

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 5, pp. A3267--A3292

HIERARCHICAL APPROXIMATE PROPER ORTHOGONAL
DECOMPOSITION\ast

CHRISTIAN HIMPE\dagger , TOBIAS LEIBNER\ddagger , AND STEPHAN RAVE\ddagger

Abstract. Proper Orthogonal Decomposition (POD) is a widely used technique for the con-
struction of low-dimensional approximation spaces from high-dimensional input data. For large-scale
applications and an increasing number of input data vectors, however, computing the POD often
becomes prohibitively expensive. This work presents a general, easy-to-implement approach to com-
pute an approximate POD based on arbitrary tree hierarchies of worker nodes, where each worker
computes a POD of only a small number of input vectors. The tree hierarchy can be freely adapted
to optimally suit the available computational resources. In particular, this hierarchical approximate
POD (HAPOD) allows for both simple parallelization with low communication overhead, as well
as incremental POD computation under constrained memory capacities. Rigorous error estimates
ensure the reliability of our approach, and extensive numerical examples underline its performance.

Key words. model reduction, proper orthogonal decomposition, singular value decomposition,
parallel algorithms, distributed algorithms

AMS subject classifications. 65Y99, 65M22, 65F99, 68W10, 68W15

DOI. 10.1137/16M1085413

1. Introduction. The construction of low-dimensional subspaces from high-
dimensional data, dynamics, or operators is an essential mechanism in many ap-
plications, with the aim to accelerate or merely enable numerical computations of
large-scale models. In the discipline of model reduction, this methodology is the
central problem under investigation.

A well-known and popular approach for subspace construction is the Proper Or-
thogonal Decomposition (POD), i.e., the computation of the left-singular vectors as-
sociated with the dominant singular values of a given set of input column vectors
concatenated to a matrix. An important field of application for the POD is the re-
duction of ordinary differential equation (ODE) models [35] and partial differential
equation (PDE) models [27, 28]. A landmark work in this context is the use of the
POD for compression of simulation data [46] where the dominant modes are extracted
from flow simulation time series by the method of snapshots. For an elaborate review
of the POD method, see, for example, [16, 23].

Due to technical limitations of computational resources, such as memory-space
and acceptable computational complexities, not only the evaluation of a large-scale

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section July 18,
2016; accepted for publication (in revised form) July 6, 2018; published electronically October 4,
2018.

http://www.siam.org/journals/sisc/40-5/M108541.html
Funding: This work was supported by the Deutsche Forschungsgemeinschaft, DFG EXC 1003,

Cells in Motion (CiM) Cluster of Excellence, M\"unster, Germany, by the Center for Developing
Mathematics in Interaction, DEMAIN, M\"unster, Germany, by Cells in Motion (CiM) Cluster of
Excellence in flexible funds project FF-2015-07, by the German Federal Ministry of Education and
Research (BMBF) under contract 05M13PMA, and by the German Federal Ministry for Economic
Affairs and Energy (BMWi) in the joint project ``MathEnergy -- Mathematical Key Technologies for
Evolving Energy Grids,"" sub-project Model Order Reduction (grant 0324019B).

\dagger Computational Methods in Systems and Control Theory Group at the Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstra{\ss}e 1, D-39106 Magdeburg, Germany
(himpe@mpi-magdeburg.mpg.de).

\ddagger Applied Mathematics, University of M\"unster, Einsteinstrasse 62, D-48149 M\"unster, Germany
(tobias.leibner@uni-muenster.de, stephan.rave@uni-muenster.de).

A3267

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sisc/40-5/M108541.html
himpe@mpi-magdeburg.mpg.de
himpe@mpi-magdeburg.mpg.de
mailto:tobias.leibner@uni-muenster.de
mailto:stephan.rave@uni-muenster.de

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3268 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

problem, but even the computation of a low-rank approximation by existing methods
may be infeasible. This is particularly true for the POD, as the (truncated) singular
value decomposition (SVD) of large matrices is a computationally demanding task. In
order to speed up the computation, various parallel algorithms are available for SVD
computation [5]; more recently, partitioning approaches were developed to obtain the
SVD, or an approximation thereof, such as [47, 48], [11, 12], [4], and [50], as well
as a related parallel QR decomposition in [43]. A commonality of these methods is
the horizontal slicing of the argument matrix, which is similar to the partitioning of
the spatial domain of a discretized PDE model. However, such an approach is only
possible when complete horizontal slices of the argument matrix are available. This
usually means that all input data vectors have to be computed and stored before
starting the POD computation. For large problems, this might be impossible due to
insufficient memory or even mass storage space. Also, for parametrized problems the
input data might be distributed columnwise among several workers, and horizontal
slicing of the input would require heavy communication between the workers, which
may be impossible, as in, for instance, grid-computing environments.

In comparison, the herein proposed Hierarchical Approximate Proper Orthog-
onal Decomposition (HAPOD) is based on a vertical slicing of the input matrix
and is targeted to extend POD-based methods, which were designed with ``tall and
skinny"" matrices in mind towards settings where, due to enhanced requirements such
as parametrization, the actual matrix dimension is ``tall and not-so-skinny.""

Our method is based upon the simple idea of replacing subsets of input vectors by
POD approximations of these, which then form the input of additional POD steps. As
such, our algorithm can be applied additionally to any pre-existing POD implemen-
tation. Formulated for arbitrary tree hierarchies of workers, it allows sequential and
parallel decompositions, as well as combinations thereof, based on the partitioning of
the time domain or parameter space.

The HAPOD is a single pass method in the sense that the input vectors at a
given HAPOD node are only required for a single local POD computation and can
be discarded afterwards. Rigorous error estimates allow a priori control of the final
\ell 2-approximation error for the input data. At the same time, bounds for the number of
generated HAPOD modes guarantee quasi-optimality of the generated approximation
space. As long as the final depth of the HAPOD tree is known, local PODs can
be computed as soon as all input data for a given node is available. As such, the
HAPOD can also be seen as a general methodology for approximation quality control
when updating POD spaces with additional input data.

Stochastic methods for SVD computation, e.g., [13, 17, 22, 42], share many bene-
fits with the HAPOD. In particular, these methods are easily parallelizable with com-
parable communication requirements (at least when no power iteration is performed),
and single pass formulations do exist. However, most algorithms are designed for
a prescribed fixed approximation rank. Those which do guarantee spaces with pre-
scribed approximation error (see [17, section 4.4], [22], or the preprint [25]) are based
on iterative procedures which require multiple passes over the input data. Also, our
approach can be implemented more easily than already existing POD codes.

For the incremental (updated) computation of an SVD we refer to the work of
Brand [6, 7], which allows the update of an existing SVD given new data. Geared
towards (POD-based) model reduction, [37] uses Brand's algorithm for an incremental
POD algorithm. In this context, the HAPOD framework provides local choices of
truncation error tolerances to rigorously control the overall approximation error, given
that the maximum number of updates is known. A similar updated POD algorithm

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3269

is employed for the experiment in section 4.3. In [3], another family of rank-based
approaches for incremental SVD computations is presented.

Given the simplicity of the HAPOD, we do not claim to be first in investigating
this concept. In fact, we recently became aware of [38], wherein special cases of the
HAPOD (i.e., a distributed and an incremental HAPOD in the sense of section 3.2)
are briefly discussed. Balanced n-ary tree structures are investigated in [24]. In both
cases, error bounds for prescribed truncation ranks are derived. Another application
of the distributed HAPOD is discussed in [8], which uses the error bound derived in
[38]. In the context of principal component analysis, distributed methods have been
introduced [32, 40, 41] which, apart from the centering of the data set, correspond to
a distributed HAPOD. No rigorous error bounds are derived, however.

The main contribution of this work is a thorough study of the HAPOD with
the aim of showing that it should be a standard part in the toolbox of every model
reduction practitioner. In particular, in contrast to [38, 24, 8], we formally analyze
the algorithm in a general setting with arbitrary tree topologies, making it suitable
for more complex applications (cf. section 4.3), and give for prescribed local POD
truncation error tolerances estimates for both the approximation error as well as the
obtained (local and final) numbers of POD modes. Based on these estimates we
provide rules for the selection of the local error tolerances to achieve a given global
target (mean) approximation error, with a user-definable tradeoff between optimality
of the generated approximation space and computational efficiency. We show the
performance of our method for input data with quickly decaying singular values,
as it is typically the case in model reduction applications (cf. Remarks 11 and 12
and section 3.4). Section 4 contains extensive numerical experiments highlighting the
applicability of our method.

Before introducing the HAPOD in section 3, we start with a concise summary of
the POD and its properties in section 2.

2. Proper orthogonal decomposition. Proper Orthogonal Decomposition is
a technique for finding low-order approximation spaces for a given set of snapshot
(data) vectors by computing the left-singular vectors corresponding with the domi-
nant singular values of the matrix formed by the columnwise concatenation of the
snapshot vectors. Designations used in other fields are Principal Component Analy-
sis, Empirical Eigenfunctions, Empirical Orthogonal Functions, or Karhunen--Lo\`eve
Decomposition. A more formal definition of the POD, which also applies to infinite-
dimensional spaces, is given as follows.

Definition 1 (proper orthogonal decomposition (POD)). Let \scrS be a finite mul-
tiset of vectors contained in a Hilbert space V and denote by | \scrS | its cardinality. With
e1, . . . , e| \scrS | \in \BbbR | \scrS | the canonical basis of \BbbR | \scrS | , and with \{ s1, . . . , s| \scrS | \} = \scrS an arbitrary
enumeration of the elements of \scrS , we call sequences \varphi 1, . . . , \varphi | \scrS | \in V , \sigma 1, . . . , \sigma | \scrS | \in \BbbR
POD modes and singular values of \scrS if \varphi m, \sigma m are the left-singular vectors and sin-
gular values of the linear mapping \scrS given by

(1) \scrS : \BbbR | \scrS | \rightarrow V, em \mapsto \rightarrow \scrS (em) := sm, 1 \leq m \leq | \scrS | .

Remark 2. Due to the uniqueness properties of the SVD, the POD singular values
of a given multiset \scrS are uniquely defined. The POD modes are uniquely defined up
to orthogonal mappings of subspaces of V spanned by modes with the same singular
value.

Remark 3. A simple yet numerically robust algorithm for the computation of
the SVD of \scrS is based on computing the eigenvalue decomposition of the Gramian

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3270 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

G := (si, sj)i,j to the snapshot set \scrS = \{ s1, . . . , s| \scrS | \} . The kth POD mode \varphi k is then
obtained as

\varphi k =
1\surd
\lambda k

| \scrS | \sum
i=1

\psi k,i \cdot si,

where \lambda k is the kth largest eigenvalue of G, and \psi k,i the ith component of the corre-
sponding eigenvector.1

The basic idea of the algorithm outlined in Remark 3, which in the context of
model reduction is also known as themethod of snapshots [46], is to replace the difficult
task of computing the SVD of a large snapshot matrix with the easier task of comput-
ing the eigenvalue decomposition of the much smaller (symmetric) Gramian, which
can be obtained efficiently by optimized matrix-matrix multiplication algorithms.

While this approach performs well if there are relatively few snapshot vectors
(i.e., ``tall and skinny"" snapshot matrices), it suffers from the quadratic growth in
computational complexity for computing the Gramian when the number of snap-
shots increases. However, using this method in conjunction with the herein proposed
HAPOD algorithm can drastically reduce the overall required computational effort,
making it feasible even for large snapshot sets \scrS (see section 3.4).

The main reason for the emphasis on the POD is the fact that it produces the
best approximating spaces in the \ell 2-sense:

Theorem 4 (Schmidt--Eckhard--Young--Mirsky). Let (\sigma m, \varphi m), 1 \leq m \leq | \scrS | ,
be the singular values and modes of a POD of a given snapshot multiset \scrS . Then for
each 1 \leq N \leq | \scrS | , VN := span\{ \varphi 1, . . . , \varphi N\} is an \ell 2-best approximating space for \scrS
in the sense that

(2)
\sum
s\in \scrS

\| s - PVN
(s)\| 2 = min

X\subseteq V
dimX=N

\sum
s\in \scrS

\| s - PX(s)\| 2 =

| \scrS | \sum
m=N+1

\sigma 2
m,

where \| \cdot \| denotes the norm on V and PX is the V -orthogonal projection onto the
linear subspace X.

The HAPOD algorithm presented in section 3 can be based on any pre-existing
POD implementation. We formalize the concept of a POD algorithm as follows.

Definition 5. For a given Hilbert space V , let POD be the mapping

(\scrS , \varepsilon) \mapsto \rightarrow POD(\scrS , \varepsilon) := \{ (\sigma n, \varphi n)\} Nn=1,

which assigns to each finite multiset \scrS \subseteq V and each \varepsilon > 0 the set given by the first
N pairs of singular values \sigma n and modes \phi n of the POD of \scrS , where N is the smallest
nonnegative integer such that the \ell 2-best-approximation error is bounded by \varepsilon , i.e.,\sum

s\in \scrS \| s - PVN
(s)\| 2 \leq \varepsilon 2. According to (2), N is thus given as

N = min

\biggl\{
N \prime \in \{ 0, . . . , | \scrS | \}

\bigm| \bigm| \bigm| \bigm| | \scrS | \sum
n=N \prime +1

\sigma 2
n \leq \varepsilon 2

\biggr\}
.

Assuming that no SVD is performed for \varepsilon = 0 and the original snapshot multiset is
returned, we also define POD(\scrS , 0) := \{ (1, s) | s \in \scrS \} .

1Note that the condition number of G is the square of the condition number of \scrS , limiting the
numerical accuracy of this method in comparison to other SVD algorithms.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3271

3. Hierarchical approximate POD (HAPOD). In this section we introduce
the HAPOD algorithm (section 3.1) and provide estimates that allow one to control
the approximation error as well as the number of computed POD modes (section 3.3).
Special cases for distributed and incremental HAPOD computation are discussed in
section 3.2. A further discussion of the advantages of the HAPOD is contained in
section 3.4, whereas proofs of our main theorems can be found in section 3.5. The
notation used in this section is summarized in Table 1.

Table 1
Key notation. Additional notation required in the proofs of Theorems 8 and 9 is given in

Definition 14.

\scrC \scrT (\alpha) children of node \alpha in tree \scrT \scrN \scrT node set of tree \scrT
D snapshot-to-leaf map \scrN \scrT (\alpha) nodes below \alpha in tree \scrT
\varepsilon (\alpha) error tolerance at node \alpha \rho \scrT root node of tree \scrT
L\scrT depth of tree \scrT \scrS snapshot set
L\scrT (\alpha) level of node \alpha in tree \scrT \scrS \alpha input snapshots at node \alpha

\scrL \scrT leaf set of tree \scrT \widetilde \scrS \alpha snapshots below \alpha in the tree

3.1. Definition of the HAPOD. The basic idea of the HAPOD algorithm is
to replace the task of computing a POD of a given large snapshot set \scrS by several
small PODs which only depend on small subsets of \scrS and previously computed PODs.
To formalize this procedure, we consider rooted trees where each node of the tree is
associated with a local POD.

A rooted tree is a connected acyclic graph of which one node is designated as the
root of the tree. The following equivalent definition will better suit our needs.

Definition 6 (rooted tree). For an arbitrary set X, denote by Pow(X) its power
set. We then call a triple \scrT = (\scrN \scrT , \scrC \scrT , \rho \scrT), where \scrN \scrT is a finite set, \rho \scrT \in \scrN \scrT , and
\scrC \scrT : \scrN \scrT \rightarrow Pow(\scrN \scrT \setminus \{ \rho \scrT \}), a rooted tree if the mapping \scrC \scrT satisfies the following
properties:

\forall \alpha , \beta \in \scrN \scrT : \alpha \not = \beta \Rightarrow \scrC \scrT (\alpha) \cap \scrC \scrT (\beta) = \emptyset ,(3)

\forall \emptyset \not = X \subseteq \scrN \scrT \setminus \{ \rho \scrT \} \exists \alpha \in \scrN \scrT \setminus X : \scrC \scrT (\alpha) \cap X \not = \emptyset .(4)

We call elements \alpha \in \scrN \scrT the nodes of \scrT and the elements of \scrC \scrT (\alpha) the children of \alpha .
Condition (3) states that every node of \scrT is the child of at most one node, whereas
condition (4) ensures that every node is connected to the root node \rho \scrT . Together, (3)
and (4) imply that there are no cycles in \scrT .

The leaf set \scrL \scrT of \scrT is given by

\scrL \scrT := \{ \alpha \in \scrN \scrT | \scrC \scrT (\alpha) = \emptyset \} .

For each node \alpha \in \scrN \scrT we define the nodes below \alpha , \scrN \scrT (\alpha), recursively by the relation

\scrN \scrT (\alpha) := \{ \alpha \} \cup
\bigcup

\beta \in \scrC \scrT (\alpha)

\scrN \scrT (\beta).

Finally, we define the level map L\scrT : \scrN \scrT \rightarrow \BbbN recursively as

L\scrT (\alpha) := max(\{ L\scrT (\beta) | \beta \in \scrC \scrT (\alpha)\} \cup \{ 0\}) + 1

and call L\scrT := L\scrT (\rho \scrT) the depth of \scrT .

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3272 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

Given a tree \scrT , the HAPOD algorithm works by first assigning vectors of a given
snapshot set \scrS to the leaves of the tree. Then, starting with the leaves, a POD of the
local input data is computed at each node. The resulting modes are scaled by their
corresponding singular values and passed on as input to the parent node. The final
HAPOD modes are collected as the output of the root node \rho \scrT (cf. Figures 1 and 8).
The precise definition is given as follows.

Definition 7 (hierarchical approximate POD (HAPOD)). Let \scrS \subseteq V be a finite
multiset of snapshot vectors in a Hilbert space V . Given a rooted tree \scrT and mappings

D : \scrS \rightarrow \scrL \scrT , \varepsilon : \scrN \scrT \rightarrow \BbbR \geq 0,

define recursively for each \alpha \in \scrN \scrT

HAPOD[\scrS , \scrT , D, \varepsilon](\alpha) := POD(\scrS \alpha , \varepsilon (\alpha)),

where the local input data multiset \scrS \alpha is given by

\scrS \alpha :=

\Biggl\{
D - 1(\{ \alpha \}), \alpha \in \scrL \scrT ,\bigcup

\beta \in \scrC \scrT (\alpha)

\Bigl\{
\sigma n \cdot \varphi n | (\sigma n, \varphi n) \in HAPOD[\scrS , \scrT , D, \varepsilon](\beta)

\Bigr\}
otherwise,

with D - 1(\{ \alpha \}) := \{ s \in \scrS | D(s) \in \{ \alpha \} \} = \{ s \in \scrS | D(s) = \alpha \} being the multiset
of all snapshot vectors assigned to the leaf node \alpha . We call HAPOD[\scrS , \scrT , D, \varepsilon] :=
HAPOD[\scrS , \scrT , D, \varepsilon](\rho \scrT) the HAPOD of \scrS for the tree \scrT , the snapshot distribution D,
and the local tolerances \varepsilon .

3.2. Special cases: Distributed and incremental HAPOD. The HAPOD
is defined for arbitrary rooted trees, yet two classes of tree topologies present impor-
tant special cases due to their ease of application. Both cases have also been discussed
in [38].

One special case of the HAPOD constitutes a ``flat"" tree (star), in which all leaf
nodes are the children of the root node, i.e., \scrC \scrT (\rho \scrT) = \scrN \scrT \setminus \{ \rho \scrT \} , and the snapshot
set \scrS is distributed evenly among the leaf nodes (see Figure 1a). For such a tree the
HAPOD is given as

HAPOD[\scrS , \scrT , D, \varepsilon](\rho \scrT)

= POD

\biggl(\bigcup
\beta \in \scrL \scrT

\Bigl\{
\sigma n \cdot \varphi n

\bigm| \bigm| \bigm| (\sigma n, \varphi n) \in POD(D - 1(\{ \beta \}), \varepsilon (\beta))
\Bigr\}
, \varepsilon (\rho \scrT)

\biggr)
.

From a numerical linear algebra perspective this distributed HAPOD is closely
related to the ``horizontal slicing"" distributed SVD methods [4, 11, 12, 43, 47, 48,
50]. The key algorithmic difference is the horizontal partitioning of the data vectors
forming the columns of the snapshot matrix into fat chunks as opposed to the vertical
partitioning into thin chunks of complete data vectors considered here.

A second special case of the HAPOD is a ``skinny"" tree (totally unbalanced bi-
nary tree). Each node of this tree is either a leaf or has exactly one leaf and one
nonleaf as children (see Figure 1b). Formally, we then have \scrN \scrT = (\{ \alpha 1, . . . , \alpha L\} \cup
\{ \beta 1, . . . , \beta L - 1\}), \rho \scrT = \alpha L, \scrC \scrT (\beta l) = \emptyset for all 1 \leq l \leq L - 1, \scrC \scrT (\alpha 1) = \emptyset , and
\scrC \scrT (\alpha l) = \{ \alpha l - 1, \beta l - 1\} for 2 \leq l \leq L. Typically, one will perform no additional
PODs on the input data, so \varepsilon (\beta l) = 0. In this case, the HAPOD is given as

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3273

\rho

\beta 1 \beta 2 \beta 3 \beta 4

(a) Distributed approximate POD. The
PODs at the leaves \beta i can be computed in
parallel. Afterwards an additional POD is
performed at the root node \rho .

\rho

\alpha 3

\alpha 2

\alpha 1 \beta 1

\beta 2

\beta 3

(b) Incremental HAPOD. New snapshot
data enters at the nodes \beta i which is then
combined with the current modes by PODs
at the nodes \alpha i.

Fig. 1. Trees corresponding to distributed and incremental HAPOD computation.

HAPOD[\scrS , \scrT , D, \varepsilon](\alpha 1) = POD(D - 1(\{ \alpha 1\}), \varepsilon (\alpha 1)) and

HAPOD[\scrS , \scrT , D, \varepsilon](\alpha l)

= POD
\Bigl(\bigl\{
\sigma n \cdot \varphi n | (\sigma n, \varphi n) \in HAPOD[\scrS , \scrT , D, \varepsilon](\alpha l - 1)

\bigr\}
\cup D - 1(\{ \beta l - 1\}), \varepsilon (\alpha l)

\Bigr)
for 2 \leq l \leq L. Thus, the HAPOD can be computed incrementally by a simple iterative
procedure, where in each update step a POD of the current (scaled) HAPOD modes
together with the new input data is computed, whereas old input data can be removed
from memory.

To accelerate the computation of this incremental HAPOD, an incremental SVD
algorithm such as [6] might be used for the local POD computations. In this case,
the main theorems in section 3.3 then provide a means to select truncation error
tolerances for the individual SVD updates that guarantee final approximation spaces
of prescribed quality.

3.3. Main theorems. Two central questions about the HAPOD are answered
by the following theorems: Given error tolerances \varepsilon , what is the approximation error
for the computed HAPOD modes (Theorem 8)? How many modes does the HAPOD
produce in comparison to a direct POD computation (Theorem 9)? Only by con-
trolling both quantities simultaneously can we arrive at an efficient approximation
scheme. The proofs to the following theorems are given in section 3.5.

Theorem 8. Let \scrS , \scrT , D, \varepsilon be given as in Definition 7, let the multiset of all
snapshots subordinate to the node \alpha be given by \widetilde \scrS \alpha :=

\bigcup
\gamma \in \scrL \scrT \cap \scrN \scrT (\alpha)D

 - 1(\{ \gamma \}), and
let P\alpha be the V -orthogonal projection onto the linear space spanned by the modes of
HAPOD[\scrS , \scrT , D, \varepsilon](\alpha). The \ell 2-approximation error for the HAPOD space at node \alpha
is then bounded by

(5)
\sum
s\in \widetilde \scrS \alpha

\| s - P\alpha (s)\| 2 \leq
\sum

\gamma \in \scrN \scrT (\alpha)

\varepsilon (\gamma)2.

Theorem 9. With the same notation as in Theorem 8 we have for each \alpha \in \scrN \scrT

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3274 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

the following bound for the number of HAPOD modes:

(6)
\bigm| \bigm| \bigm| HAPOD[\scrS , \scrT , D, \varepsilon](\alpha)

\bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| POD
\Bigl(\widetilde \scrS \alpha , \varepsilon (\alpha)

\Bigr) \bigm| \bigm| \bigm| .
In model reduction applications, the \ell 2-mean approximation error is often the

desired quantity to optimize for, since in many cases neither the number of POD
input vectors is known a priori (think of adaptive time stepping schemes) nor the
number of vectors which are to be approximated by the generated POD space (i.e.,
the number of reduced model evaluations). Thus, we want to define \varepsilon such that the
mean \ell 2-error is bounded by a desired target tolerance \varepsilon \ast , independently from the
total number of input modes | \scrS | . At the same time, the number of HAPOD output
modes should not be much larger than the optimal quantity | POD(\scrS , \varepsilon \ast)| , where

POD(\scrS , \varepsilon \ast) := POD(\scrS ,
\sqrt{}
| \scrS | \cdot \varepsilon \ast).

In view of the above results, this motivates the following choice for \varepsilon , where the
parameter \omega allows us to choose a trade-off between the efficiency of the HAPOD and
the optimality of the resulting approximation space.

Theorem 10. Using the same notation as in Theorem 8, let for \varepsilon \ast > 0 the
HAPOD tolerances \varepsilon (\rho \scrT), \varepsilon (\alpha), \alpha \in \scrN \scrT \setminus \{ \rho \scrT \} be given by

\varepsilon (\rho \scrT) :=
\sqrt{}

| \scrS | \cdot \omega \cdot \varepsilon \ast , \varepsilon (\alpha) :=

\sqrt{}
| \widetilde \scrS \alpha | \cdot (L\scrT - 1)

 - 1/2 \cdot
\sqrt{}
1 - \omega 2 \cdot \varepsilon \ast ,

where 0 \leq \omega \leq 1 is an arbitrary parameter. Then we have the following bounds for
the final \ell 2-mean approximation error and number of HAPOD modes:

(7)
1

| \scrS |
\sum
s\in \scrS

\| s - P\rho \scrT (s)\| 2 \leq \varepsilon \ast 2 and
\bigm| \bigm| \bigm| HAPOD[\scrS , \scrT , D, \varepsilon]

\bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| POD(\scrS , \omega \cdot \varepsilon \ast)
\bigm| \bigm| \bigm| .

Moreover, the number of HAPOD modes at the intermediate stages \alpha is bounded by

(8)
\bigm| \bigm| \bigm| HAPOD[\scrS , \scrT , D, \varepsilon](\alpha)

\bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| POD(\widetilde \scrS \alpha , (L\scrT - 1) - 1/2 \cdot
\sqrt{}

1 - \omega 2 \cdot \varepsilon \ast)
\bigm| \bigm| \bigm| .

Remark 11. Note that the number of local POD modes | HAPOD[\scrS , \scrT , D, \varepsilon](\alpha)|
determines the size of the input \scrS \beta for the next POD at the parent node \beta and
hence the effort required for its computation. Choosing a large \omega \rightarrow 1 will reduce the
number of final HAPOD modes at the price of larger local PODs. A small \omega \rightarrow 0
will minimize the costs for computing the HAPOD in exchange for a larger number
of final modes to guarantee the prescribed error bound.

Remark 12. Since we consider the mean square approximation error, it is possible
for the bound (8) that we have

| POD(\widetilde \scrS \alpha , \delta)| > | POD(\scrS , \delta)| ,

where \delta := (L\scrT - 1) - 1/2 \cdot
\surd
1 - \omega 2 \cdot \varepsilon \ast . This might be the case when the principal

directions of the snapshot set \widetilde \scrS \alpha are underrepresented in the full snapshot set \scrS .
However, if N \prime := min\{ N \in \BbbN

\bigm| \bigm| dN (\scrS) \leq \delta \} , where

dN (\scrS) := min
X\subseteq V lin subsp.

dimX\leq N

max
s\in \scrS

\| s - PX(s)\|

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3275

is the so-called Kolomogorov N -width of \scrS , and XN \prime is a minimizer for dN \prime (\scrS), then
we always have

| \widetilde \scrS \alpha |
 - 1 \sum

s\in \widetilde \scrS \alpha

\| s - PXN\prime (s)\| 2 \leq max
s\in \widetilde \scrS \alpha

\| s - PXN\prime (s)\| 2 \leq max
s\in \scrS

\| s - PXN\prime (s)\| 2 \leq \delta .

Thus, due to the optimality of the POD (Theorem 4) we have | POD(\widetilde \scrS \alpha , \delta)| \leq N \prime ,
and the number of modes at \alpha can be bounded by

(9)
\bigm| \bigm| \bigm| HAPOD[\scrS , \scrT , D, \varepsilon](\alpha)

\bigm| \bigm| \bigm| \leq min
\Bigl\{
N \in \BbbN

\bigm| \bigm| \bigm| dN (\scrS) \leq (L\scrT - 1) - 1/2 \cdot
\sqrt{}
1 - \omega 2 \cdot \varepsilon \ast

\Bigr\}
.

In many cases it is known theoretically or heuristically that dN (\scrS) shows rapid
(sub-)exponential decay for increasing N . In these cases, (9) will be an effective upper
bound for the number of local HAPOD modes, independent of the chosen snapshot
distribution D.

Remark 13 (low-rank approximation of the snapshot mapping). By addition-
ally keeping track of the local right-singular vectors appearing in the HAPOD algo-
rithm, we easily obtain a low-rank approximation of the global snapshot mapping\widetilde \scrS \alpha : \BbbR | \widetilde \scrS \alpha | \rightarrow V defined in Definition 14. More precisely, by Lemma 15 and (17) we
immediately have the rank-

\bigm| \bigm| HAPOD[\scrS , \scrT , D, \varepsilon](\alpha)
\bigm| \bigm| approximation:

(10) \| \widetilde \scrS \alpha - \Psi \alpha \circ \widetilde \Lambda \ast
\alpha \| 22 \leq

\sum
\gamma \in \scrN \scrT (\alpha)

\varepsilon (\gamma)2

in the Hilbert--Schmidt (Frobenius) norm, with \Psi \alpha , \widetilde \Lambda \alpha given as in Definition 14.

3.4. Algorithmic benefits. Theorems 8 and 9 show that, with an appropriate
choice of local error tolerances \varepsilon (Theorem 10), the HAPOD produces approximation
spaces of a quality comparable to a POD with the same target error tolerance. At the
same time, the HAPOD offers several benefits, which for problems with fast decaying
singular values can lead to dramatic speedups in computation time.

Reduced memory requirements. If the input data for a POD cannot be kept com-
pletely in memory, huge performance penalties are to be expected, since for standard
POD algorithms, repeated access of every snapshot vector is required. If the data is
kept on a mass storage device, the overall performance of the algorithm will usually
be bounded by the data transfer speed.

For the HAPOD, at each node \alpha , only the vectors \scrS \alpha are required as input to a
local POD, where, typically, | \scrS \alpha | \ll | \scrS | so that \scrS \alpha can be kept completely in memory.

If only the POD, and not the snapshots themselves, is targeted by the computa-
tion, the HAPOD can obtain the result without accessing mass storage whatsoever
(cf. section 4.3). In particular, an incremental HAPOD of a time series may be
computed even if the whole time series would not fit into memory (cf. sections 3.2
and 4.1).

Simple parallelization. To compute the local POD at node \alpha , only the output of
the PODs at the child nodes \scrC \scrT (\alpha) is required. In particular, for each 1 \leq l \leq L\scrT ,
all PODs at the nodes \{ \alpha \in \scrN \scrT | L\scrT (\alpha) = l\} can be computed in parallel without
any communication, which is typically the bottleneck for distributed computations.
Intermediate results have to be communicated only vertically up the tree, and the
communicated data encompasses only low-rank quantities of computed POD modes
and singular values (cf. sections 3.2, 4.2, and 4.3).

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3276 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

Generality. The HAPOD can be applied using any pre-existing, optimized POD
algorithm. For instance, the HAPOD could be used to perform incremental data
compression for an MPI (Message Passing Interface) [33] distributed model, where
each sub-POD is computed via a parallelized SVD algorithm. In section 4.3 we speed
up the POD algorithm in Remark 3 by exploiting the block structure of the local
Gramian similar to Brand's algorithm [7].

Lower algorithmic complexity. A widely-used, simple, and reliable algorithm for
POD computation is to compute the eigenvalue decomposition of the Gramian to
\scrS (cf. Remark 3). In the case of | \scrS | \ll d := dim(V), the Gramian computation
dominates the overall runtime for the algorithm with a computational complexity of
\scrO (| \scrS | 2d). For larger snapshots sets \scrS , the quadratic increase in complexity makes
this method expensive in comparison to more advanced algorithms (such as Lanczos
or randomized methods [10, 17]), which scale only linearly in the number of snapshot
vectors

Application of the HAPOD algorithm largely mitigates this issue. In particular,
for a balanced n-ary tree \scrT with single vectors attached to the leaves, the HAPOD
using this POD algorithm requires at most \scrO (| \scrS | log(| \scrS |) \widehat N2d) operations for Gramian

computation, where \widehat N := max\alpha \in \scrN \scrT | HAPOD[\scrS , \scrT , D, \varepsilon](\alpha)| denotes the maximum
number of local output modes. Assuming that the error tolerances \varepsilon are chosen
according to Theorem 10 for fixed \varepsilon \ast , \omega , and assuming that the Kolmogorov widths
dN (\scrS) are bounded for growing \scrS , then, due to (9), \widehat N will only depend on the
depth L\scrT of \scrT . If we furthermore assume that dN (\scrS) decays exponentially with

increasing N , we have \widehat N = \scrO (log(L\scrT)) = \scrO (log(log(| \scrS |))). Thus, the overall effort
for computing the Gramians is reduced to \scrO (| \scrS | log(| \scrS |) log(log(| \scrS |))2d).

3.5. Proofs of main theorems. In this section we prove our main results
(Theorems 8 and 9). We will require some additional notation.

Definition 14 (additional notation). For each \alpha \in \scrN \scrT \setminus \scrL \scrT fix an arbitrary
enumeration \scrC \scrT (\alpha , 1), . . . , \scrC \scrT (\alpha , | \scrC \scrT (\alpha)|) of \scrC \scrT (\alpha). For each \alpha \in \scrN \scrT we define map-
pings

\scrS \alpha : \BbbR | \scrS \alpha | \rightarrow V, \Psi \alpha : \BbbR N\alpha \rightarrow V, \Lambda \alpha : \BbbR N\alpha \rightarrow \BbbR | \scrS \alpha | ,

N\alpha := | HAPOD[\scrS , \scrT , D, \varepsilon](\alpha)| , as follows.
As in (1), let \scrS \alpha map the nth canonical basis vector of \BbbR | \scrS \alpha | to the nth element of

\scrS \alpha for a given enumeration of \scrS \alpha . For \alpha \in \scrL \scrT , the enumeration of \scrS \alpha = D - 1(\{ \alpha \})
is chosen arbitrarily. For \alpha \in \scrN \scrT \setminus \scrL \scrT , the enumeration is chosen such that the
following compatibility relation is satisfied:

(11) \scrS \alpha = [\Psi \scrC \scrT (\alpha ,1), . . . ,\Psi \scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)].

For \varepsilon (\alpha) > 0, let \Psi \alpha , \Lambda \alpha be the linear mappings given by

\Psi \alpha (en) := \sigma n \cdot \varphi n, \Lambda \alpha (en) := \lambda n,

where en is the nth canonical basis vector of \BbbR N\alpha , and \sigma n, \varphi n, \lambda n denote the nth
singular value, left-singular vector, and right-singular vector of \scrS \alpha . Thus, \Psi \alpha \circ \Lambda \ast

\alpha is
the truncated SVD of \scrS \alpha . In particular, we have

(12) P\alpha \circ \scrS \alpha = \Psi \alpha \circ \Lambda \ast
\alpha , \Lambda \ast

\alpha \circ \Lambda \alpha = 1.

For \varepsilon (\alpha) = 0 (in which case N\alpha = | \scrS \alpha |), we simply let \Psi \alpha := \scrS \alpha , and let \Lambda \alpha be the
identity on \BbbR N\alpha such that (12) holds as well.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3277

Note that since \scrS \alpha consists exactly of elements \Psi \beta (en) with \beta \in \scrC \scrT (\alpha), 1 \leq n \leq
N\beta , it is clear that (11) can always be satisfied.

Finally, we define cumulative mappings \widetilde \scrS \alpha ,
\widetilde \scrR \alpha : \BbbR | \widetilde \scrS \alpha | \rightarrow V , \widetilde \Lambda \alpha : \BbbR N\alpha \rightarrow \BbbR | \widetilde \scrS \alpha |

recursively as \widetilde \scrS \alpha := \scrS \alpha , \widetilde \scrR \alpha := \scrS \alpha , \widetilde \Lambda \alpha := \Lambda \alpha ,

for \alpha \in \scrL \scrT and\widetilde \scrS \alpha := [\widetilde \scrS \scrC \scrT (\alpha ,1), . . . ,
\widetilde \scrS \scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)],

\widetilde \Lambda \alpha := diag(\widetilde \Lambda \scrC \scrT (\alpha ,1), . . . , \widetilde \Lambda \scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)) \circ \Lambda \alpha ,\widetilde \scrR \alpha := [P\scrC \scrT (\alpha ,1) \circ \widetilde \scrR \scrC \scrT (\alpha ,1), . . . , P\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|) \circ \widetilde \scrR \scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)]

for all \alpha \in \scrN \scrT \setminus \scrL \scrT . Similar to the definition of \scrS \alpha , the map \widetilde \scrS \alpha is of the form (1)

with respect to a specific enumeration of \widetilde \scrS \alpha .

As a first step towards the proof of our main theorems, we will extend the de-
composition (12) to the accumulated mapping of projected snapshots \widetilde \scrR \alpha .

Lemma 15. With the same notation as in Definition 14 we have for all \alpha \in \scrN \scrT :

(13) P\alpha \circ \widetilde \scrR \alpha = \Psi \alpha \circ \widetilde \Lambda \ast
\alpha ,

\widetilde \Lambda \ast
\alpha \circ \widetilde \Lambda \alpha = 1.

In particular, it follows for \alpha \in \scrN \scrT \setminus \scrL \scrT that

(14) \widetilde \scrR \alpha = \scrS \alpha \circ diag(\widetilde \Lambda \ast
\scrC \scrT (\alpha ,1), . . . ,

\widetilde \Lambda \ast
\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)).

Proof. We show the claim via induction over \scrT . To this end, first note that for
\alpha \in \scrL \scrT , (13) is precisely (12) by definition of \widetilde \scrR \alpha ,

\widetilde \Lambda \alpha . For \alpha \in \scrN \scrT \setminus \scrL \scrT , we obtain
using the induction hypothesis the definition of \scrS \alpha and (12):

P\alpha \circ \widetilde \scrR \alpha = P\alpha \circ [P\scrC \scrT (\alpha ,1) \circ \widetilde \scrR \scrC \scrT (\alpha ,1), . . . , P\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|) \circ \widetilde \scrR \scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)]

= P\alpha \circ [\Psi \scrC \scrT (\alpha ,1) \circ \widetilde \Lambda \ast
\scrC \scrT (\alpha ,1), . . . ,\Psi \scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|) \circ \widetilde \Lambda \ast

\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)]

= P\alpha \circ \scrS \alpha \circ diag(\widetilde \Lambda \ast
\scrC \scrT (\alpha ,1), . . . ,

\widetilde \Lambda \ast
\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|))

= \Psi \alpha \circ \Lambda \ast
\alpha \circ diag(\widetilde \Lambda \ast

\scrC \scrT (\alpha ,1), . . . ,
\widetilde \Lambda \ast
\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|))

= \Psi \alpha \circ \widetilde \Lambda \ast
\alpha .

Moreover,\widetilde \Lambda \ast
\alpha \circ \widetilde \Lambda \alpha = \Lambda \ast

\alpha \circ diag(\widetilde \Lambda \ast
\scrC \scrT (\alpha ,1) \circ \widetilde \Lambda \scrC \scrT (\alpha ,1), . . . , \widetilde \Lambda \ast

\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|) \circ \widetilde \Lambda \scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)) \circ \Lambda \alpha = 1.

Thus, (13) is proved, and we have\widetilde \scrR \alpha = [P\scrC \scrT (\alpha ,1) \circ \widetilde \scrR \scrC \scrT (\alpha ,1), . . . , P\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|) \circ \widetilde \scrR \scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)]

= [\Psi \scrC \scrT (\alpha ,1) \circ \widetilde \Lambda \ast
\scrC \scrT (\alpha ,1), . . . ,\Psi \scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|) \circ \widetilde \Lambda \ast

\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)]

= \scrS \alpha \circ diag(\widetilde \Lambda \ast
\scrC \scrT (\alpha ,1), . . . ,

\widetilde \Lambda \ast
\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|)).

As a final preparatory step, we show the following orthogonality lemma.

Lemma 16. With the same notation as in Definition 14 we have for all \alpha \in \scrN \scrT
and arbitrary continuous linear maps X,Y : V \rightarrow V :

(15) (X \circ (\widetilde \scrS \alpha - \widetilde \scrR \alpha), Y \circ \widetilde \scrR \alpha)2 = 0,

where (A,B)2 is the Hilbert--Schmidt inner product given by tr(A\ast B).

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3278 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

Proof. We prove the claim again via induction over \scrT . For \alpha \in \scrL \scrT , the statement
is obvious since \widetilde \scrS \alpha = \scrS \alpha = \widetilde \scrR \alpha . For \alpha \in \scrN \scrT \setminus \scrL \scrT , we have

(16) (X \circ (\widetilde \scrS \alpha - \widetilde \scrR \alpha), Y \circ \widetilde \scrR \alpha)2

=
\sum

\beta \in \scrC \scrT (\alpha)

(X \circ (\widetilde \scrS \beta - P\beta \circ \widetilde \scrR \beta), Y \circ P\beta \circ \widetilde \scrR \beta)2

=
\sum

\beta \in \scrC \scrT (\alpha)

(X \circ (\widetilde \scrS \beta - \widetilde \scrR \beta), Y \circ P\beta \circ \widetilde \scrR \beta)2

+
\sum

\beta \in \scrC \scrT (\alpha)

(X \circ (1 - P\beta) \circ \widetilde \scrR \beta , Y \circ P\beta \circ \widetilde \scrR \beta)2.

The first sum on the right-hand side of (16) vanishes by the induction hypothesis
(with Y := Y \circ P\beta). To handle the second sum note that for \beta \in \scrN \scrT \setminus \scrL \scrT , \varepsilon (\beta) > 0
we can use (14) to write

(1 - P\beta) \circ \widetilde \scrR \beta = (1 - P\beta) \circ \scrS \beta \circ diag(\widetilde \Lambda \ast
\scrC \scrT (\beta ,1), . . . ,

\widetilde \Lambda \ast
\scrC \scrT (\beta ,| \scrC \scrT (\beta)|))

= \Psi c
\beta \circ \Lambda c\ast

\beta \circ diag(\widetilde \Lambda \ast
\scrC \scrT (\beta ,1), . . . ,

\widetilde \Lambda \ast
\scrC \scrT (\beta ,| \scrC \scrT (\beta)|)),

where \Psi c
\beta : \BbbR | \scrS \beta | - N\beta \rightarrow V,\Lambda c

\beta : \BbbR | \scrS \beta | - N\beta \rightarrow \BbbR | \scrS \beta | map the kth canonical basis vector
to the (N\beta + k)th scaled left (unscaled right) singular vector of \scrS \beta . In particular,
\Lambda \ast
\beta \circ \Lambda c

\beta = 0. Using (13) and the invariance of the trace under cyclic permutations,
we obtain

(X \circ (1 - P\beta) \circ \widetilde \scrR \beta , Y \circ P\beta \circ \widetilde \scrR \beta)2

= tr(\{ (1 - P\beta) \circ \widetilde \scrR \beta \} \ast \circ X\ast \circ Y \circ P\beta \circ \widetilde \scrR \beta)

= tr(X\ast \circ Y \circ P\beta \circ \widetilde \scrR \beta \circ \{ (1 - P\beta) \circ \widetilde \scrR \beta \} \ast)

= tr(X\ast \circ Y \circ \Psi \beta \circ \Lambda \ast
\beta \circ diag(\widetilde \Lambda \ast

\scrC \scrT (\beta ,1), . . . ,
\widetilde \Lambda \ast
\scrC \scrT (\beta ,| \scrC \scrT (\beta)|))

\circ diag(\widetilde \Lambda \scrC \scrT (\beta ,1), . . . , \widetilde \Lambda \scrC \scrT (\beta ,| \scrC \scrT (\beta)|)) \circ \Lambda c
\beta \circ \Psi c\ast

\beta)

= tr(X\ast \circ Y \circ \Psi \beta \circ \{ \Lambda \ast
\beta \circ \Lambda c

\beta \} \circ \Psi c
\beta) = 0.

The same line of argument holds for \beta \in \scrL \scrT , where we have (1 - P\beta)\circ \widetilde \scrR \beta = \Psi c
\beta \circ \Lambda c\ast

\beta .
Since for \varepsilon (\beta) = 0 we trivially have 1 - P\beta = 0, we see that the second sum in (16)
always vanishes, proving the claim.

Proof of Theorem 8. First note that, due to the best approximation property of
the orthogonal projection P\alpha , we have

\sum
s\in \widetilde \scrS \alpha

\| s - P\alpha (s)\| 2 =

| \widetilde \scrS \alpha | \sum
n=1

\| \widetilde \scrS \alpha (en) - P\alpha (\widetilde \scrS \alpha (en))\| 2

\leq
| \widetilde \scrS \alpha | \sum
n=1

\| \widetilde \scrS \alpha (en) - P\alpha (\widetilde \scrR \alpha (en))\| 2

= \| \widetilde \scrS \alpha - P\alpha \circ \widetilde \scrR \alpha \| 22,

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3279

where \| A\| 2 =
\sqrt{}
(A,A)2 =

\sqrt{}
tr(A\ast A) denotes the Hilbert--Schmidt norm of A. Thus,

the theorem is proven if we can show that for all \alpha \in \scrN \scrT the following estimate holds:

(17) \| \widetilde \scrS \alpha - P\alpha \circ \widetilde \scrR \alpha \| 22 \leq
\sum

\gamma \in \scrN \scrT (\alpha)

\varepsilon (\gamma)2.

We show (17) again via induction over \scrT . For \alpha \in \scrL \scrT we immediately have

\| \widetilde \scrS \alpha - P\alpha \circ \widetilde \scrR \alpha \| 22 = \| \scrS \alpha - P\alpha \circ \scrS \alpha \| 22 \leq \varepsilon (\alpha)2 =
\sum

\gamma \in \scrN \scrT (\alpha)

\varepsilon (\gamma)2

according to Definition 5.
Now, let us assume that (17) holds for all \beta \in \scrC \scrT (\alpha) for some \alpha \in \scrN \scrT \setminus \scrL \scrT .

Using Lemma 16 with Y = I - P\alpha , we have

\| \widetilde \scrS \alpha - P\alpha \circ \widetilde \scrR \alpha \| 22 = \| \widetilde \scrS \alpha - \widetilde \scrR \alpha + (I - P\alpha) \circ \widetilde \scrR \alpha \| 22 = \| \widetilde \scrS \alpha - \widetilde \scrR \alpha \| 22 + \| (I - P\alpha) \circ \widetilde \scrR \alpha \| 22.

Using the induction hypothesis, we can bound the first summand by

\| \widetilde \scrS \alpha - \widetilde \scrR \alpha \| 22 =
\sum

\beta \in \scrC \scrT (\alpha)

\| \widetilde \scrS \beta - P\beta \circ \widetilde \scrR \beta \| 22

\leq
\sum

\beta \in \scrC \scrT (\alpha)

\sum
\gamma \in \scrN \scrT (\beta)

\varepsilon (\gamma)2

=
\sum

\gamma \in \scrN \scrT (\alpha)\setminus \{ \alpha \}

\varepsilon (\gamma)2.

To bound the second summand, we use Lemma 15, the fact that \| T \circ S\| 2 \leq
\| T\| 2 \cdot \| S\| (for arbitrary T , S), and Definition 5 to obtain

\| (I - P\alpha) \circ \widetilde \scrR \alpha \| 22 = \| (I - P\alpha) \circ \scrS \alpha \circ diag(\widetilde \Lambda \ast
\scrC \scrT (\alpha ,1), . . . ,

\widetilde \Lambda \ast
\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|))\|

2
2

\leq \| (I - P\alpha) \circ \scrS \alpha \| 22 \cdot \| diag(\widetilde \Lambda \ast
\scrC \scrT (\alpha ,1), . . . ,

\widetilde \Lambda \ast
\scrC \scrT (\alpha ,| \scrC \scrT (\alpha)|))\|

2

\leq \varepsilon (\alpha)2.

Thus, (17) follows, which completes the proof.

Proof of Theorem 9. For \alpha \in \scrL \scrT there is nothing to show, so let us assume that
\alpha \in \scrN \scrT \setminus \scrL \scrT . According to Lemma 15, \widetilde \scrR \alpha and \scrS \alpha have the same singular values.

Thus, with \widetilde \scrR \alpha := \{ \widetilde \scrR \alpha (en) | 1 \leq n \leq | \widetilde \scrS \alpha | \} we have

| HAPOD[\scrS , \scrT , D, \varepsilon](\alpha)| = | POD(\scrS \alpha , \varepsilon (\alpha))| = | POD(\widetilde \scrR \alpha , \varepsilon (\alpha))| .

Let \widetilde P\alpha be the orthogonal projection onto the linear span of the modes selected by

POD(\widetilde \scrS \alpha , \varepsilon (\alpha)). Due to Lemma 16 with X = Y = 1 - \widetilde P\alpha , we have

\varepsilon (\alpha)2 \geq \| (1 - \widetilde P\alpha) \circ \widetilde \scrS \alpha \| 22
= \| (1 - \widetilde P\alpha) \circ \widetilde \scrR \alpha \| 22 + \| (1 - \widetilde P\alpha) \circ (\widetilde \scrS \alpha - \widetilde \scrR \alpha)\| 22
\geq \| (1 - \widetilde P\alpha) \circ \widetilde \scrR \alpha \| 22.

According to Definition 5 and due to the optimality of the POD, we therefore have

| POD(\widetilde \scrR \alpha , \varepsilon (\alpha))| \leq | POD(\widetilde \scrS \alpha , \varepsilon (\alpha))| ,

which concludes the proof.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3280 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

Proof of Theorem 10. According to Theorem 8 we have

\sum
s\in \scrS

\| s - P\rho \scrT (s)\| 2 \leq | \scrS | \cdot \omega 2 \cdot \varepsilon \ast 2 +
L\scrT - 1\sum
l=1

\sum
\gamma \in \scrN \scrT

L\scrT (\gamma)=l

| \widetilde \scrS \gamma | \cdot (L\scrT - 1)
 - 1 \cdot (1 - \omega 2) \cdot \varepsilon \ast 2

\leq | \scrS | \cdot \omega 2 \cdot \varepsilon \ast 2 +
L\scrT - 1\sum
l=1

| \scrS | \cdot (L\scrT - 1)
 - 1 \cdot (1 - \omega 2) \cdot \varepsilon \ast 2

= | \scrS | \cdot \varepsilon \ast 2.

The stated bounds for the number of HAPOD modes follow directly from Theorem 9
and the definition of POD.

4. Numerical results. To demonstrate the applicability of the HAPOD, three
numerical examples comparing the POD with the HAPOD are presented and eval-
uated in terms of accuracy and complexity. The first two experiments are imple-
mented in the MATLAB language and performed using Octave [14]. For the POD and
HAPOD,2 the built-in SVD of Octave is utilized, which in turn uses LAPACK [2].
The third experiment is implemented in Python using the POD implementation of the
pyMOR library [39], which utilizes the method of snapshots by SciPy's [26] symmetric
eigenvalue computation, also via LAPACK.

4.1. Incremental data compression. The first numerical experiment com-
pares the POD and HAPOD through compressing a trajectory of a randomly excited
system. As an underlying system, a forced one-dimensional inviscid Burgers equation
is chosen:

\partial tz(x, t) + z(x, t) \cdot \partial xz(x, t) = b(x, t), (x, t) \in (0, 1)\times (0, 1),

z(x, 0) = 0, x \in [0, 1],

z(0, t) = 0, t \in [0, 1],

with force term b \in L2([0, 1] \times [0, 1]). A spatial discretization using a conservative
finite difference upwind scheme with N = 500 equidistant nodes yields a system of
nonlinear ordinary differential equations in time [30]:

\.z(t) = A(z(t) \circ z(t)) +Bu(t),

with \circ denoting the elementwise Hadamard product. The experiment runs with con-
stant temporal resolution h = 10 - 4 resulting in 104 explicit Euler time steps. As a
forcing term, a scaled Gaussian bell curve b(x, t) = u(t) exp(- 1

20 (x - 1
2)

2) is chosen
with a time-dependent coefficient u(t) which is 99.9\% of all time steps zero, but at
random instances over the whole time interval for 0.1\% of all time steps it becomes
a constant value sampled from the uniform random distribution in the interval [0, 15].
The full order model evolution is visualized in Figure 3a.

An incremental HAPOD is performed as described in section 3.2 to extract the
dominant modes for different accuracies on a subdivision of the full time series into
one-hundred uniform length blocks, of which results are compared to a POD over the
whole time series. The local error tolerances \varepsilon are chosen according to Theorem 10
with \omega = 0.75. The computation is conducted on a Raspberry Pi3 single board

2Internally, the HAPOD implementation uses the same POD method as the plain POD.
3Rasperry Pi Model 1B: ARMv6-CPU 700MHz, 512MB RAM; see additional information online

at http://www.raspberrypi.org/products/model-b.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.raspberrypi.org/products/model-b

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3281

100 10 - 1 10 - 2 10 - 3

100

10 - 1

10 - 2

10 - 3

Prescribed Mean Proj. Error

M
ea
n
P
ro
je
ct
io
n
E
rr
or

POD
HAPOD

\varepsilon \ast

(a) Actual \ell 2-mean projection error of POD
and incremental HAPOD computation for
prescribed errors \varepsilon \ast .

100 10 - 1 10 - 2 10 - 3

10
20
30
40
50
60
70
80
90

Prescribed Mean Proj. Error

N
u
m
b
er

o
f
M
o
d
es

POD
HAPOD
Bound

Intermed.

(b) Number of resulting POD and HAPOD
modes, bound (7) for the number of HAPOD
modes at output node \rho \scrT , and the maxi-
mum number of intermediate HAPOD out-
put modes (8).

Fig. 2. Approximation error and mode counts versus prescribed error tolerance for the data
compression example with state-space dimension N = 500 (cf. section 4.1).

computer, which is a memory limited device, comparable to embedded or power-
aware environments.

In Figure 2a, the \ell 2-mean projection error (7) for the prescribed accuracies of
\varepsilon \ast \in \{ 100, 10 - 1/2, 10 - 1, . . . , 10 - 3\} is depicted. Due to shock formation in the solution,
a relatively large number of POD modes is required for accurate approximation. Thus,
in view of the low spatial resolution, the prescribed errors are chosen in a manner to
suppress effects of the discretization error in the results. The approximation error of
the POD and the incremental HAPOD decay very similarly in rate and magnitude. In
terms of the number of modes, Figure 2b shows that also the number of final HAPOD
modes increases with the same rate as the classic POD. The HAPOD requires at
most four additional modes, and the mode bound (7) overestimates the number of
HAPOD modes by at most one. At most 15 additional output modes are generated
at the intermediate HAPOD steps.

The time consumption is plotted in Figure 3b for the different \varepsilon \ast . Since the
used POD implementation fully factorizes the given input data, the required compu-
tational time for the POD is (almost) constant for different accuracies. The incre-
mental HAPOD time requirements increase with higher accuracies, yet for all tested
\varepsilon \ast the HAPOD requires less time than the POD. Figure 4a shows the computa-
tional time for the POD and incremental HAPOD for varying state-space dimension
N = \{ 250, 500, 750, 1000, 1250, 1500, 1750, 2000\} , but with fixed prescribed approxi-
mation error. For N > 750 the regular POD's memory requirements exceed the device
capabilities, while the incremental HAPOD is still computable.

Furthermore, the dependence of the number of final HAPOD modes and interme-
diate modes together with the required computational time is compared for varying
block sizes in Figure 4b. While the number of final modes stays almost constant, a
smaller block size reduces the computational time at the expense of a slightly larger
number of intermediate modes. This demonstrates the HAPOD's configurable trade-

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3282 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

1 0.8 0.6
Space

0.4 0.2 0

0

0.2

0.4

0.6

0.8

1

Time

1
0.8

0.6
0.4

0.2

(a) Visualization of the temporal evolution
of the Burgers equation example.

100 10 - 1 10 - 2 10 - 3

200

400

600

Prescribed Mean Proj. Error

C
o
m
p
u
ta
ti
on

al
T
im

e
[s
]

POD
HAPOD

(b) Computational time for POD and incre-
mental HAPOD with state-space dimension
N = 500.

Fig. 3. Solution visualization and computational time versus prescribed error for the data
compression example (cf. section 4.1).

500 1,000 1,500 2,000

102

103

State Dimension

C
om

p
u
ta
ti
o
n
al

T
im

e
[s
]

POD
HAPOD

(a) Computational time for POD and in-
cremental HAPOD with a prescribed error
\varepsilon \ast = 10 - 3/2 versus different state-space di-
mensions.

101 102 103

102

103

Block Size

T
im

e
[s
]

40

50

60

70

N
u
m
b
er

of
M
o
d
es

Runtime
Final

Intermed.

(b) Number of final HAPOD modes and the
maximum number of intermediate modes as
well as computational time for varying input
data block sizes, \varepsilon \ast = 10 - 3/2 and N = 500.

Fig. 4. Computational time and mode number versus state dimension and block size (the
number of snapshots in a leaf node) for the data compression example (cf. section 4.1).

off between memory and computation time: One can reduce the computational time
by using smaller data partitions, but must take into account higher memory consump-
tion for the intermediate modes; on the other hand, by enlarging the block partition
size, less memory is consumed during the computation, yet the computational time is
increased.

4.2. Distributed empirical cross Gramian. The second numerical experi-
ment compares the POD with the distributed HAPOD computation (cf. section 3.2)
in terms of the model reduction error resulting from the respective output modes.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3283

Given a linear state-space control system with the same number of inputs and out-
puts dim(u(t)) = dim(y(t)),

\.x(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(18)

the associated cross Gramian matrix [15] is defined as the composition of the system's
controllability and observability operators:

WX := \scrC \scrO =

\int \infty

0

eAtBC eAt dt.

The modes U resulting from a POD of the cross Gramian constitute an approximate
balancing transformation, which can be truncated based on the associated singular
values:

WX
SVD
= UDV \rightarrow U =

\bigl(
U1 U2

\bigr)
.

This truncated orthogonal projection induces a reduced order model for (18),

\.xr(t) = (U\intercal
1AU1)xr(t) + (U\intercal

1B)u(t),

yr(t) = (CU1)xr(t).
(19)

For further details, we refer the reader to [49]. Practically, the empirical cross Gramian
[21] can be utilized for the computation of the cross Gramian:

\widehat WX :=

M\sum
m=1

\int \infty

0

\Psi m(t) dt \in \BbbR N\times N ,

\Psi m
ij (t) := \langle xmi (t), yjm(t)\rangle ,

with xm(t) being the state trajectory for a perturbation of the mth component of an
impulse input, and yj(t) the output trajectory for a perturbation of the jth initial
state component. The empirical cross Gramian matrix may be assembled columnwise,

\widehat WX =

\Biggl[
M\sum

m=1

\int \infty

0

\psi m1(t) dt, . . . ,

M\sum
m=1

\int \infty

0

\psi mN (t) dt

\Biggr]
,

\psi mn
i (t) := \langle xmi (t), ynm(t)\rangle ,

(20)

by sorting the \Psi m(t) into columns. This distributed empirical cross Gramian together
with the distributed HAPOD computation then allows a fully parallel assembly of the
cross-Gramian-based approximate balancing truncated projection U1.

This experiment utilizes the procedural ``Synthetic"" benchmark model4 from [36].
For N = 10000 a single-input-single-output system is generated, and we fix the
parametrization to \theta \equiv 1

10 . The system is excited by an impulse input u(t) = \delta (t) and
evolves over a time span of T = [0, 1] with a fixed time step width of h = 1

100 . An

empirical cross Gramian \widehat WX is computed5 using emgr (empirical Gramian frame-
work) [20, 18, 19], for which a regular POD and a distributed HAPOD is used
to determine the left-singular vectors. For the latter, the empirical cross Gramian

4See http://modelreduction.org/index.php/Synthetic parametric model.
5Computation on Intel Core i7-6700 (x86-64) CPU with 8GB RAM.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://modelreduction.org/index.php/Synthetic_parametric_model

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3284 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

10 - 2 10 - 4 10 - 6 10 - 810 - 10

10 - 5

10 - 3

10 - 1

Prescribed Mean Proj. Error

M
o
d
el

R
ed
u
ct
io
n
E
rr
or

POD
HAPOD

(a) Actual model reduction output \ell 2-error
of POD and distributed HAPOD for pre-
scribed errors \varepsilon \ast .

10 - 2 10 - 4 10 - 6 10 - 810 - 1010 - 810 - 10

10 - 1

100

101

102

103

Prescribed Mean Proj. Error

C
om

p
u
ta
ti
o
n
a
l
T
im

e
[s
]

POD
HAPOD
Minimal

(b) Computational time for POD, distrib-
uted HAPOD time (sequential computa-
tion), and minimal required HAPOD time
if full parallelization is assumed.

Fig. 5. Comparison of model reduction error and computational time for the POD and distrib-
uted HAPOD computation for the distributed empirical cross Gramian example (cf. section 4.2) for
varying prescribed projection error.

\widehat WX \in \BbbR 10000\times 10000 is partitioned columnwise into 100 blocks of size 10000 \times 100,
which are assigned to the leafs of the distributed HAPOD tree, and the local error
tolerances chosen according to Theorem 10 with \omega = 0.5.

Figure 5a shows the error for the empirical cross Gramian-based state-space reduc-
tion comparing the original system's output and the reduced order model's output
utilizing either the POD or the distributed variant of the HAPOD. For a varying
prescribed projection error, the model reduction error resulting from the POD and
HAPOD, i.e., the time-domain misfit between original system output and reduced-
order system output measured in the \ell 2-norm \varepsilon y = \| y - yr\| \ell 2 , decays with a similar
rate as, and never exceeds the error resulting from, the classic POD.

Comparing the time consumption of the POD and HAPOD, the former, due to
its constant complexity, requires a fixed amount of time for each prescribed error.
The HAPOD assembly time is about three orders of magnitude smaller than for the
POD and increases slowly for more accurate approximations, as shown in Figure 5b.
Furthermore, if enough processor cores would be available for a full parallelization,
meaning that all leaf sub-PODs could be evaluated concurrently, then for \varepsilon \ast \geq 10 - 6

the time requirements can be reduced again by up to one order of magnitude compared
with the single worker setup used in the experiment. For smaller prescribed errors,
the final POD starts to require a large part of the computational effort such that a
balanced tree \scrT with depth L\scrT = 3 would be required to gain an additional speedup.

The next experiment tests the influence of the depth of the tree and the block
size at the leafs on the runtime. To this end the 104 columns of the empirical cross
Gramian are organized in partitions of 10\times 1000, 40\times 250, 100\times 100, 400\times 25, and
1000\times 10 columns. These partitions are each mapped to the leafs of balanced n-ary
trees of depth L\scrT \in \{ 2, 3, 4, 5\} . The number of children per node n is determined for
each tree by the number of blocks s and the depth L\scrT of the tree via n = \lceil s1/L\scrT \rceil .

Figure 6 depicts the speedup of the HAPOD over a classic POD for varying tree
depths and block sizes at the leafs. Specifically, Figure 6a shows the speedup for

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3285

101 102 103
101

102

103

104

105

Block Size

S
p
ee
d
u
p

L\scrT = 2
L\scrT = 3
L\scrT = 4
L\scrT = 5

(a) Sequential runtime of the HAPOD.

101 102 103
101

102

103

104

105

Block Size

S
p
ee
d
u
p

L\scrT = 2
L\scrT = 3
L\scrT = 4
L\scrT = 5

(b) Maximal speedup of the HAPOD assum-
ing full parallelization.

Fig. 6. Speedup of the HAPOD for balanced trees of different depth and block sizes (cf. sec-
tion 4.2), \varepsilon \ast = 10 - 6, in comparison to the classic POD. The runtime for the classic POD is
2.98 \cdot 103 seconds.

a sequential execution of the HAPOD, while Figure 6b shows the maximal speedup
assuming s processors by summing the maximum sub-POD runtimes for each level,
as these sub-PODs could be processed in parallel.

This test shows that (balanced) trees with smaller blocks are preferable in terms
of runtime (Figure 6a). For highly parallel computations, trees with small block sizes
and more levels (depth) perform better (Figure 6b). While the two-level tree with
smallest block size performs worst in comparison, the larger the individual leaf block,
the more similar the runtimes independent from tree depth.

4.3. Reduction of a large kinetic equation model. The third numerical ex-
periment utilizes a kinetic equation model. In such models, the solution field does not
only depend on time and space but also on velocity variables. Hence, directly solv-
ing a kinetic equation with standard numerical methods often causes a prohibitive
amount of computational cost due to the curse of dimensionality. Moment closure
models are one approach to overcome this difficulty by transferring the kinetic equa-
tion to a hyperbolic system of coupled equations which do not depend on the velocity
variable anymore (see [1, 9, 45] and references therein). This significantly reduces the
effort needed to solve the problem, especially in several space dimensions. However,
the computational cost may still be too high to solve a parameter-dependent problem
for a large set of parameters in a reasonable amount of time. In this case, a POD-
based state-space Galerkin projection similar to (19) can be used to further reduce
the model.

Our experiment is based on the checkerboard test case for the P15 moment closure
approximation of the Boltzmann equation for neutron transport from [9]. The model
equation in two dimensions is given by

\partial tp(t,x) +Ax\partial xp(t,x) +Az\partial zp(t,x) = s(t,x) + (\Sigma s(x)Q - \Sigma t(x)I)p(t,x),

where p(t,x) \in \BbbR 136 for fixed spatial coordinates x = (x, z) and time t, I is the
identity matrix, and Q00 = 1, Qij = 0 otherwise. The positive coefficients \Sigma s and
\Sigma t = \Sigma s+\Sigma a describe scattering and total cross section, respectively, and s is a particle

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3286 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

(a) \mu = (0, 0, 0) (b) \mu = (0, 0, 6) (c) \mu = (2, 6, 0) (d) \mu = (8, 8, 4)

Fig. 7. Solutions to the Checkerboard test case for the kinetic Boltzmann equation (cf. sec-
tion 4.3) for different parameters \mu = (\Sigma s,1,\Sigma a,1,\Sigma a,2). Visualized is the first component of the
solution at time T = 3.2. The color scale is logarithmic.

source. The matrices Ax, Az \in \BbbR 136\times 136 which describe the coupling between the
moments are sparse with at most four and two entries per row, respectively. See [9,
eqs. 8 and 9] for detailed definitions of the matrices.

The test case assumes a spatial domain [0, 7]\times [0, 7] that is divided into 49 axis-
parallel cubes with unit edge width and composed of two different materials (see
Figure 11a) that are characterized by their scattering and absorption cross-section \Sigma s

and \Sigma a, respectively. Initially, there are no neutrons in the domain. At time t = 0, a
neutron source s = (1, 0, . . . , 0)\intercal is turned on in the center region.

The parameter dependence for the scattering and absorption cross-sections \Sigma s,1

and \Sigma a,1 for the first material (red regions in Figure 11a) and the absorption cross-
section \Sigma a,2 for the second material (black regions in Figure 11a) is to be retained
for the reduced order model, while the scattering cross-section of the second material
is fixed to \Sigma s,2 = 0. The three parameters \Sigma s,1, \Sigma a,1, \Sigma a,2 are each chosen in the
range [0, 8]. For the POD, each parameter is uniformly sampled by the five values
\{ 0, 2, 4, 6, 8\} such that 125 solution trajectories have to be calculated.

The model is solved by a finite volume solver for systems of hyperbolic equations
implemented in dune-gdt [29, 44] using a numerical Lax--Friedrichs flux and an explicit
Euler fractional step time stepping scheme (see [31, Chap. 17.1]) to incorporate the
right-hand side into the solution. Solutions for some exemplary parameter choices are
visualized in Figure 7.

As the P15 model consists of 136 coupled equations with 136 unknowns and the
finite volume scheme uses a uniform cube grid with k2 elements, the discrete solution
vector for the finite volume discretization at a fixed time contains N = 136k2 entries.
The test case is solved up to a time of T = 3.2, and the time step length is determined
by a Courant--Friedrichs--Lewy number of 0.4, which leads to nt =

\bigl\lceil
T

7/k\cdot 0.4
\bigr\rceil
time steps

per trajectory. To obtain an accurate reduced order model, the intermediate steps
in the fractional step discretization have to be included in the snapshot set as well
such that 2nt discrete solution vectors have to be stored per trajectory. Thus, a total
of approximately 250nt snapshots has to be handled. This corresponds to roughly
250 \cdot T

7/k\cdot 0.4 \cdot 136k2 \approx 39000k3 double precision floating point numbers that have to

be stored in memory. For a grid with k = 40, these would take about 20 gigabytes of
memory, whereas for k = 200 about 2.5 terabytes of memory were needed.

The numerical experiments are performed on eleven compute nodes of a distrib-
uted memory computer cluster6 utilizing 125 processor cores. In the case of the

6Each node encloses two Intel Xeon Westmere X5650 CPUs (2\times 6 cores) with 48GB RAM.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3287

\alpha n

\alpha 2
n

\alpha 1
n

\tau 1
n,1 \cdot \cdot \cdot \tau 1

n,12

\tau 2
n,1 \cdot \cdot \cdot \tau 2

n,12

\tau s
n,1 \cdot \cdot \cdot \tau s

n,12

(a) HAPOD on compute node n. The time steps are split
into s slices (s = \lceil (2nt + 1)/l\rceil). Concurrently, each of the
12 processor cores calculates one chunk at a time, performs a
POD, and sends the resulting modes to the main MPI rank
on the processor. \tau t

n,c: tth time slice on core c.

\rho

\alpha 1 \alpha 2

\alpha 3

\alpha 11

(b) An incremental
HAPOD (cf. section 3.2)
is performed on MPI rank
0 with the modes collected
on each node. \alpha n: modes
from node n.

Fig. 8. HAPOD tree used for kinetic Boltzmann example (cf. section 4.3) on 11 compute nodes
with 12 cores each.

classical POD, each processor core calculates a solution trajectory for one parameter
of the sample parameter set, after which the resulting discrete solution vectors are
gathered on a single node where the POD is performed. For the HAPOD, the local
PODs are calculated in parallel whenever possible. On each core a chunk of l = 10
time steps is calculated at a time, a POD is performed with this chunk per core, and
the remaining modes are gathered per node and another POD is computed. Sub-
sequently, the next solution chunk is calculated and compressed by a POD on each
core. The resulting modes together with the modes from the first POD on node level
serve as input to a second POD on node level. This is repeated until all time steps
are calculated (cf. Figure 8a). The result is a set of modes on each node. Instead of
gathering all modes on the main node at once, which would exceed the main node's
memory, the modes are sequentially sent to the main node where additional PODs for
each node are performed (cf. Figure 8b). The underlying POD algorithm is provided
by pyMOR [34, 39], which is also used to compute and solve the resulting reduced order
model. We use an optimized, incremental variant of the POD algorithm in Remark 3,
which exploits the block structure of the Gramian, with the diagonal blocks being
given by diagonal matrices containing the singular values of the PODs performed at
the child nodes. For k = 60, \omega = 0.95, and \epsilon \ast = 10 - 4, this improved the overall
HAPOD computation time compared to the unoptimized algorithm by 7.4\% from 457
to 423 seconds.

In Figure 9, the computational time and number of HAPOD modes for differ-
ent values of \omega (see Theorem 10) are plotted against the prescribed \ell 2-mean error
tolerance. A 20 \times 20 grid was used (k = 20, N = 54400). With decreasing \omega , the

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3288 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

10 - 510 - 410 - 310 - 2

0

100

200

300

Prescribed Mean Proj. Error

C
o
m
p
u
ta
ti
on

al
T
im

e
[s
] \omega = 0.1

\omega = 0.25

\omega = 0.5

\omega = 0.75

\omega = 0.9

\omega = 0.95

\omega = 0.99

\omega = 0.999

Data gen.

(a) HAPOD execution wall time for different
values of \omega . For all values of \omega , the HAPOD
is much faster than the POD, which took
about 1600 seconds for each prescribed tol-
erance \varepsilon \ast . Snapshot generation (Data gen.)
took 0.8 seconds.

10 - 510 - 410 - 310 - 2

0

10

20

Prescribed Mean Proj. Error

A
d
d
it
io
n
al

M
o
d
es

\omega = 0.1

\omega = 0.25

\omega = 0.5

\omega = 0.75

\omega = 0.9

\omega = 0.95

\omega = 0.99

\omega = 0.999

(b) Number of additional HAPOD modes
(compared to POD) for different values of \omega .
The POD resulted in 2, 10, 35, and 94 modes
for a prescribed error \varepsilon \ast of 10 - 2, 10 - 3, 10 - 4,
and 10 - 5, respectively.

Fig. 9. Influence of \omega on HAPOD execution wall time and number of resulting modes for the
kinetic Boltzmann equation example (cf. section 4.3) on a grid with k2 = 400 elements (N = 54400
degrees of freedom).

computational time for the HAPOD reduces but the number of final modes required
to satisfy the error bound increases. Thus, choosing a larger value of \omega means trading
some time spent in the HAPOD for a more efficient reduced model.

Computing the classical POD takes about 1600 seconds for each tolerance. As for
the previous numerical examples, the HAPOD is notably faster than the POD for all
tested tolerances (see Figure 9a). Note that the HAPOD is about five times as fast
as the POD, even for \omega = 0.999, where at most one additional final mode is obtained.
The snapshot generation, i.e., the solution of the high-dimensional problem, takes
only a few seconds for this grid size, so the overall computational time is dominated
by the POD computation.

The maximal number of intermediate modes increases with \omega (see Figure 10a).
This may be important in terms of memory usage, especially if the intermediate modes
are gathered in one node's memory at some time during the HAPOD. A smaller
value of \omega may thus be preferable if a shortage of memory is expected. Choosing
\omega = 0.95, the number of final HAPOD modes is only slightly higher than the number
of POD modes (at most two additional modes are needed), while the computation is,
depending on the tolerance, at least one order of magnitude faster.

To get a measure for the model reduction error, the reduced model was solved
for 1250 random combinations of \Sigma s,1, \Sigma a,1, \Sigma a,2 \in [0, 8] and compared to the high-
dimensional solution. For \omega close to one, the resulting \ell 2-mean error is almost equal
for POD and HAPOD (see Figure 10b). For small values of \omega , the model reduction
error decreases slightly due to the larger number of HAPOD modes, which here result
in slightly better approximation spaces than those backed by theory. Solving the
reduced model takes about 5 \cdot 10 - 2 seconds independent of the grid size and is thus
considerably faster than solving the full model, which takes up to 500 seconds on a
200\times 200 grid.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3289

10 - 510 - 410 - 310 - 2

0

100

200

300

Prescribed Mean Proj. Error

M
a
x
.
In
te
rm

ed
.
M
o
d
es

\omega = 0.1

\omega = 0.25

\omega = 0.5

\omega = 0.75

\omega = 0.9

\omega = 0.95

\omega = 0.99

\omega = 0.999

(a) Maximal number of intermediate
HAPOD modes for different values of \omega .

10 - 510 - 410 - 310 - 2

10 - 4

10 - 3

Prescribed Mean Proj. Error

M
ea
n
M
o
d
el

R
ed
u
ct
io
n
E
rr
o
r

\omega = 0.1

\omega = 0.25

\omega = 0.5

\omega = 0.9

\omega = 0.999

POD

(b) \ell 2-mean model reduction errors for 1250
random parameters, k = 20.

Fig. 10. Number of local HAPOD modes and model reduction errors for the kinetic Boltzmann
equation example (cf. section 4.3).

The previous tests were performed on a coarse 20 \times 20 grid. Since the memory
consumption scales with k3, refining the grid quickly leads to a situation where the
snapshots do not fit in memory simultaneously such that a classical POD cannot be
performed without access to mass storage. In Figure 11b, a performance comparison
between POD and HAPOD (\omega = 0.95) for different grid sizes can be found. The
HAPOD is up to two orders of magnitude faster than the POD for the coarse grids
where the POD is still feasible. For k \geq 60, the POD fails to run due to memory
limitations, while the HAPOD does not have this problem. Note that the HAPOD
is twice as fast on the 200 \times 200 grid than the classical POD on a 40 \times 40 grid even
though the amount of data that needs to be processed increases by a factor of 125
between k = 40 and k = 200. The time used for data generation plays a negligible
role in the algorithm. Creating the snapshots for POD and HAPOD takes less than
10 seconds for k = 40 and about 500 seconds for k = 200. Using the HAPOD thus
directly translates into a much faster overall reduced basis generation.

The final incremental PODs performed to collect the outputs of the individual
compute nodes (Figure 8b) are not optimal in terms of parallelism, as all calculations
are done on the main node. We thus tested another tree topology where a binary
tree of nodes is built. Indeed this improved computational wall times of the HAPOD
again, e.g., from 423 to 239 seconds (43\% reduction) for k = 60, \omega = 0.95, \epsilon \ast = 10 - 4,
while the memory requirements and the quality of the resulting HAPOD space were
comparable.

5. Conclusion. With the HAPOD, this work introduces a general scheme for
approximate POD computation that allows one to distribute the computational work-
load among arbitrary trees of workers, making it easily adaptable to different com-
puting environments. Rigorous error and mode bounds are proven that ascertain
the reliability and performance of the method. Specialized variants for incremen-
tal and distributed HAPOD computation are discussed, and numerical experiments
underscore the applicability of the HAPOD, from small embedded devices to high
performance computer clusters.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3290 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

(a) Computational domain: red and black
regions represent common materials.

0 100 200
10 - 1

101

103

Grid Size k

C
o
m
p
u
ta
ti
on

al
T
im

e
[s
]

POD
HAPOD
Data gen.

(b) Computational wall time for POD and
HAPOD (\varepsilon \ast = 10 - 4, \omega = 0.95).

Fig. 11. Computational domain and required time for the kinetic Boltzmann equation example
(cf. section 4.3). (Figure in color online.)

Code availability. The source code used to compute the presented results is
available under open source licenses and is included in the supplementary material
for this publication.

REFERENCES

[1] G. W. Alldredge, C. D. Hauck, and A. L. Tits, High-order entropy-based closures for linear
transport in slab geometry II: A computational study of the optimization problem, SIAM
J. Sci. Comput., 34 (2012), pp. B361--B391, https://doi.org/10.1137/11084772X.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users'
Guide, 3rd ed., SIAM, Philadelphia, 1999, https://doi.org/10.1137/1.9780898719604.

[3] C. Baker, K. Gallivan, and P. V. Dooren, Low-rank incremental methods for computing
dominant singular subspaces, Linear Algebra Appl., 436 (2012), pp. 2866--2888, https:
//doi.org/10.1016/j.laa.2011.07.018.

[4] C. Beattie, J. Borggaard, S. Gugercin, and T. Iliescu, A domain decomposition approach
to POD, in Proceedings of the 45th IEEE Conference on Decision and Control, 2006,
pp. 6750--6756, https://doi.org/10.1109/CDC.2006.377642.

[5] M. Berry, D. Mezher, B. Philippe, and A. Sameh, Parallel algorithms for the singular
value decomposition, in Handbook of Parallel Computing and Statistics, Chapman and
Hall/CRC, 2005, pp. 117--164.

[6] M. Brand, Fast online SVD revisions for lightweight recommender systems, in Proceedings
of the 2003 SIAM International Conference on Data Mining, SIAM, Philadelphia, 2003,
pp. 37--46, https://doi.org/10.1137/1.9781611972733.4.

[7] M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear Algebra
and Its Applications, 415 (2006), pp. 20--30, https://doi.org/10.1016/j.laa.2005.07.021.

[8] B. Brands, J. Mergheim, and P. Steinmann, Reduced-order modelling for linear heat conduc-
tion with parametrised moving heat sources, GAMM-Mitteilungen, 39 (2016), pp. 170--188,
https://doi.org/10.1002/gamm.201610011.

[9] T. A. Brunner and J. P. Holloway, Two-dimensional time dependent Riemann solvers for
neutron transport, J. Computat. Phys., 210 (2005), pp. 386--399, https://doi.org/10.1016/
j.jcp.2005.04.011.

[10] J. Chen and Y. Saad, Lanczos vectors versus singular vectors for effective dimension reduc-
tion, IEEE Trans. Knowl. Data Eng., 21 (2009), pp. 1091--1103, https://doi.org/10.1109/
TKDE.2008.228.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/11084772X
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1016/j.laa.2011.07.018
https://doi.org/10.1016/j.laa.2011.07.018
https://doi.org/10.1109/CDC.2006.377642
https://doi.org/10.1137/1.9781611972733.4
https://doi.org/10.1016/j.laa.2005.07.021
https://doi.org/10.1002/gamm.201610011
https://doi.org/10.1016/j.jcp.2005.04.011
https://doi.org/10.1016/j.jcp.2005.04.011
https://doi.org/10.1109/TKDE.2008.228
https://doi.org/10.1109/TKDE.2008.228

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HIERARCHICAL APPROXIMATE POD A3291

[11] P. Constantine and D. Gleich, Tall and skinny QR factorizations in MapReduce architec-
tures, in MapReduce '11 Proceedings of the Second International Workshop on MapReduce
and Its Applications, ACM, New York, 2011, pp. 43--50, https://doi.org/10.1145/1996092.
1996103.

[12] P. G. Constantine, D. F. Gleich, Y. Hou, and J. Templeton, Model reduction with
MapReduce-enabled tall and skinny singular value decomposition, SIAM J. Sci. Comput.,
36 (2014), pp. S166--S199, https://doi.org/10.1137/130925219.

[13] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices II:
Computing a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), pp. 158--
183, https://doi.org/10.1137/S0097539704442696.

[14] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave Version 4.2.1
manual: A High-level Interactive Language for Numerical Computations, available online
at http://octave.org, 2017.

[15] K. Fernando and H. Nicholson, On the structure of balanced and other principal rep-
resentations of SISO systems, IEEE Trans. Automat. Contr., 28 (1983), pp. 228--231,
https://doi.org/10.1109/TAC.1983.1103195.

[16] M. Gubisch and S. Volkwein, Chapter 1: Proper orthogonal decomposition for linear-
quadratic optimal control, in Model Reduction and Approximation: Theory and Algo-
rithms, SIAM, Philadelphia, 2016, pp. 3--63, https://doi.org/10.1137/1.9781611974829.ch1.

[17] N. Halko, P. Martinsson, and J. Tropp, Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011),
pp. 217--288, https://doi.org/10.1137/090771806.

[18] C. Himpe, emgr - The empirical Gramian framework, Algorithms, 11 (2018), 91, https://doi.
org/10.3390/a11070091.

[19] C. Himpe, emgr - EMpirical GRamian framework (Version: 5.1), available online at http:
//gramian.de, 2017, https://doi.org/10.5281/zenodo.162135.

[20] C. Himpe and M. Ohlberger, A unified software framework for empirical Gramians, J. Math.,
2013 (2013), 365909, https://doi.org/10.1155/2013/365909.

[21] C. Himpe and M. Ohlberger, Cross-Gramian based combined state and parameter reduction
for large-scale control systems, Math. Probl. Eng., 2014 (2014), 843869, https://doi.org/
10.1155/2014/843869.

[22] M. P. Holmes, J. Isbell, C. Lee, and A. G. Gray, QUIC-SVD: Fast SVD using cosine
trees, in Advances in Neural Information Processing Systems 21, D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, eds., Curran Associates, 2009, pp. 673--680, http://papers.nips.
cc/paper/3473-quic-svd-fast-svd-using-cosine-trees.

[23] P. Holmes, J. Lumley, G. Berkooz, and C. Rowley, Turbulence, Coherent Structures,
Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge
University Press, Cambridge, UK, 2012, https://doi.org/10.1017/CBO9780511919701.

[24] M. A. Iwen and B. W. Ong, A distributed and incremental SVD algorithm for agglomerative
data analysis on large networks, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1699--1718,
https://doi.org/10.1137/16M1058467.

[25] H. Ji, W. Yu, and Y. Li, A Rank Revealing Randomized Singular Value Decomposition
(R3SVD) Algorithm for Low-Rank Matrix Approximations, preprint, 2016, https://arxiv.
org/abs/1605.08134, 2016.

[26] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open Source Scientific Tools for Python,
available online at http://www.scipy.org, 2017.

[27] K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach
using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), pp. 345--371,
https://doi.org/10.1023/A:1021732508059.

[28] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general
equation in fluid dynamics, SIAM J. Numer. Anal., 40 (2002), pp. 492--515, https://doi.
org/10.1137/S0036142900382612.

[29] T. Leibner, Numerical Methods for Kinetic Equations, master's thesis, Westf\"alische Wilhelms-
Universit\"at M\"unster, M\"unster, Germany, 2015, https://doi.org/10.5281/zenodo.1406910.

[30] R. J. LeVeque, Numerical Methods for Conservation Laws, Birkh\"auser, Basel, 1990, https:
//doi.org/10.1007/978-3-0348-5116-9.

[31] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts Appl.
Math. 31, Cambridge University Press, Cambridge, UK, 2002, https://doi.org/10.1017/
CBO9780511791253.

[32] S. V. Macua, P. Belanovic, and S. Zazo, Consensus-based distributed principal component
analysis in wireless sensor networks, in 2010 IEEE Eleventh International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), 2010, pp. 1--5, https:

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1145/1996092.1996103
https://doi.org/10.1145/1996092.1996103
https://doi.org/10.1137/130925219
https://doi.org/10.1137/S0097539704442696
http://octave.org
https://doi.org/10.1109/TAC.1983.1103195
https://doi.org/10.1137/1.9781611974829.ch1
https://doi.org/10.1137/090771806
https://doi.org/10.3390/a11070091
https://doi.org/10.3390/a11070091
http://gramian.de
http://gramian.de
https://doi.org/10.5281/zenodo.162135
https://doi.org/10.1155/2013/365909
https://doi.org/10.1155/2014/843869
https://doi.org/10.1155/2014/843869
http://papers.nips.cc/paper/3473-quic-svd-fast-svd-using-cosine-trees
http://papers.nips.cc/paper/3473-quic-svd-fast-svd-using-cosine-trees
https://doi.org/10.1017/CBO9780511919701
https://doi.org/10.1137/16M1058467
https://arxiv.org/abs/1605.08134
https://arxiv.org/abs/1605.08134
http://www.scipy.org
https://doi.org/10.1023/A:1021732508059
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.5281/zenodo.1406910
https://doi.org/10.1007/978-3-0348-5116-9
https://doi.org/10.1007/978-3-0348-5116-9
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1109/SPAWC.2010.5671089
https://doi.org/10.1109/SPAWC.2010.5671089

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3292 CHRISTIAN HIMPE, TOBIAS LEIBNER, AND STEPHAN RAVE

//doi.org/10.1109/SPAWC.2010.5671089.
[33] Message Passing Interface Forum, MPI: A Message-passing Interface Standard (version

3.1), http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, 2015.
[34] R. Milk, S. Rave, and F. Schindler, pyMOR -- Generic algorithms and interfaces for model

order reduction, SIAM J. Sci. Comput., 38 (2016), pp. S194--S216, https://doi.org/10.1137/
15M1026614.

[35] B. Moore, Principal component analysis in nonlinear systems: Preliminary results, in 18th
IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes,
Vol. 2, 1979, pp. 1057--1060, https://doi.org/10.1109/CDC.1979.270114.

[36] MORwiki Community, MORwiki - Model Order Reduction Wiki, http://modelreduction.org,
2018.

[37] G. Oxberry, T. Kostova-Vassilevska, W. Arrighi, and K. Chand, Limited-memory adap-
tive snapshot selection for proper orthogonal decomposition, Internat. J. Numer. Methods
Engrg., 109 (2017), pp. 198--217, https://doi.org/10.1002/nme.5283.

[38] A. Paul-Dubois-Taine and D. Amsallem, An adaptive and efficient greedy procedure for the
optimal training of parametric reduced-order models, Internat. J. Numer. Methods Engrg.,
102 (2015), pp. 1262--1292, https://doi.org/10.1002/nme.4759.

[39] pyMOR developers, pyMOR - Model Order Reduction with Python, https://pymor.org, 2013--
2017.

[40] H. Qi, T.-W. Wang, and J. D. Birdwell, Global principal component analysis for dimen-
sionality reduction in distributed data mining, in Statistical Data Mining and Knowledge
Discovery, Chapman \& Hall/CRC, Boca Raton, FL, 2004, pp. 327--342.

[41] Y. Qu, G. Ostrouchov, N. Samatova, and A. Geist, Principal component analysis for
dimension reduction in massive distributed data sets, in Proceedings to the Second SIAM
International Conference on Data Mining, SIAM, Philadelphia, 2002, pp. 1--12.

[42] V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for principal component
analysis, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1100--1124, https://doi.org/10.1137/
080736417.

[43] T. Sayadi, C. Hamman, and P. Schmid, Parallel QR algorithm for data-driven decomposi-
tions, in Center for Turbulence Research, Proceedings of the Summer Program 2014, 2014,
pp. 335--343.

[44] F. Schindler, dune-gdt, http://github.com/dune-community/dune-gdt, 2016.
[45] F. Schneider, G. Alldredge, M. Frank, and A. Klar, Higher order mixed moment approx-

imations for the Fokker--Planck equation in one space dimension, SIAM J. Appl. Math.,
74 (2014), pp. 1087--1114, https://doi.org/10.1137/130934210.

[46] L. Sirovich, Turbulence and the dynamics of coherent structures part I: Coherent structures,
Quart. Appl. Math., 45 (1987), pp. 561--571, http://www.jstor.org/stable/43637457.

[47] S. Solovyev and S. Tordeux, Compute SVD of a very large matrix in the context of geological
prospection, in 6th EAGE Saint Petersburg International Conference and Exhibition, 2014,
https://doi.org/10.3997/2214-4609.20140190.

[48] S. Solovyev and S. Tordeux, Large SVD computations for analysis of inverse problems in
geophysics, in Proceedings of the WCCM XI - ECCM V - ECFD VI, 2014, pp. 2861--2869,
http://congress.cimne.com/iacm-eccomas2014/admin/files/filePaper/p2861.pdf.

[49] D. Sorensen and A. Antoulas, The Sylvester equation and approximate balanced re-
duction, Linear Algebra Appl., 351--352 (2002), pp. 671--700, https://doi.org/10.1016/
S0024-3795(02)00283-5.

[50] Z. Wang, B. McBee, and T. Iliescu, Approximate partitioned method of snapshots for POD,
J. Comput. Appl. Math., 307 (2016), pp. 374--384, https://doi.org/10.1016/j.cam.2015.11.
023.

D
ow

nl
oa

de
d

10
/0

9/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1109/SPAWC.2010.5671089
https://doi.org/10.1109/SPAWC.2010.5671089
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1137/15M1026614
https://doi.org/10.1137/15M1026614
https://doi.org/10.1109/CDC.1979.270114
http://modelreduction.org
https://doi.org/10.1002/nme.5283
https://doi.org/10.1002/nme.4759
https://pymor.org
https://doi.org/10.1137/080736417
https://doi.org/10.1137/080736417
http://github.com/dune-community/dune-gdt
https://doi.org/10.1137/130934210
http://www.jstor.org/stable/43637457
https://doi.org/10.3997/2214-4609.20140190
http://congress.cimne.com/iacm-eccomas2014/admin/files/filePaper/p2861.pdf
https://doi.org/10.1016/S0024-3795(02)00283-5
https://doi.org/10.1016/S0024-3795(02)00283-5
https://doi.org/10.1016/j.cam.2015.11.023
https://doi.org/10.1016/j.cam.2015.11.023

	Introduction
	Proper orthogonal decomposition
	Hierarchical approximate POD (HAPOD)
	Definition of the HAPOD
	Special cases: Distributed and incremental HAPOD
	Main theorems
	Algorithmic benefits
	Proofs of main theorems

	Numerical results
	Incremental data compression
	Distributed empirical cross Gramian
	Reduction of a large kinetic equation model

	Conclusion
	References

