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Abstract

In this paper, we propose new algebraic Gramians for continuous-
time linear switched systems, which satisfy generalized Lyapunov equa-
tions. The main contribution of this work is twofold. First, we show
that the ranges of those Gramians encode the reachability and observ-
ability spaces of a linear switched system. As a consequence, a sim-
ple Gramian-based criterion for reachability and observability is estab-
lished. Second, a balancing-based model order reduction technique is
proposed and, under some sufficient conditions, stability preservation
and an error bound are shown. Finally, the efficiency of the proposed
method is illustrated by means of numerical examples.

1 Introduction

We consider a continuous-time linear switched system (see [24,32]) (abbre-
viated by LSS) given by

ΣLSS :

{

ẋ(t) = Aq(t)x(t) +Bq(t)u(t), x(0) = x0,

y(t) = Cq(t)x(t),
(1)

where Ω = {1, . . . ,M} is the set of different modes of ΣLSS, x(t) ∈ R
n is the

state, u(t) ∈ R
m is the controlled input, y(t) ∈ R

p is the measured output
and q(t) is the switching signal, i.e., a piecewise constant function taking
values from the index set Ω. The system matrices Aj ∈ R

n×n, Bj ∈ R
n×m

and Cj ∈ R
p×n, where j ∈ Ω, correspond to the linear system active in mode

q, and x0 is the initial state. Furthermore, let x(t) = φ(t, x0, u, q) denote the
state trajectory at time t of an LSS initialized at x(0) = x0 ∈ R

n, with input
u and switching signal q. In what follows, we assume zero initial condition,
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i.e., x(0) = 0 in (1) and, for j ∈ Ω, the matrices Aj are Hurwitz. When these
models are of large-scale, modern analysis, simulation and optimization tools
become drastically inefficient and thus, model order reduction (MOR) may
become necessary.

In the context of linear time-invariant systems, several model reduction
approaches have been efficiently developed since the 1960s (see the mono-
graph [3] and the recent surveys [4, 8]). However, reliable MOR techniques
for switched systems have been only studied in recent years. For discrete-
time linear switched systems see for instance [7] for reachability and ob-
servability reduction with constrained switching, [15,16,35] for H∞-type re-
duction, and [14, 19, 30] for balancing-based methods. For continuous-time
linear switched systems, see [5, 6, 20] for a class of moment matching meth-
ods, [25, 26, 29] for balancing-based methods and [28] for model reduction
of systems affected by a low-rank switching. Also, [27] presents a theoreti-
cal analysis of the techniques proposed in [29] and [30] for continuous- and
discrete-time LSS.

Besides [25], all of the balancing-based methods rely on Gramains sat-
isfying Linear Matrix Inequalities (LMIs). Although LMIs provide a very
flexible tool in control theory, they are costly to solve numerically in the
large-scale setting. To overcome this, the current paper aims at provid-
ing new algebraic Gramians for LSS, denoted by P and Q, respectively,
which satisfy generalized Lyapunov equations. These Gramians are inspired
by bilinear model reduction techniques, in which the generalized Lyapunov
equation plays an important role, e.g., (see [11]). In addition, we prove that
P and Q encode the reachability and observability spaces of an LSS, and
their kernels correspond to the uncontrollable and unobservable spaces.

Once the proposed Gramians are computed, by means of a square root
balancing approach (see [3]) and for a given state space dimension r ≪ n,
we are able to construct two projection matrices V,W ∈ R

n×r such that
W TV = Ir, which allows us to determine the reduced order LSS as

Σ̂LSS :

{

˙̂x(t) = Âq(t)x̂(t) + B̂q(t)u(t), x̂(0) = 0,

ŷ(t) = Ĉq(t)x̂(t),
(2)

where
Âj = W TAjV, B̂j = W TBj , Ĉj = CjV (3)

for l ∈ Ω. We call W,V global projection matrices V,W ∈ R
n×r because

they are fixed for every mode j ∈ Ω (see [13] for a discussion of local and
global projection techniques). Readers should refer to [21] for a balancing-
type method where the projection matrices Vj,Wj ∈ R

n×r might depend on
the mode j ∈ Ω, where the authors consider a more general realization then
(1).



Outline. The remaining parts of the paper are organized as follows. Section
2 an LSS is formulated as a bilinear system. Inspired by this transformation,
Gramians for LSS are proposed. In Section 3, we prove that those Grami-
ans encode the reachability and observability spaces. Also, we propose a
Gramian-based criterion to determine if an LSS is reachable and observable.
In Section 4, the balanced truncation procedure based on these Gramians is
introduced. Moreover, under certain assumption (see [27]), this procedure is
shown to preserve quadratic stability and to have an error bound. Finally,
numerical results are shown in Section 5, and Section 6 concludes the paper.
Notations. We denote by N the set of natural numbers including 0. Let
A ∈ R

n×m and B ∈ R
p×q be two real matrices, we denote A⊗B ∈ R

np×mq

the corresponding Kronecker product between A and B.

2 Bilinear formulation of an LSS and generalized

Gramians

2.1 Bilinear realization

In this section, we rewrite the equations of an LSS to resemble a bilinear
system. A very similar procedure was developed in [9] in the context of
parametric systems.

To this aim, first, let us define the matrices

A = A1 Dj = Aj −A1, for j = 1, . . . ,M. (4)

Notice, even if D1 = 0, for simplicity, we are going to keep it in the equation.
Now, let us replace the switching signal q(t), which takes values in the mode
set Ω, by M switching indicators {q1(t), . . . , qM (t)}, taking binary values,

i.e., qj(t) ∈ {0, 1} such that
M
∑

k=1

qk(t) = 1. Therefore,

q(t) = k ⇔ qk(t) = 1 and qj(t) = 0 for j 6= k.

With this notion, the mode k is active when qk(t) = 1 and qj = 0 for j 6= k.
The LSS from (1) can be expressed as

ẋ(t) = Ax(t) +
M
∑

j=1

qj(t)Djx(t) + qj(t)Bju(t),

y(t) =

M
∑

j=1

qj(t)Cjx(t).

(5)

Let us include the switching indicators as additional inputs, i.e.,

(ũ(t))T =
[

u(t)T q1(t) . . . qM(t)
]

∈ R
1×(m+M)



and B̃j =
[

Bj 0
]

for j ∈ Ω. Then,

ẋ(t) = Ax(t) +
M
∑

j=1

ũj+m(t)Djx(t) + ũj+m(t)B̃j ũ(t),

y(t) =
M
∑

j=1

ũj+m(t)Cjx(t)

. (6)

The crucial observation is that the equations above are very similar to a
bilinear system realization, which is usually given as

ẋ(t) = Ax(t) +
M
∑

j=1

uj(t)Njx(t) +Bu(t)

y(t) = Cx(t)

. (7)

Hence, if Bj = B and Cj = C for j ∈ Ω, then the realization of an LSS can
be recast as a bilinear system. However, in the general case Bj 6= Bk and
Cj 6= Ck for j 6= k.

In what follows, we recall some results of model reduction of bilinear
systems and, inspired by that, new Gramians for LSS are proposed.

2.2 Generalized Gramians for LSS

In the past years, model reduction of bilinear systems has been studied in
the literature, see [11] for more details. A bilinear system as (7) is associated
to the reachability and observability Gramians

PB =

∞
∑

k=1

∫ ∞

0
· · ·

∫ ∞

0
Pk(t1, . . . , tk)Pk(t1, . . . , tk)

T dt1 . . . dtk, (8a)

QB =

∞
∑

k=1

∫ ∞

0
· · ·

∫ ∞

0
Qk(t1, . . . , tk)Qk(t1, . . . , tk)

T dt1 . . . dtk, (8b)

respectively, where

P1(t1) = eAt1B,

Q1(t1) = eA
T t1CT ,

Pk(t1, . . . , tk) = eAtk
[

N1Pk−1 . . . NMPk−1

]

,

Qk(t1, . . . , tk) = eA
T tk
[

NT
1 Qk−1 . . . NT

MQk−1

]

.

Moreover, if the Gramians exist, i.e. the infinite sums converge, they
satisfy the following generalized Lyapunov equations



APB + PBA
T +

M
∑

j=1

(

NjPBN
T
j

)

+BBT = 0, (9a)

ATQB +QBA+

M
∑

j=1

(

NT
j QBNj

)

+ CCT = 0. (9b)

Those equations where proposed in [22] and used to construct minimal re-
alizations and model reduction techniques based on balanced truncation of
bilinear systems, see e.g. [1,2] and [34]. As mentioned before, the realization
of an LSS is not equivalent to a bilinear realization because Bk 6= Bj and
Ck 6= Cj for j 6= k. However, inspired by those expressions, we propose the
following Gramians to be associated to a given LSS.

Definition 1 (Generalized Gramians for LSS). Given an LSS as in (1) and
the matrices Dj defined in (4). Then let P,Q be

P =

∞
∑

k=1

∫ ∞

0
· · ·

∫ ∞

0
Pk(t1, . . . , tk)Pk(t1, . . . , tk)

Tdt1 . . . dtk, (10a)

Q =
∞
∑

k=1

∫ ∞

0
· · ·

∫ ∞

0
Qk(t1, . . . , tk)Qk(t1, . . . , tk)

T dt1 . . . dtk, (10b)

where

P1(t1) = eAt1
[

B1 . . . BM

]

,

Q1(t1) = eA
T t1
[

CT
1 . . . CT

M

]

,

Pk(t1, . . . , tk) = eAtk
[

D1Pk−1 . . . DMPk−1

]

,

Qk(t1, . . . , tk) = eA
T tk
[

DT
1 Qk−1 . . . DT

MQk−1

]

.

If they exist, P and Q will be called the reachabillity and observability Grami-

ans of the LSS.

As a consequence, if P,Q exist, they are symmetric, positive semidefinite
matrices which satisfy the following generalized Lyapunov equations

AP + PAT +

M
∑

j=1

(

DjPDT
j +BjB

T
j

)

= 0, (11a)

ATQ+QA+
M
∑

j=1

(

DT
j QDj + CT

j Cj

)

= 0. (11b)



Note that the name ”Gamians” will be justified in the following. The
LSS Gramians can be computed using the Kronecker product, i.e., let

M =

(

A⊗ In + In ⊗A+

M
∑

j=1

Dj ⊗Dj

)

∈ R
n2×n2

,

B = vec

(

M
∑

k=1

BjB
T
j

)

and C = vec





M
∑

j=1

CT
j Cj



 .

Then, the generalized reachability and observability Gramians are given by

vec (P) = −M−1B and vec (Q) = −M−TC.

However, in this Kronecker form, the solution of the generalized Lya-
punov equation is determined by solving as a set of n(n+1)/2 equations in
n(n+ 1)/2 variables, whose cost is O(n6) operations. Fortunately, new effi-
cient methodologies have been developed recently to determine low-rank so-
lutions of these generalized Lyapunov equations (see [17], [10], [31] and [23])
which are suitable in the large-scale setting.

The following theorem, from [34], states a sufficient condition for exis-
tence and uniqueness of P and Q.

Theorem 1 (Sufficient conditions for existence and uniqueness [34], The-
orem 2). Let A, Dj , Bj and Cj given by the notation about. In addi-

tion, suppose that A is Hurwitz. Then, there exist real scalars β > 0 and

0 < α ≤ −maxi(Re(λi(A))) such that

‖eAt‖ ≤ βe−αt.

Then, the reachabillity and observability Gramians satisfying (11a) and (11b)
exist if

∥

∥

∥

∥

∥

∥

M
∑

j=1

DjD
T
j

∥

∥

∥

∥

∥

∥

<
2α

β2
.

Furthermore, under the conditions of Theorem 1, the symmetric positive
semidefinite solutions P and Q of equation (11a) can be expressed as an
infinite sum of symmetric positive semidefinite matrices Pk and Qk (see [34]
for more details), i.e.,

P =
∞
∑

k=1

Pk and Q =
∞
∑

k=1

Qk

where

AP1 + P1A
T +

M
∑

j=1

BjB
T
j = 0,

ATQ1 +Q1A+

M
∑

j=1

CT
j Cj = 0,



and

APk + PkA
T +

M
∑

j=1

DjPk−1D
T
j = 0,

ATQk +QkA+

M
∑

j=1

DT
j Qk−1Dj = 0.

From here on, we assume the existence and uniqueness of positive semidef-
inite solutions to (11a) and (11b) and that the conditions of Theorem 3 hold.
In what follows, we show that the proposed Gramians encodes the reacha-
bility and observability sets of an LSS.

3 Gramians and reachability and observability sets

As previously mentioned, the main goal of this section is to show that the
LSS Gramians encode the reachability and observability sets of an LSS.

First of all, let us recall the definition and properties of those sets in the
context of LSS. The reader should refer to [33] and [32] for more details. Let
us start with the notion of reachability and observability sets.

Definition 2 (Reachable set). A state x ∈ R
n is reachable, if there exist a

time instant tf , a switching signal q : [0, tf ] → Ω, and an input u : [0, tf ] →
R
p, such that φ(tf , 0, u, q) = x. The reachable set of an LSS is denoted by

R, that is the set of states which are reachable.

Definition 3 (Observability set). A state x is said to be unobservable, if

for any switching signal q, there exists an input u(t) such that

Cq(t)φ(t, x, u, q) = Cq(t)φ(t, 0, u, q), ∀t ≥ 0.

The unobservable set of an LSS, denoted by UO, is the set of states which

are unobservable. The observable set of an LSS, denoted by O, is defined

by O = (UO)⊥.

In what follows, we recall the algebraic characterization of R and O and
we state the main result of this paper, i.e., the Gramian version of this
result.

3.1 Characterization of the reachability and observability

sets

The following result, from [32], describes the reachable and observable sets
of an LSS by algebraic conditions.



Theorem 2 (Algebraic conditions [32],Theorem 4.17). For an LSS as in

(1), the reachable and observable sets R and O are linear subspaces of Rn

given by

R =

∞
∑

k=1









∑

i0,...,ik∈Ω
j1,...,jk∈N

Ajk
ik
. . . Aj1

i1
range (Bi0)









,

and

O =

∞
∑

k=1









∑

i0,...,ik∈Ω
j1,...,jk∈N

(Ajk
ik
)T . . . (Aj1

i1
)T range

(

CT
i0

)









.

Theorem 2 generalizes the well-known reachability and observability cri-
teria for LTI systems. In the context of LTI systems, the reachable set is
a linear subspace of Rn given by R =

∑∞
k=0A

k range (B), i.e., all possible
combinations of one variable polynomials in A multiplied by B. In the con-
text of LSS, the reachable set is also a linear subspace of Rn given by all
possible combination of M -variate polynomials in A1, . . . AM multiplied by
Bk. Moreover, this subspace can be seen as the smallest subspace of Rn that
contains each range (Bi) and is invariant under each Ai, for i ∈ Ω.

In what follows, we state the main result of this paper.

Theorem 3 (Gramian conditions). Let P,Q be the solutions of the general-

ized Lyapunov equations (11a) and (11b), respectively. Then, the reachable

and observable spaces R, O are given by

R = range (P) and O = range (Q) .

Proof. The proof of this theorem shows that the range of P and Q are given
by the algebraic condition of Theorem 2. The complete proof is detailed in
Appendix A.

Theorem 3 states a Gramian-based characterization of the reachable and
observable sets. Moreover, the following reachability and observability cri-
teria are corollaries of this result.

Corollary 1 (Reachability and observability criteria). Given Σ, an LSS,

and suppose that P,Q are the unique solutions of the generalized Lyapunov

equations (11a) and (11b). Then,

1. Σ is completely reachable if and only if

range (P) = R
n.

2. Σ is completely observable if and only if

range (Q) = R
n.



Proof. The LSS is completely reachable (respectively, observable) if and
only if R = R

n (respectively, O = R
n). Then the result is a straightforward

application of Theorem 3.

Corollary 1 provides simple criteria for determine if a given LSS is com-
pletely reachable and observable. This result is equivalent to verifying if the
algebraic conditions given in Theorem 2 generate the entire space. However,
to the best of the authors’ knowledge, they have not been presented in this
Gramian-based form.

To sum up, the Gramians P and Q proposed in Definition 1 encode the
reachable and observable spaces of a given LSS (as stated in Theorem 3).
As a consequence, Corollary 1 provides a simple way to verify if a given
LSS is completely reachable and observable. In the next section, we present
the procedure for model order reduction by balanced truncation using these
Gramians.

4 Model reduction for linear switched systems

In this section, we state the balancing procedure for model reduction of LSS
and we state some sufficient conditions under which this procedure preserves
stability, and provide an approximation error bound.

4.1 Balanced truncation for LSS

As mentioned before, the Gramians P and Q encode the reachable and
observable spaces. This can be rewritten as follows :

1. If a state x lies in ker(P), then it is unreachable.

2. If a state x lies in ker(Q), then it is unobservable.

Hence, the subspace ker(PQ) is not important for the transfer between
input and output and might be truncated. This motivates us to use the
proposed Gramians to determine the reduced-order models. To guarantee
that states which are hard to control and hard to observe will be truncated
simultaneously, we need to find a transformation T , leading to a transformed
switched system, whose controllability and observability Gramians are equal
and diagonal, i.e.,

T−1PT−T = T TQT = Σ = diag (σ1, . . . , σn) ,

with σi ≤ σi+1. This balancing transformation exists if and only if P and
Q are full rank matrices (see Chapter 7 of [3]). Next, we assume that the
matrices of the balanced system are partitioned as

Aj,B =

[

A11
j A12

j

A21
j A22

j

]

, Bj,B =

[

B1
j

B2
j

]

, Cj,B =
[

C1
j C2

j

]

and Σ =

[

Σ1 0
0 Σ2

]

,



where Σ1 = diag (σ1, . . . , σr) and Σ2 = diag (σr+1, . . . , σn). In the balancing
basis, the truncation step is simply obtained by setting the ROM to be given
by the matrices Âj = A11

j , B̂j = B1
j , Ĉj = C1

j . Analogous to the linear case,
we do not need to compute the balanced transformation explicitly. Instead,
one can construct two projection matrices V and W using the Cholesky
factors of P and Q, and the SVD of their product. This procedure is known
as square-root balanced truncation, and its version for LSS is presented in
Algorithm 1.

Algorithm 1 Balanced truncation for LSS

Input: Matrices (Aj , Bj , Cj) for j = 1, . . .M and reduced order r.
Output: Reduced order matrices Σ(Âj, B̂j , Ĉj) for j = 1, . . .M .
1: Let A = A1, Dk = Ak −A1.
2: Compute P and Q by solving the generalized Lyapunov equations (11a)

and (11b).
3: Compute the Cholesky decomposition P = SST and Q = RRT .
4: Compute SVD of STR and write as

STR = UΣV T =
[

U1 U2

]

diag (Σ1,Σ2)
[

V1 V2

]T

5: Construct the projection matrices V = SU1Σ
− 1

2

1 and W = RV1Σ
1

2

1

6: Construct Âj = W TAjV , B̂j = W TBj and Ĉj = CjV for j = 1, . . . ,M .

7: return Âj , B̂j and Ĉj .

One should notice that, if matrix A is Hurwitz, the proposed procedure
provides a matrix Â = W TAV which is also Hurwitz. This is a consequence
of Theorem 2.3 from [12]. In a large-scale setting, a solution of the gener-
alized Lyapunov equation is computed directly in the factorized form, i.e.,
one searches for the solution S as a low-rank factor such that P ≈ SST

(see [10], [31] and [23]). In this context, one can avoid constructing the full
solutions P,Q, which is very costly with respect to memory consumption
and computational resources.

In the next subsection, under some assumptions, we show some proper-
ties of the reduced order models obtained by Algorithm 1.

4.2 Quadratic stability preservation and error bounds

We briefly review the definition of quadratic stability for LSS.

Definition 4 (Quadratic stability [27], Lemma 1). An LSS as in (1) is said
to be quadratically stable if there exists a positive definite matrix P > 0 such

that

AT
j P + PAj < 0, for all j ∈ Ω.



Quadratic stability is a sufficient condition for exponential stability for
all switching signals (see [24]). In what follows in this section, we employ
the following assumption.

Assumption 1. Let P and Q be symmetric positive definite solutions of

(11a) and (11b). Let us assume that

DkP + PDT
k ≤

M
∑

j=1

DjPDT
j +

M
∑

j=1,j 6=k

BjB
T
j , and (12a)

DT
k Q+QDk ≤

M
∑

j=1

DT
j QDj +

M
∑

j=1,j 6=k

CT
j Cj, (12b)

for every k = 2, . . . ,M .

Reader should notice that Assumption 1 implies that

AkP + PAT
k +BkB

T
k ≤ 0, (13a)

AT
kQ+QAk + CT

k Ck ≤ 0, (13b)

for every k ∈ Ω. Hence, under Assumption 1, the Gramians proposed in this
work are also Gramians in the sense of [27] (Definition 10), i.e., symmetric
positive definite matrices which satisfy the set of LMIs (13). As a conse-
quence, under the Assumption 1, all of the results developed in [27] are also
valid for the Gramians proposed in (10). Two are particularly important for
model reduction, and we recall them in what follows.

Proposition 1 (Quadratically stability preservation [27], Lemma 12). Un-

der Assumption 1, if at least one of the inequalities (13) is strict, i.e.,

AkP + PAT
k +BkB

T
k < 0,∀k ∈ Ω, or AT

kQ+QAk + CT
k Ck < 0,∀k ∈ Ω,

then the reduced order model constructed by Algorithm 1 is also quadratically

stable.

Proposition 1 states a sufficient condition to preserve quadratic stability
by model reduction using Algorithm 1. The following result provides an
error bound between the origial and the reduced order model.

Theorem 4 (Error bound [27], Theorem 6). Under Assumption 1, the out-

put error between the original model and the reduced order model (2), ob-
tained by Algorithm 1, is bounded by

‖y − ŷ‖L2
≤ 2

(

n
∑

k=r+1

σk

)

‖u‖L2
(14)

for every switching signal q(t), where σk are the neglected singular values.



Proposition 1 and Theorem 4 provide some important properties of
model reduction by balanced truncation using the Gramians from Defini-
tion 1. However, they are only proved here to be valid when Assumption 1
holds. Since this assumption involves LMIs, they are hard to be checked in
the large-scale setting. We left as an open problem whether weaker assump-
tions exist such that similar results are also valid.

In the next section, we apply the results derived in this paper in some
numerical examples.

5 Numerical examples

This section is dedicated to the application of results proposed in Sections
III and IV, namely the Gramian-based characterization (Theorem 3) of the
reachable and observable spaces and the balanced truncation procedure (Al-
gorithm 1). The results will be compared with the balancing method pro-
posed [25]. There, it has been shown that, if certain restrictive conditions
are satisfied, a simultaneous balanced transformation can be constructed.
When those conditions are not satisfied, the authors propose to use, in-
stead, the so-called reachability and observability average Gramians given
by

Pavg =
M
∑

k=1

Pk and Qavg =
M
∑

k=1

Qk,

which satisfy
AkPk + PkA

T
k +BkB

T
k = 0,

AT
kQk +QkAk + CT

k Ck = 0.

In what follows, we illustrate the Gramian-based characterization of the
reachbility set using Theorem 3.

5.1 Example 1: Reachability set of LSS

Let us consider an 2-modes LSS Σ given by

A1 = −I8, A2 = A1 +D,

where D ∈ R8×8 satisfies D21 = D32 = D43 = 1 and Djk = 0 elsewhere. In
addition, BT

1 =
[

1 0 . . . 0
]

, BT
2 =

[

0 . . . 0 1
]

. Then, the reachability
Gramian P given by equation (11a) is

P = diag

(

1

2
,
1

4
,
1

8
,
1

16
, 0, 0, 0,

1

2

)

and the average reachability Gramian (proposed in [25]) is

Pavg = diag

(

1

2
, 0, 0, 0, 0, 0, 0,

1

2

)

.



As a consequence, since range (P) 6= 8, Corollary 1 tells us that Σ is not
completely reachable. In addition, according to Theorem 3, the reachable
space of Σ is given by

R = range (P) = span (e1, e2, e3, e4, e8)

Notice that the average Gramian Pavg does not encode the reachability
space. More generally, one can show that

range (Pavg) ⊂ range (P) .

In what follows, we use the Gramians to construct reduced order models
via Algorithm 1.

5.2 Example 2: Model reduction by balancing

For the next experiment, let us consider a 2-modes LSS of order 1000, whose
matrices are given by

A1 =











−2 1
0.1 −2 1

. . .
. . .

. . .

0.1 −2











, A2 =











−2 0.5
1 −2 0.5

. . .
. . .

. . .

0.1 −2











,

BT
1 =

[

1 0 . . . 0
]

, BT
2 =

[

0 . . . 0 1
]

, C1 =
[

0 1 0 . . . 0
]

and
C2 =

[

0 . . . 0 1 0
]

.
Using A1 = A and D = A2 −A1, we compute the generalized Gramians

satisfying

AP + PAT +DPDT +B1B
T
1 +B2B

T
2 = 0,

ATQ+QA+DTQD + CT
1 C1 + CT

2 C2 = 0,

and the averaged Gramians Pavg = 1
2 (P1 + P2) and Qavg = 1

2(Q1 + Q2).
The Hankel singular values are represented in Figure 1.



0 10 20 30 40 50 60
10−15

10−10

10−5

100
Singular values decay

Gen. Gramians
Aver. Gramians

Figure 1: Hankel singular values decay corresponding to the Generalized
Gramians (red line) and Averaged Gramians (green line).

Choose the truncation order r = 15 for the reduced LSS using both
methods. We compare the time domain response of the original LSS against
the ones corresponding to the two reduced models. For this, we use as the
control input, u(t) = 10 sin(30t)e−t and as the switching signal

q(t) =

{

1, t ∈ [0, 0.5] ∪ [2, 2.5] ∪ [4, 5] ∪ [5.5, 6],
2, t ∈ [0.5, 2] ∪ [2.5, 4] ∪ [5, 5.5].

The results are represented in Figure 2. The absolute errors are represented
in Figure 3.
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0

1

2

3

time (t)

ou
tp
u
t

Time-domain simulation

Original SLS
BT-Gen.Gramians
BT-Aver.Gramians

Figure 2: Output corresponding to the time domain simulation of the orig-
inal model (blue line), generalized Gramian ROM (red line) and averaged
Gramian ROM.
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Figure 3: Output absolute error between the original model and the reduced
ones (Generalized Gramians: red line, Averaged Gramians: Green line).

By inspecting the time-domain error between the original response and
the two reduced models (Figure 3), we observe that the new proposed
method generally produces better results. In addition, notice that ‖u‖L2

=

10
√

225
901 ≈ 4.997, so that the error bound of Theorem 4 can be computed as

2
(
∑n

k=r+1 σk
)

‖u‖L2
= 5.033e−05. By numerical computing of the L2-norm

of the error between the original and the reduced order model, one obtain
7.00e−09 for the system obtained using the proposed method and 0.2715
for the one obtained using average Gramians. As a conclusion, the bounds
derived in Theorem 4 are satisfied for the proposed method.

6 Conclusion

In this paper, we have proposed new reachability and observability Gramians
for LSS, satisfying generalized Lyapunov equations. Also, we prove that
those Gramians encode the reachable and observable sets of an LSS. Based
on these Gramians, a balancing-type procedure is proposed enabling to find
global projectors V and W to construct a reduced order model. Also, under
certain assumptions, the proposed procedure is shown to preserve quadratic
stability and to have an error bounds. However, since those assumptions are
difficult to be checked in the large-scale context, one possible future research
axis is to find whether weaker assumptions exist such that similar results are
also valid. Finally, the results are illustrated by some numerical examples.
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A Appendix: Proof of Theorem 3

In what follows, we only prove that R = range (P). The proof that O =
range (Q) follows analogously.

The complete proof of Theorem 3 requires the following propositions.

Proposition 2 (Theorem 2.2, [18]). Let A ∈ R
n×n be a Hurwitz matrix and

B ∈ R
n×m. Then, the Lyapunov equation

AP + PAT +BBT = 0 (15)

has unique symmetric positive semidefinite solution P satisfying

range (P) =

∞
∑

l=0

Al range (B) .

Proposition 3. Let A ∈ R
n×n be a Hurwitz matrix and B1, . . . , BM ∈

R
n×m. Then, the Lyapunov equation

AP + PAT +

M
∑

j=1

BjB
T
j = 0 (16)

has unique symmetric positive semidefinite P such that

range (P) =

∞
∑

l=0

M
∑

j=1

Al range (Bj)

Proof. Let Pj be the unique solution of

APj + PjA
T +BjB

T
j = 0.

Then, by linearity, P =
∑m

j=1Pj is the solution of the Lyapunov equa-
tion (16). Moreover, since Pj is a symmetric positive semidefinite matrix,
range (P) =

∑m
j=1 range (Pj) and the result follows as a consequence of

Proposition 2.

Proposition 4. Let A ∈ R
n×n be a Hurwitz matrix and Pk−1 be a symmetric

positive semidefinite matrix. Then, the Lyapunov equation

APk + PkA
T +

M
∑

j=1

DjPk−1D
T
j = 0 (17)



has unique symmetric positive semidefinite solution Pk such that

range (Pk) =
∞
∑

l=0

M
∑

j=1

AlDj range (Pk−1) .

Proof. Since Pk−1 is symmetric positive semidefinite, it has a Chosleky de-
composition given by Pk−1 = Lk−1L

T
k−1. Then, equation (17) can be rewrit-

ten as

APk + PkA
T +

M
∑

j=1

DjLk−1L
T
k−1D

T
j = 0

If we rewrite B̃j = DjLk−1, by applying Propostion 3 and using the fact
that range (Lk−1) = range (Pk−1), the result follows.

Proposition 5. Let A ∈ R
n×n be a Hurwitz matrix. Suppose P is the

unique solution of

AP + PAT +
M
∑

j=1

(

DjPDT
j +BjB

T
j

)

= 0.

To simplify the notation, let us denote A = DM+1. Then,

range (P) =

∞
∑

k=1









∑

i0,...,ik∈Ω∪{M+1}
j1,...,jk∈N

Djk
ik
. . . Dj1

i1
range (Bi0)









.

Proof. As stated in Section 2, P =
∑∞

k=1Pk. Hence, since Pk are symmetric
positive semidefinite matrices for all k = 1, 2, . . . , we must have

range (P) =

∞
∑

k=1

range (Pk) .

The result follows from Proposition 3 and by recurrence using Proposition
4.

Finally, Theorem 3 follows from Proposition 5 by the fact that

Aj ∈ span (D1, . . . ,DM , A) ,∀j ∈ Ω

and
Dj ∈ span (A1, . . . , AM ) ,∀j ∈ Ω ∪ {M + 1},

so that the algebraic conditions given in Theorem 2 are equivalent to the
algebraic condition given in Proposition 5.
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