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In a many-body localized (MBL) quantum system, the ergodic hypothesis breaks down, giving rise to a
fundamentally new many-body phase. Whether and under which conditions MBL can occur in higher
dimensions remains an outstanding challenge both for experiments and theory. Here, we experimentally
explore the relaxation dynamics of an interacting gas of fermionic potassium atoms loaded in a two-
dimensional optical lattice with different quasiperiodic potentials along the two directions. We observe a
dramatic slowing down of the relaxation for intermediate disorder strengths. Furthermore, beyond a critical
disorder strength, we see negligible relaxation on experimentally accessible time scales, indicating a
possible transition into a two-dimensional MBL phase. Our experiments reveal a distinct interplay of
interactions, disorder, and dimensionality and provide insights into regimes where controlled theoretical

approaches are scarce.
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I. INTRODUCTION

The ergodic hypothesis underlies quantum statistical
mechanics, linking reversible microscopic dynamics to
irreversible macroscopic behavior. In an ergodic system,
local degrees of freedom get rapidly entangled with one
another, and local quantum correlations are rapidly erased
[1-4]. Nonergodic many-body localized (MBL) [5-10]
systems, however, defy this ubiquitous behavior and show
persistent local quantum correlations [11-14]. Furthermore,
MBL systems are believed to be robust to small, local
perturbations and form a distinct, nonergodic phase of matter.
The phase transition from the ergodic phase to the MBL
phase appears to be a highly unusual critical phenomenon;
as ergodicity breaks down in the MBL phase, its description
lies beyond the scope of thermodynamics and traditional
statistical physics [8,9].

Because of limitations of the available numerical meth-
ods, most theoretical explorations of MBL concentrate on
one dimension. Whether, and under which conditions,
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MBL can occur in higher-dimensional systems remains a
challenging question for both theory and experiment. While
the initial theoretical work in Ref. [5] on MBL does not
depend strongly on dimensionality, it was recently argued
that rare, locally thermal regions [15] in systems with true
random disorder can destabilize the MBL phase in two
dimensions. It is presently unclear if such arguments also
hold for systems with deterministic disorder such as
quasiperiodic potentials. At the same time, initial experi-
ments provided evidence for a MBL phase in higher
dimensions by measuring global transport [16,17].
Moreover, the nature of a possible MBL transition in
higher dimensions might itself be very different compared
to the one-dimensional transition [18-24]; for example, a
subdiffusive phase as a precursor to localization in one
dimension [18,24-28] might not exist in higher dimensions
[29] (but see Ref. [30]). Given the apparent conflict of
available theoretical results [15,29,31,32] and infeasibility of
reliable numerical simulations, experiments stand to play an
important role in elucidating these regimes [10,16,17,33,34].

Ultracold atoms in optical lattices provide a particularly
well-suited platform to explore these phenomena, as they
combine almost ideal isolation from the environment with
individual experimental control of all microscopic param-
eters. In this work, we employ ultracold fermions in a
quasiperiodic optical lattice to experimentally investigate
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the appearance of a nonergodic many-body phase in two
dimensions by directly tuning the strength of a quasiperi-
odic potential. By quantifying the dynamical relaxation of
an imprinted striped density pattern, we find evidence for
three dynamical regimes: a regime of fast relaxation at
weak disorders consistent with thermalization; a regime of
slow relaxation at intermediate disorders, resembling the
relaxation expected in a Griffiths regime [23]; and, finally,
a strong-disorder regime with negligible relaxation, con-
sistent with the appearance of a MBL phase. The slow
relaxation regime begins only once the single-particle states
are already strongly localized, highlighting that the slow
dynamics is an inherent interaction effect. Compared to one
dimension [27], the slow relaxation regime is observed to
much stronger disorders in two dimensions, revealing an
important role of dimensionality. Furthermore, tracking the
relaxation dynamics appears to be useful in locating the
many-body localization transition, even in the presence of
weak couplings to the environment [27,35].

A. Experiment and model

Our system is composed of a degenerate “°K Fermi gas
prepared in an equal two-component spin mixture of its two
lowest hyperfine states. The spinful fermions hop on a
square lattice, and the two species interact via on-site
interactions that are tunable by a Feshbach resonance. Two
quasiperiodic potentials with different incommensurabili-
ties are created along the x and y directions of the lattice
and form a quasiperiodic two-dimensional disorder poten-
tial; see Fig. 1. Our system is described by the following
Hamiltonian:

H=—J Z (&].'ﬁ&iﬁ +Hec)+ Uzﬁi,rﬁi.¢
(i) ‘

+ A [cos(2zp,m) + cos2apyn)li,. (1)

Here, 6;6(&,,,) is the creation (annihilation) operator of
a fermion with spin o € {|1),|]l)} on a lattice site
i = (m,n), characterized by the Cartesian coordinates
(m,n), and 7; , = 6;66’” is the particle number operator.
In the first term, the angle brackets <, ) restrict the sum over
nearest-neighbor sites. The tunneling matrix element is set
to J =~ h x 300 Hz (& is Planck’s constant), and U denotes
the on-site interspecies interaction strength. The disorder
potential is characterized by the strength A and the
incommensurable wavelength ratios f, ~ 0.721 and g, =
0.693 [36]. In the absence of interactions, this system is
separable along the two directions and admits an Aubry-
André-type metal-insulator transition at a critical disorder
strength of AV=0 =27 [37].

To probe the many-body dynamics of this system, we
prepare a far-from-equilibrium initial state where atoms
are selectively loaded only on the even stripes; see Fig. 1(a).
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FIG. 1. Schematic of the experiment. (a) The system is
initialized in a striped density-wave pattern of fermionic *°K
atoms in a random mixture of two spin states (red and blue) in a
square lattice with tunneling matrix element J, quasiperiodic
potential of strength A, and tunable on-site interactions U
between the different spins. The largest realized 2D system is
composed of approximately 200 x 100 sites with several thou-
sand atoms. (b) For weak disorder strength, the system thermal-
izes quickly (green area), whereas at strong disorder it is likely to
exhibit a many-body localized regime (blue). Close to the
transition (red dot, A_), a regime of slow relaxation is observed
(red area), potentially caused by locally insulating regions.

In an ergodic time evolution, this density-wave pattern will
quickly vanish as the dynamics erase the microscopic
details of the initial conditions. In contrast, a persistent
pattern indicates a memory of the initial state and hence
nonergodic behavior. This can be captured by the normal-
ized atom number difference between the even N, and
odd N, stripes, defined as the imbalance 7 =
(N,—N,)/(N,+ N,), which serves as our dynamical
order parameter. Such an observable has several key
advantages. Whereas mass transport is a slow process even
in clean ergodic systems [38], the imbalance relaxes within
a few hopping times [10,39]. Since all experiments are
limited to finite observation times, such a local measure-
ment allows us to clearly identify any longer relaxation
time scales emerging because of the disorder. Furthermore,
the dynamical time evolution of the imbalance could
capture eventual microscopic Griffiths-type effects, even
in higher dimensions, where mass transport might not be
sensitive to them [23].

B. Identifying slow relaxation

We choose a fixed intermediate interaction strength of
U = 5J and monitor the time evolution of the imbalance
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FIG. 2. Time evolution of an imprinted density-wave pattern in the interacting, two-dimensional Aubry-André model. We measure the
time evolution of the imbalance between atom numbers on even and odd stripes for intermediate interactions U = 5J and varying
disorder strength A. (a) At weak disorder (A = 1J), the imbalance vanishes quickly within a couple of tunneling times, signaling ergodic
dynamics. For intermediate disorder (A = 4J), we observe a markedly slow relaxation. At even stronger disorders (A = 10J), relaxation
is absent up to a weak, previously measured [40] coupling to the environment. (b) The same time evolution is shown on a double
logarithmic plot for additional values of the disorder strength. The solid lines denote fits to the model described in the main text [Eq. (2)].
In both plots, error bars denote the error of the mean from six individual experimental realizations. All times are in units of the tunneling

time, 7 = h/(2aJ).

for varying disorder strengths A; see Fig. 2. In the initial
state, almost all the atoms occupy even stripes, such that
the imbalance at zero evolution time is close to unity
[see Fig. 2(a)]. For low disorder strength (A = 1J), we
observe a quick relaxation, and the imbalance vanishes
within a few tunneling times. However, upon increasing the
disorder, relaxation slows down dramatically (A = 4J)
and essentially comes to a full stop for strong disorder
(A =10J).

To quantitatively analyze this slow relaxation, the
time dependence of imbalance is modeled as Z(t) =

Z(t) x f(). Here, Z(1) is the closed-system imbalance
describing the dynamics of a perfectly isolated system, and
f(t) represents a weak coupling to the environment. Such
couplings are present in all real systems and will always
thermalize any system at long enough times [40,41]. In our
experiment, this weak coupling is dominated by a small but
nonzero hopping rate between multiple two-dimensional
planes along the z direction, with a rate J_ ~J/10* [40].
We model the resulting imbalance relaxation due to this
weak coupling with a stretched exponential (1) = e~
with the decay rate I' = 'y, = 10737~ and the stretching
exponent # = 0.6 measured independently in a previous
experiment [40].

The resulting Z(z) is shown in Fig. 3 (a) for short (107)
and long (1007) evolution times and fixed interaction
strength U = 5J as a function of the disorder strength.
We can identify three dynamical regimes. For weak
disorders A <2J (1), we observe vanishing values of
short and long time imbalances, signaling the presence
of a rapidly thermalizing system. Upon increasing the
disorder strength, for 2J <A <9J, we find a regime

(2) characterized by a nonvanishing imbalance and clearly
visible differences between the short and long time closed-
system imbalances. This indicates that, in this regime, the
system relaxes much slower than the microscopic time
scales. For A > 2J, all single-particle states are localized,
but in many regions of the system, interactions with nearby
atoms can still result in local thermal equilibrium. However,
in some rare regions with anomalously low density or large
spin imbalances (see below), this thermalization mecha-
nism could be largely ineffective. Such regions can be
thermalized only by their greater surroundings, which are
thermal, but to which they couple in a significantly weaker
fashion. Thus, the overall thermalization time scale grows.
As the disorder is increased, these surroundings themselves
gradually become more localized and less effective thermal
baths. For strong disorder A 2 9J, we identify regime (3),

where the values of Z(¢) at short and long times are both
large and, within the experimental uncertainty, identical.
This is consistent with the system being many-body
localized.

C. Relaxation exponents and noninteracting
inclusions

Identifying a suitable model to analyze the slow relax-
ation in regime (2) is challenging, as the underlying
dynamics in two dimensions at intermediate disorder is
theoretically unknown. In one-dimensional models with
random potentials, anomalously strongly disordered
regions have been argued to give rise to a subdiffusive
phase via Griffiths effects [18,20,21,23]. Because our
system contains quasiperiodic rather than random poten-
tials, it should not contain such anomalously disordered
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FIG. 3. Closed-system imbalance and relaxation exponents

near the critical regime. (a) Closed-system imbalance Z(r), at
short times (107, green points) and at long times (100z, blue
points) for fixed interaction strength of U = 5J. Three dynamical
regimes can be identified: (1) a rapidly thermalizing regime at low
disorder, (2) a regime of slow relaxation at intermediate disorder
(visualized by the gray area), and (3) a regime at strong disorder
in which relaxation is absent on experimentally accessible time
scales, consistent with a many-body localized phase. (b) The
relaxation exponent ¢ obtained from Eq. (2) decreases contin-
uously with increasing disorder until a threshold value A, at
which it vanishes (green points). A piecewise fit { o {|A —
A.|*,0} for ¢ in the regime A € {5J,12J} yields A, =9J +
0.5J as the critical disorder strength of the possible MBL
transition. The yellow line is an approximate upper bound for
the relaxation exponent. The inset shows the same analysis for
Z(1), i.e., neglecting the weak coupling to the environment. Apart
from a small offset (dashed line) consistent with the known
background coupling [40], we still find a sharp change of the
extracted exponents at A.. Error bars denote the fit error and are
typically smaller than the symbol size.

regions. One possible mechanism explaining the slow
relaxation at the observed time scales could be the random-
ness in the initial state, which can contain rare configura-
tions, where some regions or inclusions are effectively
noninteracting and therefore might appear localized at
intermediate times, provided that the single-particle states
are localized (A > 2J). In particular, thermalizing colli-
sions cannot occur in a region where all atoms have the
same spin. These regions can relax on longer time scales by
coupling to the rest of the system, provided the disorder is
not too high, by two possible mechanisms: First, particles

inside the inclusion can tunnel out of the inclusion, at a rate
that is exponentially small in their distance from the
inclusion’s edge, and then become thermalized by the
thermal surroundings. Second, the spin and density
imbalances can relax through slow nonlinear diffusion
processes so that the inclusion evaporates from outside.
While this could dominate at late times, we do not expect
these diffusion processes to becomes relevant on the probed
time scales [36].

We define inclusions of size L or larger as those
containing a site from which any path of L steps encounters
only atoms of one spin species or vacancies. The time to
thermalize such a region through tunneling increases
exponentially with L, as (L) ~ *e?/¢, where ¢ is the
single-particle localization length of the noninteracting
Aubry-André model. The factor of 2 in the exponent
results from squaring the matrix element in Fermi’s golden
rule. A simple perturbative estimate of the prefactor z*
suggests that 7 ~ max[U/J?, (A/J)?/U]. The density of
such inclusions is exponentially small in their volume, i.e.,
n(L) ~ p* in d dimensions, where p is the probability of a
given site belonging to such an inclusion. Combining these
expressions for n(L) and ¢(L), we find that the density of
inclusions that have not relaxed at time ¢ goes as e~¢¢"(1
[23], where { is the relaxation exponent quantifying
the relaxation. While this ansatz results in a power-law
relaxation in one dimension [24], in two dimensions, d = 2,
itresults in a slightly faster than power-law relaxation of log-
normal form:

Z(t) ~ e$108’(0) ~ pClog(n), (2)

We find that this model is consistent with the exper-
imental time traces in Fig. 2(b) (solid lines) in the entire
intermediate regime (2). Because of the limited dynamical
range of the data, we cannot unambiguously rule out other
functional forms of the decay.

In particular, we cannot unambiguously distinguish
between a power-law and a log-normal relaxation, the
two main possibilities: A scenario giving rise to power laws
is outlined and analyzed in Ref. [36]. A statistical y?
analysis slightly favors the log-normal form of Eq. (2) [36].
Therefore, we have employed it here to further analyze
the data.

We find the extracted relaxation exponents { to con-
tinuously decrease with increasing disorder strength, as
shown in Fig. 3(b), demonstrating that the system takes
increasingly longer to relax. Furthermore, the fitted expo-
nent { appears to vanish completely beyond a critical
disorder A,. A simple power-law fit near the critical region
{ox|A—A.]"for A <A, and 0 otherwise yields a critical
disorder strength A. = (9 +0.5)J and a critical exponent
v~ 0.9. As the size of the critical region where scaling is
expected to hold is unknown, the uncertainty in extracting
such a critical exponent is also unknown.
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If we interpret a vanishing relaxation exponent as a
signal for the MBL transition (as in one dimension [27]),
our observations would support a transition into a MBL
phase in rwo dimensions in the isolated limit. The extracted
critical disorder strength of A2P ~ 9/ is significantly larger
than the corresponding critical disorder strength in one
dimension A!P x~4J [27], even though the noninteracting
critical disorder AY=" = 2J is identical in both cases. To
demonstrate that these main results are essentially inde-
pendent of our description for the environmental coupling,
a corresponding analysis of Z(7), i.e., ignoring the weak
coupling to the environment [27,36], is shown in the inset
of Fig. 3(b). The resulting relaxation exponents also
continuously decrease and exhibit a sharp kink before
becoming constant at the same critical disorder strength
A, thereby highlighting the robustness of our result. The
finite offset is consistent with the known coupling to the
environment (dashed line) [27,40]. We emphasize that we
find the same behavior near the extracted critical disorder
strength A. also for power-law fits [36]. Therefore, the
obtained results do not crucially depend on the choice of
the fit function but rather illustrate that the dramatic
slowing-down of relaxation dynamics on approaching
the MBL transition from below is a generic feature of
the two-dimensional quasiperiodic models.

D. Estimating the relaxation exponents

We can employ the above-mentioned model of counting
the expected noninteracting inclusions to obtain a simple
theoretical estimate of the exponents . To this end, we
assume that the surroundings of the inclusions act as a good
thermal bath. To be specific, we focus on the central part of
the system, in which even rows essentially reach unit
filling. Here, a site in an occupied row has probability 1/2
of hosting, say, a spin-up atom; meanwhile, sites in empty
rows are automatically part of the “inclusion.” Accounting
for the geometry of the inclusion, we estimate the exponent
¢ = (£/2)* log(2) [36]. Note that this estimate does not
account for imperfections of the initial state preparation
[36], the inhomogeneity of the experimental system, or for
the possibility that an inclusion can contain some small
density of particles in the other spin state without causing it
to thermalize. This theoretical estimate of { [as indicated by
the yellow line in Fig. 3(b)] could thus be regarded as an
upper bound on the relaxation exponent. It carries quali-
tatively similar features as the experimental data and,
except close to A, is also of the same order of magnitude
as the experimentally extracted exponent. Near the tran-
sition, the experimentally measured relaxation exponent
becomes significantly smaller than our theoretical estimate.
In this regime, the typical surroundings of an inclusion
themselves become increasingly localized and thus cease to
act as a good bath, which invalidates the assumptions of our
theoretical model. Furthermore, we estimate this simple
model to become invalid for A < 3J, where other relaxation

mechanisms can become dominant already at the exper-
imental time scales [36].

E. Interaction effects and energy density dependence

To highlight that the observed slow relaxation at inter-
mediate disorders is driven by interactions and is com-
pletely absent in the noninteracting system, we compare it
to the case of vanishing interactions U =~ 0 in Fig. 4(a).
We find indeed that the noninteracting system is strongly
localized, showing a saturation of the imbalance at a finite
value. In contrast, the interacting system relaxes slowly.
This supports the fact that the slow relaxation is completely
interaction driven.

To probe the impact of changing the energy density on
the relaxation, we additionally prepare initial states with

(a) 100 T T T TTTr N T T T ITTT T T

Imbalance, 7

0.5

Imbalance, 7
=
w

0.1+ © D=5% © D=30% -
1 1 1 1 1
0 -10 -20 -30 -40
uw)
FIG. 4. Interaction and energy density dependence. (a) Time

evolution of the imbalance for fixed disorder strength A = 5J and
vanishing U = 0 and finite interactions U = 5J. While there is
negligible relaxation in the noninteracting case, the interacting
time trace shows slow relaxation. This indicates that the relax-
ation is inherently due to interactions. We also show the
normalized total atom number A to show that atom loss is
minimal on the time scales of the experiment [40]. (b) We
measure the imbalance for fixed disorder strength A = 6J but
starting from initial states with two different doublon fractions
D ~5%, 30%. In the large interaction limit, we observe a
significantly higher imbalance for the larger doublon fraction.
This can be qualitatively understood by the reduced mobility of a
bound doublon. Each point is averaged over six individual
experimental realizations, and error bars denote the error of
the mean. Solid lines are guides to the eye.
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finite fraction D of particles on doubly occupied lattice
sites (doublons), which changes the energy density of the
initial state by approximately D x U/2. Figure 4(b) shows
the resulting imbalance after an evolution time of 50z.
Because of the dynamical symmetry of the Hamiltonian,
we expect the evolution to be the same for both repulsive
and attractive interactions [10,38]. Hence, we concentrate
on the attractive side of the Feshbach resonance [42] to be
able to access very strong interactions. For small and
moderate interactions (|U| < 10J), we measure a strong
decrease in the imbalance, highlighting again the delo-
calizing effect of interactions. Additionally, the imbalance
is identical for both energy densities. For stronger inter-
actions, however, we find a higher imbalance for the state
with more doublons, indicating a stronger localization.
Qualitatively, this effect can be understood by considering
the reduced hopping rate of doublons J,, ~ J?/U at large
interactions, which should result in stronger localization
[10]. In one dimension, the hard-core limit of infinitely
strong interactions in the absence of doublons can be
mapped back onto a noninteracting model [10,43].
Consequently, the imbalance for a low doublon fraction
is identical for the two extreme cases of vanishing and
hard-core interactions [10]. In contrast, such a mapping
does not exist in two dimensions and, accordingly, the
imbalance is significantly different for the two extremes,
again a striking qualitative difference in comparison to
one dimension.

F. Conclusion

We observe an extended regime of exceedingly slow
relaxation of an imprinted density pattern, in which the
relaxation becomes progressively slower for increasing
disorder strength. After accounting for a known weak
coupling to the environment, the relaxation vanishes above
a critical disorder strength, thereby indicating the existence
of a MBL phase in two-dimensional quasiperiodic systems.
We describe a simple model based on configurational
inhomogeneities in high-temperature states that captures
the qualitative trend of the experiment. However, a full
quantitative description of the regime of critically slow
relaxation and the apparent MBL transition goes substan-
tially beyond the currently known theory, thereby under-
lining the importance of experimental results in resolving
such regimes. Already in one dimension, recent numerical
calculations have supported the fact that subdiffusion can
arise, at least to intermediate times, even in systems with no
rare regions in the underlying potential, such as quasiperi-
odic systems [44,45], and have shown that the emerging
relaxation can appear very similar to the case of systems
with a truly disordered potential [24,35]. Another possibil-
ity in two dimensions would be an intermediate critical
phase between the fully ergodic and the fully MBL phase,
which could correspond to this extremely broad regime
with a markedly slow relaxation.

While our results already provide important insights into
MBL in higher dimensions, revealing the universal critical
properties of the transition remains a challenging task for
future experiments. This would require identifying the
regime where critical scaling holds and understanding
the role of rare regions in quasiperiodic vs truly random
systems in determining the critical properties [35,45,46].
Further isolating the system would allow us to experimen-
tally access even longer time scales and understand the
coupling to an external bath [27,40,41], as well as to probe
the interplay between the spin and charge sectors arising
from SU(2) symmetry [47-49], along with plaquette
resonances in two dimensions [50]. Supplementing such
results with frequency-resolved spectroscopy should further
provide fundamental insights into the MBL transition [51].
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