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proceeds to a very detailed exposition of Yule’s mathematical model of
word distribution, which is followed on the next page by a discussion of
the possible interpretations of de Saussure’s term valeur. It is to be
regretted that the section titles in many instances do not reflect their
contents. Thus Section XV entitled “Information-theoretical inter-
pretation of Chinese word structure” deals essentially with various
methods for the binary coding of Chinese hieroglyphics which do not at
all affect the Chinese word structure.

Some chapters of Herdan’s book are an exposition of different aspects
of probability theory and mathematical statistics, e.g. §§ 2.1, 2.2; 3.1
and 3.2 (p. 29), §§ 4.1, 4.2 (p. 41), etc.

There could have been no objection to this material as such, had it been
more logically and more intrinsically connected with the central themes
of the book.

Since all of the material is obviously intended as an aid for linguists,
it should have been presented in a more popular way.

To sum up, Herdan’s fundamental book which, like his previous publica-
tions, constitutes a kind of compendium on “statistical linguistics™ will
be of great use both to experienced linguists and to freshmen in the field
of linguo-mathematical methods.

Moscow R. FRUMKINA
Institut jazykoznanija

William S. Cooper, Set Theory and Syntactic Description
(= Janua Linguarum, series minor, XXXIV). The Hague,
Mouton & Co., 1964. 52 pp. Gld. 8.—

The application of mathematical, logical, and set-theoretical notions to
the grammatical description of natural languages has brought about a
most beneficial revolution in linguistics. The first to use mathematical and
logical concepts in a theory of grammatical description, was Louis Hjelm-
slev. Among the Bloomfieldians, it was Zellig S. Harris, who first intro-
duced the conceptual apparatus of modern logic. During the last ten
years the majority of the young linguists, headed, of course, by Noam
Chomsky, and many of the older linguists, have been enthusiastically
taking part in the development of what is sometimes called mathe-
matical linguistics.
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Unfortunately, however, the techniques of mathematical logic and set
theory are not easy to master. They require a special training, to which
linguists are forced to subject themselves, if they are to keep pace with
recent developments. This explains in part the unwillingness of some
linguists, especially in Europe, to accept, or even to appreciate, research
done with the aid of mathematical or logical concepts.

This booklet by William Cooper serves a double purpose. It is ““writ-
ten for the reader who may not possess an extensive mathematical back-
ground, but who is nonetheless interested in the logical and mathematical
foundations of the theory of grammatical description” (p. 5). Onthe other
hand the “basic contention of this paper” is to provide evidence for the
thesis that “syntactic description can conveniently be carried out within
elementary set theory, introducing only a few special operations whose
definitions are comparatively simple” (p. 51/2).

It cannot be sufficiently stressed that some knowledge of the principles
of mathematical logic and set theory is indispensable for the grammatical
linguist. There is, however, as yet, no book at hand, that gives an ade-
quate selection of those logical and set-theoretical elements that are es-
pecially important in linguistics. As far as set theory is concerned, Coo-
per’s paper certainly provides the linguist with a useful introduction, al-
though I doubt if linguists without any previous training in the reading
of mathematical texts, will be able to assimilate it even in the very simple
formit has. Inthe beginning, at least, the uninitiated student needs coach-
ing to learn how to read texts of a mathematical character. But, anyway,
the publication of Cooper’s study is fully justified, if only because it pre-
sents a not too difficult introduction to linguistically relevant elementary
notions of set theory.

Cooper starts with a demonstration of the utility and importance of
set theory (Chapter I), then gives an exposition of some simple set-theoret-
ical concepts (Chapter II). In Chapter ITI Cooper introduces some “‘spe-
cial operations” which he considers convenient for purposes of syntactic
description, but which are generally not standard mathematical devices.!
From Chapter IV onwards, the author finds himself in linguistic territory.
He gives a set-theoretic characterization of natural languages and their
grammars (Ch. IV). In Ch. V he presents thirteen examples of grammars
of small subparts of English, of increasing complexity, and based upon the

1 It should be noted that the definition of the concatenation operation, on p. 28, is
erroneous: the right and left elements have been interchanged. The definition should
read:

x~y = x + {{B, u) : {B-length(x), u) € y}.
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general and special notions and operations that are explained in the Chap-
ters IT and III. Ch. VI is a defense of “‘the set theory thesis”, the presen-
tation of which was the second aim of the paper under review.

As a preparation to the reading of current mathematical-linguistic lit-
erature this book is, regrettably, incomplete. Nothing is said about the
theory of deduction, or, more specifically, about the theory of algorithms.
The reason for this limitation is, doubtless, the author’s conviction that
“to find a sufficiently flexible framework™ for grammatical description
“one need look no further than elementary set theory” (p. 16). That is,
the isagogic value of this book is limited because of the author’s set theory
thesis. Cooper writes: “Some systems of linguistic analysis have already
been formulated in terms of specialized mathematical notations of a re-
stricted sort. If set theory is regarded merely as an addition to this list,
in competition with the rest, the point of using an extremely general for-
malism such as set theory will have been lost. Set theory is intended to
serve a purpose of a different sort from that of these other systems. Pre-
vious mathematically-formulated linguistic systems have been designed
to provide a restricted mathematical framework suitable only for those
specific notions central to the particular system of linguistic analysis. Set
theory, by contrast, is intended more as a universal system which does not
depend on any particular linguistic notions, but rather provides a foun-
dation broad enough to support the existing systems, and hopefully future
systems also” (p. 15). I am afraid, however, that this does not do justice
to ‘““previous mathematically-formulated linguistic systems”’.

The most notable example of a type of mathematically-formulated
grammatical description is the Chomskian grammar, best known from
Chomsky’s Syntactic Structures (= Janua Linguarum, IV) (’s-Gravenhage,
Mouton & Co., 19571, 1963%). Although it is not explicitly stated there,
it must be recognized, that a Chomskian generative grammar is, essential-
ly, a complicated algorithm.? An algorithm, as expounded by Rosen-
bloom,? is a deductive apparatus, or finite automaton, characterized by
the following elements:

(1) a finite alphabet (c.q. a finite number of primitive terms)

(2) a finite number of initial strings (c.q. axioms)

(3) a finite number of rewriting rules (c.q. instruction rules, or produc-
tions).

2 Cf. E. W. Beth, “Konstanten van het wiskundige denken”, Mededelingen der
Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Letterkunde, Nieuwe
Reeks, Deel 26, No.7 (Amsterdam, 1963), p. 249.

3 Paul Rosenbloom, The Elements of Mathematical Logic (New York, Dover Publi-
cations Inc., 1950) (especially Chapter IV).
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Strictly speaking, the theory of algorithms, developed mainly by E. L.
Post, is part of set theory, since it is based upon the primitive terms of set
theory and serves to characterize sets of a given sort. Algorithms may
serve to characterize the set of theorems deducible from a set of axioms
in primitive terms by means of a set of instruction rules. One notices
that the structure of an algorithm is completely isomorphic to the struc-
ture of what is known in logic as a deductive theory, producing theorems
from axioms and primitive terms. Algorithms are used also to charac-
terize, by means of deduction, certain sets of numbers. In general, re-
cursively enumerable, or canonical, sets are sets that can be characterized
by means of an algorithm. As far as natural languages are concerned
“Chomsky’s work can quite naturally be described as an inquiry into
the possibility of such an algorithm™ (Beth, /.c.). In short, the theory of
algorithms can be viewed as the general theory of deduction.

Therefore, if algorithmical grammars are among ‘‘previous mathemat-
ically formulated linguistic systems”, it is certainly incorrect to say that
these systems ‘“have been designed to provide a restricted mathematical
framework suitable only for those specific notions central to the particular
system of linguistic analysis”’. On the other hand, since the theory of algo-
rithms may be regarded as a branch of set theory, the author’s contention
that “the primitive technical terms needed for syntactic description are
just the primitive technical constants of set theory” (p. 51), does not neces-
sarily imply a rejection of algorithmical approaches. Yet the author ap-
parently excludes algorithmical devices. He even seems unwilling to re-
gard an algorithmical grammar as a competitor of his set-theoretic type
of grammar. Let us overlook, however, this unwillingness, and see if
Cooper’s set-theoretic approach can stand the competition.

As in the algorithmical theory of grammar developed by Chomsky, a
language L is considered a set of finite sequences, or strings, constructed
out of a finite set of elements, the alphabet of L. Thus L is a subset of the
set of all sequences constructible out of the alphabet of L. The sequences
belonging to L are called grammatical sequences. The aim of a grammar
T" of L is to define, or to characterize, the set of grammatical sequences,
separating them from the complement of L, which is the set of non-gram-
matical sequences in the same alphabet. “The function of a grammar,
then”, Cooper writes, ‘“‘is to specify, or describe, some particular set of
sequences” (p. 33). “T is a grammar of L if and only if T is a well-formed
mathematical definition and I" defines L (p. 34).

But here their roads part. Cooper proceeds along the well-known lines
of set-theoretic definition. He starts with the definitions of a number of
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primitive sets, then defines new sets out of the primitive ones, applying
the operations given in the Chapters II and IlI, and so forth, until he ar-
rives at the definition of a set L, composed out of the previously defined
sets, and equivalent to some language. Let us take Grammar III (p. 38)
in order to demonstrate this procedure:

““GRAMMAR III:
(1) S = {klif, mos, bog}
(2) P = {klifs, mosiz, bogz}
(3) D = {da, sam}

4 Q =D-s
(5) Q=D-P
(6) Q=Q+Q

(7 V= {kavirz, sarawndz}
(8) Vo = {kavir, sorawnd}
(9) Lz =Q'V’Q1+Q0‘V0'Q1
The language L, contains 288 sequences”.*

(The operation ““-”’ (interconcatenation) is defined on p. 29 in the follow-
ing way: “If A and B are sets of sequences, A - B is the set of all sequerces,
which can be formed by concatenating a member of A onto the left end
of a member of B”. The ““+” operation is set-theoretic union.)

Chomsky’'s grammar does not explicitly define a set, but can be consid-
ered a device for producing, in an automatic way, sequences of symbols,
within an alphabet, from given ‘‘axiomatic™ sequences, following a finite
number of rewriting rules. The algorithmical grammar indirectly defines
the sentences of a language by producing them all, and only these. Al-
gorithms can be said to characterize sets of sequences, rather than to de-
fine them in set-theoretical terms.

Among linguists it is a commonly accepted opinion that natural lan-
guages are most adequately handled if they are treated as virtually infinite
sets. There seems to be no limit to the number of sentences of a natural
language. Given any sentence, one can always produce a new sentence
that is longer than the original one. Any limit that a grammar might be
made to set to the length of sentences in a natural language, is arbitrary.
The grammatical apparatus presented by Cooper is very poor in this re-

4 An unelegant feature of this grammar is, that it does not distinguish between differ-
ent uses of “some”. E.g. “some cliff surrounds the bog” is ungrammatical in one sense,
but acceptable in another. A different objection can be raised against Grammar V
(p. 40), which permits e.g. “now the cliff now covers the bog now”, or “already the
cliff now covers the bog already”.
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spect. All but one of his thirteen sample grammars define a finite number
of sentences. Only Grammar VI allows for an infinite number, because
of the definition of one infinite set, namely the set of all sequences form-
able from the two adjectives o/d and green, and the identity sequence O.
This infinite set is defined by means of the special operation of exponen-
tiation to the power infinity: ““A*° is the set of all sequences formable from
the members of A and the identity sequence by a finite number of appli-
cations of the concatenation operation. If A contains any members not
equal to 0, A® will contain an infinite number of (finite) sequences.

EXAMPLES: {t}® = {0, ¢, ¢, t1t, tt1t,... };

{t, e}° = {0, 1, e, tt, ee, te, et, t1t,...}” (p. 31).
This operation of raising to the power infinity is, in Cooper’s exposition,
the only means of defining an infinite set of sequences. Natural languages,
however, constitute infinite sets by more sophisticated processes than the
indeterminate stringing together of elements of a given set, say adjectives,
as in the language of Grammar VI.

It is curious to note that all languages defined by the thirteen grammars
of Chapter V are finite state languages.® Yet the theoretical resources of
the apparatus set forth in the Chapters II and III are more powerful than
to allow only for the definition of finite state languages. For instance, the
model languages

L,: ab, aabb, aaabbb, ..., and in general, all sentences consisting of n
occurrences of a followed by exactly n occurrences of b, and only
these;

L,: aa, bb, abba, baab, aabbaa, ..., and in general, all ‘mirror image’
sentences consisting of a string X followed by X in reverse, and
only these;

L,: aa, bb, abab, baba, aabaab, ..., and in general, all sentences con-
sisting of a string X followed by the identical string X, and only
these,

which are not finite state languages, as Chomsky demonstrated,® can be
defined in Cooper’s terms as follows:

ForL;: A = {a}®
"B = ()~
| I |
L, = {x~y: x€A, yeB, length (x) = length (y)}.

5 Cf. Noam Chomsky, “Three Models for the Description of Language”, Institute
of Radio Engineering. Transactions on Information Theory, vol. IT-2, Proceedings of the
Symposium on Information Theory, September 1956.
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For Ly: A = {a, b}*®
L, ={x"y:x€Aand y = X}.
A definition is required here of the reverse of a sequence (5) (s), which
may be formulated in the following way:
§ = {{B, s(length (s)—PB-+1)) : 1< B< length (s)}.
For Ly: A = {a, b}~
L = {x~x: xeA}.

This implies that the devices of the Chapters II and III may be applied
to construct grammars that are essentially more powerful than the thir-
teen sample grammars of Chapter V. Yet the question remains whether
a Cooperian grammar is in any sense superior to an algorithmical one.
To answer this question we may employ as a criterion the decision problem
for sets of sequences, or languages.”

The DECISION PROBLEM for a set of sequences or strings consists in deter-
mining whether a given string belongs to the set or not. A DECISION PRO-
CEDURE is a finite number of unequivocally defined steps, by which one
determines whether a given string belongs to the set or not. The appli-
cation of decision procedures does not require any creative intelligence.
They can be executed by an automaton, or, as Rosenbloom says, by a hap-
py moron. Sets for which there is a decision procedure (or, for which the
decision problem has been solved), are called SOLVABLE, or RECURSIVE,
sets. A set of strings that can be characterized by means of an algorithm
is a CANONICAL set. Every solvable set is canonical. That is, for every
solvable set an appropriate algorithm can be designed. But there are
canonical sets that are unsolvable. For these sets no decision procedure
can be found.

The languages L,, L,, and L; constitute solvable sets. Their decision
procedures can be derived from their informal descriptions given above
In general, all languages that can be defined by the descriptive devices set
forth in the Chapters II and III are solvable sets, as can be readily seen
from the following:

Since all finite sets are solvable, the finite sets definable in Cooper’s
terms are solvable. The only infinite sets in Cooper’s apparatus are those
defined by the operation of raising to the power infinity. These are solva-
ble also, as one sees intuitively, because for any given sequence to belong

8 Noam Chomsky, “Three Models”, 2.2, and Syntactic Structures, 3.2.
7 See for a detailed description of this problem and related subjects, Rosenbloom,
o.c., Ch. 1V, and E. W. Beth, The Foundations of Mathematics. A Study in the Philoso-
phy of Science (= Studies in Logic and the Foundations of Mathematics) (North-Hol-
land Publishing Company, Amsterdam, 1959) (especially Chapter 21).
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to a set x® it is a necessary and sufficient condition that it consist of only
members of x. This can be made out in a finite number of steps, since x
is finite and any sequence of x* is finite in length. More formally the
solvability, or recursiveness, of all sets x® can be demonstrated by refor-
mulating the definition of x®, on p. 31, as follows:
X® = {y . yexlength (Y)},

Since this is a recursive definition, all sets of sequences defined by this
operation are recursive, hence solvable, sets.®

Thus it appears that the descriptive possibilities of Cooper’s apparatus
are essentially poorer than those of algorithmical systems, which provide
descriptions of unsolvable canonical sets also.

This does not mean, of course, that set theory does not provide ade-
quate descriptive devices for natural languages. First of all, it is still a
moot point whether natural languages are in fact unsolvable sets. It is
true that as yet no decision procedure has been found for natural lan-
guages. That is, there exists as yet no general automatic procedure for the
grammatical analysis of given sentences of some language. But it is very
well possible that such a procedure will be found some day. However,
even if natural languages do constitute unsolvable sets, the set theory
thesis is, as Cooper says, ‘“‘almost trivially true, for set theory has been
found adequate to the definition of virtually every known mathematical
term, relation, and operation. ... Set theory in its broadest sense takes
in all of known mathematics, and our hypothesis really says no more than
that syntactic description can be carried out within present-day mathe-
matics” (p. 51/2). But then the mathematical, or set-theoretical, frame-
work has to include algorithmical devices.

Summarizing we may say that the paper under review provides linguists
with a most valuable introduction to some basic notions of set theory, and
gives at the same time a good training in the reading of simple set-theoret-
ically formulated texts. On the other hand, the author’s views upon gram-
matical problems seem to be rather naive, in that the sample grammars
given in Chapter V do not exceed the limits of finite state grammars, al-
though the descriptive techniques given in the Chapters II and III allow
for more powerful grammars. They cannot compete, however, as they
are, with existing algorithmical systems, since they do not permit the
definition of unsolvable sets of sequences.

University of Groningen PETER A. M. SEUREN

8 T am indebted to W. A. van der Moore of the University of Amsterdam for this
simple and elegant proof.





