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Abstract

Following the direction of 1712.09990 and 1712.09994, this article continues to excavate more interesting
aspects of the 4-particle amplituhedron for a better understanding of the 4-particle integrand of planar N =
4 SYM to all loop orders, from the perspective of positive geometry. At 3-loop order, we introduce a much
more refined dissection of the amplituhedron to understand its essential structure and maximally simplify
its direct calculation, by fully utilizing its symmetry as well as the efficient Mondrian way for reorganizing
all contributing pieces. Although significantly improved, this approach immediately encounters its technical
bottleneck at 4-loop. Still, we manage to alleviate this difficulty by imitating the traditional (generalized)
unitarity cuts, which is to use the so-called positive cuts. Given a basis of dual conformally invariant (DCI)
loop integrals, we can figure out the coefficient of each DCI topology using its d log form via positivity
conditions. Explicit examples include all 2+5 non-rung-rule topologies at 4- and 5-loop respectively. These
results remarkably agree with previous knowledge, which confirms the validity of amplituhedron up to
5-loop and develops a new approach of determining the coefficient of each distinct DCI loop integral.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and the 3-loop amplituhedron revisited

The amplituhedron proposal for 4-particle all-loop integrand of planar ' =4 SYM [1,2] is a
novel reformulation which only uses positivity conditions for all physical poles to construct the
integrand. At L-loop order, for any two sets of loop variables labeled by i, j =1, ..., L we have
the mutual positivity condition
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Djj = (x; —xi)(zi —z;) + (yj — yi)(w; —wj) >0, (LD

where x; = (A; B; 14), yi = (A; B; 34), z; = (A; B; 23), w; = (A; B; 12) and D;; = (A; B; A; Bj)
are all possible physical poles in terms of momentum twistor contractions, and x;, y;, z;, w; are
trivially set to be positive. A simplest nontrivial case is the 2-loop integrand given in [2]. Though
the dominating principle is simple and symmetric up to all loops, as the loop order increases,
its calculational complexity grows explosively due to the highly nontrivial intertwining of all
L(L — 1)/2 positivity conditions.

So far the 4-particle amplituhedron has been fully understood up to 3-loop [3], from which we
have incidentally found an intriguing pattern valid at all loop orders for a special subset of dual
conformally invariant (DCI) loop integrals: the Mondrian diagrammatics [4]. Even though there
still remain unknown characteristics of the connection between this neat formalism and down-
to-earth physics, to say the very least, it offers us a much more efficient way for reorganizing the
3-loop results via a direct calculation, by extensively using the properties of ordered subspaces
which further refine the space spanned by x, y, z, w.

This work continues the exploration of 4-particle amplituhedron at higher loop orders, which
mainly includes two parts: a more refined understanding of the 3-loop case, and the motivation
and application of positive cuts at 4- and 5-loop. We will see that even the maximally refined
recipe can hardly handle the 4-loop case, hence we are forced to verify the amplituhedron pro-
posal in a somehow compromised way but even this concession is very interesting and nontrivial,
and most importantly, it is consistent with known results via the traditional approach.

Let’s first briefly summarize some notions with relevant notations introduced in [3,4] which
are frequently used in this work.

For the 3-loop amplituhedron as an example, given positive variables x1, x2, x3, an ordered
subspace X (abc) denotes the region in which x, < x; < x.. There are 3! = 6 such subspaces and
they together make up the space spanned by x1, x2, x3. We also use X (abc) as its corresponding
dlog form, namely

1 . 1
Xq(xXp — Xgq) (Xe — Xp) N XaXbaXch '

note that we have omitted the measure factor, following the convention of [3,4]. Originally, the
full d log form is defined as

X (abc) =

(1.2)

d
dlogx = 2%, (1.3)
X

where x must be positive, and it becomes singular when x — 0. For x > a, the d log form is then

dad(x —a) da dx

a x—a ax—a’

(1.4)

since the measure factor remains the same, we can safely omit such universal factors for conve-
nience when triangulating positive regions. Back to X (abc), obviously there is a completeness
relation

X (123) + X(132) + X (213) + X (231) + X (312) + X (321) =

. (1.5)
X1X2X3

The same notion applies for loop variables x, y, z, w, for example, X (123)Z(321)Y (123) W (123)
is simply a direct product of these four subspaces, and the overall d log form is the product of
their corresponding d log forms.
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Each subspace admits some Mondrian seed diagrams [3], for example, X (123)Z(321)Y (123)
W (123) admits the ladder diagram in Fig. 5, which can be characterized by a Mondrian factor
X12X23 D13, with Xij = (xj — xi)(zi —2j), Yij = (yj — yi)(wi —w)) and D;; = X;j + Yi;. This
factor is determined by the contact rules between any two loops defined in [3,4] as

horizontal contact: X;;
vertical contact: Y;; (1.6)
no contact: D;; (always taking i < j for D;;)

For a particular subspace we can derive its d log form by demanding D13, D13, D23 > 0. Then
multiplying its form by all positive denominators gives its proper numerator, and the dimension-
less ratio between this numerator and D1, D13 D3 encodes the positivity constraints, which be-
comes 1 if the positivity is trivial. For example, the d log form of X (123)Z(321)Y (123)W (123)
takes the form

1 1 1 1 N

X1X21X32 23223212 Y1Y21y32 wiwzaiw32 D12 D3 D3

then N is its proper numerator and N /(D12 D23 D13) is the dimensionless ratio. In contrast, the
dlog form of X (123)Z(321)Y (123) W(321) simply reads

1 1 1 1
X1X21X32 23223212 Y1Y21Y32 W3W23W12

since D12, D13, D3 are trivially positive, then the proper numerator is D1 D23 D13 and the di-
mensionless ratio is simply 1.

The difference between the proper numerator and all admitted Mondrian factors (or the con-
tributing part) of a particular subspace is called the spurious part. The spurious parts sum to zero
(over all ordered subspaces) at the end as their name implies.

For a DCI topology as those given in Figs. 7, 10 and 11, which can be Mondrian or non-
Mondrian, to enumerate all relevant DCI loop integrals, one must consider all its orientations
and configurations of loop numbers. For each topology by dihedral symmetry there can be 8,
4, 2, or 1 orientations, depending on the additional symmetries it may have [4], and for each
orientation there are L! configurations of loop numbers. This finishes the summary.

Now we would like to improve all these techniques to extract the essential structure of the
4-particle amplituhedron by fully utilizing the symmetry of (mutual) positivity conditions. Before
this, let’s briefly review the standard calculation for the 2-loop case as a simplest nontrivial
example below. For its single positivity condition

(1.7)

(1.8)

D1y = (x2 —x1)(z1 — 22) + (32 — y1) (w1 — w3) > 0, (1.9)

without loss of generality, we can fix the ordered subspace as X (12) in which x; < x7, so it
becomes

n (2 — y)(wg —wy) -
x21

21— 22 0, (1.10)
where x21 = x — x1 is a positive variable. Then depending on the choice of ordered subspaces of
y, w, there are 4 combinations to be considered, while the z-space is used for imposing D1, > 0.
After that, we sum the result over all permutations of loop numbers, which are just 1, 2 in the
2-loop case [2]. This has been used for the 3-loop case as well [3], while for the latter we have
to deal with three intertwining conditions Dj2, D23, D13 > 0. Though such a straightforward
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approach successfully works for the first two nontrivial cases, it inevitably gets complicated
by the tension between the simplicity of each contributing piece of a corresponding ordered
subspace, and the number and variety of such building blocks. That is to say, the more refined
each piece is, naturally, the simpler it looks, but there are more situations to be considered and
hence their sum will be more involved, as one has to carefully ensure that all spurious poles
brought by the subspace division must be wiped off after the summation. This disadvantage is
due to overlooking the symmetry of positivity conditions. In the following, instead of picking
subspace X (123) at 3-loop, we will treat all x, y, z, w variables on the same footing.

To classify all possible positive configurations in a totally symmetric way, let’s first explicitly
write

Do = X112+ Y12, Dy3=Xp3+Y23, Diz=Xi3+ V13, (L.11)

with X;; = (x; — x;)(z; — z;) and Y;; = (y; — yi)(w; — w;) as introduced before. For each
D;;, there are three possible configurations: X;; is positive while Y;; is negative and the other
way around, as well as both X;; and Y;; are positive. It goes without saying, the configuration
of which both X;; and Y;; are negative must be excluded. We can use a convenient notation to
precisely characterize each configuration, such as

{912, ()23, ()13}, (1.12)

which means X2, X»3, X13 are positive and Y12, Y23, Y13 are negative. Since the positivity con-
ditions are symmetric in combinations 12, 23, 13, the counting of all possible configurations is
given by a “generating function” which does not distinguish 12, 23, 13, namely

D+X+Y)P =D +3D*(X+Y)+3D(X*+Y?) +6DXY + (X +7?)
+3(X%Y + XY?), (1.13)

where D, X, Y stand for both X and Y are positive, only X is positive and only Y is positive
respectively. Essentially there are only 6 distinct configurations, as we also treat X and Y on
the same footing, which leads to switching x, z <> y, w. We see the coefficient 1, 3 or 6 above
precisely represents the number of combinations within each distinct configuration. For example,
for the 2nd term in the RHS above 3D2X tells that X can be chosen to be X 12, Xo3 or X3, and
also for the 4th term there are 3! = 6 combinations of 12, 23, 13 for D, X, Y. Moreover, we can
count the number of ordered subspaces for each configuration and sum them as

36+24x6+24x64+16x 6436 %2+ 16 x 6 =588, (1.14)

where each number in the sum will be explained in a detailed analysis of its corresponding con-
figuration. On the other hand, the total number of ordered subspaces of x, y, z, w is (3!)4 = 1296,
so we see that the contributing pieces take up 49/108 of all subspaces. By this more refined dis-
section, we immediately get rid of more than half of all subspaces which do not contribute, since
they violate positivity conditions. In contrast, the standard way used in [3] has implicitly taken all
non-contributing subspaces into account so it naturally looks more involved and contains more
repetitive calculation. Using notations of (1.12), we select one representative for each of the 6
distinct configurations above for further calculation, as summarized in the following list:

{12, (F P23, (D13}, {FD iz (P23, ()13}, {(FHi2, ()23, ()13},

(D12, ()23 (D3} {F) 2 ()23, ()13}, {F)2, ()23, (—H)13)-
(1.15)
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1123 1 1 2 12 1
3 1
2 2 3 3 2 |3
3

Fig. 1. Mondrian seed diagrams in subspace X (123)Z(321) ® Y (123) W(321).

Note that after we obtain the d log forms of these 6 configurations, the multiplicity in (1.13) must
be taken into account for correctly summing all relevant terms. Now we start to analyze them one
by one.

1.1. Configuration {(++)12, (++)23, (4++)13}

For the simplest configuration {(++)12, (4++)23, (++)13}, since it is totally positive for all
X;j’s and Y;;’s, there is no multiplicity as its coefficient in (1.13) is simply 1. This corresponds
to the collection of ordered subspaces (here ® is used for separating X, Z and Y, W only, it is
equivalent to the ordinary product)

X (010203) Z(030201) @ Y (117273) W(137271), (1.16)

which means the orderings of x1, x3, x3 are always opposite to those of z1, 22, z3 and the same
for y1, y2, y3 and wy, wo, w3. For x- and z-space there are 3! = 6 combinations, so there are in
total 36 ordered subspaces in this collection, which explains the counting in (1.14). Since for
each D;;, both X;; and Y;; are positive, the positivity of D;; is trivial, which leads to the proper
numerator

N = Di12Dy3D13 (1.17)
in the d log form (of any subspace in this collection)

1 1 1 1 N

Xo1 X001 Xo30y 2032000320100 Y11 Yoor Yrsre Wiz Wryrs Wr o, D12 D23 D13

(1.18)

To make use of the Mondrian diagrammatics, we pick an explicit subspace X (123)Z(321) ®
Y (123)W(321) as a representative to separate its contributing and spurious parts. As extensively
discussed in [3,4], the identity

D12D23D13 = X12X23D13 + Y12Y23D13 + X13X23Y 12 + X12X 13123
+ X12Y13Y23 +Y12Y13X03 (1.19)

results in a vanishing spurious part, denoted by S = 0. The relevant Mondrian seed diagrams are
given in Fig. 1, corresponding to the six terms in the RHS above. This separation has significantly
simplified the summation as we only need to check whether the final sum of all spurious parts
vanishes.

1.2. Configuration {(++)12, (++)23, (4+—)13}

If we flip one plus into minus in the former case, we obtain the configuration {(++)12, (+4)23,
(+-—)13}. Here Yj3 is chosen to be negative but of course, the negative quantity can be Y12, Y23,
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1123 1 3 13
3 1
2 2 2
1|32 3 1|3
1
2 2
2 |13 1 13
3
2 2

Fig. 2. Mondrian seed diagrams in subspaces X (123)Z(321) ® Y (132)W(213), X(132)Z(231) ® Y (132)W(213) and
X (213)Z(312) ® Y (132) W(213). Each row corresponds to one subspace respectively.

X12, X23 or X13 as well, which explains the multiplicity of 3D*(X +Y)in (I .13). This corre-
sponds to the collection of ordered subspaces

X (010203) Z(030201) @Y (- - 2)W(2 - ), (1.20)
where

Y(-2)WR-)=Y(132)W(213) + Y(23D)W@B12) + (Y < W)
=Y(132)W(213) + Y(231)W(312) + Y (213)W(132) + Y (312) W(231)
(1.21)

is the part satisfying Y7o, Y23 > 0 and Y13 < 0. It is clear that there are in total 6 x 4 = 24 ordered
subspaces in this collection. With the extra multiplicity 3 x 2, this explains the counting 24 x 6 in
(1.14). To calculate the proper numerator, we observe that since only Y13 is negative, the 2-loop
analysis for loop numbers 1,3 already suffices. Therefore we have

N =Di2Dy3X 3. (1.22)

Then as usual, we pick some explicit representative subspaces to separate their contributing
and spurious parts, which include X (123)Z(321), X (132)Z(231) and X (213)Z(312) among
X (010203)Z(030201) as we can get the rest three by reversing the orderings of loop numbers in
all parentheses or switching X <> Z, and similarly Y (132) W(213) among Y (- - 2)W(2 - -). The
relevant Mondrian seed diagrams of these three subspaces are given in Fig. 2.

Among these three cases, the only one with a nonzero spurious part is X (123)Z(321) ®
Y (132) W(213) with (recall that it is the difference between the proper numerator and Mondrian
factors)

S=D12D233X 13— X12X23D13 — X13X23Y12 — X13X12Y23 — X13Y12Y23 = — X2 X203 Y13,
(1.23)
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To collect all spurious parts of this configuration, we need to permutate 13,23, 12 and switch
x,z <y, w. For compactness, we can consider those associated with X (123) only [3], so the
relevant terms are

X(123)Z32HQY(-2)WR2-): — X12X23Y13, (1.24)
as well as

[Y(132)W(231) + Y(231)W(132)] ® X(123)Z2(312): —Yi13Y3X12, (125)
[Y(213)W(312) + Y(312)W(213)] ® X(123)Z(231): —Y2Y13X23. ’

These results will be summed over the forms of corresponding ordered subspaces for proving all
spurious parts finally cancel.

1.3. Configuration {(++)12, (+—)23, (+—)13}

If we flip one more plus into minus at the same side in the former case, we get {(+-+)12,

(+—)23, (+—)13}. Its multiplicity is similar to that of {(++)12, (++)23, (+—)13} as can be seen
in (1.13). This corresponds to the collection of ordered subspaces

X (010203) Z(030201) QY (- -3)W(--3), (1.26)
where

Y(--3)W(--3)=Y(123)W213) + Y32DHW(312) + (Y < W)
= Y(123)W(213) + Y(321)W(312) + Y (213)W(123) + Y (312) W(321)
(1.27)

is the part satisfying Y12 > 0 and Y>3, Y13 < 0. Similarly, there are in total 6 x 4 = 24 ordered sub-
spaces in this collection. This explains the counting 24 x 6 in (1.14) with the extra multiplicity 3 x
2. In this case, to calculate the proper numerator is nontrivial and we can again pick some explicit
representative subspaces to analyze, which similarly include X (123)Z(321), X(132)Z(231),
X (213)Z(312) and also Y (123) W (213). Note that X (213)Z(312) ® Y (123)W(213) is identi-
cal to X (123)Z(321) ® Y (123)W(213) if we switch 1 <> 2 and Y <> W, so there are only two
distinct cases under consideration.
For X (123)Z(321) ® Y (123) W(213), Dy, is trivially positive, so we need to impose

Da3 = x32223 — y32(w31 +wi2) >0, D13 = (x32+x21)(z12 +223) — (¥32 +y21) w31 > 0.
(1.28)

For Dy3 let’s define

y32(w3 +wi2) -
X32

T3 =203 — 0, (1.29)

and its d log form is simply (for later convenience we multiply it by z»3 to make a dimensionless
ratio)

23 _ Xo

— ) (1.30)
23 Da3

Next, for D13 we have
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Fig. 3. Mondrian seed diagrams in subspaces X (123)Z(321) ® Y (123) W(213) and X (132)Z(231) ® Y (123) W(213).

(y32 + y20) w31 ;o yn(wsr+wp)  (y32 4 y21)wsn
itz ——————=zi+tin+t+ -
X32 + X21 X32 Xx32 + x21
x21 ) _ yuwsi
Xx32 + x21 X32 + x21
(1.31)

’

/ Y32
=zZ212+ 23+ — <w12 + w31
X32

we can focus on 212, z55 and y32, so its d log form is simply (omitting z12, 255 and y3; in the
denominator to make a dimensionless ratio, and the form of x; + ...+ x, > a can be referred in

[3D
32 X21
212 + Zhy + == (wlz + w31—>}
|: » X32 X32 + X321
y32 X21 »21ws3j
212 + 25 +—<w12+W31 )— ] (1.32)
/ [ 5 X32 Xx32 + x21 x32 + x21
_ Diz+ynws3
D3 '

Collecting all three dimensionless ratios from the d log forms gives

D12 X33 D13 + y21wsi
D1z D3 D3 ’

the proper numerator is then N = D13 X23(D13 + y21w31). The relevant Mondrian seed diagrams
of this subspace are given in the 1st row of Fig. 3, and its spurious part is given by

(1.33)

S =D12X23(D13 + y21w31) — X12X23D13 — X13X23Y12 = Xo3(Y12Y13 + D12 y2rw31).
(1.34)
For X (132)Z(231) ® Y (123) W(213), similarly we need to impose

Do3 = x23232 — y32(w31 +wi2) > 0, D13 =x31213 — (y32 + y21)w31 > 0. (1.35)

If we focus on x»3 and x31, we find these two conditions in fact “‘decouple”. Then the dimension-
less ratios (as a product) are simply
Dy X3 X
BB (1.36)
D3 D23 D3
with the proper numerator N = D15 X»3X13. The relevant Mondrian seed diagram is given in the
2nd row of Fig. 3, and its spurious part is obviously S = 0.
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To collect all spurious parts of this configuration, we again permutate 13,23, 12 and switch
x,z <y, w for X(123)Z(321) ® Y (123) W(213) and its derivative subspaces via reversing the
orderings of loop numbers and/or switching ¥ <> W. Fixing X (123), the relevant terms are

X(123)Z(321) @ Y(123)W(213) : X23(Y12Y13 + D12 y21w3y),
L ®YB2DHWBI12) : Xo3(Yi2Y13 + Di2 yiawis),
- ®Y2I3)WA23) 1 Xo3(Y12Y13 + Di2 waiysi),
- ®YBI2)W(3E21) 0 Xo3(Y12Yi3 + Dz wizyis),
X(123)Z321) @ Y(321)W(231) : X1o(Y23Y13 + Doz y3wi3),
- ®Y(123)W(132) 1 X1o(Ya3Y13 + Doz ynwsi),
- ®Y23D)W3E21) 0 X12(Ya3Yi3 + Doz wasyis),
- ®YU32)W(123) 1 X1a(Y23 Y13 + Doz wazysi),

where . .. stands for the repetitive subspace (and similar below), as well as

(1.37)

(1.38)

[Y(123)W(321) + Y (32D W (123)] ® X (123)Z(213):  Y23(X12X13 + D12 x21231),
[Y13)W(312) + YB12)W(213)] ® ... : Y13(X12X23 + D12 z12%32),
(1.39)
[Y(321)W(123) + Y (123)W(321)] ® X (123)Z(132):  Y12(X23X13 + D23 x32231),
[Y(23D)W(132) + Y (132)W (23] ® ... © Y13(X23X12 + D23 203x21).
(1.40)

These results will be used for proving all spurious parts finally cancel.
1.4. Configuration {(++)12, (+—)23, (=) 13}

If we replace (4+—)13 by (—+)13 in the former case, we get {(++)12, (+—)23, (—+)13}. Now
its multiplicity becomes 6 as can be seen in (1.13). This corresponds to the collection of ordered
subspaces

X(-2)ZQ2-)®Y(-HW(--), (1.41)

where X (--2)Z(2--) and Y(-- )W(1 - -) are similarly defined by (1.21). There are in total
4? = 16 ordered subspaces in this collection, which explains the counting 16 x 61in (1.14). To get
the proper numerator, we again pick a representative subspace X (132)Z(213) ® Y (231) W (123)
to analyze.

Since Dy, is trivially positive, we need to impose

Doz = x23(z31 +212) — y32w32 > 0, D13 =—x31231 + y13(w32 + way) > 0. (1.42)

Focusing on x»3 and x31, we find these two conditions decouple. Then the dimensionless ratios
are
Dz X2 ﬁ (1.43)
D12 D3 D13
with the proper numerator N = D13 X23Y13. The relevant Mondrian seed diagrams are given
in Fig. 4, and its spurious part is obviously S = 0. Therefore, similar to configuration
{(++)12, (+4)23, (++)13}, in this case there is no spurious part to be collected.
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Fig. 4. Mondrian seed diagrams in subspace X (132)Z(213) ® Y (231) W (123).

1.5. Configuration {(+—)12, (+—)23, (+—)13}

For this configuration, we have three minus signs at the same side. Its multiplicity is 2, due to

switching X < Y in (1.13). This corresponds to the collection of ordered subspaces

X (010203) Z(030201) @ Y (117273) W(T11273).

(1.44)

Similar to (1.16), there are in total 36 ordered subspaces in this collection, which explains
the counting 36 x 2 in (1.14). We again pick some representative subspaces to analyze, in
fact there are only two distinct cases: X (123)Z(321) ® Y(123)W(123) and X (123)Z(32]) ®

Y(132)W(132).
For X (123)Z(321) ® Y (123) W(123), we need to impose
D12 =x21z12 — y21wz21 > 0, D23 = x32223 — y3ow3z > 0,
D13 = (x32 +x21)(z12 + 223) — (¥32 + y21) (w32 + w21) > 0.
For Di; and D»3 let’s define
Y21w21 ;L Y32w32
T >Os 293 =223 —
X21 X32
next for D3 we have

>0,

N
Z1p =212 —

Sty <(y32 + ) (w32 +w21)  y2rwag y32w32>
12 t23— - -
X32 + Xx21 X21 X32
x21 x32\ [ X32
/ /
=Zptipy——— <y32 -1 —) (— wy| — w32> >0,
x32(x32 + x21) x21 ) \ x21
this condition is only nontrivial when
X21 x32\ [ X32
a=—————\yn—y2— || — w21 —w32 ) >0,
x32(x32 + x21) x21 ) \ x21

so its d log form is (omitting z}, and z’, in the denominator as usual)

1 1 1
[%2 — »1x32/%21 <w32 w3 — w21X32/X21)

/ /
(L 3 1 ) 1 ] 21y + 253
V2 ¥ — Y21X32/%21 ) w2 — w21Xx32/x21 2], + 23 —a

[ 1 1
V32 — Y21X32/X21 w32 — w21X32/X21

1 1 1 1
() )]
y32 ¥y — y21x32/X21 ) \ w32 w3 — wa1x32/x21
D13 + ywz1 + y21w3
y32w32 D13 ’

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)
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Fig. 5. Mondrian seed diagram in subspaces X (123)Z(321) ® Y (123) W(123) and X (123)Z(321) ® Y (132) W (132).

Collecting all three dimensionless ratios gives
Xi12 X23 D13 + ysowa1 + y21w32
D1y Dy3 Di3

with the proper numerator N = X12X»3(D13 + y32w21 + y21w32). The relevant Mondrian seed

diagram is given in Fig. 5, and its spurious part is obviously S = X 12 X23(y32w21 + y21w32).
For X (123)Z(321) ® Y (132) W(132), similarly we need to impose

, (1.50)

D1y =x21z12 — (¥23 + y31) (w23 + w31) >0, Doz =x32203 — y23wo3 >0, (151)

D3 = (x32 + x21)(z12 + 223) — y31w31 > 0. .
Focusing on z12 and z33, we find D13 > 0 and D33 > 0 decouple, and D13 > O can trivialize
D13 > 0. Then the dimensionless ratios are

X120 X3 D

e (1.52)

D12 Dy3 D3
with the proper numerator N = X2 X»3D13. The relevant Mondrian seed diagram is identical to
that of X (123)Z(321) ® Y (123) W (123) given in Fig. 5, and its spurious part is obviously S = 0.

To collect all spurious parts of this configuration, we again permutate 13, 23, 12 and switch

x,z <y, w for X(123)Z(321) ® Y (123) W (123) and its derivative subspaces. Fixing X (123),
the relevant terms are

X(123)Z(321) @ Y(123)W(123) : X12X23(y32w21 + y21w32),

L RY(B2HW321) 1 X12X23(y23wi2 + yi2w23), (19
as well as
Y(123)W(321) ® X (123)Z(123):  Y12Y23(x32221 + X21232), (1.54)
YER2HWA2) Q... 1 Y12Yo3(x32z21 + x21232).

These results will be used for proving all spurious parts finally cancel.
1.6. Configuration {(+—)12, (+—)23, (—H)13}

If we replace (+—)13 by (—+)13 in the former case, we get {(+—)12, (+—)23, (—+)13}. Its
multiplicity is 3 x 2, due to choosing one of 12,23, 13 to assign (—+) and switching X <> Y in
(1.13). This corresponds to the collection of ordered subspaces

X(-2ZQ2-)QY(-2)W(--2). (1.55)
There are in total 4> = 16 ordered subspaces in this collection, which explains the counting 16 x 6
in (1.14). To get the proper numerator, we again pick a representative subspace X (132)Z(213) ®
Y (132)W(312) to analyze, for which we need to impose

D = (x23 +x31)212 — (¥23 + y31)wa1 = (x23 +x31)2), > 0,

Doz = x23(z31 + z12) — y23(w21 + wi3) > 0, (1.56)

/
D3 = —x31231 + y31wiz = y31wi3 > 0,
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Fig. 6. Mondrian seed diagram in subspace X (132)Z(213) ® Y (132) W (312).

where similarly 7/, and w/ are positive variables, so that for D3 we have

X +
(1 — El)zsl + 2+ (M - E) wa1 — )ycﬁ w3 >0, (1.57)
2

X23 y31 X23 +Xx31  X23
note that
23 31 23 23 + Y31 31
y_§y_:>y_§u§y_’ (1.58)
X237 Xx31 X237 X23+ X317 X31

which determines signs of the factors of z31 and wyy, so its d log form is (omitting z31, Z/12 and
w71 in the denominator)

1 ¥23 X31 y3+y31 y3 x23
— (1 -== )+ + | —=———— — = Jwy |—
Y31 — Y23 X31/X23 X23 Y31 x3+2x31 X3 Dy3

N (L _ ! >Z12x23 (1.59)

31 ¥31 —y23x31/x23/) D23

x23
= x23(z31 +212) — ———— y23w21 |-
31 D23 X23 + X31

Collecting all three dimensionless ratios gives

X2 Yi3 1 X23
— —— | X235 — ————— yx3wy |, (1.60)
D13 D13 D3 X23 + X31

with the proper numerator N = X12Y13(X23 — y23w21x23/(x23 + x31)). The relevant Mondrian
seed diagram is given in Fig. 6, and its spurious part is obviously S = X 12Y13(—y23wa1x23/(x23 +
x31)).

To collect all spurious parts of this configuration, we again permutate 13, 23, 12 and switch
x,z<y,w for X(132)Z(213) ® Y(132) W (312) and its derivative subspaces. Fixing X (123),
the relevant terms are

X(123)Z(312) ® Y (123) W(213) : X13Y12<—L y32w31>,
x32 + x21

.QYB21HW@BI12): X13Y12 ——— y33w|3

x32 + x21

. ®@YQ213)W(123): X13Y12< w32y31>,

(1.61)

X32 + X21

.QYBI12)W(321): Xi3Y12 w23 Y13

)C3 +x2
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X(123)Z(231) ® Y(231)W (321) : X12Y23<—Ly13w12>,
Z13 + 232
. ®Y(132)W(123): X12Y23<—Z Zfz 1w21),
13+ 232 (1.62)
Z
.QYB21HWR31): XY <—$ w13y12),
213 + 232
Z
@Y (123)W(132) : X12Y23<— 13 31y21),
213 +2
as well as
Y(123)W(312) ® X (123)Z(213): Y13X12<— X32Z31>
y32 + y21
YG2HWQRI3 Q... : Y13X12<— X32231>
w3n
YGIW(123)® ... : Y13X12<—7X3ZZ31),
w32 + Wy
w23
YQIB) W32 ®... : Y13X12<—4X32231)a
w12 + w3
Y(231)W(123) ® X (123)Z(132): Y12X23<—Lz31x21>,
Y13+ y32
YI32)W3E2D) ® . .. : Y12X23< %mxﬂ),
Y23 T Y31 (1.64)
w
Y(I2)HWR3D ®. .. : Y12X23<—713Z31x21),
w13 + w3z

w
Y32DW(I32) Q... : Y12X23<—$ z31x21).
w23 + w31
These results will be used for proving all spurious parts finally cancel.
1.7. Final sum of all spurious parts

One might notice that, even though we treat all x, y, z, w variables on the same footing and
preserve the symmetry in combinations 12,23, 13, we can still consider terms associated with
X (123) only because we would like to confirm the sum of all spurious parts in subspace X (123)
matches the result in [3].

Explicitly, we collect those nonzero spurious parts in configurations {(+-+)12, (4++)23,

(+-)13}, {(+FD2, ()23, ()13}, {2, ()23, (+13) and {(+-)12, ()23,
(—+)13} then sum them over the forms of corresponding ordered subspaces, which gives the

proper numerator

S123 = x21(—2z1y2y3waw3 — Z1y1w1 (Y2w3 + y3w2) + 22y3w3(y1w2 + y2wi)
+ z3y2wa(y1ws + yzwi)), (1.65)

and hence the final sum over permutations of loop numbers

S123 X (123) 4 (5 permutations of 1,2,3) = 0. (1.66)
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In fact, this vanishing result can be further refined as S123 X (123) + S132 X (132) = 0, which has
not been noticed in [3].

1.8. Technical bottleneck at 4-loop

Completing the 3-loop proof, it is appealing to continue this approach at 4-loop. We can have a
glance at the variety of its positive configurations via the generating function, as a generalization
of (1.13):

D+X+Y)°=D+6D3(X +Y)+15D*(X> +Y?) +30 D*XY +20 D3 (X3 + ¥?)
+60D°(X?Y + X¥?) + 15D*(X* + ¥*) + 60 D*(X’Y + XY?)
+90D>X*Y? +6D(X° +Y°) +30 D(X*Y + X
+60D(X Y+ X27?) + (X° +¥°) + 6(X°Y + XY°)
+15(X*r? + X?2r?) +20 X777, (1.67)
so there are 16 distinct configurations. Taking X® as one of the most nontrivial examples, or
equivalently, the configuration in terms of plus and minus signs
{(+9)12, (+-)23, ()34, (+)13, ()24, ()14}, (1.68)
we can pick the representative subspace X (1234)Z(4321) ® Y (1234)W (1234) to analyze, for
which we need to impose
D1y =x21z12 — y21w21 > 0, D23z =x32z23 — y32w32 >0, D34 = x43234 — yazwaz >0,
Di3 = (x32 + x21)(z12 + 223) — (32 + y21) (w32 + w21) > 0,
Doy = (x43 + x32) (223 + 234) — (y43 + y32) (w43 + w32) > 0,
Dig = (x43 + x32 +x21) (212 + 223 + 234) — (y43 + y32 + y21) (W43 + w32 + w21) > 0.

(1.69)
For D1y, D>3 and D34 let’s define
y21wa1 y32w32 Y43W43
fp=z212— >0, 2h3=223— >0, 23y =234 — >0, (1.70)
X21 X32 X43
then for D3, Dy4 and D14 we have
y32 o Y21\ [ w2 w3
(32 + 22y + 23) —xm2x21 [ = - =) —=—-—=) >0,
X3 X2 X21 X3
Y43 Yy \[ w32 w43
(x43 + x32)(Z/23 + Z%4) —xp3x3| ——-—){——-—>0,
i i X43  X32 X32 X43
32 Y21\ [ w21 w32
(43 +x30 +x20) (2 + 23 + 254) — x| = - — | — - —
X3 X21 X211 X3
Y43 Y32 w32 W43 Y43 Y21 wy| w43
—xpixnp|——— || ——— ) —xpxy|———|){——-——]>0.
X43  X32/\X32  X43 X43  X21 X21  X43
(1.71)

Note that this smallest sector of the 4-loop amplituhedron almost has the complexity of the entire
3-loop case already! As the loop order increases, the calculational complexity grows explosively.
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This advises us to stop at 4-loop even though we have a maximally refined recipe to dissect the
iceberg of amplituhedron.

1.9. Motivation of positive cuts

Before moving on to the 4-loop amplituhedron using a different approach, it is pedagogical
to manipulate the known 3-loop case first to see how it works. Naturally, we would like to im-
pose traditional cuts on the amplituhedron and check the validity of positivity conditions in this
simplified situation.

Back to the two distinct 3-loop topologies, namely the diagrams given in Figs. 5 and 6 without
loss of generality, we can tentatively cut all of their external propagators and evaluate the d log
forms of the remaining variables. Explicitly, for Fig. 5 the corresponding integrand is

1

, (1.72)
X123 y1y2y3wiwaw3Dia D3
cutting all external propagators as x1 =z3 =y = y2 = y3 = wj] = wp = w3 = 0 gives
Dy =x2(z1 —z2), D23 =2z2(x3 —x2), Di3=x321. (1.73)

The remaining variables are x», x3, 21, 22, and we need to further impose z; > z> and x3 > x3 to
ensure the positivity of D7 and D»3, while D3 is trivially positive. The residue of this integrand
is

1 1
DiaDy x2(x3 —x2)22(z1 — 22)

and the RHS above is clearly the d log form of remaining variables x», x3, 71, 22, consistent with
positivity. Then for Fig. 6 with the integrand (numerator x> below is the rung rule factor [5,6])

(1.74)

X
2 , (1.75)
X1x322 y1y2wow3 D12 D23 D13
similarly the cuts x; =x3 =20 =y; = y2 = wy = w3 =0 lead to
D1y =x321, Dy3 =x3z3, Di3=y3wi. (1.76)

The remaining variables are x», 71, z3, y3, W1, and since D1>, D3, D13 are all trivially positive,
there is no further positivity condition to be imposed. The residue of this integrand is

X2 1

= , 1.77)
Di12D3D13 x22123 y3wi
and the RHS above is trivially the d log form of x», z1, 23, ¥3, wi.

From these simple examples we see the traditional cuts work in an even easier way in the
context of amplituhedron, which inspires us to apply these techniques at higher loop orders, and
it is interesting to check the consistency between amplituhedron and the known results obtained
via cuts.

In fact, in the first case of Fig. 5 above, we can even further cut internal propagators D1, and
D»3 by setting z1 = z2 and x3 = x», which are the positive cuts that we will introduce immedi-
ately. Compared to the straightforward approach, calculation of amplituhedron with positive cuts
is much simpler, but we need the ansatz of a basis of DCI loop integrals as explained in the next
section.
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2. Positive cuts at 4-loop

For the 4-loop case besides continuing a direct derivation, we will also alleviate the calcu-
lational difficulty by imitating the traditional (generalized) unitarity cuts, which is to use the
positive cuts. In this way, we can peel off the unnecessary flesh of the amplituhedron and con-
centrate on its essential skeleton — the pole structure. Given a basis of DCI loop integrals, we can
first assign each DCI topology with an undetermined coefficient. Then after imposing as many
positive cuts as possible for various pole structures, in general we obtain a set of equations by
equating each resulting dlog form via positivity conditions, and the deformed integrand as a
sum of all non-vanishing DCI diagrams under the corresponding cuts. These equations will be
complete for determining all coefficients.

However, as a simplified demonstration, below we will focus on the non-rung-rule topologies
at 4-loop (of course, it is an interesting and challenging problem to prove the rung rule preserves
coefficients of DCI topologies while increasing the number of loops, using the amplituhedron
approach). First, we enumerate all eight distinct DCI topologies at 4-loop in Fig. 7, among which
the cross and the only non-Mondrian topology are of the non-rung-rule type, while the other
six rung-rule (and also Mondrian) topologies are all associated with the coefficient +1. It is
important to recall that, the term ‘DCI topology’ includes the numerator part as this matters
for dual conformal invariance [4], but for convenience we will not draw the extra numerators
explicitly as they can be inferred from the rung rule, as long as there is no ambiguity in the choices
of DCI numerator. Then we assign the cross and non-Mondrian topologies with coefficients s
and s; respectively, and consider a particular diagram of the latter type given in Fig. 8.

For this diagram, we can first maximally impose all 6 available external cuts, as indicated by
the red segments around its rim. Following the convention of external face variables in [3,4],
these 6 cuts result in x| = y; = y» = 74 = wgq = w3 = 0, which can simplify the six D’s as

D1y =x2(z1 — 22),
D34 = z3(x4 — x3),

D3 =x3(z1 — z3) + y3wi, @1
D34 = z2(x4 — x2) + yaw2, '

Dy3 = (x3 — x2)(22 — 23) + y3w2,
D14 = x421 + yawy.

Now for part of these D’s as internal propagators, we can either cut them or impose their pos-
itivity. Note that there is no way to further cut D14 by fixing one variable, as discussed in [2],
but since it is manifestly positive already, there is no positivity condition to be imposed. By
tentatively setting

yswp yawy .
=273, X2=Xx3+—— =1y, (2.2)
X3 22

21=22, X4=Xx3, 3=22+

we can turn off D12, D34, D13, D4, and incidentally we have

4W1
Do3 =y3w2(1 + y_) (2.3)
X322

which is also manifestly positive, therefore we are done with this further simplification. Note
the solutions of Dj» = D34 = D13 = Dyg4 = 0, namely (2.2), are also manifestly positive. In
contrast, solutions that involve relative minus signs, such as z3 = zp — y3w/x3, are clearly not,
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Sy S,

Fig. 7. All eight distinct DCI topologies at 4-loop. s1 and s, are coefficients of two non-rung-rule topologies.

Fig. 8. A particular diagram of the non-Mondrian topology at 4-loop with 6 external and 4 internal cuts. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

2 1|2 2
14 4| |1
3 3 3|4
1| 2 1 1 |2 20 |12
2 1
3 |4 3| 4 3|4
3 4
4 3

Fig. 9. All other 8 diagrams that survive the 10 cuts x =y =yp =z4 =wg =w3 =D = D3y = D13 =Dy =0.

since we also have to impose zp > y3w;/x3. Such a category of manifestly positive solutions will
be named as the positive cuts.

The further 4 internal cuts are also drawn in Fig. 8, and besides this diagram, other diagrams
of all topologies, orientations and configurations of loop numbers at 4-loop that survive these 10
cuts, are given in Fig. 9, as can be enumerated from the topologies in Fig. 7 then picked out by
identifying all 10 poles xy, y1, y2, z4, w4, w3, D12, D34, D13, Dy4. Let’s define the sum of these
9 surviving diagrams as a function of x, y, z, w (we only sum their proper numerators as usual)

S (X1, Y1, 21, W1, X2, ¥2, 22, W2, X3, ¥3, 23, W3, X4, V4, 24, W4)
= X2X3X4212223 Y3w2 D14(s2 yawy + Di4) + x2x42123 y3w2 D14(x422 y3wi + X321 yawz)
+ x2x42123 y3yawiwz (yswa D14 + x223 D14 + yaw1 D23 + x421 D23 + 51 D14 D23),
(2.4)
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where s1 and s, are coefficients to be determined. Since the cross diagram in Fig. 9 can survive
these 10 cuts like the non-Mondrian one in Fig. 7, we can fix both s; and s, in only one equation.
In contrast, if we impose all 8 external cuts available for the cross diagram, the non-Mondrian one
cannot survive these cuts and hence s will disappear in this equation, then one more equation
that involves s; is needed. This explains why to determine s; and s; in one equation, we choose a
set of external cuts in the non-Mondrian diagram which has less available external cuts than the
cross diagram, as it is a general trick to minimize the number of equations needed for determining
all coefficients.

On the other hand, from the positivity conditions of the amplituhedron we have the following
dimensionless ratios with respect to D12, D34, D13, D4:

21 xz1 X2
= — .
721—22 Dip Dy
X4 73X4 23x3
= —>

’

x4 —x3 D3y D3y

( 1 1 ) X323
%] — =7
3 73— 23 D3
( 1 1 ) 72X
|\— ==,
X2  X2—X2 Doy
where x; and z3 are defined in (2.2), and — denotes some variables are replaced by the solutions
of cuts. Since D14 and D53 are trivially positive, we get the proper numerator

(2.5)

A A N2
(X2x32223)" D14 D23

2
yaw2 y3wi yawq
= |:<x3 + > <Z2 + —>X3Z2] y3w2(1 + —)(X3zz + yqwy). (2.6)
22 X322

X3

Now the critical step is to equate the deformed S defined in (2.4) on the 10 cuts and the quantity
above, or consider their difference

4 WD 3W]
S<Oa 05 22, W1, X3 + y—9 Oa 22, W2, X3, )’3, Z2+ yx—’ 07'x37y4’ 0? 0)
22 3

2
y4awa y3wi y4wi
- [(xs + —) (zz + —))szz} y3w2<1 + —)(x3zz + yawy)
22 X3 X322

AW
= Y3y4W w2 (1 + ):m—zz) (X322 + y3w) (X322 + yaw2) [ (1 + s1) y3wa(x322 + yawy)

+ (1 +s2)x323], 2.7)

then it is clear that to make this difference vanish, we must take s; = s = —1, which agrees with
[5]. For this 4-loop case, we see the analysis and calculation are very simple, due to there is in
fact no positivity condition to be imposed — all D’s are either cut or manifestly positive. But in
general this simplicity does not always occur, as immediately at 5-loop we will encounter some
quite nontrivial and hence much more complicated examples. Still, with the aid of positive cuts,
our calculational capability is greatly enhanced so that unlike the hopeless case study of (1.71),
we manage to tackle all 5-loop examples.
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3. Positive cuts at 5-loop

For the 5-loop application of positive cuts, there is nothing new in its principle but we will see
much more complexity in various techniques, as well as its miraculous agreement with previous
knowledge. As usual, we first enumerate all 34 distinct DCI topologies at 5-loop: Fig. 10 lists
all 24 Mondrian DCI topologies labeled by T, ..., T24, as indicated by the red subscripts, and
Fig. 11 all 10 non-Mondrian ones labeled by T5s, ..., T34 similarly.

Note that there exist two distinct choices of DCI numerator for the pinwheel’s pole structure,
namely Ti5 and Ty given in Fig. 10, so we must explicitly draw their numerators while sup-
pressing those of the rest Mondrian topologies as they can be uniquely inferred from the rung
rule. And for non-Mondrian ones in Fig. 11, we draw all numerators explicitly since the rung
rule cannot account for all of them. Among all these 34 topologies, T1¢, T3¢ are generated by ap-
plying the substitution rule to the 4-loop counterparts in Fig. 7, which also preserves coefficients
[6], while the rules for T3;, T33, T34 are unknown, and the rest are generated by the rung rule. As
a simplified demonstration, we focus on non-rung-rule topologies only, so Ti¢, 130, 132, 133, T34
assigned with coefficients s1, 52, 53, S4, 55 respectively are of our concern. Let’s now determine
these coefficients one by one using the amplituhedron approach.

3.1. Determination of s1

To determine s1, let’s consider a particular diagram of DCI topology Ti¢ given in Fig. 12. As
usual, we can maximally impose all 8 available external cuts, as indicated by the red segments.
These 8 cuts result in x; = y; = y» = 22 = 73 = w3 = wq = x4 = 0, which can simplify the ten
D’s as

D1y =x3z1, D3 =y3wz, D3s=x324, Di4=ysw,

(3.1)
D3 =x321 + y3wi, Dag =x224 + ysw2,
as well as
Dis =xs5z1 + yswi — X525 — y5Ws,
D5 = z5x + yswo — X525 — ysws,
(3.2)

D35 = z5x3 + wsy3 — X525 — ysws,

Dys5 = X524 + W5y4 — X525 — Y5Ws.
Since D13, D23, D34, D14, D13, Dy are manifestly positive, we only need to either cut Djs,
D»s, D3s, Dgs or impose their positivity. However, there is no straightforward positive cut for
positivity conditions of the form x + y > a in this case — the discussion can be rather complicated.
Therefore let’s keep their positivity and see what happens next, in fact, D15, D25, D3s, D45 totally

decouple partly due to the symmetry of the 8 external cuts in Fig. 12, so that we can impose the
positivity for each D;s individually. This leads to the simple proper numerator

N = (x521 + ysw1)(z5x2 + ysw2) (z5x3 + w5y3) (X524 + w5y4) D12 D23 D34 D14 D13 D24
= (x521 + ysw1)(z5x2 + y5sw2)(25x3 + wsy3) (X524 + W5Y4) X2X32124 Y3 V4w w2 (X321
+ y3w1) (X224 + yswo). (3.3)

On the other hand, diagrams of all topologies, orientations and configurations of loop numbers
at 5-loop that survive these 8 cuts are summarized below:



—

—1

Fig. 10. Mondrian DCI topologies 77, ..

20 21

23

24

., Tpq at 5-loop. T1¢ assigned with s is a non-rung-rule topology (it is generated by the substitution rule).

0T

STYPIT (6102) £v6 g 2158y 4v21onN / ovY “f
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\ |
— } 26 27 29
/
25 28
/ \
T | =
31
30 32 33 34
s, Sy | S, Ss

Fig. 11. Non-Mondrian DCI topologies T35, . .., T34 at 5-loop. T3¢, T32, 733, T34 assigned with 57, $3, 54, 55 respectively
are non-rung-rule topologies (73 is generated by the substitution rule while 737, 733, T34 are neither generated by the
rung nor substitution rule).

PR
N

Fa /s

Fig. 12. A particular diagram of T'j¢ at 5-loop with 8 external cuts.

Is Tis T T T Tn T3 T T T3
2 4 1 8 4 8 8 8 4 2

3.4)

where all orientations generated by dihedral symmetry of these topologies contribute and each
orientation exactly contributes one configuration of loop numbers, as given by the numbers of
contributing diagrams of each 7; above. It is easy to enumerate all of them, and the sum of their
proper numerators is

S (x1, y1,21, Wi, X2, y2, 22, W2, X3, Y3, 23, W3, X4, Y4, 24, W4, X5, Y5, 25, W5)
=X2X3X5212425 Y3Y4Yswiwaws (S8 + S15-16 + S20 + S21 + S22 + S23
+ So4 + 832 + 533), (3.5)

where for compactness we have factored out a common factor, and each piece in the sum is given
by

ysws X525
Sg = D13D14D23D24 + mD12D13Dz4D34, (3.6)

X525

S15-16 = D13D24(x321 D24 + y3w1 D24 + x224 D13 + yawa D13 + 51 D13D24), 3.7
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Y4 V3 wi
S20 =—"—=D12D13D24D35 — —D12D13D24 D45 — — D13D24D25D34
Y5 V5 ws
wy 24 X3
- w—5D13D15D24D34 - gD13D15D23D24 - EDBDMDMDZS (3.8)

21 X2
— Z—D13D23D24D45 - x—D13D14D24D35,
5 5

Y3y4ws Yyswiwz X2X3Z5
So1 = D12D13Dog + D13Dy4 D34 + ———=D13D14D24
ys ws X5
X52124
+ » D13 D23 Doy, (3.9
X325Y4 y3 X2Z5W1
S = s ———D12D13D24 + s D13D13D24 + D13D24 D34
X5Z1W2 X2y3Ws Z1Y4Ws
+ D13D74 D34 + D13D14Do4 + Di3D23D24
w5 X5 15
X3Y5W2 wi
4+ = B D13D14D24 +2 D13D73 D24, (3.10)
5
2 2 2 2
Yaw2 yaw yzwi yzw
Sp3 ==—=D1pD13D35 + —=D13D15D34 + =— D12 D24 Dys + —— Dy4 D5 D34
ys ws s ws
2 2 2 2
524 X224 X323 X321
+ —=—D13D14D35 + ——D13D15D23 + —— D23 D24 D45 + —— D14 D24 D5,
X5 Z5 Z5 X5
(3.11)
X2Z4Y4 X321)3 X3z1wW1
Soq = y D12 D13D35 + y D12D34Dass + D24D25 D34
5 5
X224W) X2y4w2 Z1y3w]
+ Dy3D15D34 + D13D14D35 + Dy3D24Dys
ws xS 15
X3ysw
+ 257 D1y DyyDos 4 antz D13D15D23, (3.12)
X5 Z5
832 = 53(y3w2D13D14 D24 + y4w1 D13 D23 D24 + x324 D12 D13 D24 + X221 D13D24 D34),
(3.13)
833 = 54(D13D14D23 D24 + D12D13 D24 D34). (3.14)

The difference between the deformed S on the 8 cuts and the proper numerator from positivity
conditions is then

$(0,0,z1,wi,x2, 0,0, wz2,x3,y3, 0,0, 0, y4, 24, 0, x5, y5, 25, w5)
— (x521 + yswi)(z5x2 + ysw2)(z5x3 + w5y3) (X524 + W5y4) X2X32124 Y3 yaw w2 (X321
+ y3w1) (%224 + yaw2)

= X2X3X5Z124Z5 Y3Y4YsW1waws (X321 + y3w1) (X224 + yaw2)

x [(1451) (3321 yawa + X224 y3wi) + (2 + 51 + 283 + 54) (x3%221 24 + y3yawiw2) ],
(3.15)

to make this difference vanish we must take s; = —1 which agrees with [5], and 1 4253+ 54 = 0.
Even though s3 and s4 cannot be determined by these 8 external cuts yet, we can determine one
with the aid of further cuts then get the other via relation 1 4 253 + 54 = 0.
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Fig. 13. A particular diagram of 73, at 5-loop with 7 external and 2 internal cuts. The external cut zp = 0 is traded for
two internal cuts D1 = D3 = 0 which are free of the subtlety of composite residues.

3.2. Determination of s2, $3, 54

To figure out s3 or s4, we have to disentangle 73, and 733, otherwise combination (1 + 2s3 +
s4) will always obstruct our intention. Since 73; has one internal propagator more than 733 while
their other topological features are identical, it is feasible to impose further internal cuts to kill
T33 but let T3, survive so that s3 can be isolated then determined. If we consider a particular
diagram of T3; given in Fig. 13, a simplest choice is to impose D> = D3 =0, as one can easily
check that none of the diagrams of 733 can survive it regardless of orientations and number
configurations (we also maintain the 8 external cuts in Fig. 12).

However, since D12 = x3z1 and D3 = y3ws, setting D12 = Dy3 = 0 will force two external
propagators which do not belong to the diagram in Fig. 12 to vanish. This involves a technical
subtlety of composite residues, although there is no problem in this way after some clarification,
we prefer to avoid this subtlety for the moment. Therefore, a simplest alternative is to relax one
external cut, which is chosen to be z5.

In summary, upon the 7 external cuts x| = y; = yp = z3 = w3 = wq = x4 = 0, we can further
impose

3W2 .

21 =22, X2=x3+y—5x2, (3.16)
22

so these 7 + 2 cuts can simplify the ten D’s as

D1y =D23=0, D3s=x324, Dia=ysw1, D13 =x322+ y3wi (3.17)
which are either zero or manifestly positive, as well as

D15 = x522 + yswi — x525 — ysws,

Dy5 = X524 + W5y4 — X525 — Y5wWs,

D3s = z5x3 + wsy3 — X525 — ys5Ws,

(3.18)
24 4
Dyg = (x322 + y3w2)<— + S 1),

22 y3+x3z2/wa

w)
D)5 = (z5 — 22) <X3 + y3z — XS> + ys(wz2 — ws),
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again there is no straightforward positive cut for any of these five positivity conditions, so it is
better to keep their positivity. In this case, Dis, Das, D3s, D24, D25 do not trivially decouple, as
we can see it more clearly after the following reorganization:

22 w1

+ >1,
75+ ysws/xs  ws + x525/y5
X3 y3 w2
+ > 1, (25—22)<X3+y3——X5>+y5(w2—w5)>0,
X5+ ysws/zs  y5+Xs525/ws 22
4 4 S I I S (3.19)
75+ ysws/xs  ys+xs5z5/ws 22 y3+x3zz/w2

In the first line we focus on z», wy, in the second x3, y3 and in the third z4, y4. For the lat-
ter two lines, the discussion of imposing positivity is nontrivial, since we need to choose one
condition (or both) as the relations among several variables vary. Explicitly, the second line’s
discussion depends on how z, varies in the first line, and the third line’s discussion depends on
how x3, y3 vary in the second line. Its technical details are elaborated in appendix A, and be-
low we just present the resulting d log form after analyzing all possible situations of variables
22, W1, W2, ¥3, X3, 24, Y4:

M R
3 = ) (3.20)
HWwiw2y3x324Y4 D15D35sDysDysDys 22W1W2Y3X324 )4

where the expression of M is given below, as the result simplified by MATHEMATICA, and R is
the desired dimensionless ratio.

M = wiys(wsxsysz3(ws(ya — ¥s) + xsza)(woyaza + woysza + X3z224) +
(Wawsyaza(Wawsy3(ya — y5) + x3(wsy3ys + wa(—y3 + ya)ys — ws(y3 + ya)ys)za — (x2y3 +
x2y5)23) + (wiw2y3ys + wowsy3(wsx3ya(2y3 — ys) + wa(xsys(—y3 + ya) + x3y4¥5)22 +
(wsy3(—w2x5(2x3 + x5)y3 + x3(wsx3 + waxs)y4) + x3(wawsxs5y3 + (w2 — ws)(wsx3 +
W2x5)y4)Ys)z3 — wsx3xs((x3 + X5)¥3 — X3Y5)23)24 + x5 (W2y3 + x322) (Waws y3 + x3(ws(y3 —
¥s) + w2y5)z2)z3)zs + (Wowsyazo(woys(—xsy3 + x3y4) + x3(x3ys — x5(y3 + y4)z2) +
x3(w2y3 + (x3 —x5)22) (x322(Ws Y4 — X522) + w2 (Wsy3ya + x5(—y3 + y4)z2))z4 + x3x5(W2y3 +
x322)(way3 + (X3 — X5)22)23)z3) + x525(W3x3ys(wsys(—y3 + ya)za + wsy3(v4 — ¥s)za +
x5z4(yaz2 + y3(z4 — 25)))25 — wsx3y32224 (W5 (y4 — y5) +x5(24 — 25)) (wsys + x5(—22 + 25)) +
wa(—wdy3(va — ¥5)ys(yaza + y324) + wixsys(yaza + y3za)(—ys(z2 + 24 — 225) + ya(z2 —
25)) + X3 x5y52224(24 — 25)25 + w5 (¥3y3 (y4z2 + ¥324) (22 — 25) (24 — 25) — X3 y522(422 — yaza +
¥524)75)))-

To get the overall dimensionless ratio, we also need

21 X021 X
= —

)

z21—22 Dip Dy,

1 1 2%
x| —— — ==
X2 Xp2— X Dy3

where X is defined in (3.16), and since the positivity of D34, D14, D13 is trivial, we finally obtain

(3.21)

%222 228 D3aD14D13 | (£222)*D3gD14Di3 1 M
D12 Dy3 D3sD14D13 D12D23D34D14D13 Di5D3sDasDysDog 75

(3.22)

therefore the proper numerator is
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2
. y3ws
N =323 D34D14D13 M = <X3 + ?> X324 Yawq (X322 + yaw) M. (3.23)

On the other hand, diagrams of all topologies, orientations and configurations of loop numbers
at 5-loop that survive these 7 + 2 cuts are summarized below:

I3 Tg To Ty Tz Tw Tis Tie Tvy Tws Tio9 Too Toy Too Toz Toa T30 131 T3

4 1 4 2 4 4 4 2
(N T U T | 12 2 1 1 2 1 1 1 1

(3.24)

where the first line denotes a subset of diagrams among (3.5), and the second line the additional
surviving contribution due to relaxing z» = 0. Again, each orientation of 7; can at most contribute
one configuration of loop numbers. The sum of their proper numerators is
S (X1, Y1, 21, Wi, X2, ¥2, 22, W2, X3, ¥3, 23, W3, X4, V4, 24, W4, X5, V5, 25, W5)
= X2X3X5212425 Y3Y4Yswiwaws (S15-16 + S20 + S21 + S22 + S23 + S24 + 832)  (3.25)
+ 83+ S+ So + S11 + S13 + S14 + S17-19 + $20-24 + S30 + S31,

where each piece in the sum is given by

S15-16 = D13D24(x321 D24 + y3w1 D24 + x224 D13 + yawa D13 + 51 D13D24), (3.26)
wq w2

$20=—0—-0——D13D24D75D34 — — D13D15D24D34 — 0
ws ws

X3 X2
- ED13D14Dz4D25 -0- x—5D13D14Dz4D35, (3.27)
S5wWiw?2 X2X3275
S1 =0+ ) ” D13D24 D34 + D13D14D24 + 0, (3.28)
5
X2Z5W] X5Z]W2 X2y3W5
S2=0+0+ D13D24 D34 + D13D24 D34 + Y D13D14D24 +0
ws ws X5
X3Y5W2
+ 325 D13D14D24 + 0, (3.29)
5
yaw3 yzw? X324
$23 =0+ —=D13D15D34+0+ D24D75D34 + —=—D13D14D35 +0+0
ws ws X5
X321
+ ?D14D24D25, (3.30)
X3zZ1W1 X2Z4W2 X2Y4W2
S2a=0+0+ D24Dy5 D34 + D13D15D34 + D13D14D35 +0
ws ws X5
X w
+ 373001 D14D24 D5 + 0, (3.31)
S32 = s3(y3w2D13D14 D24 + 0 + 0 + x221 D13 D24 D34) (3.32)
for the subset among (3.5) (the zeros denote diagrams killed by D1, = Dy3 = 0), as well as
S3 = X3x321222425 yayswiws D13 D14 D34 Dss, (3.33)
Sg ZX%x3x5Z1Z§Z4 v3yawiwsDi3D15D34Dys, (3.34)
So = X3X3X521222425 Y4yswi D13 D2a D3g Dss, (3.35)

S11 = X2x321222425 Y4ys Wiwaws D13 D14 Doy, (3.36)
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22 2

S13 = X5X521222425 Y yswiwaws D13 D14D3s, (3.37)
2 2 2

S14 = X2X3X521222425 Y; yswiwaws Di3 Do4, (3.38)

S17-19 = X2X3X521222425 y4yswiw2 D13 D34

x (—=x3D15D24 + x3 y4w2 D15 + x3 ysw1 D24 + x2D15D34 + x5D13D24),

(3.39)
S$20-24 = X2X3X5212224 y32y4w1w2wlesD45
y4
X (— D13D24 + yawa D13 + — x322D13 + x224 D13 + y3w1 Doa (3.40)
Y3 .
+X3Z1D24>,
S30 =82 X2x3x521112Z425 Y345 w%szB Dy4D3a, (3.41)
S31 = — X2X3X521222425 Y3 V4yswiwows D13 D14 Doa (3.42)

for the additional surviving contribution. The difference between the deformed S on the 7 + 2
cuts and the proper numerator is then

y3wz
S<0, 0,z2, wi,x3+——,0,22,w2,x3,¥3, 0,0, 0, ys4, 24, 0,X57y5,25,w5>
2

y3wz \ 2
- X3+7 x324 yawi (x322 + yswi) M

24
= X3X52425 y3yayswiwz (x322 + y3wi) (x322 + y3w2)[(X322 + }’3w2)(5 - 1) + )’4w2]

x [(1+ s2)x3x52224 w1 + (1 + s3)ws (x324(x322 + y3w2) + y3yawiwz)],
(3.43)

to make this difference vanish we must take s = s3 = —1, so via 1 + 2s3 + 54 = 0 we also obtain
s4 = +1, all of which agree with [5]. We see that determining s, is a byproduct of determining
§3.

It is worth noticing the complexity of 5-loop topologies which have a purely internal loop:
the simple case of T1¢ with 8 symmetric external cuts is clearly rather rare, as merely relaxing
one cut results in five positivity conditions that do not trivially decouple. In general, the more
external cuts a topology has, the easier its calculation might be. We will see how dramatic this
qualitative criterion looks from the case of 734, which merely has two external cuts less than
T16 but becomes extremely complicated, even compared to the case of 73, which is already very
nontrivial.

3.3. Determination of ss

To determine s5, the coefficient of T34, turns out to be the most difficult case at 5-loop. We
again consider a particular diagram given in Fig. 14, in which all 6 available external cuts are
imposed, now let’s again impose internal cuts Dip = D3 =0 upon x; =y =20 =23 = wWq =
x4 = 0. Even though this diagram has only one external cut less than the one in Fig. 13, it is
very different from the latter. In fact, the structure and complexity of the simplified positivity
conditions are very sensitive to the choice of cuts.
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Fig. 14. A particular diagram of T34 at 5-loop with 6 external and 2 internal cuts.

Explicitly, for the two internal cuts we can impose

wy = w3 = w] + 2L = s, (3.44)

y2
so the ten D’s can be simplified as

D1y =Dy3=0, Dis=ysw; (3.45)

which are either zero or manifestly positive, as well as
Y3 ’
D=z <X3 - X2—> =Z71X3,
y2

D15 =x521 + yswi — X525 — ysws,

Dy4s = x5z24 + wsy4 — X525 — y5Ws,

24 V4
Doy = (x221 + y2w1)<m +— - 1),
1 12/x2  y2 (3.46)
3 (X3 24 4
D34 = (x221 + y2wy) y_(_i + M 1>,
»\yzix2/y2+wi  ¥3

x2
D5 = (y5 — yz)(wl +21£ - ws) + z5(x2 — x5),

x2
D35 = (ys — y3)(w1 +21£ - ws) + z5(x3 — x3),

where x4 is defined to trivialize D13 > 0, and the rest six conditions can be analyzed more clearly
after the following reorganization:

X5 X5 X2
wy+ 21— >ws+z5—, (5 —y2)<w1 +z1—— ws) +z5(x2 —x5) >0,
Y5 Y5 2

x2
(y5s — y3)<w1 +Z1£ — u)5> + z5(x3 — x5) > 0,

(3.47)
i + Y4 1, 4 My
zs+ysws/xs  ys+Xs5z5/ws 21+ wiya/x2  y2
2 Y4

S S . A
k(zi +wiy2/x2)  y3

where k = y3x2/(y2x3) < 1 due to D3 > 0. In the first line we focus on wy, z; and in the
second z4, y4, as the second line’s discussion depends on how wy, z1 vary in the first line, and its
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technical details are briefly given in appendix B. Below we just present the resulting d log form
after analyzing all possible situations of variables y», y3, y5, X5, xé, ws, 21, W1, V4, Z4:

1 W3 y2(Mi1y2D34) + y3M>
Y2y3Y5x5x3wsz1w1Yaz4 D15 Das D35 Das Daa D3s Doy vy (3.48)
_ R
 V2V3YSXSX3WSZIW YaZ4

where the expressions of M; and M, simplified by MATHEMATICA can be referred in ap-
pendix B, and R is the desired dimensionless ratio, which is explicitly given by
X3 w3 y2(M1y2D34) + y3M>
" x} Di5DasD35Dys D24 D34 D23 ¥3
_ X321W3 y2(Miy2D34) + y3M>
 D13D15D25D35D45 D24 D34 D)3 5 ’

(3.49)

To get the overall dimensionless ratio, we also need

1 1 ;
wz(— - ) =20 (3.50)

wo wy — @3 Dy

where w3 is defined in (3.44), and since the positivity of D4 is trivial, we finally obtain

y2w3 Dig . y203D1a x321W3 y2(M1y2D34) + y3M>

D1y D1y~ DiDis Di3DisDasD3sDas Das D34 Do3 ¥y '
(3.51)

therefore the proper numerator is

v2(M1y2D34) + y3 M>

s

N =3 Disx321

»2(M1y2D34) + y3M>
v

On the other hand, diagrams of all topologies, orientations and configurations of loop numbers

at 5-loop that survive these 6 4- 2 cuts are summarized below:

2
X2Z
= <w1 + %) Yaw) X321 (3.52)

T Tz Ts T I T3 Ty Ty Tihn Tz Tw Tis Tie T Tig
4 1
1 2 @+l O+l 2 3 BH+3 1 1 2 2 2 ()43
Ti9 o Tn T I3 Ty Trs Ty T31 T3 T3
4 2 4 4 4 2 (3.53)
2)+3 3H+1 3 B3)+3 @H+4 @DH+4 2 2 1 1

where the first line denotes a subset of diagrams among (3.5) which are identical to those given in
(3.25), and the second line the additional surviving contribution. Now for some 7;’s, a particular
orientation can contribute more than one configuration of loop numbers, as the numbers in paren-
theses above denote this kind of multiplicity. An explicit example is (4) + 1 for 75 corresponding
to the diagrams given in Fig. 15, of which the first four with different number configurations share
the same orientation.
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2 3 5 5 1
vls] a2 |a]2] [2]5] 2
s s (3] (2] |43
4 4 4 4 T

Fig. 15. The (4) + 1 multiplicity of T5.

The sum of their proper numerators is

S (X1, Y1, 21, W1, X2, ¥2, 22, W2, X3, Y3, 23, W3, X4, V4, 24, W4, X5, V5, Z5, W5)
= X2X3X5212425 Y3Y4Y5w1waws (S15-16 + S20 + S21 + S22 + S23 + So4 + S32 + S34)
+ 81+ 83+ S5+ S¢ + S7+ Sg + So + S10 + S11 + S13 + S14 + S17-19
+ S30-04 + 25 + S30 + Sa1. (3.54)
Recall that S15_16, S20, S21, S22, 823, Sa4, S37 are already given in (3.25), while
§34 = 55 y2w3D13D14 D24 (3.55)

is the extra term in the second line above, and each piece in the third line is given by

S1 = y2y3yayswiwaw3ws D13 D14 D15 D24 D25 D34, (3.56)
S3 = X3x52425 Y23 y4ysw w3 D13 D14 Dis D3y

+ x3X52125 3 yaw wow3ws D13 D14 D34 Dys, (3.57)
Ss = xax3%523 y3wiwaw3ws(y3ys D24 Das D34 + y2y5 D2a D3a D3s + y2y3 D24 D3s Das

+ y2y3D25 D34 Dys) + x2x3x523 y2y3yayswiwow3 D13 Dys Dos, (3.58)
S6 = 21 yaw wow3ws D14 Dog(x2 ¥3y5D15D25 D34 + x3 y3y5 D15 D34 D3s

+ x5 ¥3v3D13D35 Das) + X524 2y3V4yswiwow3 D13 D14 D15 Doy Dos, (3.59)
S7 =25 y2y3yayswiwaw3ws D13 D14 Daa(x2 D13 Das + x3 D15 D2a), (3.60)

Ss = x52124 yaw 1wz D14(x3 3 y3wows D13 D35 Dys + x2 y3ysw3 D15 Das Das

+ x3 y%y5w2w3D15D34D35), (3.61)
So = 27 yawiwaw3ws D14 (x2x3 y3y3 D24 Das D34 + x2x3 y2y3 D24 D34 D3s

+ X2x5 y2¥3 D24 D35 Das + x3x5 y3 3 D25 D34 Das)

2 2
+ x52125 y3Yayswiwaw3ws D13 D14 D4 Dys

+ X324 y2y3Y4y5wiw3 D13 D14 D1s (x325 ws Do + X524 w3 Das), (3.62)
S10 = X2%322 Y2 y3yayswiwowsws D13 D}, Do, (3.63)
S11 = X2X3X52423 Y2y3Y4yswiwr D13 Dos D3a, (3.64)

2 2.2 2. 2.2
S13 = X2X3X52425 Y2Y3Y4Yswiw; D13 D15 D34 + x2X3x52725 y5 yawiwaw3ws D13 D34 Dys,
(3.65)

S14 = X2X3x525 V3 yayswiwaws D13 Doa (2] yaws Dog + 23 yowi D13), (3.66)
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S17-19 = x2X32425 Y2y3y4yswiwaws D13 D1a(— wi D24 D35 + wix2z4 D35 + w1x3z5 D24
+ w2 D14 D35 + ws D13 D24) + x2x32125 y3y4yswiwow3ws D14 Do (— ya D13 D2s
+ x321y4D25 + x225 y4D13 + y3D14 D25 + ys D13 Doa)
+ x2x32125 Y2Y4yswiwow3ws D1a D34 D3s(x2z1 ya + y2D1a), (3.67)
Sh0_24 = (¥2x3x5212425 y2yayswiws Daa D3a D3s
+ X3X3212425 Y2)4Ysw1 w3ws D14 D34 D3s

+ X2X3X5212425 y§y4w1w3w5D13D34D45)(XQZ1 + y2wi)

+ X2x3%527 24 Y23 yawi waws D3s Das (—D13 D24 + x224 D13 + y4wa D13
+ z—j Yaw1 D13 + x3z1D24 + y3w1D24>

+ X2X3X52124 Y23 V4w  w3ws Dos Dag Das (x221 + y2w)

+ X2X3X52724 y3Y4yswiwaw3 Doa Dos (—D15D34 - E—TDBDIS

+ x324D15 + yaw3 Di5 + E—T y3wi1Dis + x5z1 D34 + y5w1D34)

2
+ X2x3x52124 y3yayswiwaw3z D13D15D25(x224 + ysw2)

+ X2X3XSZ%Z4 Y2yayswiwow3s D34 D3s <_D15 Doy + x224 D15 + y4w2 Dy

24
+ Z—y2w1D15 +X5Z1Dz4+y5w1Dz4>, (3.68)

1
S5 = —x2%325 Y2y3Y4yswiwaw3ws D13 D14 D24(24 D15 + 21 Das), (3.69)
S30 = $2 X2X3212425 Y3yayswiwows D13 D14 Dy4(x2 ysw3 + x3 yows), (3.70)
S31 = — X2X3X5212425 Y23 V4yswi wows D13 Daa D3a. (3.71)

The difference between the deformed S on the 6 + 2 cuts and the proper numerator is then

X271
S10,0,z1, wi,x2,¥y2, 0, w + —,x3,y3, 0, wy
2

X221
+ 5 0, y4,24, 0, x5, ys, 25, ws)
2

71\ v2(M1y2D34) + y3 M
— | w1+ — ) yawix321 3
y2 Y5

2
2 2 2 X221
=X2X3X5212425 Y3V YsW W5 (X3y2 — X23) <w1 + y—
2

X221
X [X2Z4 + (ya — yz)(wl + 7)}@5 -1, (3.72)

to make this difference vanish we must take s5 = +1, which agrees with [6].
This completes the determination of sy, s2, 53, 54, s5 for all five non-rung-rule topologies at
5-loop.
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4. Beyond 5-loop order?

It is clear that for the 4- and 5-loop 4-particle amplituhedra we are no longer using the Mon-
drian diagrammatics, instead we use the purely amplituhedronic way to obtain the dlog forms
from positivity conditions simplified by external and internal cuts, which are similar to the tra-
ditional unitarity cuts. As discussed in the end of [4], it is appealing to generalize the Mondrian
diagrammatics to include the non-Mondrian complexity. In [7] there is some kind of evidence
about how the Mondrian DCI topologies can be related to non-Mondrian ones, and it would
be interesting to prove those rules which determine the coefficients of non-rung-rule topologies
from the amplituhedronic perspective. All the effort on discovering new rules and patterns finally
aims to help us go beyond the current understanding of the 5-loop case, such as to explain the co-
efficient 42 of a special 6-loop DCI topology in [8] since we believe a simple integer coefficient
must have a simple origin. The brute-force calculation merely using positivity conditions might
be significantly simplified by clever new observations, as we have witnessed in the Mondrian
diagrammatics at 3-loop and the positive cuts at 4- and 5-loop. After extracting sufficient deeper
features of positivity conditions, it is even possible to conceive a purely combinatoric description
of the amplituhedron.

Still, the standard geometric way has a lot to be excavated beyond the current primitive level.
When we use positive cuts to determine the coefficient of a particular DCI topology, this looks
like “projecting” the entire amplituhedron onto a subspace that contains a subset of all bound-
aries, we then would like to get more intuition of its geometric interpretation. And why the DCI
topologies must be planar, as a basis in what sense they are complete, how this completeness is
related to the triangulation of amplituhedron, as well as what role dual conformal invariance plays
in the geometric picture, are very vague so far while we believe clarification of these questions
will be a significant progress. When searching for various novel formalisms and connections to
mathematics to better aid the practical calculation of physical integrands at sufficiently higher
loop orders, we will also pay attention to some aspects discussed in [9-11] which may provide
unexpected inspirations. For example, it is interesting to explore how the off-shell finiteness
finds its basis in the amplituhedronic setting. And starting at 8-loop [12,13], novelties such as
fractional coefficients and non-d log contributions also call for amplituhedronic explanations, if
the amplituhedron manages to pass all the lower loop tests.

Besides the outlook, it is also helpful to give some remarks on the technical aspects. To sim-
plify the determination of coefficients as much as possible, we must maximally utilize the crucial
difference in pole structure of DCI topologies, namely, we will impose sufficient cuts to isolate
the particular diagram under consideration while minimizing its accompanying surviving dia-
grams of different topologies. Note that in our convention, diagrams with the same denominator
but different numerators such that they cannot be related to each other by dihedral symmetry, are
considered as different DCI topologies, such as 775 and Tj¢ in Fig. 10. If finally it is inevitable
to deal with these accompanying diagrams, we can still use cuts to separate them, so that their
coefficients must satisfy independent sub-equalities in the overall equality required by positivity
conditions.

Also, as we have seen from various examples, the calculation of 4-particle loop integrands
from positivity conditions with or without cuts, is magically effective: as long as the final answer
is free of spurious poles, it is correct and physical. Besides the possible geometric interpreta-
tion using DCI topologies, this mystery should have a more self-contained mathematical reason,
which can in return refine the laborious and foamy cancellation of spurious poles. And the pro-
cess of combining the so-called dlog forms, in fact, indicates properties more general than
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logarithmic singularities or differential forms, as it only depends on the universal fact that the
integrand is a rational function in which physical propagators appear as simple poles. The con-
jectured positivity conditions further serve as some kind of “residue theorems” to provide an
effective prescription for constructing the integrand. Such observations may imply that the d log
forms function beyond their definitions, which may hopefully unleash the possibility to account
for the non-d log novelty from the amplituhedronic perspective at 8-loop and higher.

Finally, it has been appealing to extend the techniques for 4-particle amplituhedron to han-
dle more external particles and various configurations of helicities. Attempts include the recent
development using sign flips [14,15], and the discovery of the key role of 4-particle loop in-
tegrand from which the integrand of more particles can be extracted [16]. It is worth noticing
that, positivity of the pure loop sector and that of the supersymmetric sector encoding helicities
use quite different mathematical prescriptions. This difference somehow obstructs an effective
unified framework, while from the perspective of positivity, the 4-particle amplituhedron with
pure loop sector only (and the 4-particle sign-flip constraints are trivial) is the simplest object, in
particular, it is even simpler than the pure tree amplituhedron.

Appendix A. Details of the d log form for determining s, s3, s4

Below we derive the d log form for determining s», 53, 54, with respect to positivity conditions

22 wi
+ > 1,
75+ ysws/xs  ws+ X525/y5
X3 y3 w2
+ > 1, (25—22)<X3+y3——xs>+y5(w2—w5)>0,
X5+ ysws/zs  ys + Xsz5/ws 2
z z
4 + 4 1, B (A1)
25+ ysws/xs Y5+ Xs525/ws 22 y3+x3z2/w2
For later convenience, we define quantities
ws ysws w2 ws — w2
n3=x3+y3— —X5———, I5=X3+y3— —X5—y5 ——,
5 25 22 5 —22
515 22 ws — Wy
p3=ys+——, ps=— (XS + s 7) D35 =Y5 ) (A.2)
ws w2 5 —22 22— 25
wy X525
npg=x3——|y5+—— =3
4} ws
for the discussion involving y3, x3, as well as
Y5Wws X525 X322 by — by
a=z5+"—, bhy=ys+—, ay=2z2, ba=y3+—, H=—-—"-—",
X5 ws wy bajas — br/ay

by by
ny=24— +ys—by, na=z4— + y4 — by,
a as
1 1 1 1 1 1 1 1 1 n +b
74 Z4—2Z4/) N4 74— 2y 4—ay)ny Z4—azy4 Z4y4 na

1 ng—+by 1 1 1 1 1
F:—i, G=|—— ” — + R
24Y4 N4 24 Z4—Z4/) N2 4 — Z4 Z4 — a4 Z4 — a4 y4

(A.3)
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for the discussion involving z4, y2. We will also use identities

ws  ws—wy 22 <w5 W2>

Z5 5—22 22 =25\ %5 22

(A.4)
2225 X5 w5 w2 Y5Ws
p3—ps= (———)(zs+——12>.

Waws 22 — 25 \ 45 22 X5

Now let’s analyze all possible situations of variables z>, w1, w2, y3, X3, 24, Y4, by first separating
situations zp < z5, 25 < 22 < z5 + ysws/ws and z2 > z5 + ysw5/ws.

Al 72 <z;5

For 7, < zs, the 1st line of (A.1) in terms of w is nontrivial. The 2nd condition in its 2nd line
becomes

w2 w5 — w2
x3+y3—>x5+ys ——, (A.5)
22 5 —22
and for comparison we can rewrite the 1st condition in the same line as
ws w5
XB+y3—>x5+ys—, (A.6)
z5 z5
using the 1st identity in (A.4), for wy < wsz2/z5 we find
Z w w5 — w
w2<w5—2=>—5<¥. (A.7)

25 25 5 —22

For these two conditions in the 2nd line of (A.1), in terms of n3 and n5 defined in (A.2), we have
a clear picture in the y3-x3 plane: the x3-intercept of n3 = 0 is less than that of n5 = 0, while its
slope is greater than that of n5 = 0, therefore ns5 > 0 already implies n3 > 0 in the 1st quadrant.

For the two conditions in the 3rd line of (A.1), in terms of ny and n4 defined in (A.3), since
72 <25 <25 + ysws/ws and

22 z5 <5
y3tx3— >y3+x3— >ys+x5—, (A.8)
wy ws ws
in the z4-y4 plane the y4-intercept of nq = 0 is greater than that of ny = 0 while its z4-intercept
is less than that of ny = 0, so they intercept at z4 = zj in the st quadrant. Its d log form is given
by A, where zj and A are defined in (A.3), and the corresponding geometric picture is given in
Fig. 16.
Now for wy > wsz2/75, similarly we have
22 w5 W5 — Wy

Wy >Ws—=— — > ——, (A.9)
25 5 5 —22

therefore n3 > 0 already implies n5 > 0. Since

<5

Z
Y3+ X3 < 3+ x3 (A.10)
w)

ws

we need no4 defined in (A.2) for comparing y3 4+ x3z2/w7 and ys + x5z5/ws. If y3 +x320/w2 <
¥5 + x525/ws, na > 0 already implies n4 > 0 in the z4-y4 plane, A will be replaced by B defined
in (A.3), which involves n, only. This bifurcation divides the region of n3 > 0 in the y3-x3 plane
as shown in Fig. 17, in which p3 defined in (A.2) is the y3-intercept of both n3 = 0 and ny4 = 0.
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Va4

Z
z; a, 4
Fig. 16. Geometric picture of the d log form A.
X3
N24
A
B
N3
Y3

Ps

Fig. 17. Bifurcation of y3 + x322/w7 S y5 4+ x525/ws in the y3-x3 plane.

In summary, the dlog form for z; < zs is given by (omitting the part of zp, w; for the mo-
ment)

1 1 1 x3+ yswa/z2
Si=| —— A
wy Wy —ws22/25 ) y3x3 ns
1 1 1 1 1 1
44— | (———)((—=-—)B+—4 (A.11)
w2 —wsz2/25 [\y3 y3—p3 n3y  no4 n24

11 ]
+———Al
y3 —p3 X3
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X3

Ps Ps Y3

Fig. 18. The only contributing part of z5 < 23 < z5 + ysws/ws, for which wy > w522 /z5.

A2. 725 <z <z5+ ysws/ws

For z5 < 20 < z5 + ysws/ws, the 1st line of (A.1) remains nontrivial. Its 2nd line becomes

ws ws wr w2 — Ws
XB+y3—>x5+ys—, X3+y3— <x5+y5s —, (A.12)
Z5 Z5 2 2 —2z5

using both identities in (A.4) we find (below ps defined in (A.2) is the y3-intercept of ns = 0)
wr S wsl s W3 5 2T Vs
Z5 Z5 2—25 (A.13)
= p3 2 Pps.
If wy < wsz2/25, both the x3- and ysz-intercept of n3 = 0 are greater than that of ns = 0, so
regions of n3 > 0 and n5 < 0 have no overlap. Therefore only the w, > wsz>/z5 part contributes,
for which both the x3- and y3-intercept of n3 = 0 are less than that of ns = 0 as shown in Fig. 18.
In this case, we again need ny4 to divide the region, as the slope of ny4 = 0 is greater than that of
n3 =0 (n24 = 0 is parallel to ns = 0).
In summary, the d log form for z5 < z» < z5 + ysws/ws is given by

1 1 1 1 1 1 1
S5=— (== — )B4+ (—-—)4
wy —ws22/25 L\ Y3 Y3 — P3 n3 N4 ny  ns
1 1 1 1
+ - ———)al (A.14)
y3 — Pp3 Y3 — D5 X3 N5

A.3. 73 > 75+ ysws/ws

For z5 > z5 + ysws/ws, the 1st line of (A.1) now becomes trivial. Its 2nd line remains the
same as that for z5 < zo < z5 + ysws/ws, but there is a slight difference in the 2nd identity in
(A.4)as
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X3

P3s  P3 Ps Y3

Fig. 19. n3 = 0 and n5 = 0 intercept when wy < wsz5/z5.

X3

P3s Y3

Fig. 20. n3 =0 and n5 = 0 intercept when wy) > wsz2/25.

22 ws w2 — w5
NSWs—— — 2 ——
25 25 2 —4125

= p3 S ps,

(A.15)

so that n3 = 0 and ns = 0 always intercept, and its geometric pictures are given in Figs. 19 and

20 with respect to wa < wsz2/25. For wy < wsza/z5 we again have

22 25 l5
Y3+ x3— >y3+x3— > y5+x5—,
wy ws ws

(A.16)

and since 77 > z5 + ysws/ws, ng > 0 already implies ny > 0 in the z4-y4 plane. Its d log form is
given by F' defined in (A.3), which involves n4 only. For w; > wsz2/z5, since nyq = 0 intercepts
n3 =0 at p3 with p3 > ps and nyq = 0 is parallel to n5 =0, n5 < 0 already implies ny4 < O,

which means
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<5

Z
y3 +X3—2 <y5+xs (A.17)
wy

ws

and hence F will be replaced by G defined in (A.3), as it can be obtained from A by switching
na,az, by <> ny, a4, by.
In summary, the d log form for z» > z5 + ysws/ws is given by

5= (o mmu ) G ) )
3=(—— - — = —
wy Wy — ws522/75 y3—p3s  y3—p3)\n3 ns
G ) )]
+ - ———)|F
y3—p3 y3—ps X3 ns

1 1 1 1 1
wy —Ws22/25\ Y3 Y3 —p3s/)\n3 ns

Collecting S, S2, S3, the overall d log form is then

1 1 1 1
— - S1+ — $
2 275 2—25 22— 25— Y5W5/X5

1

X
X522/y5 + w1 — X525/y5 — W5
1 1 M

— §3= ,
72 — 25 — Y5ws/X5 wi 23w w2y3x324Y4 D15 D35 Dos Das Dog

(A.19)

where M is the numerator simplified by MATHEMATICA as given in the expression below
(3.20).

Appendix B. Details of the d log form for determining ss

Below we present the d log form for determining s5 with a brief description of its derivation,
with respect to positivity conditions

X5 X5 X2
wi+z21—>ws+z5—, (5 —y2)|wi+z21— —ws ) +2z5(x2 —x5) >0,
Y5 Y5 2

X2
(ys — y3)<w1 +23 5 w5> +z5(x3 — x5) > 0,
2

24 n y4 -1 24 Y4
75+ ysws/xs  ys5 +x525/ws T zitwin/x2 o o»
<4 Y4

I S L S (B.1)
k(zi +wiy2/x2)  y3

> 1,

where k = y3x2/(y2x3) < 1. Recall that we focus on wy, z; in the first line and z4, y4 in the
second, so that the discussions can be done within two planes: the z;-w and the y4-z4 plane. For
a clear picture, we can rewrite the 2nd and 3rd conditions in the 1st line as

X5 — X2

X2
w1+11y—>w5+15 for y, < ys
2

S (B.2)

<ws+25 for y2 > ys,

y2—=ys
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X5 — X3

x2
w) + 21— > ws + 25 for y3 < ys

y2 Y5 =3

o (B.3)

< ws + 25 for y3 > ys.

We also have noticed that since k < 1, if y3 < y» the 2nd condition in the 2nd line already implies
the 3rd, which explains the factor D34 in the numerator of (3.48). There is another tricky issue
depending on the relation between y, and y3 as well, namely before we impose wy, = w3 for
setting Dy3 = 0, we have

Do3 = (y3 — y2) (w2 — w3), (B.4)

so there is a bifurcation of y3 < y, in the relevant dimensionless ratio

2 w3 y3 w2 w3
R+ Ry - — (y2R1 + y3R2) (B.5)
Y2 — y3 w3 — w2 Y3 — Y2 w2 — w3 Dy3

after imposing wy = w3 = w3, where R} and R, are proportional to M and M; in (3.48) re-
spectively which are the numerators simplified by MATHEMATICA as given in the expressions
below.

As indicated above, it is better to separately consider situations y3 < y» < y5, y3 < y5 < y2,
V5 <Yy3 <y, Y2 <¥3<Yys5, Y2 <ys5 <y3and ys < y» < y3 first, then depending on each case
we may need to discuss various situations involving xs, x5, ws as well. For example, to compare
xs5/ys and x2/y> involves x5. And in the identity which will be frequently used in the relevant
discussions

X5 — X X5 —X — —
s—X) X5 —X3 y2— 3 < s yz_xzy_5>7 (B.6)

ys—y2  ys—y3  (y5s—y2)(ys—¥3) Sya—m 2

both x5 and xg are involved. Finally in the 2nd line of (B.1), to compare ys + x5z5/ws, y» and
y3 may also involve ws given a fixed order of y», y3, vs.

My =w}y3ya(ys — y5)y2(ws(y2 — ya) — x524) + wiyays(=2w2y2(v2 — y4)ya(ys — ys)ys +
x524(X3y2y4525 — X2(y3 — ¥5)(3Yaysz1 + y2ys24 — Y325 + Y2yazs) + xsyaya(ys(zi — 2zs5) +
y3(=z1 + 25))) + wsya(x3y2(—=y2 + ya)yszs — x2(y3 — ¥5)(3yaysz1 + y2(ys(=3z1 + z4) +
y425)) + x5y2(ys(yaz1 — 2ys5z4 — 2y4zs5) + y3(—yaz1 + 2ysz4 + yazs) + y2(y3z1 — ysz1 —
325 + 2¥525)))) — x2x521(w3y3y3(y2 — ¥5)(—ya + y5)(yaz1 + y224) + x2x5ysz124(vaz1 +
y2(24 — 25)) (02 (y3 — ¥5)21 + (—x3 + x5)y225) + w32 (x221 (45 (Vays + y3(—2y4 + ys5))z1 +
Y3V3(ya = ¥5)z4 + y2(—y3 (yaz1 — yaza + y5z4) + y3(y321 — 2yaysz4 + 2y324))) — y2(yaz1 +
v224)(x3y2(y4 — ¥5)z5 — x5y3(ysza + yazs — 2yszs + ya(—z4 + 25)))) + ws(—x3(y3 —
¥5)ysz3(—y3z1 + y2(ya(z1 — z4) + ¥524)) + x5y3 (—x3y2 + X5¥3) (vaz1 + y224) (24 — 25)25 +
x2221(03y5(—y321 + y2(0a21 — vaza + ¥s24))zs + xs(¥3v3za(za — 25) + yayszi(ysza +
vazs + y3(=2z4 + z5)) + y2(y3(¥az1 — 2y524)(z4 — 2z5) + y5(ys5z4(z4 — 225) + ya(—z1 +
2)25)) + w1 (W3y3ya(xsy2y3(v2 — ¥5)(va — ys)z1 — x2(y3 — y5)yi(vazi + ya(—z1 +
24))) + x2x5Y524(—x3 (v3 — ¥5)z1 (az1 (ysz1 + ¥225) + 2 (52124 + y2(—21 + 24)25)) — (13 —
x5)x5y325(yaz1(—221 + 25) + ¥2(zazs + z1(—24 + 25))) + x2y2(x325(Vaz1 (ys5z1 + Y225) +
y2(ysz124 + ya(—z1 + 24)25)) + x5(yaz1(ys21(3z1 — 225) — y223) + y2(2(21 — z4)23 +
2y521(z124 — 2125 — 2425)) + y321(¥az1(=3z1 + z5) + y2(=22124 + 22125 + 2425))))) —
ws (x2y3 (—x3y2 +x53)ya21 (24 — 25)25 + 34 (3 — ¥5)y521 (V4523 + y3z4zs + y221 (s (—21 +
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24) +425)) — X3 y2y5(x3425 (Y4 Y523+ ¥32425 + ¥221 (v5(—21 +24) + ¥425)) — x5 (¥ 2425 (¥3 (21 —
24) + ys(—21 +24) + y425) + y427 (y3(3yaz1 — 2y524 — yazs) + ¥s(—3y4z1 + 2524 + 2y425)) +
y221(2y224(21 + 24) + ¥323 + yays(3z] + 3zazs — 22124 + 25)) + y3(—2ys24(z1 + 24) +
ya(=323 + 22124 + 2125 — 22425))))) + x2x5y3 (x3y525(vaz1(¥sz4 + va(—2z1 + 25)) +
y2(y5z4(z1 + 24) + 4223 + 2425 — 21 (24 + 25)))) + x5 (3 V32124 (24 — 25) + Yays21 (Rysza(z) —
25) + y4(2z1 — 25)z5 + y3(—42124 + 22125 + 2425)) + ¥2(v3(2ya23 (24 — 25) + Ys24(—22124 +
22125 + 2425)) + y5(y5z4(21(za — 225) — 22425) + yazs(—227 — zazs + 21(z4 + 25)))))) —
wiya(—x3ya(y3 — y5)ysQRyayszi + yizazs + yzi(=2yszi 4+ 2ysza 4+ yazs) +
X5Y3y421(x3y2(—ya+¥5)25 +Xsy3(ys2a -+ yazs — 2525+ y2(—2a+25))) +x22(x3y4y3 (vaz1 +
ya(=z1 + 24))zs + xs(y3y3(ya — ¥s)z12a + yayszi(y3(—4yazi + 2ysz1 + ysza + yazs) —
ys(—2y4z1 + ysz4 +2y425)) + y2(y3(2y3z7 + ¥224(221 + 24) + v4ys(zazs — 21224 + 25))) —
Y3 (y524(z1 +24) + ya(22] + 22425 — 21 (24 +225))))) + wiy2 (w33 (v2 — ya) ya(y3 — y5)y3 —
w2y ya(ys(e3ya(—y2 + ya)yszs — x2(y3 — ys)(@yayszi + ya(—4yszi + 2ysz4 + y4z5))) +
xsy2(v2(=y3(z1 — 225) + y3(yaz1 — y525)) + ys(ys(=ysza + ya(zi — 225)) + y3(ys(z1 +
24) + y4(=221 + 25))))) + X5ys524((x3 — x5)xX5y3ya(21 — 25)25 — X5 (y3 — ¥5)(vaz1 Bysz1 +
2y225) + ¥2(2y52124 + ¥2(—221 + 24)25)) + X2y2(x325(2yaysz1 + Y2524 — Y325 + Y2y4z5) +
xs5(ya(ysz13z1 — 4z5) — y222) + Y222 + ys(ziza — 2125 — 22425)) + y3(vaz1(—3z1 +
225) + y2(—z124 + 2125 + 2425))))) — s (X3 ya(y3 — ¥5)ys(3yayszi + y3zazs + yaz1 (—3yszi +
2524 + 2y425)) + X553 va(x3y525(ysza + y2(z1 — 25) + ya(—z1 + 25)) + x5s(02(y321(24 —
z5) + yszs5(—z21 + 25)) + ys(¥sza(z1 — 2z5) + ya(z1 — 25)25 + ¥3(z425 + 21(—224 + 25))))) —
x22Y5(x3Y425(2y4y521 + 2 (y5(—221 + 24) + y425)) — x5(¥3 (v3 — ¥5)z425 + y4z1 (y3(3yaz1 —
4ysza—2yazs)+ ys(—3yaz1 +4ysza+4y4zs)) + 2 (y3za(z1 +224) + y323 + yays (321 +3z425 —
21(z4 +425)) — ¥3(¥sz4(z1 + 224) + ¥4 (327 + 22425 — 21 (24 + 225))))));

My = wiys(y2 — ya)ya(y2 — y5)y2(ws(—y3 + y4) + x524) + wiy3 ys Qw2yz (y2 — y4)(y3 —
Y4)y4(y2 = y5)y5 +wsya(x3y2(y2 — y4) y5(—y524 — y425 + y2(24 +25)) +x5y2(y2 — ¥4) (¥5(— y421
+ 2ysza + y3(z1 — 225) + 2yazs) + y2(yaz1 — 2y5z4 — yazs + y3(—z1 + 25))) + x2(4ya(—y3 +
ya)y2z1+y3 (yays (421 — 24 —25) + y3(—4ysz1 + ysza+yaz5)) + 2 (—y3(—4yayszi + y2 (—4zi +
24) +¥325) + yays (ys(—4z1 +24) + ya(—421 +25))))) + X524 (x3Y254Y5(—y224 + Y524 — 325 +
yaz5) + Xsy2(y2 — ya)ya (3221 — ¥sz1 — 225 + 2ysz5) + x2(4yivizi + y3 (v3(ysza — y3zs) +
ya(4yszi — ysza + y3zs — ¥525)) + y2(y3y5(—ysza + y3zs5) + ya(y2(—4z1 + z4) + y3zs —
¥3¥525) + Y3 (—¥325 + 5 (=421 +25)))))) + x¥2x521 (—w3 3 (v3 — y5) (—ya + y5) (x3y224(vaz1 +
¥224) + %221 (y321 — Y2(yaz1 + y324 — y424))) — X2x5y52124(—x3(x3 — X5)y324(yaz1 + Y2 (24 —
25))z5 +x321 (=3 (ya(z1 — 24) + y3(za — 25)) (21 — 25) + 2 (v3z1 (21 — 25) + ya(z1 — 24) (y521 —
¥325) +¥3(24 — 25)(¥521 — ¥325)) + y4z1 (y3(—y3+ ¥s5)z5s + ya(—ysz1 +¥325))) + x2y2(x3(y4z1 +
¥2(24 — 25))(—ys52124 + y224(21 — 25) + (—yaz1 + y3(21 + 24))25) + x52125(ya (Y421 — ¥325) +
y2(va(—z1 + 24) + y3(—24 + 25))))) — ws(—x3(x3 — x5)x5y524(yaz1 + ¥224)(24 — 25)25 +
x2¥321 (3 ysza(—viz1 + 2 (va(z1 —24) + ¥524))25 — 22 (—yiz1 + 2 (va(z1 — 24) + y324)) (24 —
25)25 -+ X3x5 (452124 (¥524 + Y425) + y2(¥325 (24 — 225) + y3yaz124(24 — 25) + yayszg (=221 +
z5) + yizizs(—za + 25)) + y3(za — 25)(=2y525 + ya(z1 — z4)z5 + y3za(za + 25))) +
5ys2 (03 (y3(azi (21 — z4) + ysza(z1 — 25)) — vi(z1 — za)(z1 — 25)) + yazi(—yiyszi +
¥3(aysz1 + y2za + v3z5)) + y2(03z1 (521 — z4) + ya(21 — 25)) + y3vszazs — y3(vayszd +
y2ziza + 3 (@} + 2125 — 2425)))) + x3v221 (x521 (V3 (—y3(vaz1 — vaza — 2y524) (24 — 25) +
yays(z1 — 24) (224 — 25) + y324(—24 + 25)) + Yays(¥F2125 — 2y3¥52425 + v421 (Y524 — ¥325)) +
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V2(y3(—y3z4(za — 2z5) + vizi1(za — 25) + yayszizs) + yaysza(ys(—z1 + z4) + ya(—2z1 +
z5)))) + x3y5(—y3z1(¥sz124 + yaz125 — y32425) — v5(¥sz3(z1 — z5) + ya(z1 — za)(—zazs +
21(z4 +25))) + y2(¥5z4(ysz1za — y3(z1 +24)25) + yaza(y3(—z1 +z4)z5 + y521(21 — 24 +25)) +
¥221(—22425 + 21 (24 + 225)))))) + w2y2 (5327 (1ay2 (y3y421 — Y321 + ¥3¥524) + y3 (—ya(2ys —
¥5)ys(z1 — z4) + Y3 (ys — ¥s)za + y3(y3(z1 — z4) — vaysza + 2y224)) — Y203 ys(—2yaz1 +
¥524) + y3(viz1 + yayizi 4 y324))) — X3¥3 24 (421 + y224) (x3(—ya + ¥5)25 + x5(ys24 + yazs —
2yszs+y3(—24+25))) — x23221 (—Xsy2(—yiz1 + y2(va(z1 — 24) + ¥324)) (y5 (24 — 225) + yazs +
v3(—z4+25) +x3(v3y2 2124+ Y2 (v3ya(va — ¥5)z1 24+ yay3z3 — 322 — yizizs +y2yszi (—2z4+
25)) + ¥3(y3 (21 — z4)z5 + y524(2ysz4 — ¥3(z4 + 25)) + ya(¥324(z4 + 25) + ys(z1(z4 — 25) +
24(=2z4 + 25)))))) + Wiy W33 (v2 — y)ya(—ys + ¥ (2 — ¥5)y3 + wiyaya(xsy2(y2 —
ya)(—y3(—yaz1 + ¥sza + y3(z1 — 225) + 2y4z5) + y2(y3(0az1 — ¥szs) + ys(ys(@1 + z4) +
ya(—2z1 + 25)))) — ys(x3y2(y2 — ya)ys(—2ysz4 — yazs + y2(2z4 + z5)) + x2(6ya(—y3 +
Ya)Y2z1 4 ¥3 (ya4ys(621 — 224 — 25) + y3(—6y521 +2y524 + y425)) + y2(yays(—6y4z1 — 6ysz1 +
2y5z4 + y4zs) + y3(6y4ysz1 + 6y3z1 — 2y2z4 — ¥325))))) + X5ysza(y3 ya(x3yszazs + x3(y2 —
Y4 (21 — 25)25 + X3x5(y524(21 —225) — (v3 — y4) (21 — 25)25 + y224(—21 +25))) + x5 (63 y3z] —
3y221(y3ys(ysza — y325) + y3(2ysz1 + y3zs — yszs) + ya(y2 (221 — 24) — y32s + y3y525)) +
y3(y3(ysz4(3z1 — 25) + y3(=321 + 24)25) + ya(y3(321 — 24)z5 + y5(623 + zaz5 — 3z1(24 +
25))))) + X2y2(x3(3yayszi(ysza + (—y3 + ya)z5) + ¥3(—ysz3 + z5(—yazs + y3(za + 25))) +
y2(y322 +ysz4(ysza —2y325) — va(¥sza(3z1 —225) +¥325(24 +25)))) + x5 (vaz1 (v3(y3 — ys)zs +
ya(4ysz1 — 325 — 6y525)) + y3 (v3(21 (24 — 25) — 2425) + ya (423 +25(z4 +25) — 21 (24 +425))) +
y2(=y7 (=221 + 25)% + ya(y3z5(z1 + 25) + ys(—4z} + 2124 + 62125 — 22425)) + y3(—y322 +
ys(—z124 + 2125 + 22425))))) + ws(x3v4y5(6y4(—y3 + y2)y3z2 + 3y2z1(—y3(—2y4ys521 +
Y3(=221 4 24) + ¥325) + yays(y5(=221 + 24) + ya(—221 4 25))) + y3 (32425 + yays(62} +
2425 — 32124 + 25)) — y3(va(=321 + 24)z5 + ¥5(623 — 32124 + 2425)))) + Y3ya(x3 (= y2 +
y4)y324zs + x3(v2 — ya)(ys(ysza(z1 — 225) — (v3 — ya)(z1 — 25)25) + y2(v3zi(za — 25) +
ys(—2z2124 + 2125 + 2425))) + x3x5y5(yaysz4(z1 — 325) + (21 — 25)z5 + ¥3(21 — 25)(24 +
75) + y524(—=2ys5z4 + y325) + y2(—y4(z1 — 25)(24 + 225) + ys5z4(—z1 + 2(z4 + 25))))) —
%2325 (x3y4(—3y4y521 (y524 + yazs) + y3 (vaz2 — ys(3z1 — 24) (24 +25)) + y2(v3 (321 — 24)z4 —
y2z3 + yaBysziza + 6ysz125 + y32425 — 2y52425))) + X5(yaz1(Ryays(—2yaz1 + 3ysza +
3y4zs) + y3(4yaysz1 + yiza + yizs — 6y4yszs)) + y2(v3 (va + ¥s)zazs — v3(v3za(zi +224) +
y3(4z3 — 22125 + z425) + yays(dz] — 62125 + 32425)) + ya(2y2za(—321 + z4) + ¥} (221 +
25)? 4 yays(4z] — Tz1z4 — 62125 + 32425))) — ¥3(y32425 — y3(ysza(z1 + 2z4) + ya(4z? +
22425 — z1(24 + 325))) + ya(ysza(—62z1 + 224 + 2z5) + ya(dz} + z5(z4 + 25) — 21(z4 +
42NN + wiya w3y ya(xsys(y2 — ya)(va — y5)(=y3 + y5)z1 + (2 — y5)y2(x3y2(y2 —
ya)za + x2(y3 — ya)(2yazi + y2(=221 + 24)))) + xs5ys5za(x3(x3 — X5)Xs5y3yaza(z1 — 25)25 +
X321 (4y3y223 + 221 Bysys(—ysza + y325) + yi(—4yszi — 3y3zs + 3yszs) + ya(y2(—4z1 +
3z4) + 3y3zs — 3¥3¥525)) + ¥3(n3(vsza(Bz1 — 22z5) + y3(—3z1 + 2z4)z5) + ya(y33z1 —
224)z5 + ys(4z3 + 22425 — 32124 + 25))))) + xX2¥3 (x32425(2yaysz1 + Yaysza — Y325 +
y2y4z5) — x3x5(y524(21(24 — 25) — 2425) + Yaz1(zs(—3yaz1 + y3(3z1 + 24 — 225) + 2yazs) +
ys(—=3z124 + 42425)) + y2(ya(3ziza + 22423 + z125(—424 + 25)) + (¥524 — ¥325)(22425 +
21(—24 +25)))) + x325(v421 (—3y421 + y325 + 2y425) + y2(3(21 (24 — 25) — 2425) + y4(32f +
2425 — 21(24 + 225))))) + 332 (x3(3y4y523 (ysz4 + (—y3 + ya)zs) + y3(¥sz3(—2z1 + z5) +
(221 — 24)z5(—yazs + ¥3(24 + 25))) + ¥221(2y525 + 2y524(ysza — 2y325) — ya(ysza(3z1 —
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4z5) +2y325(24 +25)))) + x5 (3y4zT (v3(y3 — ¥5)z5 + ¥4(2y521 — y3z5 — 2y525)) + 3 (14221 —
24) (322 —3z125+22) + y3 (323 (24 — 25) + 2422 + 2125 (=324 +25))) + y221(—2y3 (323 — 3z125 +
22) + y4(v325(321 — 24 + 225) + y5(—627 + 32124 + 62125 — 42425)) + y3(y3(24 — 325)z5 +
5(=3z124 + 32125 + 42425)))))) — w3y2(¥3yays(6ya(—ys + ya)y3zi + 2y221(33(3yayszr +
Y2321 — 224) — ¥325) + vays(=3ysz1 + 2ysz4 + ya(—321 + 25))) + ¥3 (V32425 + yays(627 +
2425 — 221224 + 25)) — y3(ya(—2z1 + 24)z5 + y5(623 — 42124 + 2425)))) + y3ya(x3 (—y2 +
ya)yizazs — x2y2(v2 — ya)z1(ys(za — 225) + yazs + y3a(—z4 + 25)) + x3x5(y3z4(—ysz4 +
ya(zi — 225)) + v3(az1zs + ¥s(zi(za — z5) — z425)) + v2(v3(va — ¥s)zizs — yizizs +
Y224(z4+225) + yays(—2z124 + 2125 +2425)))) + X232 (x5 (4 y221 (4 (3yaz1 — 2y524 — 4yazs) —
y3(3yazi + ysza — 4y425)) + y2(yays(¥3(2z1 — za)za + 2y321(=321 + 25) + yays(3ziza +
42125 — 22425)) + y3(3y323 + yiza(z1 + z4) — 2v3yszizs + yay3(3z] — dzizs + 22425))) +
Y3 (V3 (—ya+ ys)ziza + y3(y321(=321 + 24) — ¥324(2z1 + 24) + yays(2124 + 22125 — 2425)) +
yays(ys(—3z3 — 2124 +23) + y4(623 + z4z5 — 221 (24 + 25))))) + x3y4y5(¥3 ¥5 (221 — 24) (224 +
25) + 2y4y521(2ysza + yazs) — y2(2y2(221 — z4)za + ya(y32425 + y5(—2z2425 + 421(z4 +
25))))) + ws (X3 yaysz1 (4ya(—y3 + ya)y3z1 + y221 (vays(—4yazi — 4yszi +3ysza +3yazs) +
y3(dysyszi + v3(4z1 — 3z4) — 3y3z5)) + ¥3(2y3z4zs5 + Yays (423 + 22425 — 32124 + 25)) +
¥3(04(3z1 — 224)zs + ys(—427 + 32124 — 22425)))) + X534 (x2y2 (32 — Ya)z1(24 — 25)25 —
x3y52425(y524 + y2 (21 — 25) + ya(—21 + 25)) — x3x5(y321 (24 — 25)25 + Y524 (ysz4(z1 — 225) +
y4(z1 — 25)25) + ¥2(¥32124(24 — 25) + yaz125(—24 + 25) + y524(—22124 + 25(24 + 25))))) +
x3Y2y5(x3v4(3y4ys23 (¥sz4 + yazs) + 221 (¥2za(—321 +224) + 2322 — v4(Bysziza +6yszizs +
2y32425 — 4y52425)) + ¥3 (—25(ya(221 — 24)zs + y324(24 + 25)) + y5(2325 + 32724 + 25) —
22124(z4 + 25)))) + x5(=3y427 (3(¥324 + 2y4y5(z1 — 25) + ¥325) + 2v4y5(¥sza + ya(—z1 +
25))) + y221(—=y3(2y4 + 3ys)zazs + y3(v3z4(3z1 + 4z4) + y3(623 + zaz5) + 6yays(z] —
2125 + z425)) + y4(2y52(311 — 2z4)z4 + 3y4y5(—2z% + 3z1z4 4+ 22125 — 22425) — 2y§(3z% -
32125 + 23))) + ¥3(¥3 (221 — 24)2425 + ya(y524(—62] + 42124 + 22125 — 2425) + ya(221 —
24)(32} — 32125 + 22)) + y3(¥s2a(—327 + 2425 + 21(—424 + 25)) + ya(—62] — 4212425 +
323 (24 + 25) + 242524 + 25)))))) + X253 (¥3y4y52425(2yayszt + y2(y5(—221 + 24) + yazs)) +
x3x5Y5(yaz1 (v7 (321 — 225)z5 + 2ysz4(—2ysz4 + y3z5) + yaza(Bysz1 — y3zs — 6yszs)) +
Y2(—s524(z1 +224) (V524 — y325) + ¥ (—22422 +4z125(24 +25) — 323 (24 +225)) + yaza (y3 (21 +
24)z5 + y5(=327 + 52124 + 32125 — 42425))) + ¥3(23(5(21 + 224) — y325) + ya(B32] (24 +
25) + 2425(24 + 25) — 21(2F + 42425 + 222)))) + x2 (yaysz1 (2y3ys52425 + yizs(—3z1 + 225) +
ya(=3ysz124 4 332125 +4ys52425 — 2y322)) + ¥3 (v32124(24 — 25) + Yays(—z52s + 2124224 +
25) + 23(—624 + 325)) + y3(yaz1(321 — 24)(z4 — 25) + ysza(—2z2124 + 22125 + 2425))) —
Y2333z (za — z5) + yayszs(3z7 — 2z1zs + zazs) + viza(—ziza + 22125 + 22425)) +
y4ys(y4(—623z4 — 2423 + 2125324 + 225)) + ysza(—3z7 — 22425 + 2124 + 425)))))))) —
w1 (w3 y3(x3x5y3y4(y3 — ¥5)(—ya + y5)2124 — X3 (y3 — ya)ya(y2 — ys)y3zi(yazi + ya(—21 +
24)) + x2y2(x3y4(y2 — ¥5)y2za(yazi + y2(—21 + 24)) + x5y2(y3 — ¥5) (4 — ¥s)z1(—2y3z1 +
Y2(2ysz1 + y3z4 — yaz4)))) + X2xs5ysza(x3(x3 — x5)x5y32425(vaz1 (=221 + 25) + y2(zaz5 +
2124 + 25)) + 323 (—y3y2z} + vz (3ys(vsza — y3zs) + y3(ys(zi — zs5) + y3zs) +
ya(y3(z1 — z4) — ¥3z5 + y3Y525)) + V3 (—ya(z1 — 24) (y5(21 — 25) + ¥325) + y3(3 (21 — z24)z5 +
ysza(—z1 + 25)))) + X233 (—x32425(vaz1 (¥521 + ¥225) + ¥2(¥sz1z4 + ya(—z1 + 24)z5)) +
x22125(yaz1(3yaz1 — 2y325 — yazs) + y2(ya(=3z] + 22124 + 2125 — 2425) + y3(—22124 +
22125 + 2425))) + x3x5(y324 (223 (24 — 25) + 2422 + 2125(—224 + 25)) + yaz3 (ys(—3z124 +
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22425) + 25(y3(321 + 224 — z5) + ya(—=321 +25))) + y221(¥325 (22124 + 25 — 22125 — 32425) +
2ysza(—z124+2125+2425) + ya(3z] 24+ 22422 + 2125 (—5244225))))) — x5 y221 (x3 (4527 (V524
+ (—=y3 + y4)z5) + y3(rsz3(—z1 + 25) + (21 — 24)25(—yazs + ¥3(24 + 25))) — 221 (—y3z2 +
ysz4(—ysza + 2y325) + ya(ysza(z1 — 225) + y3z5(z4 + 25)))) + x5(0az3By3(y3 — ys)zs +
ya(dysz1 — 3y3zs — 2y525)) + ¥3 (13327 (24 — 25) + 2423 + 2125(—324 + 225)) + ya(dz] —
24z + 2125324 + 25) — 22324 + 425))) + Y221 (—y3 (=221 + 25)% + ya(y3z5(Bz1 — 224 +
z5) + ys(—4z7 + 3z124 + 22125 — 22425)) + ¥3(y3(224 — 3z5)z5 + ys(—3ziz4 + 3z1z5 +
22425)))))) + w22 (x3x5 Y5 42124 (x3(— ya + y5)z5 + X5(¥s24 + yazs — 2525 + y3(—z4+25))) +
X3 v4y521 2y4(—y3 + ya)y223 4+ y221 (13 Q2yayszr + 2y (21 — z4) — v3zs) + yaysQys(—z1 +
24) + y4(—221 4+ 25))) + v3 (vays (21 — 24) 221 — 25) + ¥3z425 — y3(va(—z1 + 24)z5 + ¥5 (227 —
22124 + 2425)))) + X2y5(x3yay2za(yazi + ya(—2z1 + 24))zs — x2y2z1(—2y3z1 + y2(2yaz1 +
y3za — v424))(¥s(za — 225) + yazs + y3(—z4 + 25)) + x3x5(yay2ziza(—ysza + 2ya(z1 —
25)) + v22y3ya(ya — ¥5)z324 — ¥3z3(z1 + 24) — 2y32325 + ¥3ysz1 (—4z124 + 22125 + 2425) +
2y4y2z4(—2425 +21(24+25)) + 3 (V321 221 — 24)z5 + 524 (¥524(221 +24) — y321 (24 +25)) +
ya(y3z124(za + 25) + y5(—22125 + 223(z4 — 25) + 2325))))) + X3 ¥2(x3Y4ys5(yayszi(2ysza +
vazs) + ¥3(—y3z3zs + ys(z3zs + 27 (2za + 25) — 2124224 + 25))) — »2212¥2 (21 — z4)z4 +
4 (32425 4+2y5(—2425+21 (24 +25))))) +x521 (v 321 (v (3yaz1 — y524 — 2y425) + y3 (—3yaz1 —
2y524 +2y425)) + y2(vays (2 (21 — 24)z4 + y321(—621 + 25) + yay5 (32124 + 22125 — 22425)) +
¥3(3y323 +¥324Q2z1 +24) — y}ysz1zs + vay2 323 — 22125 +22425))) + 3 (2y3 (—ya+ y5)z124 —
3(y321(321 —224) + y324 (421 +24) +yay5(2425 — 21224 +25))) + yays (vs (=32 + 2124+ 25) +
Y4(627 + 2425 — 21 (424 +25))))))) + ws (—x3(x3 — X5) X33 yaz124 (24 — 25)25 + x5 yaysz ((v3 —
V) Yay2z 4+ yoz1 (vays(vs(z1 — z4) + ya(z1 — 25)) + y3(—vayszi + y3(—z1 + z4) + y3z5)) +
y3(—yays(z1 — z4)(z1 — 25) — Y3z4z5 + v3(va(—z1 + za)z5 + ¥s(2F — 2124 + 2425)))) +
x2x5y3 (—x2y221(=2y3z1 + y2(2yaz1 + y324 — v424))(24 — 25)25 + X3 y52425(vaz1 (V524 +
ya(—=221+25)) + y2(¥524(21 +24) + ¥4 (227 + 2425 — 21 (24 +25)))) + X3x5(v4y52124(2ys24(21 —
25) + ya(2z1 — z5)z5) + y3(vaz1(2z1 — z4)(z4 — 25)z5 + Y523 (—2z1z4 + 22125 + z425) +
v32124(z5 — 22) + »2Qysyaziza(za — z5) + 2yizizs(—z4 + 25) + y2zi(zi(zs — 225) —
22425) + yaysza(—4z3z4 — 2422 + 2125224 + 25))))) + X33 (—x2 yayszazs (Vayszs + y3zazs +
221 (5 (=21 +24) +Y425)) +x3x5y5 (423 (v325(—321 +25) + ¥524 (2524 — ¥325) + yaza(—3Yszi
+ 2y325 + 3y525)) + 221 (y524(2ysza(z1 + 24) — y3(221 + 324)z5) + yi(2z4z2 + 323 (za +
2z5) — 2125(524 + 225)) + yaza(—2y32125 + ¥s(327 — 4z124 + 42425))) + y3(23(—Yys(z1 +
24)(2z1 — z5) + ¥3(z1 — 24)zs) + ya(z3z2 — 3z3(z4 + z5) — 212425224 + 25) + 22 (223 +
S5z4z5+22))) +x221 (yaysz1 (—4y3yszazs + 7 (321 — 25)25 + y4(y524(321 — 225) + y3z5(—3z1 +
25))) + 3 (2y3z124(—24 + 25) + yays (23 (624 — 325) + 2325 + 2124(—424 + 25)) — y3(vaz1 Bz1 —
224)(z4 — 25) + ysza(—4z124 + 42125 + 2425))) + v2(v3(3y327 (24 — 25) + yayszs 3z} — zizs +
2425) +2y324(—2124 +22125 +2425)) + yays (y524(—32] — 22425 +221 (24 +25)) + ya(—62724 —
2423 + 2125324 + 25)))))) + X3 y2y521 (x3y4(—yayszi (y5z4 + yazs) + y221(¥2 (21 — 24)z4 —
y222 + va(ysziza + 2ysz12s + y32425 — 2y52425)) + ¥5(25(va(z1 — 24)zs + y3z4(za + 25)) —
y5(232zs +27(za+25) —2124(24 +25)))) +x5(yaz] (2ays(—2y4z1 + ysza+yazs) + y3 (4yayszi +
3y224 43325 — 2y4¥525)) + ¥221 (V3 (v4 + 3ys5)z4z5 — y3(v324 (321 +224) + yF (423 + 22125 —
z4z5) + yays(4z3 — 22125 + 32425)) + yaQy2za(—z1 + z4) + ¥ (=221 + 25)% + yays(dz —
52124 — 22125 + 32425))) — Y3 (03 (21 — z4)zazs + y3(ysza(—323 — 22124 + 22125 + 2425) +
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Ya(—42] — 2212425 + 2425(z4 + 25) + 21324 +25))) + ya(—ys(z1 — 24)24z1 — 25) + ya(dz] —
2422 + 2125324 + 25) — 23 (324 + 425))))))).
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