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Abstract
Gibbs states are known to play a crucial role in the statistical description of a systemwith a large
number of degrees of freedom. They are expected to be vital also in a quantum gravitational system
withmany underlying fundamental discrete degrees of freedom.However, due to the absence of well-
defined concepts of time and energy in background independent settings, formulating statistical
equilibrium in such cases is an open issue. This is evenmore so in a quantum gravity context that is not
based on any of the usual spacetime structures, but on non-spatiotemporal degrees of freedom. In this
paper, after having clarified general notions of statistical equilibrium, onwhich twodifferent
construction procedures forGibbs states can be based, we focus on the group field theory (GFT)
formalism for quantum gravity, whose technical features prove advantageous to the task.We use the
operator formulation ofGFT to define its statisticalmechanical framework, based onwhichwe
construct three concrete examples of Gibbs states. Thefirst is aGibbs state with respect to a geometric
volume operator, which is shown to support condensation to a low-spin phase. This state is not based
on a pre-defined symmetry of the system and its construction is via Jaynes’ entropymaximisation
principle. The second areGibbs states encoding structural equilibriumwith respect to internal
translations on theGFTbasemanifold, and defined via the KMS condition. The third areGibbs states
encoding relational equilibriumwith respect to a clockHamiltonian, obtained by deparametrization
with respect to coupled scalarmatter fields.

1. Introduction

The question of how a set of quantumdegrees of freedomof spacetime, described by some fundamental
dynamical theory, gives rise to themacroscopic continuum spacetime of general relativity, is possibly the crucial
open issue in quantum gravity approaches. In quantum gravity formalismswherein these fundamental quantum
degrees of freedom are of amore exotic nature than quantised geometric fields, it is the problemof the
‘emergence’ of spacetime fromnon-spatiotemporal structures. This is the situation inmostmodern approaches,
including thosewhere quantum gravitationalmicrostates can be formulated as quantummany-body states
[1, 2]. Asking this question, then, inevitably leads one to investigate the collective behaviour of these
fundamentalmicro-constituents. This is the realmof statisticalmechanics andfield theory. Thus from the
perspective of emergent spacetime, the role of statisticalmethods in quantumgravity is crucial. Besides being
instrumental to the issue of spacetime emergence, one should also expect that the collective statistical behaviour
of quantumgravity degrees of freedomwill produce novel, non-perturbative effects, appearing asmodifications
of general relativistic dynamics, and relevant for effective gravitational physics.

The specific quantumgravity formalismused in this paper is groupfield theory (GFT) [3–5].With this work
we begin investigations into the statisticalmechanics of the quanta ofGFT, which are fundamental ‘atoms’
containing discrete gravitational information (aswell as discretisedmatter degrees of freedom, depending on the
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specificmodel), and in terms of which quantum spacetime is indeed (tentatively) described as a quantummany-
body system, albeit of a very exotic nature.

One of the foundational concepts in statistical physics is that of equilibrium. Equilibrium configurations are
those that are invariant under time evolution (in turn identified, inflat space, with time translations), generated
by theHamiltonian of the system. But howdoes one define statistical equilibriumwhen there is no preferred
time andHamiltonian? This is the case in classical constrained systems such as general relativity. This is also the
case in quantumgravitational contexts, especially in formalisms that are not based on continuum spacetime
structures, like differentiable spacetimemanifolds etc. This is the open problemof defining statistical
equilibrium in a (non-spatiotemporal) background independent system. Still, since equilibrium states hold a
special place in statistical physics, this is wherewe start, for developing a statisticalmechanical formulation of
quantumgravity within aGFT formalism.

In this workwe aim to construct Gibbs equilibrium states for aGFT system.Whether these states provide a
truly comprehensive characterisation of statistical equilibrium in quantumgravity in general is a different (and
challenging) issue that is not considered here.We also do not analyse here the physical consequences of our
results for a description of (quantum) spacetime or gravity. These are certainly important tasks, which for now
are left to future studies.

What we investigate is the statisticalmechanics of quanta of spacetime themselves as formulatedwithinGFT,
and not the statisticalmechanics ofmatter on a background spacetime offixed geometry (which is well-
understood). Further, this goal should be carefully distinguished from the closely related open issue of
formulating a framework for generally covariant statisticalmechanics, including that of a dynamical
gravitational field. For a nice introduction to these tasks, see [6–9] and references therein, which form also the
conceptual basis for ourwork. Specifically, the conceptual issues (such as timelessness) that one faces when
investigating the statisticalmechanics of general relativistic spacetime, and the statisticalmechanics of pre-
geometric quanta underlying a spacetime (as definedwithin a chosen quantumgravity framework) are similar.
But formally they are two separate issues, even if related.We deal with the latter. This comeswith additional
difficulties in principle due to the lack of familiar spatiotemporal structures. For example, generic configurations
of our quantumgravity systemdo not admit an interpretation as quantised geometric fields. Therefore,
geometric configurations cannot be presumed, and onewould have to look for such phases within the full
statistical description of the quanta of spacetime.

That being said the present work could contribute, even if only implicitly, to the understanding of the
problemof defining a generally covariant statisticalmechanics in the gravitational context, thus including the
continuum (quantum) gravitational field. But, to spell out this implication and see the consequences for GR and
spacetime physics, onewould need to solve the issue of emergence from this quantumgravity formalism. This is
of course a difficult and an open problem, and also one that we do not directly tackle in this paper, even though
our resultsmay contribute to its solution by providing some useful formal tools. This naturally does notmean
thatwe are solving all related issues, neither about statisticalmechanics for the gravitational field or in a
background independent context, nor about quantum gravity. In fact, the results of this work should be viewed
as implementing suitable definitions of statistical equilibrium, and subsequently offering concrete examples of
Gibbs states, in a (non-spatiotemporal) background independent quantumgravity context based on insights
fromprevious works ([6, 7] and related others) in covariant (spatiotemporal) settings; and as commencing
investigations into the statisticalmechanics of GFT systems.

Overall, the perspective that we hold in order to construct a quantum statisticalmechanical framework for
GFT,which is used thereafter to construct Gibbs states, is to reformulate the system as amany-body quantum
system,where instead of chemical atoms ormolecules, we deal with fundamental, pre-geometric ‘particles’ that
carry gravitational andmatter degrees of freedom. Then, oncewe establish the groundwork for organising its
states in an appropriateHilbert space alongwith the relevant algebra of observables, we define statistical states as
density operators. In the spin network picture, these density operators define statistical states of a systemof
arbitrarily large spin networks, including disconnected configurations, with a variable butfinite number of
nodes offixed valence. The goal is to take advantage of the technical toolsmade available by theGFT formulation
of quantumgravity (spin network) degrees of freedom to apply close-to-standard definitions of equilibrium to
defineGibbs states in a fully background independent context, for the very fundamental (candidate) building
blocks of quantum spacetime, andwithin the full theory (as opposed to special approximations). Specifically,
these tools offer advantages at two levels. First, the suggested formal description of spacetime as amany-body
quantum system allows us to handle these issues within amathematical formalism thatmaintains close analogies
with that used formoremundane physical systems. This, in away, permits us tomove forward evenwithout
having fully solved all the conceptual issues implicated in the problem. Second, while GFTs are fully background
independent from the point of view of spacetime physics (spacetime itself has to be ‘reconstructed’ inmost of its
features), theirmathematical definition asfield theories on Lie groupmanifolds allows us toworkwith the
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background structures of the groupmanifold playing technically a very similar role towhat spacetime structures
(spacetimemetric, topology, etc) play in usualfield theories, e.g. for condensedmatter systems.

The paper is organised as follows. Section 2 discusses the issue of statisticalmechanics and background
independence, and its relevance to groupfield theories, specifically to put into context thework of this paper. In
section 3 the construction of group field theories is presented.With the relevant structures and definitions in
place, in section 4we present a quantum statisticalmechanical framework for the Fock representation ofGFTs
and subsequently construct examples ofmodel-independent, structural Gibbs states in sections 4.1 and 4.2. In
section 5we give a third definition of aGibbs state of relational type, based on deparametrization of the original
GFT system to define a canonical systemwith a clock structure. Finally, we summarise our results and offer some
outlook.

2. Background independence, statistical equilibriumandGibbs states

What characterises statistical equilibrium? In a non-relativistic system, the answer is unambiguous. Equilibrium
states are thosewhich are stable under time evolution generated by theHamiltonian Ĥ of the system. In the
algebraic description, this property is possessed by states which satisfy the Kubo–Martin–Schwinger (KMS)
condition [10, 11]. Forfinite systems, KMS states take the explicit formofGibbs states, whose density operators
have the standard formproportional to e Hb- ˆ . This characterisation of equilibrium is unambiguous because of
the special role played by time and its conjugate energy in non-relativisticmechanics, where time is absolute,
modelled as the unique, external parameter encoding the dynamics of the system.

Investigating this question in a background independent context becomesmuchmore challenging and
interesting, and a complete framework for statisticalmechanics in this setting is stillmissing. The primary reason
is themodified role that time plays in such theories [12]. Classical gravity as described byGR is diffeomorphism
invariant (aka generally covariant). Thismeans that space and time coordinates have no physical significance.
They are simply gauge.More physically, all geometric quantities, in particular temporal intervals, are dynamical,
and generic solutions of theGRdynamics do not allow to single out any preferred time (or space, for what
matters) direction. This is the content of background independence inGR, and othermodified gravity theories
with the same symmetry content. Specifically, the time coordinate is no longer a universal, physical evolution
parameter. In quantumgravity formalisms inwhich an evenmore radical setup is invoked, inwhich even the
familiar spatiotemporal structures of GR like the differentialmanifold, continuummetric andmatterfields, etc
have disappeared, the absence of an unambiguous notion of time evolution is evenmore conspicuous. How can
one define a thermal (statistical) state and specifically, an equilibrium state, then?

There are different proposals in the literature for a definition of statistical equilibrium that could be general
enough to apply to generally covariant systems; and (independent of the exact context, be it classical or quantum,
particlemechanics orfield theory) these can be observed to be based on different conceptual underpinnings (and
often on a combination of the same) that characterise thewell-understood non-relativistic equilibrium
configurations. The following are few of these principles: KMS condition andTomita–Takesaki theory (‘thermal
time’ hypothesis) [6, 7], where in some sense the problem is turned upside down, with a suitable identification of
an equilibrium state used to define a notion of time, adapted to that state; ergodic principle [8, 13]; principle of
optimisation of a relevant thermodynamic potential (entropy or free energy) [8]; nature of the split into and
interactions among the subsystems responsible for thermalisation [9, 13–15].

Group field theories are also background independent in the radical sense specified above for ‘spacetime-
free’ quantumgravity formalisms, but they also present specific peculiarities, whichwill be crucial in our
analysis. The base space for theGFTfields consists of Lie groupmanifolds, encoding discrete geometric aswell as
matter degrees of freedom. This is not spacetime, and all the usual spatiotemporal features associatedwith the
base space of a standardfield theory are absent. As in other covariant formalisms, a physically sensible strategy is
to use internal dynamical variables, for examplematterfields, as relational clockswith respect towhich one
defines evolution. Even in this case though, one should not expect the existence of a preferredmaterial clock,
nor, having chosen one, that this would provide a ‘perfect’ clock,mimicking precisely an absolute time
coordinate. In the end, like standard constrained systems, GFTs too are devoid of an external or even an internal
variable that is clearly identified as a preferred evolution parameter. However, the close-to-standardQFT
language used inGFTs, with its Fock space and in particular the presence of a basemanifold (the Lie group, with
associatedmetric and topology) imply the availability of somemathematical structures that are crucially shared
with spacetime-basedQFTs; this is amain advantage over otherQG formalisms.

In this paper, we consider Gibbs states as the relevant equilibrium states, i.e. states of the exponential form
e - (for some not necessarily aHamiltonian). Before delving into the details of theGFT formalism and how
we define such states within it, we discuss below the general ideas guiding our construction. The following
discussion is not restricted to theGFT formalism, or even to classical or quantum sectors. Rather it attempts to
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present in a coherent way the perspectives and strategies employed in past studies ([6–9, 13, 14] and related
works) for definingGibbs states and statistical equilibrium in a background independent system.

Gibbs statistical states can be categorised according to twomain criteria:

A. whether the state is a result of considering an associated pre-definedflow/transformation of the system
or not;

B. the nature of the functions or operators (in the exponent) characterising the state, specifically whether these
quantities encode the physical dynamics of the system, thus being in this sensemodel-dependent, or not.

Categories A andB aremutually independent, in the sense that a single system could simultaneously be both
of types A andB.Details of these two categories, their respective subclasses and related examples follow.

Let usfirst look at A, which can be considered at a slightly higher footing than Bbecause the contents of
classification under this category are the actual construction procedures or the ‘recipes’used to arrive at a
resultantGibbs state.Moreover, it is withinAwherewe observe that thewell-known Jaynes’ entropy
maximisation principle [16] could prove to be especially useful in background independent contexts such as in
non-perturbative quantumgravity frameworks. Under A,we can identify two recipes orwayswithwhich to
characterise a Gibbs state depending on the information at hand for a given system.

A1.Dynamical: use of KMS condition
TheKMS condition [10, 11, 17] is formulated in terms of a 1-parameter group of automorphisms of the

system. AKMS state encodes stationarity with respect to this 1-parameter flow. Thus, if in the given description
of a system, one can identify a relevant set of transformationswith respect towhich one is interested in defining
an equilibrium state, then one asks for the state to satisfy the KMS conditionwith respect to a 1-parameter (sub-)
group of the said transformations to arrive (forfinite systems) at aGibbs state e r µ b- , where  is the
generator of the flow. The (inverse) ‘temperature’β enters formally as the periodicity in the flowparameter,
regardless of the interpretation of the latter.

Thus, this characterisation is strictly based on the existence of a suitable pre-definedflowof the
configurations of the system and then imposing theKMS conditionwith respect to it. These transformations
could correspond to physical or structural properties of the system (see the discussion of category B below).
Simple examples are, respectively, the physical time flow eiHt in a non-relativistic systemwhereH is the
Hamiltonian, which gives rise to an equilibrium state e−βH; and aU(1) gaugeflow eiNθwhereN is the number
operator, which leads to an equilibrium state e−βN.

A2. Thermodynamical: use of Jaynes’ constrained entropymaximisation principle
Consider a situationwherein the given description of a systemdoes not include relevant symmetry

transformations, or (even if such symmetries exist, which they usually do) that we are interested in those
properties of the systemwhich are not naturally associated to sensibleflows, in the precise sense of being
generators of these flows. An example of the latter is a geometric operator such as area or volume. These are of
special interest in the context of quantumgravity since theymay be instrumental for statistically extracting
macroscopic geometric features of spacetime regions fromquantum gravitymicrostates. In such cases then,
what characterises aGibbs state andwhat is the notion of ‘equilibrium’ encoded in it?

In order to construct aGibbs state here, wherewemay only have access to a set of constraintsfixing themean
values of a set of functions or operators l l l 1,2, á ñ =r = ¼{ } (in classical or quantumdescriptions respectively),
onemust rely on Jaynes’ principle [16] ofmaximising the entropy S lnr r= -á ñr[ ] while simultaneously
satisfying the above constraints, via themethod of Lagrangemultipliers. As is standard, the angular brackets here
denote the statistical average in a statistical state ρ defined on the state space (be it a phase space in the classical
description or aHilbert space in the quantumdescription) of the system.Undertaking this procedure, one
arrives at aGibbs state e l l lr = b-å (where one of theʼs is the identity fixing the normalisation of the state).
Here the ‘temperatures’βl enter formally as Lagrangemultipliers. The averages l with parametersβl, and other
quantities derived from them, can be understood as thermodynamic variables defining amacrostate of the
system, and can take on the same formal roles as in usual statisticalmechanics and thermodynamics. But their
exact interpretationwould depend on the context. The identification and interpretation of such relevant
quantities is in fact the non-trivial aspect of the problem, particularly in quantumgravity.

This characterisation is strictly independent of the existence of any pre-defined transformations or
symmetries of the underlyingmicroscopic system, as long as there is at least one function or operator (identified
as relevant)whose statistical average is assumed (or known) to befixed at a certain value. Consequently, this
characterisation could bemost useful in background independent settings, exactly since it is based purely on
information-theoreticmethods, in the same spirit as introduced by Jaynes. Finally, we note that in this
characterisation a notion of equilibrium is implicit in the requirement that a certain set of observable averages
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remain constant, i.e. it is implicit in the existence of the constraints l l á ñ =r (see for example the discussion
in section II in [18]).

Let us summarise the above classifications andmake additional remarks about category A. The aim is to
construct Gibbs states for a systemofmany quanta (whatever theymay be), and the two classifications,
dynamical and thermodynamical, under category A offer us two formally independent strategies to do so. Based
on our knowledge of the system, wemay prefer to use one over the other. If there is a known set of symmetries
with respect towhich one is looking to define equilibrium, then the technical route one takes is to construct a
state satisfying theKMS conditionwith respect to (a 1-parameter subgroup of) the symmetry group. The result
of using this recipe (in afinite system) is aGibbs density operator e b- , characterised by the generator  of the
1-parameter flowof these symmetry transformations. On the other hand, if one does not have interest in or
access to any particular transformations orflows of the system, but has a partial knowledge about the system in
terms of a set of observable functions or operators whose statistical averages are fixed to certain values

l l á ñ =r , then one employs Jaynes’ principle ofmaximising the (Shannon or vonNeumann) entropy under
the given set of constraints. The resultant statistical state is again of aGibbs exponential form e l l lb-å , which is
now characterised by the set of observables l .

It is important to remark on a particular subtlety. Given aGibbs state, constructed say from recipe A1, then
once it is already defined, it also satisfies the thermodynamic condition ofmaximumentropy. Similarly, aGibbs
state defined on the basis of A2, after it is constructed also satisfies theKMS conditionwith respect to aflow that
is derived from the state itself. Let’s look at a couple of examples. Consider the standard non-relativistic Gibbs
state∝e−βHwhich is constructed by satisfying theKMS conditionwith respect to unitary time translations eiHt.
That is, this state is classified as A1 since its construction relies on theKMS condition. But, once this state exists,
it is also the one thatmaximises the entropy under the constraint H Eá ñ = , alongwith a normalisation
condition.Now consider an example of a state∝e−β V, whereV is say a geometric volume observable. This state
is derived as a result ofmaximising the entropy under the constraint V vá ñ = (and normalisation), hence it is
classified as A2.Once this state is defined, one can extract aflow from the state, with respect towhich it will satisfy
the KMS condition4 . This is themodularflow eiβ V τ, where τ is themodularflowparameter5 . Therefore,
classifications A1 andA2 refer to the construction procedures employed as per the situation at hand.Once a
Gibbs state is constructed using any one of the two procedures, then technically it will satisfy both theKMS
conditionwith respect to aflow6 , andmaximisation of the thermodynamic entropy.

Now, given that aGibbs state can be constructed as a result of either the dynamical or the thermodynamical
recipe, one can consider the nature of the functions or operators that characterise it. This is the content of
classification under category B.

B1. Physical: is associatedwith the physical dynamics of the systemunder consideration, i.e. it depends
on a specific choice of dynamical equations ofmotion, thus in this sense ismodel-dependent. In the non-
covariant setting, would simply be theHamiltonian of the system. In a covariant setting, it ismore subtle. For
a covariant system that is deparametrizable with a suitable choice of a good clock (see section 5 for discussion),
then would be the associated clockHamiltonian.Overall, this particular classification refers explicitly, and in
the definition of theGibbs state (thus, before extracting physical consequences of the given definition) to the
physical dynamics of the system, as encoded in a relevantmodel-dependent function or operator, whether it be a
conventionalHamiltonian or a constraint.

B2. Structural: aremodel-independent quantities that do not refer directly to the specific physics of the
system. Examples of structural transformations are generic rotations or translations of the basemanifold of the
theory. Examples of structural quantities not directly associated to transformationswould be geometric
observables like area or volume.

Four different types of Gibbs states can be constructed from combinations of classifications under categories
A andB. Let us give some examples, including the ones wewill construct in the following.A1-B1:Gibbs states
with respect to physical time translations, as considered in standard non-relativistic statisticalmechanics; Gibbs
states in a systemdeparametrized with respect to a relational clock time, as will be constructed in section 5 in the
case of GFT.A2-B1: examples that are considered in [8]7; in the context of GFT, this type of state as defined

4
In the context of general covariant statisticalmechanics, the utility of this observation has been presented in [6, 7], and is the crux of the

thermal time hypothesis.
5
In a classical phase space description of a system, themodularflow is the integral curve of the vector fieldXV defined byω(XV)=−dV,

whereω is the symplectic form andV is a smooth function. In this case naturally theflow is not written in terms of a unitary operator (as done
above), but as the vector field∂τ. In the quantumC* algebraic description (or in a specificHilbert space representation of it), themodular
flow is that of the Tomita–Takesaki theory.
6
Whether theflowparameter has a reasonable physical interpretation is a separate issue, andwould be expected to depend on the specific

context.
7
Itmust be noted that in the examples in this reference the initial identification ofwhich quantities are relevant is still based on requiring

stationarity along the orbits of some gauge symmetries.
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through the use of a dynamical constraint would correspond to a statisticalmechanical reformulation of the
partition function for spin network states [19], which is the focus of a parallel work [20].A1-B2: early examples
in a non-gravitational setting belong to thework by Souriau (see recent review [21]); in section 4.2 of the present
workwe construct Gibbs states (which are shown to be the uniqueKMS states in our setting) corresponding to
translation automorphisms of the full GFT algebra (as introduced in section 3.2).A2-B2: such states are
considered in [8, 22]with regards to geometric area and volume operators; here in section 4.1, we construct a
Gibbs state characterised by a geometric volume operator defined on theGFTHilbert space.

Note that for real systems [23] offinite size, theGibbs state characterisations of A1-B1 andA2-B1 are
equivalent. For infinite systems, there are configurationswherein the two are not equivalent. These are called
metastable states which are locally at equilibrium (satisfy the KMS condition) but not globally (do notminimise
the free energy density of the system). This typically occurs in systemswith long-range interactions. Also for
infinite systems, it is well-known that equilibrium states are not of the exponential Gibbs form, and are algebraic
states that aremore generally characterised by theKMS condition (and entropymaximisation for global
equilibrium configurations).

3.Groupfield theory

AGFT [3–5] describes a systemof dynamicalfields, for which the configuration space consists of suitable group
manifolds, instead of spacetime as is the case for standard field theories. The dynamics is encoded in an action
functional. The simplest class ofmodels are scalar theories, with fields G: d j  defined on (several copies
of) the local gauge group of gravityG. This is the Lorentz group SL 2, ( ) in 4d or its Euclidean counterpart Spin
(4). SU(2) is often used as the relevant subgroup in the context of quantumgravity, especially formodels
connected to loop quantum gravity8.

The quanta of the corresponding quantumGFT field are interpreted (under a set of geometricity conditions)
to be polyhedra [24]with dnumber of faces. In themost relevant case of quantumgravity in 4 (would be)
spacetime dimensions, themost developedmodels are based on simplicial structures and theGFT quanta are
interpreted as tetrahedra. In the dual pictorial representation, the same quanta are d-valent nodes with open
links. The d links are labelled by group elements g g g g G, , , d

d
1 2º ¼ Î( ) which can be understood (again, in

quantumgravitymodels based on simplicial structures) as parallel transports of the gravitationalG-connection
(discretised on the links of a cellular 2-complex). Equivalently, the d faces of the polyhedra can be labelled by the
Lie algebra-valued flux variables [25, 26], which are the fluxes of the conjugate tetradfield (discretised on the
faces of the dual polyhedral complex), conjugate to the group elements9. Thefluxes encode the volumes of the
faces. Such algebraic data labelling theGFT quanta or ‘particles’ thus encode (discrete) geometrical information.
Contrast this with standard field theories where the particles are labelled by spacetime coordinates, identifying
points in amanifold offixed geometry.

With these fundamental ‘atoms’, extended space (kinematical states via composition) and spacetime
(dynamical processes via interactions)with arbitrary geometry and topology can in principle be constructed.
Several polyhedra can be glued along shared faces to form a polyhedral complex. A relevant example is again in
simplicialmodels for 4d gravity, where tetrahedra combine along shared triangles to form a three-dimensional
simplicial complex. In the language of quantisedGFT, this corresponds to a quantum statemade up of several
GFTquanta, i.e. a ‘multi-particle’ state achieved via composition of several single-particle (tetrahedron) states
(the gluing being encoded in suitable restrictions on themulti-particle wavefunction). In the dual picture, a
multi-particle GFT state corresponds to a collection of nodes with labelled links, whichwhen glued to each other
form an extended labelled graphwith valence d. In the canonical gravity literature, this is simply a spin network
of aG-connection [27]. Furthermore, the interactions of the quanta as dictated by the action gives rise to a
discretised spacetime or a spinfoam. The picture thatwe have is thus of a systemof quanta whose states and
processes as defined by the associatedGFT corresponds to discretised spacetimes of arbitrary geometry and
topology. AGFT is thus a quantumfield theory of discrete geometrical building blocks (for simplicial
interactions, of simplicial geometry) [4, 5, 28].

8
GFTmodels of quantumgravity aremost often defined to possess an additional symmetry, implemented at the level of eachGFTfield,

which justifies the above discrete geometric interpretation. This is the so-called ‘closure constraint’, which is implemented as a gauge
invariance of eachGFTfield under the diagonal right (or left) action of the groupG, effectively reducing the domainmanifold to G Gd´ .
While conceptually and physically important, this property is not crucial for the problemwe tackle in this paper, nor for ourmathematical
construction of equilibrium states, which can be easily adapted to it. Therefore, we do not deal with it explicitly in the following.
9
Even though these geometric degrees of freedom, group and flux variables, are understood as eventually generating the continuum

connection and tetradfields respectively, we note that their occurrence and definitionwithinGFT is independent of any embedding into
continuum structures via a discretisation. This is one reasonwhy, unlike in LQG, one does not impose on theGFT states any cylindrical
consistency conditions, at least in the definition of the theory. Instead, theworking philosophy inGFT is that the corresponding continuum
structures be generated dynamically.
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The above description concernsmodels of ‘pure geometry’. In the present work, we are concerned alsowith
groupfield theories which generate discrete spacetimes coupled to (discretised) real scalarmatter fields. Oneway
to couple a single real scalar degree of freedom, used in recentGFT literature, in particular for cosmological
applications [29–31], and detailed in [32], is by extending the original configuration spaceGd, encoding purely
geometrical data, by . By extension, nnumber of scalarfields can be coupled by considering amodel based on
Gd n´ . Doing this we have assigned to eachGFTparticle additional n real numbers representing the values of
thefields. Consequently, aGFT Feynman diagram (d-dim polyhedral complex) is enriched by n scalar fields that
are discretised on the vertices of the graph dual to (d−1)-dimhypersurfaces. Thuswe are concernedwith a
GFTfield defined (for arbitrary natural numbers d>0 and n�0) as

G: . 3.1d n j ´  ( )

The primary reason for includingmatter inGFTs is obvious: any fundamental theory of gravitymust include (or
must be able to generate at an effective level)matter degrees of freedom if it is to eventually realistically describe
theUniverse. Also, as discussed in the previous section, in background independent systems likeGFTs, as is well-
known [33], a reasonable way of defining physical quantities is by constructing relational observables using
material reference frames. InGFT, such relational reference frames using scalarfields have indeed been used in
the context of cosmology [29–31]. In the present work, we use them for a different, if related, purpose. In
section 4.2we defineGibbs states with respect to internal translations in these scalar fields within the framework
of quantisedGFT. Later on in section 5, we consider the issue of deparametrizing the full GFT systemwith
respect to one of these several scalar fields to define relational dynamics. The resulting relational clock
Hamiltonian is used to construct physical relational equilibrium states.

3.1. Fock space andGFT algebra
Adopting the second quantisation scheme [17, 34], multi-particle states of the quantumfield g ,j f( ) can be
organised in a Fock space F generated by a Fock vacuum FW ñ∣ and the ladder operators10 , *j j associatedwith
theGFTfield [19, 35]. A single quantum is created by acting on the Fock vacuumwith the creation operator

g g, , . 3.2F*j f fW ñ = ñ( )∣ ∣ ( )

The Fock vacuum is the statewith no quantumgeometrical ormatter degrees of freedom, satisfying
g , 0Fj f W ñ =( )∣ for all arguments. g , fñ∣ is the state of a d-valent nodewhose links are labelled by group

elements g g g, , d1º ¼( ) and the node itself with a set of real numbers , , n1f f fº ¼( ). Then, a generic single-
particle state withwavefunctionψ is given by

g g gd d , , ,
Gd nò òy f y f fñ = ñ∣ ( ) ∣

where g gd dI
d

I1=  = is theHaarmeasure11, d da
n

a1f f=  = is the Lebesguemeasure, andψ is an element of

the single-particleHilbert space12 L Gd n2 = ´( ). For d=4, this is the space of states of a quantum
tetrahedron [36]with additional real numbers attached to it.

The complete pre-Fock space is N
N

0 Ä⨁ , where NÄ describes theN-particle sector. The Fock space is
the symmetric projection of this.We (choose to) impose on our states symmetry under arbitrary particle
exchanges, i.e. bosonic statistics. In the spin network picture, this condition reflects the graph automorphism of
vertex relabelling and is a natural feature to require. For the case at hand then, theHilbert space for bosonicGFT
quanta is the Fock space

sym . 3.3F
N

N

0

 


= Ä⨁ ( )

We stress again that this Fock space contains arbitrary spin network excitations [19], thus all the quantum
gravity structures are sharedwith loop quantum gravity (even if organised in a different way). Thismeans that
defining proper statistical equilibrium states on this Fock space trulymeans defining non-perturbative statistical
equilibrium states in a fully background independent context andwithin a fundamental theory of quantum
gravity based on spin network states.

10
Formost part of this paper sincewework only in the quantum setting, we omit the use of a hat ^ to distinguish an operator, for

convenience. But since section 5 considers both the classical and quantum sides, there hats are employed to avoid confusion.
11

G is taken to be locally compact so that theHaarmeasure is defined, even though it would be finite only for compact groups.We also
requireG to be unimodular (for a later proof). Both these properties are satisfied by the physically relevant cases of SL 2, , Spin 4( ) ( ) and
SU(2).
12

Even for compactG, the configuration space is non-compact along . Regularisation then requires restricting to a compact domain.We
shall return to this when discussing theGFTWeyl algebra in the next section.
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The ladder operators (which take us between the differentmulti-particle sectors) satisfy the commutation
relations (CRs) algebra13

g g g g, , , , , , , 0, 3.4
1 1 2 2 1 2 1 2

* * *j f j f d f f j j j j= - = =[ ( ) ( )] ( ) ( ) [ ] [ ] ( )

where,  and δ are delta distributions for functions onGd and n .
Spin-momentumbasis.The spin-momentumbasis, which is a result of harmonic analysis on Gd n´ , is

used in the examples considered later and is thus summarised here. TheGFT field transforms in the familiar way

g
p

D g p,
d

2
e , , 3.5

n
G

p

Irreps

i .
nò åj f

p
j c=

c
c

f

Î

-( )
( )

( ) ( ) ( )
( )

where D gc ( ) are normalisedWigner expansionmodes. The corresponding ladder operators would also
transform in the sameway. Formally p enters as the Fourier conjugate tof but in light of interpretingf as a
scalarfield, pwould be its corresponding observablemomentum.Modes c are the data characterising the
irreducible representations ofG. For example, forG=SU(2), themodes J m n, ,c = ( ) (or J m, , ( ) for
gauge-invariantj, where  is the intertwiner basis) denote the usual spin data of a single node.

The algebra structure (3.4) is preserved, and now takes the form

p p p p, , , 2 , , , 0, 3.6n
1 1 2 2 1 21 2

* * *j c j c p d d j j j j= - = =c c[ ( ) ( )] ( ) ( ) [ ] [ ] ( )

where
1 2

dc c is theKronecker delta, p p
1 2

d -( ) is theDirac delta distribution on n , and p, 0Fj c W ñ =( )∣ for
all p,c .

Occupation number basis.The Fock space basis that is utilised later in the paper is the orthonormal
occupation number basis [19, 34]. It is particularly useful because it is the eigenbasis of the number operator in

F . This basis sees only howmany particles occupy a givenmode c. Utilising theCR relations (3.6), a
normalisedmulti-particle state with nc number of particles in a single-mode c is

n
n

1
. 3.7n

F*jñ = W ñc
c

c
c∣

!
( ) ∣ ( )

Then, a genericmulti-particle state occupying severalmodes
i

c is

n n n n
n

, , ..., , ...
1

. 3.8
i i

n
F

i i

i
i

i
1 2

* jñ º ñ =


W ñc c c c
c

c
c∣{ } ∣

( !)
( ) ∣ ( )

The number operator for a singlemode, N *j j=c c c, counts its occupation number, N n n n
j i j i

ñ = ñc c c c∣{ } ∣{ } .

The total number operator, N N= åc c, naturally counts the total number of particles in a given

state, N n n nji j i
ñ = å ñc c c∣{ } ( )∣{ } .

Operator algebra.The 2nd quantised operators (see [19] formore details, especially in the context of LQG)
are elements of the unital *-algebra generated by I, ,*j j{ }, where I is the identity operator on F . These
elements are in general polynomial functions I, ,* j j( ) of the three.We denote this algebra by F which acts
on F .

Operator norm is not defined on F because of the unboundedness of the bosonic ladder operators. As is
standard in algebraic treatments ofmany-body quantum systems, we insteadworkwith exponentiated versions
of thesewhich results in a unital C*-algebra, theWeyl algebra.

3.2.Weyl formulation ofGFT algebra
The followingWeyl reformulation of theGFT system is based on thewell-known literature on algebraic
quantumfield theory [17, 23] surrounding the Fock representation ofmany-body, non-relativistic systems,
suitably adapted to define a framework forGFT required to do statisticalmechanics. This formulation has been
defined and developed inmore detail in [37].

Thefieldsj and *j are operator-valued distributions. The corresponding operators are defined by smearing
themwith test (wave) functions like so

f g f g g f g f g gd d , , , d d , , , 3.9
G Gd n d n

* *
 ò òj f f j f j f f j f

´ ´
( ) ≔ ( ) ( ) ( ) ≔ ( ) ( ) ( )

where f C L
dense

2 Î Ì¥( ) ( ), and Gd n Ì ´ is a compact regionwithin the full base space that includes
the identities. C ¥( ) is the dense subspace of smooth L2 functions defined on . Then theCRs (3.4) take the
following form

13
These CRswould look slightly different if the closure condition is imposed onGFT fields and quanta.
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f f f f f f f f, , , , , 0, 3.101 2 1 2 1 2 1 2* * *j j j j j j= = =[ ( ) ( )] ( ) [ ( ) ( )] [ ( ) ( )] ( )

where f f g f g f g, d d , ,1 2 1 2ò f f f=( ) ( ) ( ) is the L2-inner product.
The choice of the space of test functions usually depends on the situation at hand.We choose it to be the

space of those functions in the single-particle L2 spacewhich are smooth and have compact support. In fact, we
restrict our single-particleHilbert space to only smooth L2 functionswith compact support, which are thuswell-
defined in this simple sense (see [37] formore details). So fromhere on, we take as the single-particleHilbert
space C = ¥( ), which is also the space of test functions. An alternative choice would be thewidely used
space of Schwartz functions. Another standard choice is to use the space of solutions of a specificmodel as the
space of test functions.

Bosonic ladder operators are unbounded in the operator normon F (and thus are only densely defined).
Therefore let us define hermitian operators (in the commondense domain ofj and *j ),

f f f1

2
*j jF +( ) ≔ ( ( ) ( )), and f f f1

i 2
*j jP -( ) ≔ ( ( ) ( ))14 ,15, and consider their exponentiations,

W f eF
fiF( ) ≔ ( ) (andW f eF

fi=~ P( ) ( )), which:

• are unitary,W f W f W fF F F
1* = = --( ) ( ) ( ) , and

• satisfyWeyl relations,W f W f W f feF F
f f

F1 2
Im ,

1 2
i
2 1 2= +-( ) ( ) ( )( ) .

That is, W fF f Î{ ( )} defines aWeyl system [17, 38] over in F . It defines a unitary representation of the
GFTCR algebra in the Fock space with generatorsΦ.

Retaining this algebraic structure and forgetting (for now) the generatorsΦwhich lend the concrete
representation, an abstract bosonic GFT system can be defined by the pair , ( ), where is theWeyl algebra16

generated byWeyl unitaries W f f Î{ ( ) ∣ }and  is the space of algebraic states (complex-valued, linear,
normalised, positive functionals on the algebra) over it. The defining relations of this algebra are

W f W f W f W f W f fe e , 3.11f f f f
1 2 2 1

i Im ,
1 2

Im ,1 2
i
2 1 2= = +- -( ) ( ) ( ) ( ) ( ) ( )( ) ( )

where f f,1 2 Î , identity is W 0 = ( ), and unitarity isW f W f W f1 *= = --( ) ( ) ( ). This is a unital C*-
algebra, equippedwith theC*-norm. The benefits of defining a quantumGFT systemwith an abstractWeyl
algebra stem from the fact that some general results can be deduced, which are representation-independent (and
would apply, for example, also to condensate representations, should these turn out to exist, and be unitary
inequivalent to the Fock one [37]). This allows in particular for exploring structural symmetries at the level of the
algebra formulated in terms of automorphisms. In this paper, wewill consider examples of automorphisms of
corresponding to structural symmetries (translations) of the underlying theory. TheKMS conditionwith respect
to these automorphisms then leads to the definition of structural equilibrium states which encode stability with
respect to the corresponding internal flows of the transformation under consideration.

The Fock system is now generated as theGelfand–Naimark–Segal (GNS) representation , ,F F Fp W( ) of the
regularGaussian algebraic state given by W f eF

f 2

4w -[ ( )] ≔
∣∣ ∣∣

. Here F is theGNS representation space which is
identical to the one that we constructed in the previous section directly using the ladder operators, via the
following identities W f W f eF F

fip = = F( ( )) ( ) ( ), for allW f Î( ) . The vector stateΩF is the cyclic GNS

vacuumgenerating the representation space, F F F

dense
 p W ñ Ì( )∣ . It is the same Fock vacuum thatwas

introduced earlier, the no-space state. Now, for an irreducible representation, whichπF is, the bicommutant

F p ( ) is the full F ( ), the set of bounded linear operators on F . This is simply because the commutant is I
by irreducibility. By the bicommutant theorem, F p ( ) is also theweak and strong closure of F p ( ) in the
respectiveHilbert space topologies. Instead of working directly with theC*-algebra F p ( ), we choose towork
with its closure F ( )17. Thus our kinematic system is defined by a pair consisting of a vonNeumann algebra
and the relevant space of states over it, ,F n  ( ( ) ). Here n is the set of algebraic statesωρ induced by density
operators on F , given by A ATrw r=r [ ] ( ) for all A F Î ( ). SinceπF is faithful, its normal folium n is dense
in the space  of all states, and therefore is the relevant state space to consider.

3.2.1. Translation automorphisms
In section 4.2we shall construct Gibbs states which are at equilibriumwith respect to translations of the system
along the directions of the basemanifold. The definitions and constructions relevant for this are presented
below.

14
SinceΠ( f )=Φ(if ), bothj and *j can be recovered fromΦ alone, which are the generators of this representation.

15
In terms of operatorsΦ andΠ, theCRs take the form, f f f f f f f f f f, i Re , , , , i Im ,1 2 1 2 1 2 1 2 1 2F P = F F = P P =[ ( ) ( )] ( ) [ ( ) ( )] [ ( ) ( )] ( ).

16
Fermionic statistics would correspond to aClifford algebra.

17
Those elements of F which are (made) bounded in the operator norm are then automatically elements of F ( ).
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n -translations.The natural translationmap on n copies of the real line,

T G G

g g

:

: , ,

d n d n 
f f f

´  ´

¢ ¢ +
f

( ) ( )

induces a complex linearmap on as a shift of functions to the right,

T

f g T f g f T g

:

: , , , .

*

*

 

f f f



¢ ¢ ¢

f

f f-( ) ( )( ) ≔ ( ◦ )( )

Notice thatT*f preserves the L2-space inner product due to translation invariance of the Lebesguemeasure,

T f T f f f, ,1 2 1 2
* *  =f f( ) ( ) . Let us define a linearmap on theWeyl algebra via the action on its set of generators

W f W T f: : . 3.12* a f f( ) ( ) ( )

It is easy to show that for eachf, themapαf defines a
*-automorphismof. The set ofmaps af fÎ{ } forms a

1-parameter group. This defines a representation of the group  in the group of automorphisms of the algebra,
Aut ( ). That is, themap : Aut :a f a f( ) preserves the algebraic structure of reals,

1 2 1 2
a a a=f f f f+ . Extending this to n , themaps naf fÎ{ } now form an n-parameter group, andαdefines a
representation of n in Aut ( ).

Gd-left translations.The natural left translations on a groupmanifold are diffeomorphisms fromG to itself.
OnGd, it is given by the smoothmap,

L g g g g g g g: , . , , , , , 3.13g d d1 1
f f f¢ ¢ º ¢ ¼ ¢( ) ( ) ( ) ( )

which induces amap on the space of functions,

L f g f L g, , . 3.14g g 1* f f¢ ¢-( ) ≔ ( ◦ )( ) ( )

This is the standard left regular, unitary representation ofG on L2(G), extended to the case of d copies ofG. Thus,
L g* also preserves the L

2-inner product.With this let us define a linear transformation on theWeyl generators by

W f W L f . 3.15g g*a ( ( )) ≔ ( ) ( )

Then,map ga defines a *-automorphismof. Also like for n -translations, G: Autd a  ( ) is a
representation ofGd in the group of all automorphisms of the algebra as it preserves the algebraic structure,

g g g g.a a a=¢ ¢ . Analogous statements hold for right translations.

3.2.2. Unitary translations
Using the following known structural properties of GNS representation spaces [17], the automorphisms defined
above can be implemented by unitary transformations in the Fock space as follows.

α-invariant state. Letω be anα-invariant state, i.e.ω[αA]=ω[A] for all A Î , for some Aut a Î ( ).
Then,α is implemented by unitary operatorsUω in theGNS representation space , ,p Ww w w( ), defined by
U A U A*p p a=w w w w( ) ( )with invariance of theGNS vacuumUωΩω=Ωω. Similarly, for the general case whenω
is invariant under a group of automorphisms, thenα(G) is implemented by a unitary representationUω(G) ofG
inw, such that

U g A U g A U gwith . 3.16g*p p a= W = Ww w w w w w w( ) ( ) ( ) ( ) ( ) ( )

Fock state.We recall that the algebraic Fock state over is W f e ,F
f 42w = -[ ( )] ∣∣ ∣∣ with the associatedGNS

representation , ,F F Fp W( ). Then, any automorphismon that is defined via a norm-preserving
transformation onwill leaveωF invariant. ThusωF is invariant under the class of norm-preserving
transformations of the single-particle L2-space, including the translation automorphisms of the base
manifold as defined above. Therefore, automorphisms af and ga are implemented by groups of unitary
operators in F .

From the unitary transformations (3.16) as applied toWeyl generators in Fock representation, it is
straightforward to see that theGFT ladder operators transform in the familiar way,

U g U g

U g g U g g g

, ,

, ,

F F

F F

1

1

f j f f j f f

j f j f

¢ ¢ = + ¢

¢ ¢ = ¢

# - #

# - #

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

where,j# denotes both , *j j . Fromhere on the subscript F on the unitary implementations of the
automorphismswill be droppedwith the understanding that in this paperU refers only to the unitary
representation of some groupG in target space F ( ), the group of unitary operators on Fock space. It is
important to note that the corresponding group homomorphismU G: F  ( ), for a groupG, including
several copies of it, is strongly continuous in the Fock space. See appendix A for details.
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These transformations defined for F p ( ) being bounded can be extended to the vonNeumann system

F ( ). Therefore, our system ,F n  ( ( ) ) is now equippedwith strongly continuous groups of unitary
operators that implement, in the Fock system, internal shifts of the underlyingmanifold Gd n´ .

4. Structural statistical equilibrium

Equippedwith ,F n  ( ( ) ) as the kinematic description of a systemof an arbitrarily large (but finite)number of
GFTquanta, it is straightforward to see that it defines a quantum statisticalmechanics for GFT. Let nw Îr ,
then the quantities A ATrw r=r [ ] ( ), where A F Î ( ) and ρ is a density (trace-class and positive) operator, are
the quantum statistical averages ofA. If additionally,A is self-adjoint and has a structure that admits an
appropriate (geometric) interpretation, thenωρ[A] are ensemble averages of observablesA.ωρ is a statistical
mixture of quantum states of particles encoding gravitational and scalarmatter degrees of freedom associated
with theGFTfield. Thus, rewriting of the spin network degrees of freedomwithin aGFT Fock space allows us to
define a statisticalmechanics for them18.

Given a density operator ρ, then one of themost fundamental of thermodynamic potentials, the partition
functionZ, can be defined as being the normalisation of the statistical distribution at hand. FromZ can be
defined the thermodynamic free energy F∝−lnZ. Entropy a la vonNeumann is S Tr lnr r= - ( ). These
thermodynamic variables are thosewhose construction does not really rely on the context inwhich the statistical
mechanical framework is formulated. Amacrostate of the system is characterised by a set of thermodynamic
variables. This includesZ, S and F (and others derived from them, say via Legendre transforms). The remaining
relevantmacrostate variables need tofirst be identified depending on the specific system at hand. Then, the
complete set of such potentials characterises themacrostate of the system ρ, whosemicrostates are naturally the
quantum states contributing to the statisticalmixture. Having done so at a formal level, of course, the remaining
taskwould be to identify a suitable physical interpretation for them19. Investigating the thermodynamics of a
GFT system is left to future work.

The important class of normal states/density operators that are of interest here are theGibbs states. In the
study of bulk properties of a systemofmany discrete constituents, these states provide the simplest description
of the system, that of equilibrium.Generic Gibbs states can bewritten as e l l lb-å , where l are operators that
are of interest in the situation at handwhose state averages lá ñare fixed, andβl are the corresponding intensive
parameters that characterise the equilibrium configuration.

In this sectionwe study the structural Gibbs states. As discussed in section 2, in a background independent
context, such a state can be derived frommaximisation of entropy or via theKMS condition given some flow (or,
in cases where the two are equivalent, both). In the following, we present examples of structural
thermodynamical and dynamical Gibbs states within theGFT framework.

4.1. Equilibrium in geometric volume
The volume operator plays a crucial role in quantum gravity. In LQG there exist several different proposals (see
[24, 39] and references therein), but in each its spectral values are attached to intertwiners associatedwith the
spin network vertices. Since theGFT Fock space is a rewriting of the same degrees of freedom, here a volume
eigenvalue is associated to a Fock quantum. As afirst investigation to check the usefulness of this statistical
mechanical framework for spin network states, we consider aGibbs state with respect to a volume operator,V,
defined on F .

4.1.1. Volume operator
Here, the scalarmatter degrees of freedom taking values in n are neglected. Themain reason for this choice is
that the volume of a quantumof space is a geometric quantity expected to depend primarily on the group
representation data c20. From this perspective, given amulti-particle spin network state, the total volume
operator should basically count the number of particles in eachmode (defined by the geometric data) and
multiply this number by the volume eigenvalue associated to a single-particle in thatmode. It is then evident that

18
Like in conventional statisticalmechanics of finite systems, this descriptionwould not be expected to have enough structure to support

different inequivalent phases. In order to access the phase structure of the theory, one needs to invoke techniques from algebraic statistical
mechanics, or non-perturbative renormalisation, inGFT and study the thermodynamic limit [37].
19

For example, if a thermodynamic volume potential can be defined in analogywith usualQFTs, this would refer to the domainmanifold of
theGFTfields, i.e. the groupmanifolds, andwould not be immediately related to spatial volumes, as deduced for example by the quantum
operator we use below, that ismotivated by the quantumgeometric interpretation of GFTquanta.
20

This is not to say that the volume of the corresponding emergent spacetimemanifold that is beingmodelled discretely would not depend
onmatter, which it of course does according toGR.With this inmind, the choice of independence of volume frommatter degrees of
freedom should be viewed as afirst step that is simple enough to investigate geometric properties of a theory of fundamental discrete
constituents of spacetime. This is also the choice that is commonlymade in LQG.
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it is an extensive, one-body operator. By extensive wemean that it is proportional to the size of the system (the
total number of particles, or spin network nodes); and, by one-bodywemean that its total action on anymulti-
particle state is additivewith irreducible contributions from individual actions on a single-particle. This
additivity ismotivated from the notion of attaching a quantumof volume to a spin network node. It is thus valid
for all quantum states of theGFT Fock space as long as this perspective of attaching a grain of space to a spin
network node holds. This is a direct consequence of the Fock space structure of theHilbert space, and the
associated ladder operators. A typical example of an extensive, one-body operator in a standardmany-body
quantum system is the total kinetic energy.

In the occupation number basis (section 3.1) the volume operator has the following form

V v V n v n n, , 4.1
j

i j j i
*å åj j= ñ = ñ

c
c c c c c c c

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣{ } ∣{ } ( )

where,mode c denotes the irreducible representation data associatedwith an open spin network vertex in the
spin basis. Keeping inmind our interpretation of vc as the volume of a quantumpolyhedronwith faces coloured
by c, the following reasonable assumptions aremade. First, the single-mode spectrum is chosen to be real and
positive, v 0Îc > (for all c). This implies that the spectrumof the total volume operatorV is real and non-
negative because it is simply a result of scaling vc with non-negative natural numbers n 0c . Therefore by
construction,V is a positive, self-adjoint element of F ( ). Positivity ensures boundedness and therefore the
existence of at least one ground state. Second, we require uniqueness of the single-particle ground state, i.e.
v v vmin0 0

c c= º  =c c{ } , whereV v
0 0 0

c cñ = ñ∣ ∣ . Notice that the uniqueness assumptionwould fail if the
degenerate zero eigenvalue for vc is included in the spectrum, because a zero eigenvaluewould correspond to
several different spin configurations21. The exact value of v0 depends on the specifics of the spectrum vc which in
turn depends on the specific quantisation scheme used to define the operator.We stress however that the same
uniqueness is assumed only for simplicity, and the following calculations, as well as the definition of theGibbs
state, could be adapted to the situation inwhich it does not hold.

4.1.2. VolumeGibbs state
Let us consider the followingmixed state defined on theGFTFock space,

Z
Z

1
e , Tr e 4.2V N V Nr = =b m b m- - - -( ) ( )( ) ( )

withβ andμ free real parameters, and 0 b< < ¥. Then, ρ is a well-defined element of n forμ�v0. See
appendix B for details on verification of ρ as a genuine density operator on F .

What does itmean to define such aGibbs state as generated by the volume operator? Referring back to the
discussion in section 2, specifically to thermodynamical Gibbs states in a background independent setting, a
state like (4.2) can be best understood as arising from Jaynes’ principle ofmaximisation of entropy, S ln r= -á ñ
of the system, under the constraints I V V1,á ñ = á ñ = ¯ and N Ná ñ = ¯ , without any need of aflow. Parametersβ
andμ enter formally as Lagrangemultipliers. From a purely statistical point of view, the corresponding physical
picture, intuitively, would be that of a system in contact with a bath, which exchanges quantities corresponding
to the operatorsV andN22,23. Themacroscopic description of the system is then given by the averagesV N,¯ ¯
alongwith the intensive parametersβ,μ24 which characterise the equilibrium configuration.

Given a quantum statisticalmechanical framework, defining a state like (4.2) is justified from the statistical
point of view as stated above. But in the context of quantum gravity, whywould such a state be interesting to look
at? As hinted at in [8], amixed state generated by geometric operators like volume and areawould be expected to
describe better the physical state of a region of space rather than an arbitrary pure spin network state, wherein the
correspondingmacroscopic volume and area of the region are given by statistical averages, Vá ñr and Aá ñr,
characterising (at least partially) the geometricmacrostate. In other studies for example, a similar perspective is
heldwith the aimof defining ‘geometric’ entropies, with respect to areameasurements of boundary spin
network states in [22], volumemeasurements of bulk spin network states in [40], and in several LQG-inspired

21
We are thankful toMingyi Zhang for pointing this out.

22
In the case at hand, exchange of particles inevitably leads to exchange of volume (and vice versa), because the particles themselves carry the

quanta of volume. In fact,μ is just like a constant shift in the volume spectrum, in this example.
23

For instance, consider a system in a pure (entangled) spin network state with afixed large number of nodes. Physically, this can be
understood as corresponding to a region of spacewith afixed total volume. Then, partial tracing over a part of it (the bath)would expectedly
result in a (reduced)mixed state for the complementary subsystem. A precise characterisation of the bath and its coupled subsystem,
particularly, boundary effects due to spin network edges puncturing the boundary of the subsystem, effects of entanglement across the
boundary surface, and the exact conditions for thermalisation of the subsystem to aGibbs state are outside the scope of the current work.
24

Formallyβ andμ parametrise the class of Gibbs states (4.2). Presently no attempt ismade to attach any additional interpretations to them.
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analyses of quantumblack holesmicrostates [41].Within the framework described here, such geometrical
entropies arise naturally as the vonNeumann entropy of a statistical state ρ of geometric observables.

In addition to the link that such states could provide tomacroscopic geometric observables, we are now
going to show that they could be employed to extract an interesting phase purely as a result of the collective
behaviour of the constituent fundamental quanta. In the next sectionwe show that when diagonalised in the
occupation number basis, the volumeGibbs state as defined in (4.2) admits a condensed phase that is populated
majorly byGFTquanta in the lowest possible spin configuration

0
c .We also comment on a special sub-class of

such condensates, the commonly encountered spin-1/2 phase which is a collection of a large number of non-
interacting isotropic25 SU(2) spin network nodeswith almost all links labelled by j=1/2.

4.1.3. Bose–Einstein condensation to low-spin phase
The occupation number basis of F , being the eigenbasis of (4.1), can be utilised to compute the relevant
macrostate variables corresponding to the volumeGibbs state. The partition function is evaluated to be

Z n ne
1

1 e
. 4.3

n i

v n
v

i

i
i i

iå  = á ñ =
-

c
b m

c
c

b m
- -

- -
c

c c

c
{ }∣ ∣{ } ( )

{ }

( )
( )

This partition function can be immediately identified as having the same form as that of a gas of free non-
relativistic bosonswith theGibbs state defined in terms of the non-interactingHamiltonian (total kinetic
energy) [42]. In our case however, the simplicity of the state (and consequently of the explicit expressions for the
potentials) is not a statement about its underlying dynamics, or the result of some controlled approximation of
the same. It is true, however, that in the definitionwe are presently using, we are neglecting any such dynamical
ingredients. For the simple case of the volume operator, unless our geometrical perspective of assigning a
quantumof volume to an intertwiner changes, the corresponding operator will always be a one-body extensive
operator in theGFT Fock space of spin networks, which, under the general conditions stated above, will always
lead to a partition function reminiscent of an ideal Bose gas. It is also true, though, that such a partition function
would arise for any operator which has the general form (4.1)with a real non-negative spectrum. An interesting
example is the kinetic part of aGFT action often used in the literature, with a Laplacian term,
S g g M gdK I

d
g1

2
I

*ò j j= -å D +=( )( ) ( ). Since theWignermodes are eigenstates of the Laplacian, in the spin

basis this operator takes a form, S a MK
2 *j j= å +c c c c( ) , which is analogous to (4.1). For the simple case

of SU a j j2 , 1I
d

I I1= å +c =( ) ( ).
The average total number of particles in state (4.2) is

N N
F

Tr
1

e 1
, 4.4

vår
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á ñ = =
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= -
¶
¶

r
c

b m+ -c
( ) ( )( )

where, F is the free energy, F V N S Zln1 1m b= á - ñ - = -r b
- . The ground state termwith the smallest

eigenvalue v0 contributes themost to Ná ñr. As v0m  , occupation number of the ground state, N N0
0

º á ñc r

diverges and the systemundergoes condensation, resulting in amacroscopic occupation of the single-particle
state

0
c ñ∣ with volume v0. A low-spin condensate phase thus arises naturally as a quantum statisticalmechanical

process of a systemof fundamental atoms of space.
This is just like the standard Bose condensation [42]. The order parameter can nowbe directly seen to be the

non-zero expectation value of theGFT field operator, i.e. the condensate wavefunction

g g g g
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The single-particle state
0

c ñ∣ characterising the condensate corresponds to a set of spin labels encoding ground
state data of whichever26 volume operator is chosen. A special class of such condensates is for the choice of
isotropic vertices of SU(2) spin networks and a ground state corresponding to aminimum spin j0=1/2. The
above then is amechanism, rooted purely in the quantum statisticalmechanics of GFT quanta, for the
emergence of a spin-1/2 phase. This bulk configuration has been identified and used repeatedly as the relevant
sector in LQG for LQC, and also inGFT condensate cosmology.

Let us digress briefly to place this result in the context of a recent work [43], wherein a similar result is
obtainedwithin the framework ofGFT cosmology. There are crucial differences in our analysis relative to theirs.
(1)The analysis in [43] is carried out at themean field, ‘hydrodynamic’ [29] level in terms of the condensate
wavefunction of pure coherent states. On the other hand, here the analysis is directly at the level of the

25
All links incident on an isotropic node are labelled by the same spin.

26
As long as it satisfies the general properties laid out in section 4.1.1.
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microscopic theory of theGFT quantawhich then gives rise to a condensate state, which is not chosen to be a
coherent state but derived to beΨ0. In fact, the starting point here is amaximallymixed state. (2)The result in
[43] holds for isotropic vertices in theGFT coherent state (meanfield), while here it holds true for generic
anisotropic data. (3)Andfinally, in [43] this phase is shown to emerge from the particular wavefunction solution
(which is a function of the relational clockf) in an asymptotic regime of relational evolution, f  ¥. This
re-emphasises the fact that their analysis is restricted to themean field approximation, where it is reasonable to
consider asymptotics inf, whichwould be ill-defined in the underlying full quantum theory, if understood as
corresponding to a specificGFT state. Furthermore, since their analysis relies crucially on the inclusion of the
relational scalar fieldf, it would seem that the consequent result is also confined toGFTmodels coupled to
matter. In this sense our result strengthens theirs because here the low-spin phase is shown to emerge already for
only gravitational degrees of freedom and as a structural,model-independent feature of a geometric statistical
state. In the same respect, our result is actually closer to the one obtained, in absence of scalar field coupling, but
still at themeanfield level and restricted to isotropic configurations, but including also non-trivial GFT
interactions, in [44]. Amore direct comparisonwith [43] could bemade by generalising the above condensation
mechanism to the case of aGFT coupled to a relational clock. This is left to futurework.

Finally, given the nice properties of operatorVwhichmimic theHamiltonian of a systemof non-interacting
bosons in a box [42], the result that this system condenses to the single-particle ground state is not surprising.
Still, this simple example illustrates the potential of considering collective, statistical features that are inherent in
the perspective that spacetime has amicrostructure consisting of fundamental, discrete quantumgravity degrees
of freedom. It also illustrates the usefulness of theGFT reformulation of spin network degrees of freedomwithin
a Fock space.

4.2. Equilibrium in internal translations
Nowwe turn our attention to theGibbs states which encode equilibrium via theKMS condition under
translations of the basemanifold Gd n´ as dictated by the unitary groups of operatorsU f( ) andU g( ) on F .

4.2.1. KMS condition andGibbs states
In quantum statisticalmechanics and thermalfield theory alike, theKMS condition has been recognised as
characterising equilibrium in terms of stability under a certain automorphismorflow in the algebra. Originally
formulated in terms of thermodynamical Green’s functions that are characteristic of Gibbs states [10], it was
later adapted to an algebraic settingwherein its importance for defining equilibrium states under the
thermodynamic limit (of taking the system size to infinity whilst keeping the density of gasfinite)wasmade
explicit [11].

There are several equivalent formulations of theKMS condition [17]. The onewe use is as follows. Let FAB(z)
be a complex function on the complex planewhich is analytic in the strip z z0 Im bÎ < <{ ∣ }and
continuous on its boundaries. A stateω over an algebra can be said to define such a function if FAB(z)≔ω[A
αz(B)], where A B, Î , andα is a 1-parameter group of automorphisms of, extended here to a complex
variable. Then, the same state is said to satisfy the KMS condition if A B B At tiw a w a=b+[ ( )] [( ) ], i.e. one has
periodicity in the boundary values

F t B Ai .AB tb w a+ =( ) [ ( ) ]

The stateω is then called aKMS state. AKMS state automatically satisfies stationarity,ω[αA]=ω[A], which
captures the simplest notion of equilibrium. As is well-known, this characterisation of equilibrium survives in
the limit of infinite system size, whereas theGibbs descriptionwould fail.

Before considering specificGibbs states corresponding to the translation automorphisms of theGFT system,
wefirst show in generality that given an automorphism and its unitary representation in theGFTHilbert space

F , the uniqueKMS state as defined by this automorphismwill be aGibbs state with respect to the generator of
the transformation. The proof proceeds in linewith the case of quantum statisticalmechanics of afinite, non-
relativistic system [17], themain conceptual difference being that in the standard case the automorphismof
interest is usually the physical time translations, whereas in our case we understand them to be of amore generic
nature and certainly not (strictly) related to time translations.

Letαt be a 1-parameter group of automorphisms of theGFT algebra  that are represented unitarily inπF by
the group of operatorsU t e ti =( ) , where  is a self-adjoint generator. Note that t Î is an arbitrary
parameter whose interpretation relies onwhat kind of transformation the automorphismαt encodes. Consider
a normal state in this representationωρ[A]≔Tr(ρ πF(A)) (for all A Î ), satisfying theKMS conditionwith
respect toαt. Then, by definition of theKMS condition,ωρ[BA]=ωρ[A(αiβB)] for all A B, Î , that is
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Notice that the last equality holds true for all A Î . This implies
B B Be e e , 0F F F

  p r r p r p=  =b b b- ( ) ( ) [ ( )] (for all B Î ) e F r p Î ¢b ( ) . Now,πF is
irreducible,meaning IF  p ¢ =( ) . Therefore, e e . r rµ  µb b- Thus the unique normal KMS state in

, ,F F Fp W( ) is a Gibbs state. ,
Now let us turn to the vonNeumann algebra F F  p  =( ) ( ). Like above, given aKMS stateωρwith

respect to an automorphism groupαt of, and the corresponding unitariesUt in , ,F F Fp W( ), then in
,F n  ( ( ) ), existence ofUt is ensured by the BLT theorem. Then by theKMS conditionwe have as before,

B A A B B ATr Tr e e Tr e e   r r r= =b b b b- -( ) ( ) ( )

for all A B, F Î ( ). Using the same arguments as above, e e . r rµ  µb b- Thus, given a flowof
continuous unitary transformations, the uniqueKMS state in the system ,F n  ( ( ) ) is aGibbs state. ,

4.2.2.MomentumGibbs states
LetG be a connected Lie group27, and gX(t)=exp(tX), for t X L,Î Î ( )G , be a 1-parameter subgroup inG

satisfying gX(0)=e and X
g

t t
d

d 0
X ==∣ . L ( )G is the corresponding Lie algebra. The generators of generic left

translationflows, g t g e g L g,X
tX

e0 0 0
tX= =( ) , are the right-invariant vector fields, X. The set of all such vector

fields is isomorphic to the Lie algebra by right translations onG, that is R X X L g g,g* Î Î ={ ∣ ( ) } { ( )}G G X .
Themap g t g t: :X X   ( )G is a continuous group homomorphism, preserving additivity of the reals,

gX(t1)gX(t2)=gX(t1+t2). Now, letU :  ( )G H be a strongly continuous unitary representation of the group
G in aHilbert space H, where ( )H is the group of unitary operators on H. Then, themapU g t U g t:X X◦ ( ( ))
is a strongly continuous 1-parameter group of unitary operators in ( )H . See appendix C for proof of
continuity; whereas the group property is straightforward to see by noticing that
U g t U g t U g t g t U g t tX X X X X1 2 1 2 1 2= = +( ( )) ( ( )) ( ( ) ( )) ( ( )). In terms ofU U gX X≔ ◦ , it takes the expected form,
U t U t U t tX X X1 2 1 2= +( ) ( ) ( ) . Applying Stone’s theorem to this strongly continuous group of unitary operators
leads to the existence of a self-adjoint (not necessarily bounded) generator X defined on H, such that

U t e . 4.5X
ti X= -( ) ( )

In terms of the anti-hermitian representationU* of the Lie algebra (which is the differentialmap induced by the
unitary group representationU), the t-flow in H is implemented by

U t U tX t U Xexp exp . 4.6X *= =( ) ( ( )) ( ( )) ( )

Comparing the previous two equations, we arrive at the expression for the self-adjoint generator,

U Xi . 4.7X * = ( ) ( )

X implements infinitesimal translations on quantum states in H, along the direction of the integral flowof X,
and is thus understood as amomentumoperator.

Let a density operator ρ on H satisfy the KMS conditionwith respect to translationsUX(t). Then as laid out in
the previous section, the statemust be of the followingGibbs form

Z
Z

1
e , Tr e , 4.8X

X X r = =b b- -( ) ( )

whereβ is the periodicity in the flowparameter t. Naturally, in a given situation, the formof X must be (made to
be) such thatZ is well-defined. This class of Gibbs states is labelled by both the periodicityβ and the generating
vectorX. Therefore, this notion of equilibriumhas an intrinsic dependence on the curve used to define it.

The constructions up until nowwill hold independently of whetherG is abelian or not. The detailed Lie
algebra structure determines whether the system retains its equilibriumproperties on the entireG. In other
words, it determines whether the system is stable under arbitrary translation perturbations. The state ρX, as
defined by the curve gX(t), remains invariant under translations to anywhere onG if and only ifG is abelian.
Otherwise, the system is at equilibrium only along the curvewhich defines it. To see this, let us perturb a system
at identity e in state ρX, so that it leaves its defining trajectory gX(t), and reaches another point h Î Gwhich is not
on gX(t), i.e. h g t tX Ï Î{ ( ) ∣ }. SinceG is connected, any element of it can in general bewritten as a product
of exponentials. That is, h Y Yexp ... exp1= k for someκ, and Y Y L, ..,1 Îk ( )G . Left translation by h is
implemented in theHilbert space by the unitary representation,

27
Any connected Lie group is path-connected because as a smoothmanifold it is locally path-connected. Thus any two points onG can be

connected by a continuous curve. The natural curves to consider on any Lie group are the 1-parameter groups generated via the exponential
map.Notice also that the groups relevant to us, SL SU2, , Spin 4 , 2( ) ( ) ( ) and , are all connected and simply connected, so that their
direct product groups are also connected spaces.
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U h U Y U Y U Y U Yexp ... exp exp ... exp ,1 1* *= =k k( ) ( ) ( ) ( ( )) ( ( ))

which acts on the density operator by

U h U h e e e e... e ... .X
U Y U Y U X U Y U Y1 i1 1* * * * *r = b- - - -k k( ) ( ) ( ) ( ) ( ) ( ) ( )

For non-abelianG, clearly X Y, 0¹[ ] for arbitrary X Y L, Î ( )G . Thus in this case,U h U hX X
1r r¹-( ) ( ) . On

the contrary, for abelianG, the Lie bracket is zero and equality will hold for arbitrary h. So overall, the notion of
equilibriumwith respect to shifts onG is curve-wise, or direction-wise (‘direction’ being defined on each point
of themanifold by the vector field X). For non-abelianG, one can only define an equilibrium state along a
particular direction28.

For theGFTFock system, theHilbert space H is the Fock space F , Lie groupG is the symmetry group
under consideration, which isGd for group translations or n for internal scalarfield translations, acting on the
base space Gd n´ . The strongly continuous unitary groupsU(g) are those constructed in section 3.2.2which
implement the translation automorphisms of theGFTWeyl algebra in F . The formof the generators in Fock
space is

U X g g gd d , , . 4.9
Gd n* * * 

ò åf j f j f j j= -
´

( ) ≔ ( ) ( ) ( ) ( ) ( )f fX

f

X

Here X is the right-invariant vector field onG corresponding to the vector X LÎ ( )G , and related to it by right
translations as, g R Xg*=( )X (for g Î G). X denotes the Lie derivative with respect to the vector field X. { }f is
an orthonormal basis in the space of test functions. The second equality uses: f f j j= -# #( )( ) ( )X X for
compactly supported test functions f, and completeness of the basis g g g g, , ,f f d f få ¢ ¢ = ¢ - ¢¯( ) ( ) ( ) ( )f ff .
The correspondingKMS equilibrium states for theGFT system, with respect to the given automorphisms, will
then take the form (4.8), with (i times) (4.9) in the exponent.

4.2.3. Equilibrium inf-translations
The above construction of KMS states forGFT systems, in terms of translation automorphisms of theGFT
algebra, was rather general. As a specific example of themomentumGibbs states defined above, this section
presents those states that are in equilibriumwith respect toflows on n part of theGFT configuration space.
These are particularly interesting from a physical perspective. First, we anticipate that in light of the
interpretation of , , , ,a n

n
1 f f f fº ¼ ¼ Î( ) as nnumber ofminimally coupled scalar fields, the

correspondingmomenta that generate these internal translations are the scalar fieldmomenta, so there is an
immediatemeaning to the variables. Second, andmore important, the scalar valuesf can be used, as inGFT
cosmology, as relational clocks, thus their translations can be related rather directly to physical evolution. This is
also the reasonwhywe call these f-translations as internal (beside the fact that they are technically internal
automorphismof theGFT algebra), as will become apparent in the upcoming section 5where the full GFT
systemwill be deparametrizedwith respect to one of these scalarfields so that the resulting translations along this
field become external to the system, thus defining relational evolution. Themomentumof the clock scalar field
definedwithin the reduced systemwill then also be the clockHamiltonian (up to a negative sign).

The basis of invariant vector fields on n=G is af
¶
¶

{ } in cartesian coordinates (f a). These are generated by

the set of basis vectors of the Lie algebra {Ea}. The full set of invariant vector fields is then generated by linearity.
For a generic tangent vector, X Ea

al= (sumover repeated index), the corresponding invariant vector field is
a

al= ¶X . Then directly for the basis elements, generators (4.9) take the simple, familiar form

U E g g gd d , , . 4.10a
G a a

d n* * *
ò åf j f

f
j f j j=

¶
¶

= ¶
´

( ) ( ) ( ) ( ) ( ) ( )f f
f

It is straightforward to check that, as is required,U Ea*( ) are anti-hermitian (taking boundary terms to vanish,
which is compatible with the ladder operators being defined for test functionswith compact support). The
corresponding basis ofmomenta Ea

 , denoted here byPa, is

P U E
p

p p pi
d

2
, , . 4.11a E a n aa n* *

ò åp
j c j cº = =

c
( )

( )
( ) ( ) ( )

Evidently,Pa are hermitian, satisfying P P, ,a a1 2 1 2y y y y=( ) ( ), for all D P, a1 2y y Î ( ) in its dense domain.More
crucially, from its spectral decomposition in the spin-momentumbasis it is clear that Pa are self-adjoint. In
addition to needing self-adjointness forPa to be generators of unitary transformation groups, it is also required
in order to interpret Pa as the observablemomenta of the respective scalar fieldsfa.We remark that operatorsPa

28
This is the case, for example, for theUnruh effect treated via the Bisognano–Wichmann construction [45]. In that case, the symmetry

groupG is the Lorentz group, acting on the base spacewhich is a Rindler wedge of theMinkowski spacetime, and theKMS state of the
accelerated observer depends on the specific trajectory generated by a 1-parameter flowof boosts, in say x1 direction, taking the form

t ek
tak

1
1L =( ) , where k1 is the boost generator, and acceleration a parametrises the strength of this boost.
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as constructed here are the same as those used in theGFT cosmology framework, introducedfirst in [30] (for the
case a= 1). Infinitesimal linear transformations of the ladder operators are generated in the expected
way, g P g, i , ,aaj f j f¶ =f

# #( ) [ ( )].
From their expressions in the spin-momentumbasis, it is clear that Pa are extensive and therefore

diagonalise in the occupation number basis

P n p n n ,a p
j

a j p p, , , ,
i i j j i i

åñ = ñc c c

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣{ } ∣{ }

where pa,j is the ath component of p p p p, , , ,
j a n j1º ¼ ¼( ) . Since pa Î , the spectrum p nj a j p, ,

j j
å c includes

arbitrary negative eigenvalues even though n 0p,
i i

c for all i. ThusPa in general are not positive operators, and
moreover, are unbounded fromabove and below. Then in order to defineGibbs density operators using Pa, as
we suggest below, some extra conditions will need to be imposed.

The grand-canonical Gibbs states29 that encode equilibriumwith respect to internalf-translations
separately along the n cartesian directions are

Z

1
e , 4.12a

P Nar = b m- - ( )( )

whereβ is the periodicity infa. ρa as defined here is positive and trace-class as long asβ (Pa−μN) is a positive
operator in F , that is, p n 0i a i p, ,

i i
b må - c( ) in all basis states n p,

i i
ñc∣{ } (the extra conditionsmentioned

above amount to ensuring that this property is satisfied, and lead to two cases, one inwhich each of the factor is
positive and the other inwhich they are each negative). The proof proceeds in analogywith that of the volume
Gibbs state detailed in appendix B and is thus not detailed here.

The above states provide then an explicit realisation of KMS states in a fundamental quantum gravity system.
They also amount to a concrete realisation of the thermal time hypothesis [6], since theymay be understood as
defining implicitly a notion of time, via their corresponding automorphism.Of course,much remains to be
done to elucidate and analyse in detail their physicalmeaning and potential applications.

5. Physical relational statistical equilibrium

Wehave recalled in the introduction the fundamental difficulties in defining equilibrium in generally covariant
systems, due to the absence of preferred time variables. A general strategy to solve those issues, in the description
of the dynamics of such systems is to usematter degrees of freedomas relational clocks, under suitable
approximations, and recast the general covariant dynamics in terms of a physicalHamiltonian associatedwith
them.Wenow consider the same general strategy as away to solve our (related) issue of defining statistical
equilibrium states in full quantumgravity. That is, consider the construction of states which are at equilibrium
with respect to relational clocks. It turns out, as it could be expected, that the resulting states are closely related to
the structural ones defined above in terms of internal translations andKMS conditions.

TheGibbs states defined in the previous section that are generated by the scalar fieldmomenta (4.11) encode
equilibriumwith respect to internalfa-translations. Theseflows are structural, devoid of any physicalmodel-
dependent information, in particular a specific choice of dynamics, and so are the resultant equilibrium states. In
this sectionwe define those states which are at equilibriumwith respect tof-translations generated by a (model-
dependent) clockHamiltonian encoding relational dynamics, wherein the scalarfield takes on the role of an
external clock time. The resultant relational systemwill be ‘canonical’ in clock timewhich now foliates the
original system. Lie brackets (3.4)will be replacedwith the corresponding equal-clock time commutation
relations, analogous to the equal-timeCRs in a non-covariant system.Our interest in such a setup is natural
becauseGFTs lack a preferred choice of an evolution parameter. The kinematical base space Gd n´ has been
constructed in away so as to facilitate a relational description of the systemby coupling n scalarfields. However,
there are n possible variables to choose from, and none is preferred over the other. Thus by constructionGFTs
have amulti-fingered relational time structure, in this specific sense.

Thewaywe approach the task of deparametrizing theGFT system, in this work, is the following.We focus
first on the classical description of a single GFTquantum, and sketch howdeparametrizationworks at this
simple level, assuming that theGFT dynamics amounts to a specific choice of dynamical constraint here. Then,
we consider the extension of the same deparametrization procedure for a systemofmany suchGFT ‘particles’,
assumed as non-interacting.We then consider the quantisation of the corresponding deparametrized systemof
GFTparticles, arriving at the corresponding quantummulti-particle system. In the resulting canonical system,
we define relational equilibriumGibbs states.We only sketch the relevant steps of the construction, because a

29
The canonical Gibbs states are constructed analogously.
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good part of them are straightforward, and because a proper definition and analysis of the corresponding
mathematical structures, forGFTs, is beyond the scope of this work. For example, the issue of how to deal with
dynamical constraints (classical and quantum) inGFT is in part the subject of [20].

5.1.Deparametrization in classical GFT
Beforemoving on to the quantumpicture and placing it within the context of the rest of the paper up until now,
we begin the investigation for a classical GFT systemwithin the framework of extended phase space and
presymplecticmechanics ([27, 46] and relatedworks). The power of presymplectic formulation resides in the
fact that it ismanifestly covariant and does not require non-relativistic concepts like absolute time to describe
dynamics. In fact this was the primarymotivation in its development, to be able to describe dynamical systems
which are generally covariant, ormore generally are constrained systemswith a set of gauge symmetries and a
vanishing canonicalHamiltonian. InGFTs, we face a similar issue of background independence with the
associated absence of a preferred evolution parameter. Therefore, the reason for undertaking classical
considerations first is to utilise the existing knowledge alreadywell-positioned to be imported toGFTdue to
common ingredients required in the description of any classical system: configuration space, phase space and a
set of constraints including a dynamical (Hamiltonian) constraint.

5.1.1. Single-particle system
The extended classical configuration space for the single-particle sector of aGFT system30 is

G g ,d n I a
ex   f= ´ ( ). The corresponding phase space is

T G L G g x p, , ,d n d n I a
Iex ex a* *    fG = @ ´ ´ ´ f( ) ( ) ( ). States and observables are respectively points

and smooth functions on exG . Statistical states are smooth positive functions on the phase space, normalisedwith
respect to the Liouvillemeasure. The Poisson bracket on the space of observables defines its algebra structure.
The symplectic 2-formon exG is pd dG

a
ex aw w f= + f , whereωG is the symplectic 2-formonT Gd*( ). Let us

assume that the covariant31 dynamics of this simple system is encoded in a smooth constraint function
C :full ex G  (assuming that there are no additional gauge symmetries). This defines a 1-particle GFT
system C, ,ex ex fullwG( ).

What follows is a brief summary of the presymplectic description of this system formulated in direct analogy
with standard treatments [27, 46]. The vector field XCfull

corresponding to the constraint is defined by the
equation X CdCex fullfull

w = -( ) . Constraint surfaceΣ is characterised by C 0full = . The embedding ı: exS  G
of the constraint surface in the full phase space induces a presymplectic structure onΣ via the pull-back,

ı ex*w w=S . The null orbits ofωΣ are the graphs of physicalmotions encoding unparametrized correlations
between the dynamical variables of the theory. These gauge orbits are integral curves of the vector field XCfull

satisfying the equations ofmotion X 0Cfull
w =S( ) . The set of all such orbits is the physical phase spaceΓphy that is

projected down fromΣ via amapπ :Σ→Γphy.Γphy is equippedwith a symplectic 2-form induced fromΣ by
push-forward along the projectionmap, phy *w p w= S. (Γphy,ωphy) is the space of solutions of the system and a
physical flowmeans aflowon this space. It is important to notice here that a canonical time or clock structure is
still lacking.

Deparametrizing this classical system,with respect to, say, the cth scalar fieldf c, means reducing the full
system to onewherein the fieldf c acts as a good clock. This entails two separate approximations toCfull

C g x p p C g x p, , , , , , , 5.1I a
I

I a
Ifull a cf f» +f f fa( ) ˜( ) ( )

p H g x p, , , , 5.2I
Ic f» +f

a
fa( ) ( )

where thefixed index c denotes ‘clock’, and indexαä {1, 2,K, n−1} runs over the remaining scalarfield
degrees of freedom that are not intended to be used as clocks and remain internal to the system. Thefirst
approximation retains terms up to thefirst order in clockmomentum. At this level of approximation the C̃ part
is a function of the clock timef c. These two featuresmean that at this level of approximationf c behaves as a
clock, but only locally since itsmomentum is not necessarily conserved in the clock time. Furthermore, by
linearising in pf

c , we havefixed a reference frame defined by the physicalmatter fieldf c. At the second level, C̃ is
approximated by a genuineHamiltonianH that is independent off c, so that on-shell we have conservation of

30
By this wemean a classical point particle living on theGFT base space.

31
By ‘covariant’we simplymean ‘not deparametrized’, without any relation to diffeomorphisms.
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the clockmomentum p 0c c¶ =f f .H generates relational dynamics inf c, which now acts as a global clock for this
deparametrized system32 .

After the above approximations, we have a new system C, ,ex exwG( ), with

C p H g x p, , , 5.3I
Ic f= +f

a
fa( ) ( )

deparametrizedwith respect to one of the extended configuration variablesf cwhich takes on the role of a good
global clock. The presymplecticmechanics now takes on a structuremirroring that of a non-relativistic particle
in spacetime. The constraint surface defined by the vanishing of the relevant constraint, hereC=0, now admits
the topology of a foliation in clock time, g x p, , , ,c I

Ican  f fS = ´ G a
fa( ). This formofΣ is a characteristic

feature of a systemwith a clock structure. The reduced, canonical phase space is
T g x p, , ,I

Ican can*   fG = a
fa( ) ( )where Gd n

can
1 = ´ - is the reduced configuration space. The function

H : can G  is the clockHamiltonian encoding relational dynamics inf c, and one can define the standard
symplecticHamiltonianmechanics with respect to it.

5.1.2.Multi-particle system
Wewant now to extend the above deparametrization procedure beyond the one-particle sector of theGFT
system. To beginwith, let us consider the simplest case of two, non-interacting particles [9, 15]. Let

g x p, , ,I a
I

1 1 1 1 1
a fG f( )( ) ( ) ( ) ( ) ( ) and g x p, , ,I a

I
2 2 2 2 2

a fG f( )( ) ( ) ( ) ( ) ( ) be the extended phase spaces of particles 1 and 2

respectively. Phase space of the composite system isΓ=Γ(1)×Γ(2)with symplectic 2-formω=ω(1)+ω(2).
Notice that each particle is equippedwith n possible clocks. The aim is to select a single global clock for the
composite system so as to then be able to define a common equilibrium for the total system. Let the individual
(possibly covariant) dynamics of each particle be given by constraint functions C :full

1,2 1,2 G ( ) ( ) .
Deparametrizing particle 1with respect to sayfield c1 1f( ) , and particle 2with respect to say c2 2f( ) , gives the new
constraints for each

C p H g x p

C p H g x p

, , , 0

, , , 0, 5.4

I
I

I
I

1 1 1 1 1 1 1

2 2 2 2 2 2 2

c

c

1

2

f

f

= + »

= + »
f

a
f

f
a

f

a

a

( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

whereH(1,2) are functions on the individual reduced phase spaces g x p, , ,I
Ican

1,2 1,2 1,2 1,2 1,2 fG a
fa( )( ) ( ) ( ) ( ) ( ) with

symplectic 2-forms can
1,2w( ). This is a complete theoretical description of the deparametrized 2-particle system.

However, it is inconveniently described in terms of two different clocks ascribed to each particle separately.We
are seeking a single clock. This system can equivalently be reformulated [9] in terms of a single constraint,

C C 0 5.51 2+ » ( )( ) ( )

alongwith a second-class constraintC(1)−C(2) and the following gauge-fixing condition. Choose tc1 1f =( )

and F tc2 2f = ( )( ) . Then the gauge-fixed 2-formonΓ is

p td d , where 5.6tcanw w= + ˜ ( )

p p F t p 5.7t
1 2
c c1 2= + ¢f f( ) ( )( ) ( )

is the clockmomentumof the single clock t (prime ′ denoting total derivative with respect to t), and
can can

1
can
2w w w= +( ) ( ) is the symplectic formon the reduced phase space can can

1
can
2G = G ´ G( ) ( ) of the composite

system. Thefirst-class constraint can nowbe rewritten as, C p H F t Ht
1 2= + + ¢( )( ) ( ). TheHamiltonian

H F t H1 2+ ¢( )( ) ( ) is independent of clock t iff F t k¢ =( ) , for k an arbitrary non-zero real constant. That is, t is a
good clock for the choice of affine gauge F t kt k= +( ) ˜. This gives

C p H, 5.8t= + ( )

where H H kH1 2= +( ) ( ). Now that the 2-particle systemhas been brought to the formof a standard
Hamiltonian systemwith clock time t, the remaining elements for the complete extended symplectic description
can be easily identified. The extended configuration space is t g g, , , ,I J

ex can
1 1 2 2   f f= ´ a g( )( ) ( ) ( ) ( ) . The

extended phase space is Tex ex* G = ( )with exw w= ˜ . The constraint functionC=pt+H=0 defines the
presymplectic surface t g x p g x p, , , , , , , ,I

I
J

Jcan
1 1 1 1 2 2 2 2  f fS = ´ G a

f
g

fa g( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , with

H td dcanw w= - S . This is a complete description of a non-interacting 2-particle system, with a single
relational clock t.

32
A nice example illustrating these points well is a classical relativistic particle whose covariant dynamics is given by C p mfull

2 2= - . In this
case, the complete dynamical, presymplectic description does not require deparametrization, i.e. given the extended phase space alongwith
Cfull, its constraint surface is well-defined.However, this system is deparametrizable, whichmeans that it is possible to bringCfull to a
manifestly non-covariant formwithout changing the physics (unlike for the general casementioned abovewhere the two approximations
may change the physical content of the system). The full constraint can be rewritten as C p p m0

2 2= + + which nowdescribes the same
relativistic particle systembut in afixed Lorentz framewhere the configuration variable x0 has been chosen as the the clock variable and the
corresponding clock dynamics is in H p m2 2= + .
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For anN-particle non-interacting system, eachwith n possible clocks, the extension of the above procedure
is direct. Select any onef variable as a clock for each individual particle (i.e. bring the individual full constraints
of each particle to deparametrized forms like in (5.4)). Then, given one clock per particle, identifying a global
clock for all particlesmeans choosing any one at random (call it t) and synchronising the rest with this one via
affine functions F2(t),K, FN(t). This defines a relational systemon

t g g T, , , , , ,I N J N
ex

1 1
ex ex*  f f¼ G =a g( ) ( )( ) ( ) ( ) ( ) , with constraint functionC=pt+H on exG , and

Hamiltonian function H H k H k H... N
N1

2
2= + + +( ) ( ) ( ) on canG .

Beforemoving on to quantisation, let us pause tomake a few important remarks, summarise sections 5.1.1
and 5.1.2, and set the notation. The following discussion ismeant to clarify: (1) that we are dealingwith two
different ‘before’ and ‘after’ (deparametrization) systems, one that is covariant and the other that is derived from
thefirst via the deparametrization approximations33; (2) the conceptual and notational differences between
these two systems; and (3) that one of these two systems, the deparametrized one, includeswithin it a canonical
system (that is eventually quantised), which is ‘canonical’with respect to the relational clock that is selected
during the process of deparametrization.

For the 1-particle system the ‘before’ picture is onewherein the system is fully covariant and the
corresponding kinematics consist of the configuration space G g ,d n I a

ex
cov   f= ´ ( ) and phase space

Tex
cov

ex
cov* G = ( ). Covariant dynamics is encoded in aHamiltonian constraint functionCfull on ex

covG , which
defines a constraint hypersurface in ex

covG . The ‘after’ picture defines the second system,which includes the
canonical one. The extended configuration space of the deparametrized system is

G t g, ,d n I
ex
dep 1    f= ´ ´ a-( ) ( ), where the 1-particle canonical configuration space is

Gd n
can

1 = ´ - . Here, we have denoted tcf º . Canonical variables are those dynamical variables of the

original covariant system ex
cov which are not used as clocks. The extended phase space is Tex

dep
ex
dep* G = ( ).

Deparametrized dynamics is encoded in a constraint functionC on ex
depG of the form,C=pt+H, whereH is a

smooth function on the canonical phase space Tcan can* G = ( ). It is a genuineHamiltonian defining dynamical
evolutionwith respect to the relational clock t. The constraint surface (satisfyingC= 0) is canS = ´ G ,
characterised by a foliation consisting of slices canG along clock t. This formofΣ and the existence of the
canonical subsystem is a direct consequence of deparametrization. In other words, the canonical subsystem is
absent for a generic non-deparametrized, covariant system C,ex

cov
fullG( ). As afinal remark, note that for the

1-particle system, the covariant and deparametrized kinematic descriptions in the respective configuration
spaces are identical. Aswill be seen below, this does not hold for anN-particle systemwithN>1, when seeking
a descriptionwith a single clock.

For the non-interactingN-particle system, the ‘before’ system consists of the covariant extended
configuration space G g g, , ..., ,N

d n N I a N J N b
ex,
cov 1 1   f f= ´ ´( ) ( )( ) ( ) ( ) ( ) and the associated phase space

TN N
N

ex,
cov

ex,
cov

ex
cov* G = = G ´( ) ( ) . The covariant dynamics is encoded in a set ofHamiltonian constraints

C C, , N
full

1
full¼( ) ( ), each defined on the respective copies of the 1-particle covariant extended phase space ex

covG . The
‘after’ system is deparametrized with a single clock t. As before, existence of this clock structuremeans that the
extended symplectic description takes on the formof a non-relativistic system. The extended configuration

space is N Nex,
dep

can, = ´ where theN-particle reduced configuration space is GN
d n N

can,
1 = ´ - ´( ) , so

that t g g, , , , ,I N J N
N

1 1
ex,
depf f¼ Îa g( )( ) ( ) ( ) ( ) . The extended phase space of the deparametrized system is

TN Nex,
dep

ex,
dep* G = ( ). The deparametrized dynamics is encoded in aHamiltonian constraint function,

C p HN t N= +

defined on Nex,
depG . Constraint surface Ncan,S = ´ G is characterised byCN=0. The canonical phase space is

TN Ncan, can,* G = ( ). Relational dynamics is encoded in the clockHamiltonian defined on Ncan,G given by,

H k H , 5.9N
i

N

i
i

1
å=
=

( )( )

for arbitrary real non-zero constants kiwhich encode the rates of synchronisation between theN different clocks,
one per particle. FunctionsH( i) are single-particle clockHamiltonians defined on the respective copies of single-
particle reduced phase space canG .We can already anticipate that relational Gibbs states in amulti-particle system
withfixedN are those that are stationarywith respect to the t-flowof aHamiltonianHN.

33
In general the two systems are physically distinct. However, it is possible that deparametrization does not change the physical content of

the theory. This corresponds to the case inwhich the deparametrization steps outlined above do not correspond to approximations of the
dynamics, but to exact rewriting or gauge-fixing. Such systems are usually known as deparametrizable. An example is that of a relativistic
particle.
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5.2.Quantisation
Wenowmove on to the quantisation of the above deparametrizedmany-body system.Our treatment is again
limited to outlining the basic steps, evenwhen they can bemademathematically rigorous, because they are not
particularly enlightening in themselves, at least for our present purposes. In the context of deparametrization,
sincewe are primarily interested in scalar degrees of freedom residing in copies of , we shall be content with
omitting rigorous details about the symplectic structure onT G*( ) and its subsequent quantisation to a
commutator algebra.We shall also not choose any specific quantisationmap and focus only on the general ideas
required to eventually define af-relational Gibbs operator.Moremathematical details can be found in [26],
including examples of quantisationmaps forT G*( ).

Quantisationmaps the phase space to aHilbert space, and the classical algebra of observables (including one
which encodes the dynamics) as smooth (real) functions on the phase space to (self-adjoint) operators on the
Hilbert space with the Poisson bracket on the former beingmapped to a commutator bracket in the latter.

For the covariant 1-particle system, the phase space T Gd n
ex
cov * G = ´( )maps to L Gd n2 = ´( ),

which is the 1-particle Hilbert space thatwe considered in section 3.1. Observables are the algebra of
C¥-functions on ex

covG whichmap to operators on, with the Poisson structure on the former beingmapped to
theHeisenberg algebra on the latter. Specifically, for thematter degrees of freedom, this is

p p, , ia
ab

a
abb bf d f d= =f f

 { } [ ] (where the hat denotes some quantisationmap). Notice here that all n
scalarfields are quantised. This is in contrast with the corresponding case of the canonical system. In this case,
the canonical phase space T Gd n

can
1* G = ´ -( )maps to a canonicalHilbert space L Gd n

can
2 1 = ´ -( ),

with the algebra againmapping from functions on canG to operators on can . But now, the brackets defining the
algebra structure of the system are reduced by one in number, as a direct consequence of the reduction of the
base space by one copy of  (towhich the clock variable belongs).Under quantisationwe nowhave,

p p, , if d f d= =a
f ag

a
f agg g { } [ ] , where n, 1, , 1a g = ¼ - . The commutator corresponding initially to

the clockf-variable is now identically zero, that is p, 0c
cf =f

 [ ] , meaning that the corresponding degrees of
freedomare treated as entirely classical;moreover, their intrinsic dynamics is neglected. In otherwords, this
quantum canonical system is one inwhich there exists a classical clock, whichwas quantum in the original
quantum covariant system.Dynamics is defined via aHamiltonian operator Ĥ on can giving evolutionwith
respect to the clock.

For the covariantN-particle system, N
N

ex,
cov

ex
covG = G ´( ) ismapped to N

N = Ä . Algebra of smooth
functions on Nex,

covG ismapped to a *-algebra on N , whose quantummatterfields now satisfy

p, ii a j
ab ijbf d d=

f
[ ]( ) ( ) , where i j N, 1, 2, ,= ¼ denote the particle label. This is themulti-particle sector as

considered in section 3.1. Again, we note that none of theN particles have chosen a clock yet, that is all n×N
number of scalar fields are quantum. In the corresponding canonical quantum system N

N
can, can = Ä with the

algebra of observables on it, the single clock variable t (which is syncedwith all the separate clocks now carried by
each particle) is classical. TheHamiltonian operator defining t-evolution, forfixedN, is given by the operator

H k HN i
N

i
i

1= å =
ˆ ˆ ( )

, where H
iˆ ( )
are the separateHamiltonians of each particle scaled by the respective rates at

which the different clocks are synchronised. Notice again thatwe are neglecting interactions between the
different particles in HN

ˆ .
In themulti-particle case, it is worthwhile to also look at the quantised extended deparametrized system.

This consists of Nex,
depG being quantised to LN N

dep 2
can, = ´( ) and the correspondingHeisenberg algebra has

two additional generators (compared to the canonical system) satisfying t p i, t
^ =[ ] . Such a system is different

fromboth the quantum extended covariant and the quantum canonical. In the former, there is no single clock
variable. In the latter, there is one but it is no longer quantum.Quantising the extended deparametrized system is
like quantising a non-relativistic particle at the level of its extended phase space, which includesNewtonian time
and its conjugatemomentum as phase space variables. QuantisingNewtonian time to define the corresponding
operator comeswith its own set of conceptual and technical problems.However our case is fundamentally
different because here t is really a function of the physicalmatter degrees of freedom. Therefore for amulti-
particle system, one ends upwith three different quantum systems: quantum extended covariant, quantum
extended deparametrized and quantum canonical. The last two each have a potential global clock parameter,
and going from the former to the latter is the step ofmaking this variable classical and therefore treating it as a
perfect, thus idealised, clock. This distinction between quantum extended covariant and extended
deparametrized systems is absent in the simple 1-particle systembecause in this case deparametrization does not
require the extra step of syncing the different clocks (as there is only one). It only requires choosing one out of n
so that the kinematics of both systems ends up being identical.

We arrive now at the quantumFock systems built out of the aboveN-particle systems. The covariant Fock
system composed of theN-particle quantum extended covariant systems as described above is theGFT Fock
system as detailed in section 3 (and used subsequently to construct structural Gibbs states in section 4). On the
other hand, the canonical Fock system is as follows. The canonical (bosonic) Fock space is
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sym , 5.10F
N

N
can,

0
can 


= Ä⨁ ( )

where the 1-particle canonicalHilbert space is L Gd n
can

2 1 = ´ -( ). Fcan, is generated by ladder operators
, *j jˆ ˆ acting on a Fock vacuum, and satisfying the equal- (Fock-) clock time commutation relations

t g t g g g, , , , , , , , , 0, 5.11F F1 1 2 2 1 2 1 2* * *j f j f d f f j j j j
 

=


-


= =[ ˆ ( ) ˆ ( )] ( ) ( ) [ ˆ ˆ ] [ ˆ ˆ ] ( )

where  and δ are delta distributions onGd and n 1 - respectively. Notation .has been used tomake explicit

the difference between variablesf in canonical and covariant systems.Here , , n1 1f f f


º ¼ -( ) denote the
canonical variables whereas earlier, , , n1f f fº ¼( ) belonged to the covariant system inwhich all scalar fields
were internal variables. g continues to denote g g, , d1 ¼( ). The associated canonicalWeyl system is nowbased on

test functions which are defined on the reduced configuration space Gd n
can

1 = ´ - , and analogous
constructions to those considered in the beginning of section 3.2 follow through. The *-algebra now consists of
polynomial functions of the generators , *j j and I over the reduced base space Gd n 1´ - . For example, the
number operator now takes the form

N g g gd d , , .
Gd n 1

*
ò f j f j f=

  
´ -

ˆ ˆ ( ) ˆ ( )

Note that one can understand these quantities also as observables in the full theory, just computed at given values
of the relational clock variable. The heuristic interpretation is valid, but the actual algebraic properties of these
observables would be (potentially very) different.

Comparing the algebra (5.11) to (3.4), it is evident that the Fock systemof (5.11) describes a canonical setup,
but the nature of the time tF requires clarifications, whichwe nowprovide, andmorework, whichwe leave for
the future. A canonical Fock system requires a global time variable which is common to all the differentmulti-
particle sectors, that is for a varyingN. In otherwords, we are seeking a clock variable, extracted somehow from
the original covariant system,which in the reduced canonical systemplays a role similar to the time in usual
many-body quantumphysics. In the case of GFTs this time is a relational variable (or a function of several such
variables). To get such a global clock for the canonical Fock system, one needs: (1) aHamiltonian constraint
operator defining somemodel, since the definition of a relational clock is alwaysmodel-dependent due to the
relational variable itself being one of the dynamical variables of the full system; and (2) the Fock time variable
must be accessible from allN-particle sectors, i.e. its construction/definitionmust be compatible with changing
the total particle number.

However what we have currently (section 5.1.2) is a procedure of extracting a clock for a given fixedN-
particle sector. To see this, consider a simple example. Take a systemwith two non-interacting particles, each
equippedwith its own clocks c1f and c2f , alongwith their clockHamiltonians H 1( ) and H 2( ) respectively. Let t2
be the global clock time such that F t k t kc

1 2 1 2 11f = = +( ) ˜ and F t k t kc
2 2 2 2 22f = = +( ) ˜ . The t2-clock

Hamiltonian is H k H k H2 1
1

2
2= +( ) ( ). Now let’s add a third particle to themix, such that the resultant system

remains non-interacting. Then in the new system, the global clock variable t3 will be different from t2,
corresponding to a changed relational dynamics given nowbyH3 which has a non-zero contribution from the
dynamics of the third particle. Thus even in the simple case of no interactions, choosing a global time goes hand
in handwith choosing aHamiltonian dynamics restricted to afixedN. Even in an interacting system,with
H H HN N Nfree, int,= +ˆ ˆ ˆ (where the interaction part spans the configuration space of the different particles
simultaneously), there is a preferred clock time tN corresponding to a given choice of HN

ˆ . Changing the total
Hamiltonian to includemore particles will also change the corresponding time variable. The case of including
interactions in anN-particle GFT systemwill be considered elsewhere. Consequently also the relational Gibbs
states constructed in the next section are defined only for a givenN-particle system, both in classical and
quantum cases.

Let usmake afinal remark regarding deparametrization from the perspective of a full quantum covariant
theory. The strategy employed here (for afinite dimensional system) is to start from a classical constrained
system, deparametrize it to get a classical canonical systemwith respect to a relational clock, and then quantise
the canonical system leaving the clock as classical. Amore fundamental, and challenging, construction leading
possibly to amore physical sort of (approximate) deparametrization is to begin from the complete, fundamental
quantum theory (in our case, theGFT Fock system as detailed in section 3) inwhich all possible relational scalar
fields are quantum. Then deparametrizingwouldmean to identify a relevant regime of the full theory inwhich
one of the coupled scalar fields becomes semi-classical, and only then apply the deparametrization
approximations outlined in the classical case to our full quantum system. For example, such a regime could
correspond to restricting the system to a class of semi-classical coherent states with respect to the chosenwould
be clock variable.We discuss this line of thought no further and leave it as an interesting future project.
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5.3. Relational equilibrium
Aswe have discussed in the previous sections, in order to deparametrize the systemweneed to impose the
dynamical constraint of the theory.Moreover, deparametrizing, and obtaining a good canonical structure in
terms of a relational clock, amounts to the approximation

C C p H , 5.12t Nfull
deparam.

= +⟶ ( )

for which the constraint surface is Ncan,S = ´ G such thatHN is a smooth function on Ncan,G . Then,
restricting considerations on suchΣ, we can define a relational Gibbs state on the reduced system Ncan,G

Z
Z

1
e , d e , 5.13H

N
H

can
can

can can,
N

N

N

can,
òr m=b b-

G

-≔ ( )

where d Ncan,m is the Liouvillemeasure (in local coordinates, the Lebesguemeasure) on Ncan,G . This is indeed a
Gibbs state which is at equilibriumwith respect to the flow XHN

that is parametrised by the clock time t.

Equivalently, on Nphy,G , the state e
Z

H1
N

can
*r = b p- ( ) is a physical statistical state which is at equilibriumwith

respect to theflow generated by XHphy
on Nphy,G , where H HNphy*p = . Note that XH tphy *p= - ¶( )

(since X X 0C t HN* *p p= ¶ + =( ) ( ) ).
In the quantum systems associatedwith these classical systems as described in section 5.2, formal

constructions of the correspondingGibbs density operators follow through straightforwardly. The relational
Gibbs state is a density operator on Ncan, of the form e

Z
H

can
1

N

can
r = b- ˆ .

It is important to notice that this equilibrium state can be obtained as the reduction of theKMS state defined
in section 4.2.3with respect to the same translation in the (now) clock variable (one of the original internal scalar
field variables), after the imposition of the dynamical constraint of the theory (i.e. on-shell with respect to the
fundamental dynamics of the (quantum) system), and after the deparametrizing approximations have been
imposed on the same dynamical constraint.

6. Conclusion

In this workwe have tackled the issue of defining statistical equilibrium inGFTquantum gravity, i.e. in a
complete background independent context (thus in absence of any preferred notion of time evolution) and
dealingwith the fundamental (candidate)microscopic degrees of freedomof a quantum spacetime (themselves
not directly spatiotemporal).More specifically, we investigated the definition and construction ofGibbs states
within the quantumoperator formulation ofGFT for discrete gravity coupled to a number of real scalarmatter
fields.We have stressed how the peculiarmathematical formulation ofGFToffers several advantages toward
achieving our goal, also in comparisonwith other quantumgravity formalisms. Before discussing our explicit
constructions, we have outlined the different strategies that could be followed and the different underlying
principles, corresponding to different possible definitions of what ismeant by statistical equilibrium.We then
offered three examples.

Thefirst was based on the principle of constrainedmaximisation of the entropy in the spirit of Jaynes’work:
the constraints are a set ofmacroscopic observables (that one has access to), and the result ofmaximising the
entropy underfixed values of these is tofind the corresponding, least-biased distribution over themicroscopic
states such that the statistical averages of the given set of observables coincidewith theirmacroscopic values. This
method does not require a pre-defined transformation to define equilibriumwith respect to. Although once a
state is defined, one can (if onewants) extract itsmodular flowwith respect towhich it will satisfy the KMS
condition (along the lines of the thermal time hypothesis). Thus it could be especially useful in quantumgravity
contexts.We have observed here the general construction principles of such states, and have yet to explore their
full potential. Amore complete analysis and further interesting examples are left to forthcomingwork [20]. As a
simple illustrative example, herewe have constructed a geometric volumeGibbs state characterised by afixed
average of a volume operator defined on theGFT Fock space. It was found that a direct consequence of the
systembeing defined in such a state was the occurrence of Bose–Einstein condensation to a low-spin phase.
Naturally it would be useful to considermore examples of a similar type in futureworks. An interesting
possibility is to apply theGFT statisticalmechanical framework formulated here to the case of spherical GFT
condensate states in the context of quantumblack hole studies like [47], where in fact a similar constructionwas
used in terms of the area operator, as is often considered in loop quantum gravity-inspired analysis of quantum
black holes [41].

The second characterisation ofGibbs states that we have considered is the KMS conditionwith respect to a
1-parameter group of automorphisms of theGFT algebra. After showing that in theGFT quantum system at
handwith a given automorphism group, the uniqueKMS states are theGibbs states with respect to the generator
of the automorphism, we constructed exampleGibbs states encoding equilibriumwith respect to internal
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translations along the basemanifold Gd n´ . ThesemomentumGibbs states were structural andmodel-
independent. Keeping inmind that the primary reason to couple scalar fields was to then use them to define a
physical, relational reference frame, it was natural to seek aGibbs state, still generated by themomentumof the
scalarfield but which also encoded relational dynamics definedwithin a deparametrized system.

This led us to thefinal example: a relational Gibbs state encoding equilibriumwith respect to physical
relational evolution, for a given dynamical constraint. This was based on a deparametrization procedure, and
our constructionwas confined to a non-interactingN-particle GFT system, forwhich a single global clockwas
extracted. For such systems, we identified the relevant relational Gibbs density operator. In this aspect too,
several things remain to be better understood. Particularly, extending the current investigation to the full GFT
Fock space, thus lifting the restriction to anN-particle sector, is important. Also, considering examples of
specificmodels will be valuable. Lastly, it would be interesting to investigate further the idea of a deparametrized
system achieved as a certain sector of the original non-deparametrized system, at the full quantum level, via
semi-classical states.

Acknowledgments

Weare thankful toGoffredoChirco, Alexander Kegeles and Seungjin Lee formany insightful discussions.We
are also grateful to an anonymous referee for several helpful comments. IK acknowledges financial support from
DAADunder the funding program ‘ResearchGrants—Doctoral Programmes inGermany, 2015-16
(57129429)’.

AppendixA. Strong continuity of unitary translation groups

The existence of unitary groups in Fock space has been established using the invariance of the algebraic Fock
state under the translation automorphisms. Herewe show that themap g U g ( ) is strongly continuous in

F , given G gd  . Notice that the case G d n,= = is already includedwithin thismore general case.

Claim.U g( ) is a strongly continuous family of operators in F , that is, U g U g 0
1 2

y- ∣∣( ( ) ( )) ∣∣ as

g g
1 2
 , for all Fy Î , and all g g G, d

1 2
Î .

Proof.The strategywill be tofirst show strong continuity at the identity e, which can then be extended to all
elements due to boundedness ofU. For thefirst part, we begin by considering the set W f fF F p W Î{ ( ( )) ∣ }of
basis vectors of Fock space,

U g U e W f W L f W f

W f W L f2 Re , ,

F F F g F F F

F F F g F

2 2 2*

*

p p p

p p

- W = W + W

- W W

∣∣( ( ) ( )) ( ( )) ∣∣ ∣∣ ( ( )) ∣∣ ∣∣ ( ( )) ∣∣

( ( ( )) ( ( )) )

usingU e I=( ) . Notice that,

W L f W L f W L f W L f W f 1,F g F F g F F g g
2 2 2 2 2 2* * * *  p p pW W = = = =∣∣ ( ( )) ∣∣ ∣∣ ( ( ))∣∣ ∣∣ ∣∣ ∣∣ ( ( ))∣∣ ∣∣ ( )∣∣ ∣∣ ( )∣∣

wherewe have used the facts that the Fock representation is faithful in the third to last equality, and that all C*-
automorphisms are norm-preserving in the penultimate equality. Also, . ∣∣ ∣∣ denotes theC*-norm,while .∣∣ ∣∣
with no subscript denotes the standard operator norm in F .We thus have,

W L f W f 2F g F F F
2 2* p pW + W∣∣ ( ( )) ∣∣ ∣∣ ( ( )) ∣∣ , giving,

U g I W f W f W L f

f L f

2 2 Re ,

2 1 e cos
1

2
Im , 0

F F F F F g F

L f f
g

2

4g
2

*

**

p p p- W - W W

= - -- - ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

∣∣( ( ) ) ( ( )) ∣∣ ( ( ( )) ( ( )) )

( ) ⟶∣∣ ∣∣

because L f fg*  as g e using continuity of the left regular representation for unimodular groups. This
implies that,

U g I W f g e0 as . A1F Fp- W  ∣∣( ( ) ) ( ( )) ∣∣ ( )

Then, for anyψ in the dense domain D F F F p= W( ) ( ) , written as a general linear superposition
A c W f c W fF F F i i i F i i F i Fy p p p= W = å W = å W( ) ( ( )) ( ( )) , we have,
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U g I U g I c W f

c U g I W f 0
i

i F i F

i
i F i F

å

å

y p

p

- = - W

- W

∣∣( ( ) ) ∣∣ ∣∣( ( ) ) ( ( )) ∣∣

∣ ∣ ∣∣( ( ) ) ( ( )) ∣∣ ⟶

as g e , using result (A1) for each i. Thus,U g( ) is continuous in the strong operator topology in D F( ).
Since it is bounded, it can be extended to thewhole F . ,

Appendix B.Mathematical checks for volumeGibbs operator

For simplicity let us beginwithfirst checking that the state e Vb- is positive and trace-class. Technically, this is
like the canonical ensemble and is accompanied by the constraint N ntot = åc c. Since the total number of

particles is constrained to be Ntot, the relevantHilbert space here is NtotÄ , seen as a restriction of F to the
Ntot-particle sector. The following computations use the orthonormal occupation number basis n

i
ñc{∣{ } }of

F . For convenience, denote i
i

c º here.

Claim1.1.Operator e Vb- , for 0 b< < ¥ andV as defined in (4.1), is bounded in the operator normon F .

Proof 1.1.AnoperatorA is called boundedwhen there exists a real k 0 such that A ky y∣∣ ∣∣ ∣∣ ∣∣ for allψ in
the relevantHilbert space. Considering first the basis vectors,

n n ne e e .V
i

v n
i

v n
ii

i i
i

i i
ñ = ñ = ñ

å åb b b- - -
∣∣ ∣{ } ∣∣ ∣∣ ∣{ } ∣∣ ∣∣∣{ } ∣∣

Then, for a generic state n n c nn i i n n ii i i
y yñ = å á ñ ñ º å ñ∣ { }∣ ∣{ } ∣{ }{ } { } { } , we have,
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e e e e
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n
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n
n
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n
n

2 2

,

2
2

2 2

i
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j i
j

j j

i
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i
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i

i

å å
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y

y
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= =
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å

b b b b
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{ } { }
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using orthonormality of basis, and v n 0 0 e 1.i i i
v n2 i i i  bå  < b- å

Claim1.2.The bounded operator e Vb- is positive on F .

Proof 1.2.Abounded operatorA is positive if A 0y yá ñ∣ ∣ for allψ in the relevantHilbert space. For the basis
vectors we straightforwardly have

n n ne e 0.i
V

i
v n

i
2

i
i i á ñ = ñ

åb b- -
{ }∣ ∣{ } ∣∣∣{ } ∣∣

Then, for any state Ntoty Î Ä ,

c c n n ce e e 0.V

n n
n n i

v n

j
n

n
v n

,

2

i j

j i
j

j j

i

i i
i i å åy yá ñ = á ñ =

å åb
b b-

- -
∣ ∣ ¯ { }∣ ∣{ } ∣ ∣

{ } { }
{ } { }

{ }
{ }

,

Claim1.3.Operator e Vb- is trace-class on F .

Proof 1.3.The trace is

Tr e e e ,V

n

v n

n

nå å= º
å

b
b

b-
-

-

c

c
c c

c

c( )
{ } { }

{ }

where the sum is overall possible ways of arranging Ntot particles into an arbitrary number of boxes labelled by
c. Now, the configurationwith the lowest total volumewill be the one inwhich all Ntot particles occupy the
single-particle ground state with volume v0. This is the ground state N , 0, 0,tot ¼ñ∣ of the total volume operator
V, with eigenvalue N v0 tot 0 = . The highest contribution to the above sum comes from this term.We can now
separate this contribution to rewrite the series as,

Tr e e eV

n N ,0,

n0

tot

 å= +b b b- -

ñ¹ ¼ñ

-

c

c( )
∣{ } ∣

{ }

where now all e en 0 <b b- -c{ } . Now,we rearrange the states in the sum in increasing values of total volume
eigenvalues (and denote thesewith tildes), so that

25

New J. Phys. 20 (2018) 073009 IKotecha andDOriti



e e e .
n N ,0,

n

n l

n l

l

l

tot 0 0



 



 

å å å= ºb b b

ñ¹ ¼ñ

-

>

-

>

-

c

c

c

c









∣{ } ∣

{ }

{ }

{ }

Here, l 1, 2, 3, ...Î { } labels the reorganised list ofmulti-particle states in ascending order of their volume

eigenvalues, l l 1 ~ ~
+ , where equality denotes degeneracy of adjacent states.We have thus rearranged the series

such that each exponential term is less than or equal to the previous one. This series converges (by ratio test)

r lim
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e
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l l
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The same properties are now verified for the operator of interest, e V Nb m- -( ), for positiveβ as above. The
relevantHilbert space is now the full F as the particle number is allowed tofluctuate.

Claim2.1.Operator e V Nb m- -( ), for 0 b< < ¥ and v0m , is bounded in the operator normon F .

Proof 2.1. For a generic state Fy Î ,

c ce eV N

n
n

v n

n
n

2 2
2

2 2

i

i i
i i

i

iå åy y= =
åb m b m- - - -
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since, v vi0 m m for all i 0 e 1v n2 i i i  < b m- å -( ) . ,

Claim2.2.The bounded operator e V Nb m- -( ) is positive on F .

Proof 2.2. For a generic stateψ in the Fock space, we have

ce e 0.V N

n
n

v n
2

i

i i
i i åy yá ñ =

åb m b m- - - -
∣ ∣ ∣ ∣( )

{ }
{ }

( )

,

Claim2.3.Operator e V Nb m- -( ) is trace-class on F .

Proof 2.3.All arguments asmade above in proof 1.3 will apply here, with vc replaced everywhere by v m-c( ),
for any v0m .

AppendixC. Strong continuity ofmapUX

Claim.Given a continuousmap g t g t: :X X   ( )G and a strongly continuousmap
U g U g: : ( ) ( )G H , then themapU U g t U t:X X X≔ ◦ ( ) is strongly continuous.

Proof. Strong continuity ofUmeans, U g U g 01 2 y- ∣∣( ( ) ( )) ∣∣ as g g1 2 , for any g g,1 2 Î G and all y Î H.
Then, for any t t,1 2 Î and all y Î H, we have

U t U t U g t U g t

U g U g
X X X X1 2 1 2

1 2

y y
y

- = -
= -

∣∣( ( ) ( )) ∣∣ ∣∣( ( ( )) ( ( ))) ∣∣
∣∣( ( ) ( )) ∣∣

where g g tX1 1º ( ) and g g tX1 2º ( ) are arbitrary elements on the curve g tX Î( ) G. Continuity ofmap gXmeans,
t t1 2 implies g g1 2 . Then, using strong continuity ofU, we have as t t1 2 ,

U g U g 0.1 2 y- ∣∣( ( ) ( )) ∣∣

,
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