Reconstruction of Magnetic Configurations in W7-X using Artificial Neural Networks

Daniel Böckenhoff1, Marko Blatzheim1,2, Hauke Hölbe1, Holger Niemann1, Fabio Pisano3, Roger Labahn2, Thomas Sunn Pedersen1 and the W7-X Team1

1Max Planck Institute for Plasma Physics, Wendelsteinstraße 1, 17491 Greifswald, Germany
2Institute for Mathematics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany
3Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy

daniel.boeckenhoff@ipp.mpg.de, marko.blatzheim@ipp.mpg.de

Abstract

It is demonstrated that artificial neural networks can be used to accurately and efficiently predict details of the magnetic topology at the plasma edge of the Wendelstein 7-X stellarator, based on simulated as well as measured heat load patterns onto plasma-facing components observed with infrared cameras. The connection between heat load patterns and the magnetic topology is a challenging regression problem, but one that suits artificial neural networks well. The use of a neural network makes it feasible to analyze and control the plasma exhaust in real-time, an important goal for Wendelstein 7-X, and for magnetic confinement fusion research in general.
1 Introduction

Wendelstein 7-X (W7-X) is a pioneering experiment of the latest generation of optimized stellarators [1,2]. It aims to demonstrate steady state capability of the confinement concept with plasma parameters near those required in an energy-producing fusion reactor [3,4], and to demonstrate the steady-state capabilities of stellarators also at these parameters. The experiment started operation (Operation Phase 1.1, OP1.1) in 2015 [5], has started its next operation phase (OP1.2) in 2017, and will, when the water-cooled plasma-facing components have been fully installed in operation phase 2 (OP2), have discharge times of 30 min with continuous injected power of up to 10 MW. This discharge duration is about an order of magnitude longer than the longest characteristic time scale of the plasma, which is the one on which the net toroidal current, I_{tor}, evolves. The dominant contributor to I_{tor} is the bootstrap current I_{bs}, and the time evolution of I_{tor} can be approximated as: $I_{\text{tor}} = I_{\text{bs}} \cdot e^{-t/\tau}$ with L/R-time τ being the L/R time scale, of order 1 min for high-performance plasmas.

On these time scales, power exhaust is an important issue. Ten specially designed discrete island divertor modules [6] take the major part of heat flux that passes the Last Closed Magnetic Surface (LCMS), which defines the edge of the confined plasma. The actively cooled divertors, necessary for OP2, are designed to sustain local power loads up to 10 MW/m2. Other first wall components, however, can only be loaded with a fraction of this heat flux, e.g. the less cooled divertor edge withstands roughly 3 MW/m2 [7,8]. Overloading the divertors implies a risk of delamination, water leaks (cf. [9,10]) and impurity buildup, partially as a consequence of the first two, and must therefore be avoided.

To ensure the safety of the first wall, in particular the divertor, and to protect the plasma from impurities, real-time control is highly desirable, in particular for steady-state oper-
An important part of such a real-time control system would be one that optimizes elements of the divertor operation, such as pumping performance and detachment. We aim to develop and ultimately implement such a feedback controller in the device operation system.

The most important sensor system for this control loop will be ten endoscopes that will allow IR and visible observation of the ten divertor units. Prototypes of these will be in operation in the now running intermediate operation phase OP1.2, each observing one divertor (cf. Figure 1a). In OP1.1 five graphite limiters were placed vertically in the bean shaped cross section of the plasma vessel (cf. Figure 1b). In the confinement region, the magnetic field lines form nested toroidal surfaces that are not intersected by material objects. The aforementioned LCMS marks the transition to the exhaust region, called the Scrape-Off Layer (SOL) which is characterized by field lines that do intersect material objects, the Plasma-Facing Components (PFCs). The plasma enters the SOL through diffusive and convective transport processes perpendicular to the magnetic field, and then enters and populates the SOL field lines. These guide the outflowing plasma heat and particles to the PFCs. A common term for the shape- and intensity distribution of the resulting heat load pattern on the PFCs is “strike line” since it is usually highly elongated. A complex interplay of component shape, magnetic field structure, cross- and parallel field transport results in the strike lines observed.

The IR camera views of the strike-line patterns have a complicated relationship with the magnetic topology and the transport processes in the plasma and the main task for such a feedback system is the abstraction and real time processing of these camera images which are being recorded at frame rates of 50 Hz. Artificial Neural Networks (NN, see Section 2.1) have significantly improved in the last ten years and should be well suited for this task.

A machine learning approach for real time control is an active object of research in the nuclear fusion community for several different tasks [12–14].

The first step towards the ambitious goal of controlling the plasma divertor operation for W7-X in real-time is presented here: the training of NNs to reconstruct the edge magnetic topology from IR camera observations of the strike-lines.

So far, IR picture series are available from OP1.1 discharges only (cf. Section 2.4.1), with OP1.2 barely started at the time of writing this paper. With a very limited set of different magnetic configurations, these experimental data available is no solid basis for a NN training set. To alleviate this problem, simulated strike lines function as NN training set data, and the performance of the NN is verified with experimental data. Since in OP1.1 no divertor was installed only the aforementioned limiters, this study is done entirely with the OP1.1 limiter geometry and associated magnetic configurations.

The limiters are centered on planes with up-down symmetry, which reduces the geometric complexity of the strike line. Complexity of the intersection between magnetic field and limiter is moreover minimized by limiter design. These two factors restrain the limiter strike line variability to a fraction of the divertor strike line. Because of this, the mag-
netic configuration reconstruction from limiter strike lines is expected to be much less accurate than that of more variable divertor strike lines.

The relevant information regarding the used NN architecture, W7-X, training data creation and NN input pre-processing are given in Section 2. In Section 3 we present the results of the challenging magnetic field reconstruction from limiter strike lines, which give reason to optimism with respect to future performance in a divertor geometry.

2 Methods

2.1 Artificial Neural Network

Machine learning tackles the question "How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?" as stated by Tom Mitchel in [15]. Artificial Neural Networks are an approach to solving machine learning problems. This capability allows them to reproduce the behavior of unknown, complicated functions from many examples instead of explicitly programming the function traditionally. The NNs used to predict the magnetic configuration are all based on ideas from 1975, when the method of backpropagation for NNs was introduced [16]. Such a NN depends on numerous parameters that are optimized in a so-called training process. In the previous decades NNs were not as popular as they have now become, especially because the parameter convergence during the training turned out to be slow and the amount of training data was small. Recently NNs are used more frequently because of newly developed network architectures [17, 18], the improvement of NN training algorithms [19, 20], increased computer performance [21] and open source NN libraries [22, 23].

A simple NN is based on fully connected layers (see Figure 1a), where an input vector \vec{x} is linearly transformed, followed by an element wise non-linearity ϕ, usually referred to as activation function (see Figure 3) such that

$$f(\vec{x}) = \phi (W \vec{x} + \vec{b})$$

(1)

Figure 3: Activation functions

represents one layer. The free parameters W and \vec{b} define the linear transformation. The activation function mimics the transmission of action potential in physiological neurons, which only create a signal if a certain threshold potential is reached. It is crucial to choose ϕ so that it is smooth and differentiable almost everywhere to allow an efficient gradient-based optimization. A NN consists of multiple of such or more complex layers where the output of one layer is treated as the input of the following one. A more complex layer is the so-called convolutional layer [24], which has been developed to recognize patterns independent of the location by applying the same linear transformation on multiple smaller subsets of the input. Another positive effect is the reduction of free parameters, which decreases the risk of overfitting [25]. Convolutional layers (see Figure 1b) are used particularly frequently in image pattern recognition. For example the AlexNet architecture [26], which successfully won the 2012 ImageNet challenge [27], consists of several such layers. Most more complex layer structures, that are not recurrent, are based on the concept of convolutional layers.

The free parameters are arranged in the vector
$Wx + b$

\[f(\cdot) \]

Layer i

$Wx^{(j)} + b$

\[f(\cdot) \]

Layer $i + 1$

(a) Fully connected layer

\[x^{(j)} \]

\[x^{(j+5)} \]

Layer i

$Wx^{(j)} + b$

\[f(\cdot) \]

Layer $i + 1$

(b) 1D convolutional layer with kernel size 3 and 2 output feature maps

$\hat{\theta}$. To train the NN, the error

$$E(\hat{\theta}) = \sum_{i=1}^{N} (y(\vec{x}_i, \hat{\theta}) - y_{i\text{target}})^2,$$

defined as the sum of squared differences between all NN result values $y(\vec{x}_i, \hat{\theta})$ with inputs \vec{x}_i and target values $y_{i\text{target}}$ of the corresponding set with set size N, is minimized with respect to all free parameters. By calculating $\nabla_{\theta} E$, the gradient of the error with respect to $\hat{\theta}$, efficient gradient based minimization algorithms can be used. The basic approach is the gradient descent

$$\hat{\theta}_{i+1} = \hat{\theta}_i - \lambda \nabla_{\theta} E$$

with step size λ. This algorithm starts with an initial θ_0 and calculates new $\hat{\theta}_{i+1}$ with every iteration.

The data set is separated in training, validation and test sets. Weights are adjusted with the training set only. Training terminates if the error on the validation set reaches a minimum. Once the NN training stops, the generalization quality is checked on the independent test set. To increase the rate of convergence, this method has been improved by the stochastic gradient descent where the error gradient is not calculated for all training sets but only for a stochastic selection, the mini-batch. After each mini-batch θ is updated. Other improvements focus on the choice of θ_0 [28] or the step size λ, where, instead of a constant value, an adaptive method depending on the previous λ and the derivative $\nabla_{\theta} E$, such as AdaGrad [19] and Adam [20], determines the update rule.

Though in the W7-X experiment IR cameras will monitor the vessel wall temperature, the input for the used NN is not an image, but characteristics extracted from it, as further explained in Section 2.4.3. Experimental data is scarce so the main data set is based on simulations (see Section 2.4.2). The network structure (see Figure 5) consists of two 1D convolutional layers followed by two fully connected layers. This choice is based on the better performance as compared to fully connected layer based NNs. The convolutional
layers consist of 12 and 24 feature maps respectively, the first fully connected layer consists of 96 neurons. The last layer in this NN leads to the target value.

The network is trained with the Adam optimizer and the recommended parameters. A dropout \(0.5 \) is applied during the training. The weights are initialized by a normal distribution with standard deviation 0.5 and 0.1 for the first three layers and the last layer respectively. The activation functions as introduced in Figure (3) are Rectified Linear Units (ReLU) in the convolutional layers. In the first fully connected layer the logistic function has been is chosen as activation function. Before the first layer, the NN input is linearly transformed in such a way, that the training set input has mean \(0 \) and standard deviation \(1 \) to improve convergence. The simulated data set has a size of 3993 and the experimental data set has a size of 319 cf. Table 2. The training set is nine times larger than the validation set while the test set size depends on the respective experiment.

The NN quality is evaluated by the root-mean-square error (rmse), defined as

\[
\text{rmse} = \sqrt{\frac{E(\theta)}{N}}.
\]

2.2 W7-X Coil System

Toroidal magnetic confinement devices need a rotational transform \(\iota \) to compensate for magnetic drifts which would otherwise cause charge separation. \(\iota \) is defined as

\[
\iota = c \cdot \frac{I_{\text{tor}}}{\Theta} + \iota_{\text{CF}},
\]

where

\[
I_{\text{tor}} = \int_0^r j_{\text{tor}}(r') \frac{V(r')}{2\pi R_0} dr',
\]

is the toroidal current enclosed by the magnetic surface at \(r \). \(\Theta = \int \nabla \cdot \vec{B} dV \) represents the toroidal magnetic flux. \(c \) denotes a constant that depends on the machine coil currents. \(\iota_{\text{CF}} \) is the current free part of \(\iota \), only occurring in stellarators and as well depending on the coil geometry and currents. The W7-X coil system is shown in Figure 6a. The magnetic coil system consists of five identical modules each of which is point symmetric towards the module center, creating a five-fold symmetry in the magnetic field (cf. Figure 6b). Each half module consists of five different non-planar and two planar coils, depicted in red and blue. The modular coils are used to confine the plasma. The planar coils provide further variability of the magnetic field.

The modular and planar coils consist of 108 and 36 windings respectively. For convenience and clearness, we indicate the corresponding coil currents \(I_1, \ldots, I_5 \) and \(I_A, I_B \) in terms of coil currents that would yield the same magnetic field with one winding only:

\[
I_x = \frac{n_w \cdot I_{x,\text{true}}}{I_n},
\]

\(\forall x \in \{1,2,\ldots,5,A,B\} \), where the nominal current \(I_n \) is defined such, that all \(I_x \) are dimensionless. \(I_{x,\text{true}} \) is the current that is actually applied to the coils and \(n_w \) denotes the number of windings per coil. This follows the convention used in \([32]\).

The parameter space spanned by the coil currents is six-dimensional since the effects of the magnetic field strength are negligible.

2.3 Parameter Space Choice

The strike line is mainly influenced by the topology of the magnetic field \(\vec{B} \) at the edge. The topology of \(\vec{B} \) is to a large degree determined by the rotational transform \(\iota \) (cf. Section 2.2), which is a measure of how much a field line moves poloidally for one full toroidal turn. In stellarators, \(\iota \) is primarily determined by the currents in the magnetic coils rather than those running inside the plasma. We refer to this plasma-current free contribution as \(\iota_{\text{CF}} \). \(\iota \) is heavily dependent on the values of \(I_A \) and \(I_B \). If \(I_A + I_B < 0 \), \(\iota \) is increased and vice versa. Plasma currents can similarly change
\(\tau \) but these plasma effects can be effectively mimicked by adjusting coil currents \[31\]. In particular, the \(\tau \) changes due to plasma currents are roughly equivalent to changes caused by the currents \(I_A \) and \(I_B \) in the planar coil systems. While it is complicated and computationally intensive to calculate the plasma currents that change \(\tau \), it is straightforward to calculate the essentially equivalent changes in \(\tau \) caused by \(I_A \) and \(I_B \). For this reason, the NNs are trained to reconstruct the sum of the modular currents \(I_A \) and \(I_B \) of an \(\tau \)-scan rather than reconstructing the toroidal plasma current.

Table 1: Planar currents \(I_A \) and \(I_B \) of OP1.1 \(\tau \)-scan experiment and simulation. The number of distinct configurations in the scan is labeled “# configs”.

<table>
<thead>
<tr>
<th></th>
<th>(I_A)</th>
<th>(I_B)</th>
<th># configs</th>
</tr>
</thead>
<tbody>
<tr>
<td>experiment</td>
<td>0.13</td>
<td>[0.00, 0.13]</td>
<td>6</td>
</tr>
<tr>
<td>simulation</td>
<td>0.13</td>
<td>[−0.05, 0.18]</td>
<td>1001</td>
</tr>
</tbody>
</table>

On 2016/03/09 several experiments were conducted, where a modest \(\tau \)-scan was made (see e.g. \[5\]). \(I_B \) was varied from its standard OP1.1 normalized value of 0.13 (corresponding to 5 kA per turn), down to 0 while \(I_A \) was kept constant at 0.13. Strike lines from this experiment were also simulated (cf. \[2.4.2\]) with a much closer spacing than that obtained with actual OP1.1 plasmas. The simulated data also extends this range by 0.05 in both directions. Table 1 lists the normalized currents of this experiment as well as those of the simulations.

2.4 Data Set Creation

In the following we discuss all steps necessary for the generation of NN training data. First the experimental IR data processing is discussed. Subsequently the process of strike line simulation is described. For several reasons, a post processing applied to both experimental and synthetic data is necessary before the data
Figure 7: Selection of eight frames from the DIAS diagnostic, recorded during discharge “20160309.007” at \(I_B = 0.13 \) in heat flux representation. The chosen frames (respective frame numbers written below) display the plasma build up and break down. For this experiment, a stable plasma-wall interaction occurs from frame 18 till 34. The frames depicted only show that half of the limiter which was observed by the camera. For a comparison of strike lines at different \(I_B \), one frame from discharge “20160309.035” (\(I_B = 0.00 \)) is shown on the right.

Table 2: Summary of available DIAS data for OP1.1 \(t \)-scan from 2016/03/09. All modular coil currents were equal, that is \(I_1, \cdots, I_5 = 1 \). \(I_A = 0.1300 \) for all experiments of that day. \(I_B \) is given in the first column. The following column gives the number of discharges where reliable IR data were available. The column labeled “\# frames” denotes the total number of frames with stable plasma-wall interaction, i.e. durable strike line.

\[
\begin{array}{|c|c|c|}
\hline
I_B & \# discharges & \# frames \\
0.1300 & 3 & 52 \\
0.1083 & 2 & 35 \\
0.0867 & 2 & 42 \\
0.0433 & 2 & 40 \\
0.0217 & 2 & 29 \\
0.0000 & 5 & 121 \\
\hline
\end{array}
\]
Since the limiter strikeline is expected to be symmetric about the center of the limiter, observing one side of the limiter is sufficient to infer the full strike line. Thus we focus on the DIAS camera as an input.

Each IR video is processed in several steps to obtain the heat flux \(q \) (in \(\text{W/m}^2 \)) \cite{33}.

Mapping 2D to 3D In order to account for geometry effects, the sequence of such IR pictures is mapped onto the 3D CAD model of the limiter \cite{34}. Result of this procedure is a 3D temperature map, assuming the surface to behave like a perfect black body with an emissivity of 1.

Emissivity correction In reality, the emissivity of graphite is smaller than 1. Furthermore, over the three months of OP1.1 the emissivity of the limiter tiles became nonuniform. This effect was explained in terms of surface layer depositions created during plasma operation \cite{35}, was quantified, and the data were corrected accordingly, yielding absolutely calibrated surface temperatures of the limiter as a function of time.

Heat flux This surface temperature is the result of the heat capacity and heat conductivity of the graphite combined with the time-history of the incident heat flux on the carefully shaped limiter surface. The THEODOR (THermal Energy Onto DivertOR) algorithm \cite{36} utilizes the temperature-dependent material properties and the measured time-dependent temperatures to deduce the heat fluxes. This typically reveals a pair of strikelines on either side of the limiter, one of which is the subject of this analysis.

Interpolation As a last step, we interpolate the resulting discrete heat flux map to retrieve a continuous heat flux distribution on the limiter surface as shown in figures \(7\) and \(8b\).

Dark frames are removed. Furthermore, the plasma build up and break down is discarded (see Figure \(7\)). The remaining frames i.e. time spans of stable plasma-limiter contact, serve as the basis for further processing.

2.4.2 Strike Line Simulation

The size of the training data set strongly determines the performance of the NN after it has been trained. Since the amount of data for limiter operation is low, especially for the OP1.1 subset of the \(i \)-scan (cf. Table \(1\)), the data set is complemented by simulated strike lines. For the proof of principle, we make use of several approximations, described below. The input creation can be broken down into sequential parts.

\(\vec{B} \) creation A fast algorithm based on the Biot–Savart law generates \(\vec{B} \) from the W7-X coil currents. \(\beta \)-effects like Pfirsch-Schlüter currents can be neglected since...
the discharge β are small yet, where $\beta = \frac{P_B}{\mu_0 B^2}$ is the ratio of thermal to magnetic pressure. The coil geometry used was created by modifying the ideal coil set, taking into account preload and electromagnetic forces as well as dead weight cool down at modular coil currents of 6 kA and planar coil currents of 2.3 kA each [37].

Field line diffusion The approach to simulate particles and heat transport from the plasma core to the edge is as follows: Pseudo-randomly distributed particles are generated on the LCMS, assuming that the energy flux across the LCMS is uniform on the surface. Then particles follow their field lines, taking small random steps perpendicular to the field to simulate cross-field diffusion. If a particle trace intersects a material component the trajectory is stopped and the particle is registered as having hit the surface of the object through which the particle entered the object. The algorithm is described in more detail in [38], and it neglects the effects of magnetic drifts. The relevant parameters for the diffusion process are perpendicular diffusion coefficient D_\perp, collisional mean free path λ and velocity v. Values assumed for these constants are $D_\perp = 1 \text{ m}^2/\text{s}$, $\lambda = 0.1 \text{ m}$ and four different values for v between 1.4×10^5 and $2.8 \times 10^5 \text{ m/s}$. They are empirically justified in [31] Chapter 3.3]. A number of 8000 diffusion traces proved to be fast as well as robust in terms of strike line characteristics.

DIAS emulation The strike zone is typically two strike lines, one on either side of the limiter. As only one side is fully covered by the DIAS view, the field diffusion points on the far side are mirrored (with stellarator symmetry: $x \rightarrow -x$, $z \rightarrow -z$) to that side. The simulation procedure described above provides the strike line heat load, represented by the strike point density (e.g. Figure 9a).

2.4.3 Strike Line Partitioning

To make the NN robust towards noise, averaging quantities are extracted from the strike line and serve as input. The raw simulation and experiment data are significantly different because simplifying assumptions were made in the simulation (cf. Section 2.4.2). NNs trained on synthetic data but applied to reality may perform poorly. This problem is known in the machine learning community [39, Chapter 2.3.3].

In the following, processing steps are described to transform the simulated and experimental data sets in such a way that the NN can hardly distinguish them. The 80% quantile is applied to the IR data as the threshold limit q_{thr} for the local heat load. For each triangle i on the CAD triangulated limiter, this threshold is implemented by setting $q_i = 0$ for $q_i < q_{thr}$. Each data set is split into nine regions, roughly following the natural geometry of the nine limiter tiles as shown in Figure 9b. For each of those nine regions, we compute the center of mass of the heat flux

$$\vec{\mu} = \frac{1}{\sum_{i=1}^{n} A_i q_i} \sum_{i=1}^{n} A_i q_i \vec{\kappa}_i,$$

with n triangles per section, where each triangle i has the properties centroid $\vec{\kappa}_i$, area A_i and heat flux q_i.

The NN inputs are

$$\Delta \vec{\mu} = \vec{\mu} - \vec{\mu}_{ref},$$

with $\vec{\mu}_{ref} = \vec{\mu}(I_B = 0)$, separately for experiment and simulation. This processing is introduced in order to be independent of the origin of the coordinate system in each region and diminish the offset between the two data sets.

As an example, Figure 10 depicts all three spatial components of $\vec{\mu} = (\mu_x, \mu_y, \mu_z)^T$ for the section corresponding to tile 4. $\Delta \mu_x$ and $\Delta \mu_y$ show a similar behavior, except for a constant
The images show three different NN inputs depending on the planar coil current. The data presented in each graph are training set (blue), validation set (green) which are both based on simulations, and the experimental test set (red). The training and validation set are based on four different field line diffusion velocities to illustrate different collisionalities (cf. Section 2.4.2) which leads to distinguishable curves.

3 Results

In the following, we present the results of the I_B prediction. They were created with the same input parametrization (cf. Section 2.4.3) and NN architecture (see Section 2.1).

3.1 IR Data

A NN is trained and tested on all available IR data from the OP1.1 ι-scan. This means in particular, only six different I_B values are available for training, validation and testing. Figure 11 shows I_B, reconstructed from the strike line, in dependence of the actual target value of I_B. Here, as well as in all following figures, the NN validation is displayed by means of red circles. The independent test sets are depicted in terms of blue triangles. In case of an optimal reconstruction, target and NN output turn out equal, indicated by the dashed line. It can be seen that the NN is able to reconstruct I_B sufficiently well, since the points for the test set scatter closely and symmetrically around the target I_B. This is quantified by a rmse of only 0.010 for the validation as well as the test set. Because only six different magnetic configurations are available here, the NN is not expected to perform well for the interpolation between the

scaling factor. Since the NN will rescale the input to a standard deviation of 1 (cf. 2.1), this factor vanishes. Thus only $\Delta \mu_x$ and $\Delta \mu_z$ are given to the NN. As expected, we observe systematic differences between simulation and experiment. For example, $\Delta \mu_z$ is slightly above the mean simulation result for $I_B < 0.05$ while it is below the simulation trend for the other half.

The variability of $\Delta \vec{\mu}$ stems from the random processes and different velocities used for field line diffusion simulation described in Section 2.4.2.
given currents. This can be seen in Figure 12a where rmse for validation is 0.016 and 0.023 for the test set which is 40% larger. As one might expect, the rmse for extrapolation differs by more almost one order of magnitude, namely 0.007 for validation and 0.047 for the test set. Figure 12b shows this behavior.

3.2 Combination of IR and Synthetic Data

To obtain a sufficient amount of training data, we simulate the limiter i-scan described in Section 2.3. As with the previous result on experimental data, I_B is well reconstructed by a NN, trained with simulated data leading to an rmse of 0.014 in both validation and test set. Additionally, the NN trained with synthetic data can now be tested with IR data, i.e. in the process of training, the NN was never exposed to any subset of this test set, neither implicitly (validation set) nor explicitly (training set).

The test is performed with all DIAS frames
given in Table 1. The green squares in Figure 13a show the performance for this data set. The experimental data follow the trend of the dashed line with an rmse of 0.029. We observe a small but clear and systematic underestimation of \(I_B \) of \(-0.026 \pm 0.001\) on average; this causes the larger rmse as compared to the validation set. The reason for this offset is not yet clear to us but is under investigation. Though the test set does not perform as well as the validation set, the performance can already be considered a success, considering the relatively small discrepancies and the complexity of the problem (cf. Section 2.4.3).

We examine now whether training with a subset of experimental data improves the NN performance for such experimental data with no corresponding target \(I_B \) in neither training nor validation set. The only change as compared to Figure 13a is introduced by adding all IR data with target \(I_B \) below 0.1 to the training and validation set. This way, the NN should learn to neglect systematic differences between simulation and experiment. The discrepancy is significantly reduced as compared to the only simulation trained NN, quantified by an rmse of 0.023. Still, the reconstruction underestimates \(I_B \).

Note that the validation rmse of 0.013 for this NN is similar to that of the NN presented in Figure 13a, although it is trained with a mixture of experimental and simulated data. In Section 3.1, we demonstrated the poor interpolation as well as extrapolation ability of the NN with few target \(I_B \). The NN presented here clearly outperforms the extrapolation result discussed in Section 3.1.

4 Conclusion

It was shown here that neural networks are capable of reconstructing the magnetic configuration in terms of its \(\iota \) value, with experimental observations of limiter heat loads performed
during an ι-scan during the first experimental phase of Wendelstein 7-X. The NNs operated on real IR as well as simulated data. The NNs trained on simulated data can reconstruct configurations from IR data with sufficient accuracy. An even better performance is reached when the NN training set is based on a combination of simulated and parts of the IR data. It is expected that this approach will lead to a capability of extracting key physics parameters (of which ι is perhaps the most important) in real-time in future divertor operation, based on IR camera data and possibly other diagnostic signals as well. Such a system would play a major role in a real-time divertor operation control system on Wendelstein 7-X.

Further improvements in the ensemble of NN architecture and the data parametrization are subjects of ongoing work. In the upcoming OP1.2 with installed divertors we plan experiments with iota scans and non-negligible I_{tor}.

5 Acknowledgments

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. We wish to acknowledge the helpful discussions with H. Hölbe, L. Rudischhauser, G. Leifert and T. Grüning. Our gratitude goes to H. Niemann and F. Pisano for providing the IR data geometry and heat flux mapping. We are also thankful for the support from the CITlab (University of Rostock) and Planet-AI teams.

Bibliography

