluate this claim and to
provide an alternative. In the first part, I will draw the reader’s attention
to the fact that both proponents and opponents of rationality tend to focus
on the same single psychological concept: algorithms in the mind. Second,
T will extend this focus by conceptual distinctions drawn from philosophy,
statistics, and cognitive science, and argue that these distinctions are not
just the province of philosophers and statisticians but have quite tangible
implications for understanding the cognitive processes in reasoning and for
the rationality debate. Third, I demonstrate that these implications are
so powerful that they can make apparently stable cognitive illusions
disappear. Finally, T will present a model of bounded rationality, the
theory of probabilistic mental models, as an alternative to traditional
explanations in terms of the heuristics-and-biases programme. Using the
overconfidence effect as an illustration, I will show that this theory
explains both the old data (cognitive illusions), predicts new phenomena,
and provides a fresh look at what rational probabilistic reasoning
means.

RATIONALITY: WHAT KIND OF MENTAL ALGORITHM?

In his Movements of Animals, Aristotle described a practical syllogism as
one that guides practical rationality:

For example, when you conceive that every man ought to walk and you
yourself are a man, you immediately walk; or if you conceive that on a
particular occasion no man ought to walk, and you yourself are a man,

you immediately remain at rest.
(Aristotle, 1945: 701a)

The foundation of present-day theories of rationality, however, was laid
in the mid-seventeenth century with the classical theory of probability
(Daston, 1988). In contrast to syllogisms, probability could deal with
degrees of beliefs, weights of evidence, expectations, and other forms of
uncertainty that are characteristic of everyday affairs — from weighing the
evidence in a law court to calculating insurance premiums. Probability
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theory and rational reasoning came to be seen as two sides of the same
coin; probability theory is ‘nothing more at bottom than good sense
reduced to a calculus’ (Laplace, 1951/1814: 196). For instance, in his
famous treatise of 1854, the mathematician George Boole set out to
demonstrate that the laws of logic, probability and algebra can in fact be
derived from the laws of human reasoning.

There is not only a close analogy between the operations of the mind
in general reasoning and its operations in the particular science of
Algebra, but there is to a considerable extent an exact agreement in the
laws by which the two classes of operations are conducted. :

(Boole, 1958/1854: 6)

Barbel Inhelder and Jean Piaget echo this belief a century later:
‘Reasoning is nothing more than the propositional calculus itself’ (Inhelder -
and Piaget, 1958: 305).

According to these views, the laws of probability or logic are the
algorithms of the mind, and they define rational reasoning as well.
According to some critics of these views, the laws of probability are not
the algorithms of the mind, but the laws still define rationality. Rather,
mental algorithms are non-statistical heuristics causing cognitive illusions.
Defenders and detractors of human rationality alike have tended to focus
on the issue of algorithms. Only their answers differ. Here are some
prototypical arguments in the current debate.

Statistical algorithms

For philosophers such as L. Jonathan Cohen, the assumption that human
intuition is rational is absolutely indispensable for legitimizing their own
profession. If intuition were not rational, this would ‘seriously discredit the
claims of intuition to provide — other things being equal — dependable
foundations for inductive reasoning in analytical philosophy’ (Cohen,
1986: 150). Cohen (1983: 511) assumes that statistical algorithms
(Baconian and Pascalian probability) are in the mind, but distinguishes
between not having a statistical rule and not applying such a rule, that is,
between competence and performance. Cohen’s interpretation of cognitive
illusions parallels J.J. Gibson’s interpretation of visual illusions (Gigerenzer,
1991): illusions are attributed to non-realistic experiments using im-
poverished information, to experimenters acting as conjurors, and to other
factors that mask the subjects’ competence: ‘unless their judgment is
clouded at the time by wishful thinking, forgetfulness, inattentiveness, low
intelligence, immaturity, senility, or some other competence-inhibiting
factor, all subjects reason correctly about probability: none are pro-
grammed to commit fallacies or indulge in illusions’ (Cohen, 1982: 251).
Cohen does not claim, I think, that people carry around the collected
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works of Kolmogoroff, Fisher, and Neyman in their heads, and merely
need to have their memories jogged, like the slave in Plato’s Meno. But
his claim implies that people do have at least those statistical algorithms
in their competence that are sufficient to solve all reasoning problems
studied in the heuristics-and-biases literature, including the Linda
problem.

The Enlightenment view that human reasoning is in part probability
theory does not imply that humans make no mistakes in reasoning. Nobody
would deny that, even Cohen. According to Boole, for instance, errors in
reasoning ‘are due to the interference of other laws with those laws of
which right reasoning is the product’ (Boole, 1958/1854: 409). The message
of the heuristics-and-biases programme, however, is stronger than reminding
us that emotions, desires, and the like make us err in reasoning.

Non-statistical algorithms: heuristics

Proponents of the heuristics-and-biases programme seem to assume that
the mind is not built to work by the rules of probability:

In making predictions and judgments under uncertainty, people do not
appear to follow the calculus of chance or the statistical theory of
prediction. Instead, they rely on a limited number of heuristics which
-sometimes yield reasonable judgments and sometimes lead to severe

and systematic errors.
{Kahneman and Tversky, 1973: 237)

A few more quotations illustrate the claim that the mind lacks statistical
algorithms and, therefore, rationality. In a paper on biases in bargaining,
Bazerman and Neale say, ‘The biases of framing and overconfidence just
presented suggest that individuals are generally affected by systematic
deviations from rationality’ (Bazerman and Neale, 1986: 317). The human
mind lacks ‘the correct programs for many important judgmental tasks’
(Slovic et al., 1976). “We know that our uneducated intuitions concerning
even the simplest statistical phenomena are largely defective’ (Piattelli-
Palmarini, 1989: 9). The experimental demonstrations have ‘bleak implica-
tions for human rationality’ (Nisbett and Borgida, 1975: 935), and ‘For
anyone who would wish to view man as a reasonable intuitive statistician,
such results are discouraging’ (Kahneman and Tversky, 1972/1982: 46).
Cognitive illusions are explained by non-statistical algorithms, known
as cognitive heuristics. For instance, the standard explanation for the
conjunction fallacy in the Linda problem is that the mind assesses the
probability by calculating the similarity between the description of Linda
and each of the alternatives, and chooses that alternative with the
highest similarity. Because the description of Linda was constructed to be
representative of an active feminist and the conjunction contains the
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term ‘feminist’, people judge the conjunction more probable — so the
explanation goes. Judging probability by similarity has been termed the
representativeness heuristic. This heuristic was only vaguely defined when
first proposed in the early 1970s, and it still is. It has not yet been linked to
any of many existing theories of similarity, nor has it been spelled out how
exactly similarity or representativeness is calculated.

Statistical and non-statistical heuristics

So far we have two research programmes. Cohen assumes that statistical
algorithms are in the competence of humans, and one should explain
cognitive illusion by identifying performance-inhibiting factors. Tversky
and Kahneman assume that mental algorithms are non-statistical heuristics,
which cause stable cognitive illusions. Proponents of a third position do
not want to be forced to choose between statistical and non-statistical
algorithms, but want to have them both. Fong and Nisbett (1991: 35) argue
that people possess both rudimentary but abstract intuitive versions of
statistical principles, such as the law of large numbers, and non-statistical
heuristics such as representativeness. The basis for these conclusions are
the results of training studies. For instance, the experimenters first teach
the subject the law of large numbers or some other statistical principle,
and subsequently also explain how to apply this principle to a real-world
domain such as sports problems. Subjects are then tested on similar
problems from the same or other domains. The typical result is that more
subjects reason statistically, but transfer to domains not trained in is often
low. Evans (1984) has proposed a similar interpretation of deductive
reasoning, assuming both a mental logic and non-logical heuristics.

To summarize: 1 have briefly sketched three positions in the present
debate on the rationality of probability judgement. My point is that the
discussion between these three positions focuses on the kind of mental
algorithm — is it probability, heuristics, or both? I now invite you to look
beyond algorithms, to different questions and new kinds of experiments.
Let me start with three ideas and distinctions.

THERE IS MORE THAN MENTAL ALGORITHMS

The distinction between algorithms and information representation

Information needs representation. In order to communicate information,
it has to be represented in some symbol system (Marr, 1982). Take
numerical information. This information can be represented by the Arabic
numeral system, by the binary system, by Roman numbers, or other
systems. These different representations can be mapped in a one-to-one
way, and are in this sense equivalent representations. But they are not
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necessarily equivalent for an algorithm. Pocket calculators, for instance,
generally work on the Arabic base-10 system, whereas general-purpose
computers work on the base-2 system. The numerals 100000 and 32 are
representations of the number thirty-two in the binary and Arabic system,
respectively. The algorithms of my pocket calculator will perform badly
with the first kind of representation but work well on the latter.

The human mind finds itself in an analogous situation. The algorithms
most western people have stored in their minds — such as how to add,
subtract, or multiply — work well on arabic numerals. But contemplate
for a moment division in Roman numerals, without transforming them
first into Arabic numerals.

There is more to the distinction between an algorithm and a
representation of information. Not only are algorithms tuned to particular
representations, but different representations make explicit different
features of the same information. For instance, one can quickly see
whether a number is a power of 10 in an Arabic numeral representation,
whereas to see whether that number is a power of 2 is more difficult. The
converse holds with binary numbers. Finally, algorithms are tailored to
given representations. Some representations allow for simpler and faster
algorithms than others. Binary representation, for instance, is better suited
to electronic techniques than Arabic representation. Arabic numerals,
on the other hand, are better suited to multiplication and elaborate
mathematical algorithms than Roman numerals — possibly one of the
reasons for the superior development of mathematics in the early Arabic
cultures as opposed to Roman culture.

The distinction between algorithms and information representation is
central to David Marr’s (1982) analysis of visual information processing
systems. From vision to reasoning, I argue, understanding of cognitive
processes needs to take account of both algorithms and information
representation. I now connect this distinction with another conceptual
distinction prominent in philosophy and probability theory.

The distinction between subjective degrees of belief and objective
frequencies ‘

The classical probabilists of the Enlightenment slid with breathtaking case
and little justification from one sense of probability to another: from
objective frequencies to physical symmetry (today referred to as
‘propensity”) to subjective degrees of belief. Lorraine Daston (1988) has
argued that this ease was a consequence of the associationist psychology
of these days, of the belief, advanced inter alia by John Locke and David
Hartley, that the matching of objective frequencies to subjective belief was
rational. Only when associationist psychology shifted its emphasis to
illusions and distortions introduced by passion and prejudice, did the
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gap between objective and subjective probabilities become evident.
Philosophers and mathematicians now drew a bold line between the first
two objective meanings on the one hand and subjective probabilities on
the other. The unity of belief and frequency crumbled in the first half of
the nineteenth century. After the fall of the classical interpretation of
probability the frequency interpretation emerged as the dominant view in
the nineteenth and twentieth centuries.

For proponents of the frequency view such as Richard von Mises (1957/
1928) and Jerzy Neyman {1977), probability theory is about frequencies,
and does not deal with degrees of belief in single events. In the subjective
(‘Bayesian’) interpretation that re-emerged in this century, however,
degrees of belief are what probability means. Others wanted to have it
both ways, or have proposed alternative interpretations of probability. The
question, What is probability about? is stifl with us.’

My intention here is not to take sides in this debate, but to liken the
conceptual distinction between single-event probabilities and frequencies
to the concept of information representation. This leads us to distinguish
two kinds of representations: frequency information or single-event
probabilities. Finer distinctions can be made, but this will suffice for a start.

Monitoring of event frequencies

The third idea is an evolutionary speculation that links with the above
distinctions. Bumblebees, birds, rats, and ants all seem to be good intuitive
statisticians, highly sensitive to changes in frequency distributions in their
environments, as recent research in foraging behaviour indicates (Gallistel,
1990; Real and Caraco, 1986). From sea snails to humans, as John Staddon
(1988) argued, the learning mechanisms responsible for habituation,
sensitization, and classical and operant conditioning can be described in
terms of statistical inference machines. _

Assume that some capacity or algorithm for statistical reasoning has
been built up through evolution by natural selection. What information
representation would such an algorithm be tuned to? Certainly not
percentages and single-event probabilities (as in the typical experiments
on human reasoning}, since these took millenia of literacy and numeracy
to evolve as tools for communication. Rather, in an illiterate world, the
input representation would be frequencies of events, sequentially encoded,
such as 3 out of 20 (as opposed to 15 per cent or p = 0.15). Such a
representation is couched in terms of discrete cases. Moreover, frequencies
such as 3 out of 20 contain more information than percentages such as 15
per cent. These frequencies contain information about the sample size
(here: 20), which allows one to compute the ambiguity or precision of the
estimate. -

The notion that the mind infers the structure of the world through
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monitoring event frequencies is an old one. Locke and Hartley assumed
that the mind is a kind of counting machine that automatically registered
frequencies of past events, an assumption that is now called aufomatic
frequency processing (Hasher and Zacks, 1979). David Hume thought the
mind was very sensitive to small differences in frequency: *When the
chances or experiments on one side amount to ten thousand, and on the
other to ten thousand and one, the judgement gives the preference to the
latter, upon account of the superiority’ (Hume, 1975/1739: 141). .

Now we can put these three ideas together. First, to analyse probabilistic
reasoning, information representation and algorithms have to be distin-
guished. Second, there are (at least) two kinds of representations,
frequencies and single-event probabilities. Finally, if evolution has selected
some kind of algorithm in the mind, then it will be tuned to frequencies
as representation.

In the next section I will show that these ideas, still rather general, are
powerful enough to make several apparently stable cognitive illusions
disappear.

HOW TO MAKE COGNITIVE ILLUSIONS DISAPPEAR

Cognitive illusions have become a hard currency in many debates. When
Stephen Stich argued against Donald Davidson’s philosophy of language
and Daniel Dennett’s philosophy of mind, he pointed out that these two
systems are inconsistent with the psychologists’ ‘evidence for extensive
irrationality in human inference’ (Stich, 1990: 11). When I discuss with
colleagues the actual evidence underlying such claims, the conjunction
fallacy is often thrown in as the truly convincing and replicable
demonstration of irrational reasoning.

So let us first see what the distinction between algorithm and information
representation, and between frequency and single-event format, does to
this cognitive illusion.

Conjunction fallacy

Tversky and Kahneman (1983) reported that 85 per cent of 142 under-
graduates indicated that the conjunction ‘Linda is a bank teller and is
active in the feminist movement’ (T&F) is more probable than ‘Linda is 2
bank teller’ (T). They and others have shown that this judgement is
replicable and stable — not only with statistically naive undergraduates but
with ‘*highly sophisticated respondents’ such as doctoral students in the
decision science programme of the Stanford Business School who had taken
advanced courses in probability, statistics, and decision theory {Tversky
and Kahneman, 1983: 298).

The conjunction fallacy and the conclusion that the mind is not
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programmed by the laws of probability but by non-statistical heuristics
(albeit only very loosely defined ones) has become the accepted wisdom
in much of cognitive and social psychology, philosophy of mind, and
beyond. The conjunction fallacy has been proposed as the cause of various
kinds of human misfortune, such as US security policy, where ‘the
conjunction fallacy . . . lends . . . plausibility to highly detailed nuclear
war-fighting scenarios’ (Kanwisher, 1989: 671).

Stephen J. Gould, explaining the Linda problem to his audience, writes:

Tversky and Kahneman’s ‘studies have provided our finest insight into
“natural reasoning” and its curious departure from logical truth . . . I
am particularly fond of [the Linda] example, because I know that the
[conjunction] is least probable, yet a little homunculus in my head
continues to jump up and down, shouting at me — “‘but she can’t just

be a bank teller; read the description”.
' (Gould, 1992: 469)

Gould should have trusted his homunculus. In what follows, I will discuss
the claim that the judgement called ‘conjunction fallacy’ is an error in
probabilistic reasoning. I will argue that this claim is not tenable, and
Gould’s homunculus will be vindicated. Thereafter I will show what the
distinction between algorithm and information representation can do to
the conjunction fallacy.

Cognitive illusion illusory?

Is the conjunction fallacy a violation of probability theory? Has a person
who chooses T&F violated probability theory? The answer is no, if
the person is a frequentist such as Richard von Mises or Jerzy Neyman;
yes, if he or she is a subjectivist such as Bruno de Finetti; and open
otherwise.

The mathematician Richard von Mises, one of the founders of the
frequency interpretation, used the following example to make his point:

We can say nothing about the probability of death of an individual even
if we know his condition of life and health in detail. The phrase
‘probability of death’, when it refers to a single person, has no meaning
at all for us. This is one of the most important consequences of our
definition of probability.

(von Mises, 1957/1928: 11)

In this frequentist view, one cannot speak of a probability unless a
reference class has been defined. The relative frequency of an event such
as death is only defined with respect to a reference class, such as ‘all male
pub-owners fifty-years old living in Bavaria’. Relative frequencies may
vary from reference class (pub-owners) to reference class (HIV-positives).
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Since a single person is always a member of many reference classes, no
unique relative frequency can be assigned to a single person. As the
frequentist statistician G.A. Barnard put it, if one wants to evaluate
subjective probabilities of single events, one ‘should concentrate on the
works of Freud and perhaps Jung rather than Fisher and Neyman’
(Barnard, 1979: 171). Thus, for a strict frequentist, the laws of probability
are about frequencies and not about single events such as whether Linda
is a bank teller. Therefore, in this view, no judgement about single events
. can violate probability theory.

From the frequency point of view, the laws of probability are mute on
the Linda problem, and what has been called a conjunction fallacy is not
an error in probabilistic reasoning — probability theory simply doesn’t
apply to such cases. Seen from the Bayesian point of view, the conjunction
fallacy is an error. Note that the experimental subjects were neither told
that the Linda problem is meant to be a Bayesian probability textbook
problem, nor did the experimenters try to persuade and commit their
subjects to the Bayesian view.

How shall we evaluate this situation? The frequency view has
been dominant since the nineteenth century, and teaching in statistics
departments today as well as in undergraduate psychology courses is still
predominantly frequentist in philosophy. Therefore, we cannot expect
psychology undergraduates to carry around a Bayesian superego in their
minds. One should be careful not to evaluate reasoning against some
norm, unless subjects have been committed to that particular norm. Thus,
choosing T&F in the Linda problem is not a reasoning error. What has
been labelled the ‘conjunction fallacy’ here does not violate the laws of
probability. It only looks so from one interpretation of probability.

How to make the conjunction fallacy disappear

We apply now the distinction between single-event and frequency informa-
tion representation to the Linda problem. We just change the format from
single event to a frequency representation (see italicized passage), leaving
everything else as it was.

Linda is 31 years old, single, outspoken and very bright. She majored
in philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in antinuclear
demonstrations.

There are 100 people who fit the description above. How many of them are:
bank teilers?

bank tellers and active in the feminist movement?

Subjects are now asked for frequency judgements rather thgn for thf:
probability of a single event. If one focuses on mental algorithms, this



294 Rationality

change appears irrelevant. If the mind solves the Linda problem by
using a representativeness heuristic, changes in representation should not
matter, because they do not change the degree of similarity. The descrip-
tion of Linda is still more representative of (or similar to) the conjunction
T & F than of T. Subjects therefore should still exhibit the conjunction
fallacy. Similarly, if one assumes with Cohen that the laws of probability
are in the mind, but that subjects have been misled by the experimenter
into bad performance, changes in representation should not matter either.
For instance, subjects may have been misled by assuming that the
description of Linda is of any relevance to the solution, whereas it is
completely irrelevant to finding the solution. This irrelevancy argument is
not altered by the frequency format.?

However, if there is some statistical algorithm in the mind that is
tuned to frequencies as information representation, then something
striking should happen to this stable cognitive illusion. Violations of the
conjunction rule should largely disappear.

The experimental evidence available confirms this prediction. Klaus
Fiedler (1988) reported that the number of conjunction violations in the
Linda problem dropped from 91 per cent in the original, single-event
representation to 22 per cent in the frequency representation (n = 44).
The same result was found, when he replaced *‘There are 100 people’ by
some odd number such as “There are 168 people’. The drop in the number
of conjunction violations here was from 83 per cent to 17 per cent (n =
23). Fiedler reported similar results for other standard problems from
which the conjunction fallacy has been inferred as a stable cognitive
illusion. Tversky and Kahneman (1983: 308-9) reported similar phenomena.

To summarize: The debate between Cohen and Tversky and Kahneman
has centred on the question of algorithm. I have argued that in order
to understand probabilistic reasoning, one should distinguish between
algorithms and information representation. The philosophical and
statistical distinction between single events and frequencies clarifies that
judgements hitherto labelled instances of the ‘conjunction fallacy’ cannot
be properly called reasoning errors in the sense of violations of the laws
of probability. The conceptual distinction between single event and
frequency representations is sufficiently powerful to make this allegedly
stable cognitive illusion disappear. The conjunction fallacy is not the only
cognitive illusion that is subject to this argument.

Base-rate fallacy

Casscells et al. (1978) presented sixty staff and students at Harvard Medical
Schoo! with the following problem:

If a test to detect a disease whose prevalence is 1/1000 has a false
positive rate of 5%, what is the chance that a person found to have a
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positive result actually has the disease, assuming you know nothing
about the person’s symptoms or signs?

If one inserts these numbers into Bayes’ theorem, the posterior probability
that the person actually has the disease is 0.02, or 2 per cent (assuming
that the test correctly diagnoses every person who has the disease — a piece
of information that is missing). However, almost half of the sixty staff and
students at Harvard Medical School estimated this probability as 0.95, or
95 per cent, not 2 per cent. Only eleven participants answered 2 per cent.
Note the variability in the judgements of physicians about the probability
of the disease! The modal answer of 0.95 was taken as an instance of the
base-rate fallacy. This term signifies that the base rate of the disease
(1/1000) is neglected, and the judgement is based only (or mainly) on the
characteristics of the test {the false-positive rate). Tversky and Kahneman
(1982) used the results of this study to illustrate the generality and stability
of the base-rate fallacy, a cognitive illusion that has been widely discussed
and given much prominence. “The failure to appreciate the relevance of
prior probability in the presence of specific evidence is perhaps one of the
most significant departures of intuition from the normative theory of
prediction’ (Kahneman and Tversky, 1973: 243). Little is known about
how the participants made these judgements, and why these were so
variable. It just seems that students and staff did not get effective training
in statistical reasoning at Harvard Medical School.

How to make the base-rate fallacy disappear

I will now apply the same argument to the Harvard Medical School
problem as I did to the Linda problem. Assume there is some kind of
algorithm for statistical reasoning that works on frequency representations.
Therefore, if we change the information representation in the Harvard
Medical School problem from percentages and single-event probabilities
to frequencies, then the base-rate fallacy should also disappear. As a
consequence, the large variability in judgements should disappear. This is
a testable prediction.

When I made this prediction during luncheon discussions at the Center
for Advanced Study in the Behavioral Sciences, two of the other fellows,
Leda Cosmides and John Tooby, got up from the table and went down the
hill to Stanford University, where they tested the prediction with 425
undergraduate subjects (Cosmides and Tooby, 1991). They constructed a
dozen or so versions of the medical problem as controls; of chief interest
here is the frequency version:

One out of 1000 Americans has disease X. A test has been developed
to detect when a person has disease X. Every time the test is given to
a person who has the disease, the test comes out positive. But
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sometimes the test also comes out positive when it is given to a person
who is completely healthy. Specifically, out of every 1000 people who
are perfectly healthy, 50 of them test positive for the disease. Imagine
that we have assembled a random sample of 1000 Americans. They were
selected by a lottery. Those who conducted the lottery had no information
about the health status of any of these people. How many people who
test positive for the disease will actually have the disease? out of

In this version, the representation of the input information is changed from
percentages, such as 5 per cent, to frequencies such as ‘50 out of 1000".
The representation of the output information is changed from a single-
event probability (‘What is the probability that a person ...?’) to a
frequency judgement (‘How many people . . . ?”). This made the pro-
portion of Bayesian answers skyrocket from 12 per cent (in a replication
using the original representation) to 76 per cent (and to 92 per cent, if
subjects were instructed to visualize frequencies in a graphical display).

If only the representation of the input information was changed into
frequencies, but not that of the output information, or vice versa, the effect
of the change in information representation was halved. All other changes,
such as adding the missing information about the false-negative rate and
the explicit information about random sampling, had little effect on the
judgements, as the control versions showed.

We have the same result as for the Linda problem. Judgements labelled
‘base-rate fallacy’ largely disappear in the Harvard Medical School
problem when we change the information representation from single events
to frequencies. The effect is about as strong as in the Linda problem.

Results in the same direction have been obtained on other reasoning
problems when information representation was only partially changed into
a frequency format, such as using sequential monitoring of frequency
information and random sampling from a collective (e.g. Borgida and
Brekke, 1981; Gigerenzer et al., 1988; McCauley and Stitt, 1978).2

It is also instructive that some researchers tend to change their
own information representation when they turn away from the subject
and explain the correct solution to the reader. An early example
is Hammerton, who used single-event probabilities to communicate
information to his subjects:

1. A device has been invented for screening a population for a disease
known as psylicrapitis. 2. The device is a very good one, but not perfect.
3. If someone is a sufferer, there is a 90% chance that he will be
recorded positively. 4. If he is not a sufferer, there is still a 1% chance
that he will be recorded positively. 5. Roughly 1% of the population
has the disease. 6. Mr. Smith has been tested, and the result is positive.
The chance that he is in fact a sufferer is: . .
(Hammerton, 1973: 252)
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When the author explains the correct answer to his readers, he switches,
without comment, into a frequency representation:

Out of every 100 persons tested, we expect 1 to have the disease; and
the device is nearly certain to say that he has. Also, out of that 100, we
expect the machine to say that 1 healthy person has the disease. Thus,
in the long run, out of every 100 persons tested, we expect 2 positive
results, one of which will be correct and the other incorrect. Therefore
the odds on any positive result being valid are roughly even.

(ibid: 252)

The frequency format is easily digested by Hammerton’s readers. How-
ever, Hammerton’s subjects not surprisingly failed on the single-event
representation. Their median response was not one-to-one (i.e. 50 per
cent}, but 85 per cent.

Thus far, we have seen how to make two cognitive illusions, the
conjunction fallacy in the Linda problem and the base-rate fallacy in the
Harvard Medical School problem, largely disappear. I will now turn to a
third prominent illusion.

Overconfidence bias

Confidence in one’s knowledge is typically studied with questions of the
following kind:

Which city has more inhabitants?

(a) Hyderabad

(b) Islamabad

How confident are you that your answer is correct?
50%, 60%, 70%, 80%, 90%, 100%

Imagine you are an experimental subject: your task is to choose one of
the two alternatives. Possibly you chose Islamabad, as most subjects in
previous studies did. (If your choice was indeed Islamabad, you agree with
the majority of subjects but are, regrettably, wrong.) Then you are asked
to rate your confidence that your answer ‘Islamabad’ is correct. Fifty per
cent confident means guessing, 100 per cent confident means that you are
absolutely sure that Islamabad is the larger city. After many subjects
answer many questions, the experimenter counts how many answers in
each of the confidence categories were actually correct.

The major finding of some two decades of research is the following: in
all the cases where subjects said, ‘I am 100 per cent confident that my
answer is correct’, the relative frequency of correct answers was only about
80 per cent; in all the cases where subjects said, ‘I am 90 per cent confident’

-the relative frequency of correct answers was only about 75 per cent; when
subjects said ‘I am 80 per cent confident’ the relative frequency of correct
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answers was only about 65 per cent, and so on (Lichtenstein et al., 1982}.
Values for confidence were systematically higher than relative frequencies.
This systematic discrepancy has been interpreted as an error in reasoning
and has been named ‘overconfidence bias’. Quantitatively, overconfidence
bias is defined as the difference between mean confidence and mean
percentage correct.

Consistent with the general research strategy of the heuristics-and-biases
programme, the explanandum is a discrepancy (overconfidence bias)
between a confidence judgement and a norm (frequency), not the confidence
judgements by themselves (there are some exceptions, €.g. May (1987)).
Little, however, has been achieved in explaining this discrepancy. A
common proposal is to explain ‘biases’ by other, deeper mental flaws. For
instance, Koriat ef al. (1980) propose that the overconfidence bias is caused
by a ‘confirmation bias’. Here is their explanation. After one alternative
is chosen (e.g. Islamabad), the mind searches for further information that
confirms the answer given, but not for information that could falsify it.
This selective information search artificially increases confidence. The key
idea is that the mind is not a Popperian. Other deficiencies in cognition
and motivation have been suggested as explanations: Fischhoff, Edwards,
and others proposed that subjects are insensitive to item difficulty (von
Winterfeldt and Edwards, 1986: 128). Dawes suggested the tendency of
humans in the western world to overestimate their intellectual powers,
which ‘has been reinforced by our realization that we have developed a
technology capable of destroying ourselves’ (Dawes, 1980: 328). Others
have proposed motivational reasons such as ‘fear of invalidity’ or ‘iliusion
of validity’. Note that in all these explanatory attempts the experimental
phenomenon is seen as a ‘cognitive illusion’, that is, an error in prob-
abilistic reasoning, that has to be explained by some deeper flaw in our
mental or motivational programming.

Similar to the conjunction fallacy, overconfidence bias has been sug-
gested as an explanation for human disasters of many kinds, including
deadly accidents in industry (Spettell and Liebert, 1986), errors in the legal
process (Saks and Kidd, 1980), and systematic deviations from rationality
in negotiation and management (Bazerman and Neale, 1986).

Checking the normative yardstick

Is overconfidence bias really a ‘bias’ in the sense of a violation of
probability theory? Let me rephrase the question. Has probability theory
been violated if one’s average degree of belief (confidence) in a single event
(i.e. that a particular answer is correct) is different from the relative
frequency of correct answers in the long run? From the point of view of
the frequency interpretation, the answer is ‘no’, for the reasons already
discussed. Probability theory is restricted to frequencies; it does not apply
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to single-event judgements like confidences. Therefore, no statement about
confidences can violate the laws of probability. Even for Bayesians, however,
the answer is not ‘yes’, as it was with the conjunction fallacy. The issue here
is not internal consistency or coherence, but the relation between subjective
probability and external (objective) frequencies, which is a more complicated
issue and depends on conditions such as exchangeability (for a discussion
related to overconfidence see Kadane and Lichtenstein, 1982).

To summarize: a discrepancy between confidence in single events and
relative frequencies in the long run is not an ‘error’ in the sense of a
violation of probability theory, contrary to the claims in the heuristics-and-
biases literature. It only locks that way from the perspective of a narrow
interpretation of probability theory that blurs the fundamental distinction
between single events and frequencies.

How to make overconfidence bias disappear

Many experiments have demonstrated the stability of the overconfidence
phenomenon despite various ‘debiasing methods’ (Fischhoff, 1982). In our
own experiments, we have also confirmed the stability despite those
methods (Gigerenzer ef al., 1991). We warned subjects, prior to the
experiment, of overconfidence, or gave them monetary incentives — this
did not decrease overconfidence. We tried it with a bottle of French
champagne as an incentive — to no avail. To quote von Winterfeldt and
Edwards (1986: 539): *Overconfidence is a reliable, reproducible finding.”
And they conclude, with a tone of regret ‘Can anything be done? Not
much’ (Edwards and von Winterfeldt, 1986: 656). Let’s see.

I will now apply to the overconfidence bias the same argument as before
to the conjunction fallacy and base-rate fallacy. Assume an experiment in
which you present subjects with fifty general-knowledge questions of the
Hyderabad-Islamabad type and ask them for confidence judgements, as
usuat. Here is where this experiment diverges from earlier work. You also
ask the same subjects about judgements of the frequency of correct
answers: ‘How many of these fifty questions do you think you have
answered correctly?’ Assume your subjects’ mean confidence judgements
are, just like in earlier studies, systematically higher than their relative
frequency of correct answers. That is, you replicate the earlier findings
and get a typical overconfidence bias of about 15 per cent. What do you
guess how your subjects’ frequency judgements will compare with the
true frequency of correct answers?

If confidence in one’s knowledge were truly biased due to confirmation
bias, wishful thinking, or other deficits in cognition, motivation, or
personality, then the difference between a single-event and a frequency

- representation should not matter. Overestimation should remain stable,
just as it does with warnings and French champagne.
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Table 11.1 Overestimation disappears in judgements of frequency

Difference between Experimerit 1 Experiment 2
{(n = 80) {n=197)
Mean confidence and true +13.8 +15.4

relative frequency of correct

answers {overconfidence)

Estimated frequency and true -—2.4 — 42
frequency of correct answers

Ulrich Hoffrage, Heinz Kleinbolting and T have performed this and
related experiments (for details see Gigerenzer et al., 1991). Table 11.1
shows the results of two experiments with 80 and 97 subjects, respectively.
Only averages are shown here, because individual results conformed
well to averages. In both experiments, the stable discrepancy between
mean confidence and the true relative frequency of correct answers
could be replicated. This is necessary for control, but no surprise.
Overconfidence bias, expressed in percentage (by multiplying the differ-
ence by the factor 100) was 13.8 per cent and 15.4 per cent, respec-
tively. What about the frequency judgements? When we compared
subjects’ estimated frequencies with their true frequencies, overestimation
disappeared. In both experiments subjects showed a tendency towards
underestimation. In Table 11.1, the differences between estimated and
true frequencies are also expressed in percentages, for comparison. For
instance, in Experiment 1, the average estimated frequency of correct
answers (in a series of 50 questions) was 1.2 lower than the true frequency
of correct answers, which corresponds to —2.4 in 100 questions, or
—2.4 per cent. Negative signs denote underestimation, positive signs
overestimation. :

To summarize: I have argued that the discrepancy between mean
confidence and relative frequency of correct answers, known as ‘over-
confidence bias’, is not an error in probabilistic reasoning. It only looks
that way from a narrow normative perspective, in which the distinction
between single-event confidence and frequencies is blurred. If we ask our
subjects about frequencies instead of single-event confidences we can make
this stable phenomenon disappear.

It is easy to see how my argument, illustrated here by three prominent
examples, can be extended to and tested for other cognitive illusions.
The philosophical distinction between ‘single-event probabilities and
frequencies teaches us that the irrationality claim, at least as based on these
examples, is premature. The normative yardstick does not stand up to
closer examination. The distinctions between algorithm and information
representation, and between single event and frequencies, combined with
the notion of the mind as a frequency-monitoring device, teaches us how
to make apparently stable cognitive illusions disappear. This is of course
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good news for those who would like to believe in human rationality, or
for those biologically minded people who wonder how a species so bad at
statistical reasoning could have survived so long, and also for those
unfortunate souls charged with teaching undergraduate statistics.

Earlier explanations of reasoning in terms of a general representative-
ness heuristic or a general confirmation bias cannot account for these
striking results. We have to look for a fresh understanding of cognitive
processes that explains both the old and new facts. What follows is a
brief introduction into the theory of probabilistic mental models
(Gigerenzer et al., 1991). The theory explains both the old facts (the
robust overconfidence and hard—easy effects of the last two decades) the
new facts (the disappearance of overconfidence) and makes several other
novel predictions.*

PROBABILISTIC MENTAL MODELS

I will illustrate the theory of probabilistic mental models (for short, PMM
theory) by the following problem:

Which city has more inhabitants?
(a) Heidelberg
(b) Bonn

How confident are you that your answer is correct?
50%, 60%, 70%, 80%, 90%, 100%

Assume that subjects do not know the answer, but have to make an
inference under uncertainty. How is that inference made?

Before 1 start outlining the theory, a general remark on explanatory
strategy is helpful. Our explanandum is confidence and choice, and not
overconfidence bias. That is, we attempt to explain judgement, not the
“deviation of judgement from some controversial norm. As a consequence,
we do not need to invoke deeper-level biases (such as confirmation biases)
or error-prone heuristics as explanations. This contrasts with the heuristics-
and-btases programme. Nor do we invoke explanations that assume perfect
knowledge and unlimited computational and attentional capacities, as
in traditional rational-choice theories. Instead, PMM theory postulates
cognitive mechanisms that work well given limited knowledge, limited
attention, and limited computational capacities. In these respects, PMM
theory is a model of ‘bounded rationality’ (Simon, 1955).

PMM theory assumes that a frame of inference is constructed to solve
a particular problem such as the Heidelberg-Bonn problem. This frame
of inference is called a PMM. A PMM generalizes the two alternatives,
Heidelberg and Bonn, to a reference class, such as ‘all cities in Germany’.
And it generalizes the target variable, number of inhabitants, to a network
of probability cues that co-vary with the target. Thus, a PMM consists of
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Table 11.2 Probability cues for solving tasks of the Heidelberg—Bonn type.
Examples given are for the reference class ‘cities in Germany’

Probability cues

1 Soccer-team cue {one city’'s soccer team plays in the soccer ‘Bundesliga’, the
other city’s team does not}.

State capital cue (one cily is a state capital, the other city is not).

Industrial cue {one city is located in the ‘Ruhrgebiet’, the other in rural Bavaria).
Licence-piate cue (the letter code that identifies a city on a licence plate is
shorter for one city than for the other).

Familiarity cue {one had heard of one city, but not of the other).

Capital cue {one city is a capital, the other city is not}.

(o234 &N

a reference class {that contains the two alternatives), a target variable, and
probability cues.

Table 11.2 shows examples of probability cues for population size in the
reference class ‘German cities’. Take the soccer-team cue. Large cities are
likely to have a team playing in the Soccer Bundesliga, in which the eighteen
best teams compete. The ecological validity of this cue can be determined
by checking all pairs in which one city has a team in the Bundesliga but
the other does not. For instance, one finds that in 91 per cent of these
cases the city with the Bundesliga team has more inhabitants (calculated
for 1988/89, for what then were West German cities with more than
100,000 inhabitants). Thus, the ecological validity of the soccer cue is 0.91
in this reference class. Note that it is defined as a relative frequency, not
as a Pearson correlation as in Brunswik’s (1955) framework. Ecological
validity is defined on the environment, whereas cue validity is the cor-
responding concept in a subject’s PMM. I will call a PMM well-adapted if
the cue validities correspond well to the ecological validities.

Note, however, that the soccer team cue cannot be activated for the
Heidelberg-Bonn problem: neither city has a team in the Bundesliga; so
the cue does not differentiate. In fact, only the last cue in this list can be
activated, and this capital cue does not have a particularly high cue validity
— because it is well known that Bonn is not exactly London or Paris. (The
low cue validity may change soon, however, because Bonn’s days as capital
are numbered.)

PMM theory assumes when activation rates are low or time pressure
occurs, as is typical for studies of general knowledge, that the first cue that
can be activated determines choice (here: Bonn) and that confidence equals
cue validity (Table 11.3). This algorithm is ‘satisficing’ (Simon, 1982) in
the sense that it produces good, but not necessarily optimal, performance.
The algorithm is a variant of bounded rationality (Simon, 1955) in so far
as it is designed to work on limited knowledge and on the first cue
activated. The latter avoids computationally complex integrations of many
cues.
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Table 11.3 PMM algorithm for choice and confidence

Task: Choose the correct alternative, a2 or b, and give confidence judgment.
Algorithm:
Step 1: Generalize 2 and b to a reference class A, where a, be R,

Step 2: Generate cue C; highest in cue validity.

Step 3: Generate values of a and b for cue C.. If one or both values are
unknown, go back to step 2 and generate the cue next highest in cue
validity.

Step 4: Test whether values of 2 and b differ, i.e., whether C, can be activated.
If yes, denote this as aCpb. If not, go back to step 2.

Step 5 Choose a if p (alaCb;R) > p (blaCH;A). (For example, let aCh stand
for ‘a has a soccer team in the Bundesliga but b does not'. Then
p {alaCib;R) is the probability that a has the larger population given
aCh, tor all a,b € A. This probability is the cue validity, and R is the
reference class.)

Step &: Confidence = p{alaCib;f). {The confidence that the choice a is

- correct is equal to the cue validity of the activated cue C,)

Source: Gigerenzer et al. (1991).

Note: Knowledge of cues can be limited, i.e. only a subset of all ecclogical valid cuss may
be available from memaory (step 2). Knowledge of values can be limiied, tco. Cues have
binary values (ves/no; see Table 11.2), but knowledge Is tertiary {yes/no/unknown; ses
siep 3).

Table 11.4 Probabilistic mental models for single-event (confidence} and
frequency tasks

PMM Confidence task Frequency task
Target variable Number of inhabitants Number of correct answers
Reference class Cities in Germany Similar sets of general-

knowledge questions in
similar testing situations
Probability cues E.g. soccer team cue, state E.g. base rates of previous
capital cue performance

Now consider a frequency task. Subjects answer several hundred ques-
tions of the Heidelberg-Bonn type. After each group of fifty questions
they are asked: ‘How many of the last fifty questions do you think you
have answered correctly?’ The point is that according to PMM theory,
confidence and frequency judgements are based on different cognitive
processes, because different PMMs have to be constructed (Table 11.4).

The target variable in the confidence task is number of inhabitants,
whereas in the frequency task it is number of correct answers. As a
consequence, reference class and probability cues are different, too. A
soccer cue, for example, no longer helps. A task that involves judgements
of frequencies of correct answers has a different reference class: sets of
general knowledge questions in similar testing situations. And base rates
of earlier performance in such testing situations are an example of a
probability cue for frequency judgements. Note that both single-event
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confidence and frequency judgements are explained by reference to
experienced frequencies. However, these experienced frequencies relate
to different reference classes, which are in turn part of different PMMs.

PMM theory can be quantitatively simulated; for the present purpose,
however, qualitative predictions are sufficient. In the following sections, I
will derive several novel predictions from PMM theory, some of them
being counterintuitive and therefore surprising. First, however, we will see
how PMM theory explains the stable overconfidence bias.

Explaining old facts: overconfidence bias

PMM theory explains the stable overconfidence effect in the following
way. Assume that subjects’ PMMs are, on the average, well adapted. This
means that although subjects’ knowledge about some domain (such
as about German urban centres) may be limited, it should not be
systematically biased. This implies that cue validities roughly correspond
to ecological validities, but it does not imply that subjects know all the
relevant cues. If the general-knowledge questions were a representative
sample from the knowledge domain, zero overconfidence would be
expected. For instance, if the soccer cue has an ecological validity of about
0.9, and the cue validity matches this, it follows from PMM theory that
confidence would be around 0.9 in those cases where the soccer cue can
be activated. From the definition of the ecological validity it follows that
the relative frequency of correct answers would be 0.9, too. However,
general-knowledge questions typically are not representative samples from
some domain of knowledge, but are selected to be difficult or even
misleading. The Hyderabad-Islamabad question is an example for a
misleading question. Here, a usually valid cue, the capital cue (Islamabad
is a capital, Hyderabad is not}, leads to a wrong choice: Hyderabad has a
much larger population.

Selecting difficult and misleading questions decreases the number of
correct answers, and ‘overconfidence bias’ results as a consequence of
selection, not of some deficient mental heuristic. To the best of my
knowledge, all previous studies that have demonstrated overconfidence in
general knowledge have used selected questions: this explains the stability
of the phenomenon against warning, monetary incentives, and French
champagne. Here are Several novel predictions.

Novel predictions

Prediction 1. Confidence and representative sampling

Assume (1) well-adapted PMMs as above, and (2) use a representative
sample of questions from some knowledge domain. Then, PMM theory
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predicts that overconfidence will disappear. We have tested this prediction
using random samples from the reference class ‘all cities in Germany with
more than 100,000 inhabitants’ (Gigerenzer et al., 1991). In Experiment
1, *overconfidence bias’ decreased from 13.8 per cent in a set of selected
questions to 0.9 per cent in a representative sample; in Experiment 2 this
decrease replicated from 15.4 per cent to 2.8 per cent. Juslin (in press, a)
independently confirmed this novel prediction using random samples from
several other domains of knowledge.

Prediction 2. Frequency judgements and selected sampling

Recall that PMM theory implies that frequency judgements such as ‘How
many of the last fifty questions do you think you got right?’ are solved by
a PMM with a different reference class (e.g. other general-knowledge
tests). Assume (1) that the PMMs for a frequency task are well adapted
and (2) use a set of questions that are representative for this reference
class. Because the typical sets of general-knowledge questions used in
earlier research are representative for this reference class, frequency
judgements should be accurate. We have tested and confirmed this novel
prediction (see Table 11.1).

The crucial point is that confidence and frequency judgements refer to
different kinds of reference classes. The same set of questions can be
representative with respect to one reference class, and at the same time
selected with respect to the other class. Thus a set of fifty general-
knowledge questions of the city-type may be representative for the
reference class ‘general-knowledge questions’, but not for the reference
class ‘cities in Germany’ (because city pairs have been selected for being
difficult or misleading). Asking for a confidence judgement summons up
a PMM based on the reference class ‘cities in Germany’; asking for a
frequency judgement summons up 2 PMM based on the reference class
‘sets of general-knowledge questions’.

Prediction 3. Underestimation in frequency judgements

We use here the situation of prediction 1 to deduce a condition in which
frequency judgements underestimate the true frequency of correct answers.
If a PMM for frequency judgement is well adapted to its reference class
(i.e. sets of selected items), but the actual set of questions is not
selected, then we expect frequency judgements to be underestimations of
true frequencies. We have tested and confirmed this novel prediction
(Gigerenzer et al., 1991). In Experiment 1, the difference between
estimated and true frequency of correct answers decreased from —2.4 per
cent (set of selected items, see Table 11.1) to —11.8 per cent; and from
—4.2 per cent (see Table 11.1) to —9.3 per cent in Experiment 2.
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Further novel predictions can be derived from quantitative simulations
of PMM theory. Here is one last example. The prediction is about
percentage correct, that is, about correct choice rather than about
confidence or frequency judgements, on which we have focused so far.

Prediction 4. When little knowledge is as good as good knowledge

Recall that in the experiments just reported, our subjects were German,
and they were answering questions about German cities. Their mean
percentage of correct answers varied between 70 per cent and 75 per cent
(for representative samples of cities). Assume we take a new sample of
German students who are just as good as the earlier ones — they are
familiar with German cities and know the relevant probability cues. We
do the same kind of experiment; the only difference is that we give them
questions about an environment which is highly unfamiliar to them: cities
in the USA. More precisely, we take the 75 largest cities in the USA, draw
a random sample of 100 pairs, and give these 100 questions to our German
subjects. What would you predict? ,

All theories of overconfidence I am aware of are mute on the issue of
percentage correct. All the people I have asked so far concluded that
percentage correct will be much lower when subjects answer these 100
questions about foreign cities. From our simulations with PMM theory, we
derived a quite different and surprising prediction: subjects will do just as
well with American as with German cities. That is, their percentage correct
will be the same for German and US cities. I will deduce this prediction
here by a simplified calculation.

We take the 75 largest cities in the USA. Assume that our German
subjects have not even heard of half of these, such as Mesa, Mobile, and
Shreveport, and that they know nothing about the other half, except that
they have heard of these cities. Thus, their PMM is poor; the only
probability cue it can generate is the familiarity cue, that is whether one
has heard of a city or not. This familiarity cue is of high cue validity, but
it plays almost no role in judgements about German cities, because most
of our subjects have heard of all these German cities. Thus, it can rarely
be activated. The point is that for judgements about US cities, the
familiarity cue has a high activation rate. To be precise, if half of the US
cities are familiar, the activation rate is 50.7 per cent.” What is the validity
of the cue? Pretests have shown that the cue validity is around 0.90.° Thus,
we have about 50 per cent of questions where the familiarity cue can be
activated, and S50 per cent where it cannot (because either the names of
both cities are known or both unknown). For the first group, we expect 90
per cent correct — given a cue validity of 0.90 — that is, in absolute terms,
45 per cent correct answers. In the other group, we expect by mere
guessing an additional 25 per cent correct answers, that is, altogether, 70
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per cent correct answers. This value is counterintuitively large. Note that
this value is in the range of the percentage correct for German cities
(70-75 per cent), although it has been calculated on the assumption of no
specific knowledge. Any such knowledge (e.g. that New York is larger
than Boston} will add on to this estimate.

Thus, PMM theory makes a counterintuitive prediction: in the situation
described, German subjects will get about the same percentage correct in
judgements about unfamiliar US cities as in judgements about German
cities.

Horst Kilcher, Ulrich Hoffrage, and -1 conducted an experiment.
Fifty-six subjects each answered 200 questions of the Heidelberg—Bonn
type, 100 being a random sample of city pairs from the 75 largest US
cities, the other 100 being a random sample from the 75 largest German
cities. Half of the subjects got the questions about the German cities first,
the other half those about US cities. Consistent with our earlier experi-
ments, mean percentage correct was 75.6 per cent for German cities. But
what was the percentage correct for judgements about US cities?

Table 11.5 shows that mean percentage correct for US cities was 76 per
cent, that is, about the same as for the German cities about which our
subjects had considerably more knowledge. This result follows from PMM
theory. Here, we have an interesting situation, where quite limited
knowledge (but not no knowledge) produces the same good performance
(percentage correct) as quite good knowledge.

To summarize my second part: I have briefly presented PMM theory,
which specifies the cognitive processes underlying choice, confidence, and
frequency judgements. The theory implies conditions under which over-
confidence appears: either a PMM for a task is not properly adapted to a
corresponding environment (for example, cue validities do not correspond
to ecological validities), or the set of objects used is not a representative
sample from the corresponding environment, but is selected for difficulty.
In our experiments, overconfidence disappeared when random samples
instead of selected samples were used, which is consistent with the latter
explanation. Thus, the source of overconfidence seems to be in the relation
between the sample of objects used in the task and the reference class in
a corresponding environment. Overconfidence does not seem to be located
in the relation between PMMs and corresponding environments (that is,
in a low correspondence between cue validities and ecological validities).

Table 11.5 Mean percentage of correct answers

us . German
Mean percentage correct 76.0 75.6

{SE,=0.7) {SE,=0.9)
Mean confidence . 72.3 795

{SEn=1.0} (SEm=0.8)
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PMM theory specifies conditions under which the ‘robust’ overconfid-
ence effect of the last fifteen years appears, disappears, and even inverts.
One can no longer speak of a general overconfidence bias, in the sense
that it relates to deficient processes of cognition or motivation. I have not
dealt here with how the theory explains the second robust finding in the
literature — the hard—easy effect (that is, overconfidence increases with
item difficulty). I will simply mention that the theory also provides an
explanation for the hard—easy effect on the same principles, and specifies
conditions under which it disappears or even inverts. Juslin (in press, b)
has tested and confirmed a prediction from PMM theory that specifies
conditions that make the hard-easy effect disappear (Gigerenzer et al.,
1991: 512). Simulations with PMM theory have led us to explain several
anomalies in the literature, and to integrate earlier explanatory attempts
into a comprehensive theoretical framework. For instance, Koriat’s and
colleagues’ (1980) results testing the confirmation bias explanation can be
fully integrated into PMM theory (Gigerenzer et al., 1991). PMM theory
seems to be the first theory in this field that offers a coherent explanation
not only of the effects previously reported in the literature on judgement
under uncertainty, but also for the new results we have obtained in our
experiments.

CONCLUSIONS

Since the Enlightenment, probability theory has been seen as the codifica-
tion of human rationality Consequently, recent experiments suggesting
that human reasoning systematically violates the laws of probability have
been widely cited as evidence for human irrationality. Here are the
arguments of this chapter.

1 I have argued that the cognitive illusions 1 have dealt with are not
genuine illusions, contrary to the assertions in the heuristics-and-biases
literature. They only look like errors from a narrow normative
view about what is right and wrong in reasoning, a view that blurs
the philosophical distinction between single-event probabilities and
frequencies.

2 1 have linked this philosophical distinction with Marr’s (1982) dlstlncuon
between algorithms and information representation, and with the
evolutionary idea that the mind’s algorithms are tuned to frequency
information. This framework suggests how to make apparently stable
cognitive illusions disappear. 1 have demonstrated this using three
cognitive illusions, widely cited as evidence for human irrationality.
The new facts cannot be accounted by the old explanations invoking
heuristics such as representativeness.

3 1introduced the theory of probabilistic mental models (PMM thecry) as
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an alternative explanation of intuitive reasoning, using confidence in
one’s knowledge as an example. The theory explains both old and
new facts. PMM theory postulates a mental algorithm that processes

“frequency information from the environment. This algorithm works

well given only limited knowledge, limited attention, and limited
computational capacities, and is a variant of bounded rationality. The
theory describes reasoning and performance in terms of relations
between a PMM, an environment, and an experimental task. Focusing
on mental algorithms alone, whether they seem to be good or bad ones,
turns out to be too narrow for understanding the mind, and also, for
discussing rationality.
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NOTES

1

The debate between the frequentists and Bayesians was particularly lively before
the 1970s. Today, both sides know each other’s arguments well and the vital
debate has turned into sterile, well-rehearsed argument. The two sides seem to
have quit listening. As Glenn Shafer (1989) complained, statistics departments
no longer provide a forum for the debate, and the main divisions over the
meaning of probability now follow disciplinary lines: frequentists dominate
statistics and experimental social sciences, Bayesians predominate in artificial
intelligence and theoretical economics. ‘Conceptually and institutionally,
probability has been balkanized’ (Shafer, 1989: 15).

2 The attentive reader will have noticed that the frequency version of the Linda

problem asks for a quantitative judgement, whereas the single-case version asks
for a comparative judgement. The latter, however, is an accidental feature of
our choice of example. Single-case versions asking for quantitative judgements
(“What is the probability that Linda is . . . ?”) are known to give about the
same amount of conjunction errors as comparative judgements {Tversky and
Kahneman, 1983},

3 In some studies widely cited as demonstrating base-rate neglect, subjects were

not informed about random sampling. In the “Tom W.’ Problem (Kahneman and
Tversky, 1973), the crucial information about how the personality sketch of Tom
W. was selected, whether randomly or not, is missing. The same holds for the
Gary W. and Barbara T. problems that Ajzen (1977) used. Several studies have
demonstrated that it can make a difference to subjects’ reasoning when they
learn about random sampling (c.g. Ginossar and Trope, 1987; Grether, 1980;
Hansen and Donoghue, 1977; Wells and Harvey, 1977), or, even better, when
they can actually watch random sampling. For instance, the neglect of base
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rates in the engineer—lawyer problem (Kahneman and Tversky, 1973} largely
disappears when subjects themselves do the random sampling (Gigerenzer et al.,
1988). For general critical discussions of the evidence see Berkeley and
Humphreys (1982), Gigerenzer and Murray (1987, Ch. 5), Lopes (1991}, Lopes
and Oden (1991}, Macdonald (1986), and Scholz (1987).

4 Other proposals have been made in the literature to explain the old facts, that
is, the cognitive illusions. I cannot discuss these here, but only mention a few:
the role of conversational principles in the experimenter-subject interaction
(Adler, 1991); the evolutionary idea that there are domain-specific reasoning
mechanisms (e.g. cheating detection) that reflect our inherited social intelligence
rather than a domain-general logic (e.g. Cosmides, 1989; Gigerenzer and Hug,
1992), and the idea that category judgements such as in probability revision
problems and in the Linda problem can be modelled by connectionist
architectures (e.g. Gluck and Bower, 1988).

5 There are 75 cities, 38 are familiar, 37 not (or 37 familiar, 38 not, which leads
to the same result). I two familiar cities are compared, or two unfamiliar ones,
the familiarity cue cannot be activated; it can only be activated if one city is
familiar but the other is not, The number of such familiar—unfamiliar pairs is
38x%37, and the number of all possible pairs is 75X 74/2. Thus, the activation rate
is 38x37 divided by 75x74/2, which is 38/75 or 50.7 per cent. The activation
rate can be determined in this way for each individual separately depending on
the number of familiar and unfamiliar cities. For instance, if not one-half, but
only one-third of the cities were familiar, the activation rate would change
slightly, from 50.7 per cent to 45 per cent.

6 The cue validity of the familiarity cue can be calculated for each individual from
the set of familiar—unfamiliar pairs. The relative frequency in which the familiar
city actually has the larger population is the cue validity.
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