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Termination of a painful or unpleasant event can be rewarding. However, whether the brain treats relief in a similar way as it

treats natural reward is unclear, and the neural processes that underlie its representation as a motivational goal remain poorly

understood. We used fMRI (functional magnetic resonance imaging) to investigate how humans learn to generate expectations of

pain relief. Using a pavlovian conditioning procedure, we show that subjects experiencing prolonged experimentally induced pain

can be conditioned to predict pain relief. This proceeds in a manner consistent with contemporary reward-learning theory (average

reward/loss reinforcement learning), reflected by neural activity in the amygdala and midbrain. Furthermore, these reward-like

learning signals are mirrored by opposite aversion-like signals in lateral orbitofrontal cortex and anterior cingulate cortex. This dual

coding has parallels to ‘opponent process’ theories in psychology and promotes a formal account of prediction and expectation

during pain.

Self-preservation and evolution ordain that animals act optimally or
near-optimally to minimize harm. One of the principal mechanisms
for detecting harm is the pain system, and early prediction is essential
to direct appropriate pre-emptive behavior. However, any simple
correspondence between predicted sensory input and behavioral out-
put is challenged by considering the nature of relief: for example, mild
pain will be rewarding if it directly follows severe pain. This illustrates a
critical issue in our understanding of pain relief as an affective and
motivational state1–3 and poses a broader question in emotion research:
how do the neural processes that underlie motivation adapt to the
context provided by the ongoing affective state?

According to psychological theories4–7, tonic aversive states recruit
reward processes to help direct behavior toward homeostatic equili-
brium (which becomes the motivational goal). This may offer insight
into why relief is often pleasurable: for example, the experience of
cooling oneself in a swimming pool on a hot day. Indeed, the euphoria
of relief has been used to help explain a number of seemingly
paradoxical behaviors, from sky diving to sauna bathing8, in which
relief is thought to become the dominant motivational drive. Despite
supportive psychological evidence9–12, direct observations of neural
activity consistent with such appetitive processes are lacking.

Conceptually related issues arise in diverse areas such as engineer-
ing, economics and computer science and offer potential insight
into the underlying neural processes involved in relief in animals.
Notably, computational reinforcement learning models have proved
particularly useful in formalizing how the brain learns to predict
rewards and punishments13–19. These models learn to make

predictions by assessing previous contingencies between environ-
mental cues and motivationally salient outcomes. In theory, these
models can be extended to deal with tonic reinforcement and
relief, by computing predictions relative to an average rate of reinforce-
ment, rather than according to absolute values20,21. However, the extent
to which average reward/loss reinforcement learning strategies are
implemented in the brain is still unclear. With respect to pain, this
may have added importance, as motivational predictions (of pain or
relief) are thought to exert substantial influence on the subsequent
perception of pain22,23. Understanding the neural mechanisms by
which predictions are learned is therefore key to our understanding
of how the brain intrinsically modulates pain in physiological and
clinical situations.

We used fMRI to investigate the pattern of brain responses in
nineteen healthy subjects as they learned to predict the occurrence of
phasic relief from or exacerbation of tonic pain (see Methods). We
employed a first-order pavlovian conditioning procedure with a partial
(50%) reinforcement schedule (Fig. 1a). Tonic pain was induced using
the capsaicin-heat model. Capsaicin is the pain-inducing component of
chili pepper; it induces sensitization to heat by activation of tempera-
ture-dependent TRPV1 ion channels expressed on peripheral nocicep-
tive neurons. This temperature sensitivity allowed us to deliver
constant but easily modifiable levels of pain for long durations, adapted
for each individual subject, at temperatures which do not cause skin
damage. This provides a unique experimental tool to study pain, as it
specifically permits investigation of the neural processes underlying the
offset of pain: that is, relief. The model has the further advantage that it
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induces the characteristic molecular and cellular changes that mimic
physiological injury, and so presents a biologically realistic model of
relief in natural and clinical environments.

We applied capsaicin topically to an area (12.5 cm2) of skin on the
left leg, which caused a localized area of burning pain (which feels
similar to sunburn), and manipulated the intensity of this pain with an
overlying temperature thermode that matched the capsaicin-treated
area. Temperature was adjusted for individual subjects to aim for
evoking an average baseline magnitude of pain rated as 6 on a 0–10
categorical scale. Phasic decreases in the baseline temperature to 20 1C
caused complete relief of pain, and temperature increases caused
exacerbation. We used visual cues (which were abstract colored images)
as pavlovian conditioned predictors of these changes. Thus, in the fMRI
scanner, subjects learned that certain images tended to predict immi-
nent relief or exacerbation of pain.

We used a computational reinforcement learning (temporal differ-
ence) model to identify neural activity consistent with reward-like
processing. The characteristic teaching signal of these models is the

prediction error, which is used to direct acqui-
sition and refinement of predictions relating
to individual cues. The prediction error
records any change in expected affective out-
come, and it thus occurs whenever predictions
are generated, updated or refuted. By treating
relief of pain as reward, and exacerbation as
negative reward, we sought to identify activity
that correlated with this prediction error sig-
nal. We calculated the value of the prediction
error for each subject according to the
sequence of stimuli they received in order to
provide a statistical predictor of fMRI data
(as has been done previously17,18,24). The use
of a partial (probabilistic) reinforcement strat-
egy, in which the cues are only 50% predictive
of their outcomes, ensures constant learning
and updating of predictions and generates
both positive and negative prediction errors
throughout the course of the experiment
(Fig. 1b,c). Thus, inference is based on
identification of this dynamic and highly
characteristic signal.

In support of the model, our data show that
brain activity (that is, blood oxygen level–
dependent, or BOLD, activity) in the amyg-
dala and midbrain correlates with the reward
prediction error signal predicted by average
reward temporal difference learning. In addi-

tion, we show an opponent, aversive representation of the prediction
error in lateral orbitofrontal and genual anterior cingulate cortex.
Furthermore, these two signals appear to be coexpressed in the
ventral striatum.

RESULTS

Behavioral and autonomic results

Subjects rated the baseline thermal stimulation as painful and the
decreases and increases in temperature as pleasant or more painful,
respectively (Fig. 2a). In addition, pleasantness and pain ratings were
significantly greater than equivalent temperature changes on adjacent
skin not treated with capsaicin (P o 0.05, all pair-wise comparisons;
see Methods).

In a behavioral version of the task outside of the fMRI scanner,
we demonstrated conditioning to the relief and exacerbations of pain by
engaging the subjects in a supplementary cue-preference task, after the
learning task. In this, subjects (n¼ 14) made a forced choice preference
judgement of pairs of cues, presented side by side. This demonstrated a
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Figure 1 Experimental design and computational model. (a) Experimental design. There were five

trial types: cue A was followed by a temperature/pain decrease on 50% of occasions (reinforced and

unreinforced relief cue), cue B was followed by a temperature/pain increase on 50% of occasions

(reinforced and unreinforced pain cue) and cue C was followed by no change in temperature/pain (control

cue). (b) Appetitive computational model: predicted neuronal response. Schematic showing the mean

representation of the temporal difference prediction error according to the different cue types, where

relief is represented as reward. (c) Aversive computational model: predicted neuronal response.

Schematic showing the aversive temporal difference prediction error, which treats pain exacerbation as

punishment. b and c represent the average predicted neuronal response; the corresponding predicted

BOLD response is shown in Figs. 3c and 4c, respectively, following convolution with a canonical

hemodynamic response function.
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Figure 2 Behavioral measures. (a) Pain ratings.

Pain and pleasantness ratings for the baseline

level of thermal stimulation, and the phasic
increases and decreases in temperature. Scores

are on a 0–10 magnitude rating, with error bars

representing the s.e.m. The graph shows results

for the capsaicin-treated skin and an adjacent

area of unaffected skin. (b) Preference scores.

After the learning experiment, subjects made

forced choices between randomized pairs of

cues. The scores are out of a maximum of

20 pairings for each cue (with higher scores

indicating more preferred).
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significant preference ordering, with the relief cue preferred to the
neutral cue (P o 0.05, Wilcoxon sign rank test), which was, in turn,
preferred to the exacerbation cue (P o 0.01, Wilcoxon sign rank test;
Fig. 2b). On post-experimental debriefing (see Methods), only four out
of the 14 subjects could report any contingent relationship between the
cues and the outcomes.

During the fMRI version of the task, we used physiological measures
to assess the acquisition of cue expectations. Heart rate changes
induced by the cues correlated with the magnitude of expectations
(that is, cue-specific temporal difference values) both of pain relief
(P o 0.01) and pain exacerbation (P o 0.01), calculated from the
model (see Methods). This supports the hypothesis that cue expecta-
tions are acquired in a manner consistent with the (temporal differ-
ence) learning model, albeit in a valence-insensitive manner. That is, we
observed increased heart rate with higher valued cues, whether positive
or negative, consistent with a learned arousal-like response associated
with the expectations.

fMRI results

We used the model to identify a representation of the appetitive
prediction error in the brain (Fig. 1b, appetitive model). Activity in
left amygdala and left midbrain (in a region consistent with the
substantia nigra) correlated with this signal (Fig. 3a,b). Time-course
analysis illustrates the average pattern of response associated with the
different trial types in the amygdala, illustrating a strong correspon-
dence with the predictions of the model (Fig. 3c). These data support
the hypothesis that relief learning involves a reward-like learning signal.

Recent evidence indicates that temporal difference models also
provide an accurate description of aversive learning, suggesting the
existence of a separate reinforcement learning mechanism encoding
aversive events18. We therefore sought to identify whether an aversive

representation of the prediction error was expressed, in which
exacerbation of pain was treated as positive punishment, and relief as
negative punishment (Fig. 1c, aversive model). Activity in bilateral
lateral orbitofrontal cortex and genual anterior cingulate cortex corre-
lated with this signal (Fig. 4a,b). The time-course of this activity
(Fig. 4c) illustrates the opposite pattern of response to the appetitive
prediction error. These data indicate the existence of an aversive
reinforcement signal, distinct from the reward-like signal.

Psychological studies of appetitive-aversive interactions predict that
opposing, learning-related activities should converge in some areas10.
This might occur in areas such as the ventral striatum (and insula
cortex), where predictive activity has been observed in both reward and
pain learning tasks, albeit in separate studies17,18,25–28. This raises a
question about how coexpressed aversive and appetitive prediction
errors would be represented by the BOLD signal, particularly if they
interact. We therefore created a new statistical model that included two
regressors, modelling prediction error for relief and exacerbation
separately. This model revealed coexpression in the ventral putamen,
anterior insula and rostral anterior cingulate cortex (Fig. 5a–c). The
responses in these regions showed an appetitive prediction error for the
relief-related cue, and an aversive prediction error for the exacerbation-
related cue (Fig. 5d). This pattern of activity is notable, as it cannot
result simply from the linear superposition of appetitive and aversive
signals, but implies either an interaction between prediction error
and cue-valence, or the expression of a single valence-independent
prediction error.

DISCUSSION

Drawing on theoretical considerations provided by computational
reinforcement learning11, our data provide evidence in support of an
opponent motivational model of tonic pain. We observed two distinct
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Figure 3 Appetitive temporal difference prediction error. (a,b) Statistical

parametric maps (P o 0.001) showing (a) left substantia nigra (axial plane)
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represents the data (error bars represent 1 s.e.m.), and thin gray line is the

model appetitive temporal difference prediction error (from Fig. 1b) after

convolution with a canonical hemodynamic response function.
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Figure 4 Aversive temporal difference prediction error. Statistical parametric

maps (P o 0.001) showing (a) lateral orbitofrontal cortex (axial plane) and

(b) genual anterior cingulate cortex, highlighted (sagittal plane). (c) Time

course of inferred mean neuronal activity for the four principal trial types in

left orbitofrontal cortex. Black line shows data (error bars represent 1 s.e.m.),

and thin black line is the model aversive temporal difference prediction error

(Fig. 1c) after convolution with a canonical hemodynamic response function.
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patterns of neural activity, distinguishable by their expression in
separate brain areas, that correlated with the prediction error signals
of an opponent temporal difference model. This extends our under-
standing of human predictive learning beyond the occurrence of phasic
events arising from a neutral baseline. Thus, during tonic pain, aversive
and appetitive systems seem to be simultaneously involved to encode
appropriate goal-directed predictions across the spectrum of positive
and negative outcomes. Our observations suggest a formal framework
for understanding the homeostatic and motivational processes engaged
by pain and may offer a paradigmatic account of motivation during
tonic affective states.

The use of the temporal difference algorithm to represent positive
and negative deviations of pain intensity from a tonic background
level approximates the class of reinforcement learning model termed
average-reward models20,21,29. Accordingly, predictions are judged
relative to the average level of pain, rather than according to an
absolute measure. This comparative treatment of motivationally salient
predictions is consistent with both neurobiological and economic
accounts of homeostatic motivation, which rely critically on change
in affective state2,30,31.

Implicit in any such model is a representation of the average rate of
reinforcement, although the short time window of fMRI precludes
investigation of this directly. From an implementational perspective,
one argument for opponency relates to consideration of how a long-
run average affective state might be represented. Given our demonstra-
tion that positive and negative prediction errors are both encoded by
one system and are fully mirrored by opposite signals in an opponent

system, the requirement for one system to fully represent both the tonic
levels of reinforcement (that is, by sustained elevated activity) with
positive and negative phasic predictions simply superimposed, would
seem to be obviated. If this is the case, the tonic level of pain would be
free to have a distinct representation, a signal that has been suggested to
be conveyed by tonic dopamine release11.

Mirror opponency has many similarities to the appetitive-aversive
reciprocity characteristic of early psychological ‘opponent process’
theories4–7. In their various forms, these theories grew out of a
requirement both to explain the adaptive changes that occur during
and after tonic reinforcement, and to understand the interactions
between appetitive and aversive processes that arise in certain specific
learning procedures such as conditioned inhibition and trans-reinforcer
blocking. Notably, recent electrophysiological recordings of neuronal
activity in mice directly indicate the involvement of opponent processes
in (context-related) conditioned inhibition, specifically implicating the
ventral striatum and amygdala32. Thus it seems possible (and fully
consistent with a computational account) that, at least in the ventral
striatum, a ‘safety signal’ that predicts the absence of future pain might
share the same neural substrate as the relief-prediction error seen here.
However, we show an appetitive representation in the amygdala, rather
than an opponent aversive representation (which we observe in lateral
orbitofrontal and genual anterior cingulate cortex). This points to the
expression of multiple learning-related neural signals in the amygdala,
consistent with the complex, integrative role of this structure (and the
various nuclei within) in associative learning and pain33,34.

The finding that lateral orbitofrontal cortex demonstrates an aversive
prediction error signal is consistent with previous reports of a role for
this region in aversive learning35. In particular, this area has been shown
to be involved in evaluation of aversive stimuli in the context of different
motivational states36 as well as in short-time-scale pain prediction
relative to a changing (learned) baseline rate of phasic pain37. Taken
with the present results, this suggests that learning of aversive value
predictions in this region may be mediated by an aversion–specific
prediction error signal, particularly in circumstances that require
adaptive representations following changing motivational state or con-
text. However, it should also be noted that lateral orbitofrontal cortex
may not be exclusively involved in aversive processing, as reward-related
responses have also been reported in this region in some circumstances.

In relation to pain, other cortical areas, specifically insula and anterior
cingulate cortex, have clear motivational roles and have previously been
implicated in the processing of relief-related information3. For example,
recent neuroimaging studies investigating the expectation and receipt of
placebo analgesia implicate these areas in endogenously mediated
analgesia38,39. Our findings provide further support that these areas
have a key role in homeostatic functions relating to pain2.

The BOLD signal is thought to correspond to changes (increases or
decreases) in synaptic activity, and thus the activity we describe may
reflect specific afferent neuromodulatory influences that originate
elsewhere40,41. Substantial evidence indicates that mesolimbic dopa-
mine neurons both encode reward-related prediction error16,19 and
have a key role in analgesia42, suggesting that dopamine could convey
an appetitive relief-related prediction error. This draws attention to
activity in the ventral striatum, a region that receives strong mesolimbic
dopaminergic projections. Comparison with previous data in this area
highlights the observation that cues signaling lower-than-predicted
pain cause deactivation in the context of a neutral baseline, as opposed
to activation in the context of a tonic pain baseline18,26. This implicates
adaptive changes occurring during tonic pain, influencing ventral
striatal activity and consistent with the representation of an appetitive
signal for relief-related cues. However, taken alone, it is possible that
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Figure 5 Appetitive relief-related plus aversive exacerbation-related

prediction error. Statistical parametric maps showing activity that correlates
with the appetitive prediction error for the relief cue (P o 0.001), masked

with the aversive prediction error for the exacerbation cue (P o 0.001).

(a) Bilateral ventral putamen. (b) Bilateral ventral putamen and right anterior

insula. (c) Rostral anterior cingulate cortex. (d) Time course of inferred mean

neuronal activity for the four principal trial types in left ventral putamen.

Thick black line shows the data (error bars represent 1 s.e.m.), and the

thin gray and black lines are the model appetitive and aversive temporal

difference prediction error, respectively (from Fig. 1b,c) after convolution

with a canonical hemodynamic response function.
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this ventral striatal activity is modulated by a single prediction-error
signal for both relief and exacerbation cues43,44, although recent
electrophysiological evidence demonstrating suppression of midbrain
dopaminergic neurons to aversive stimuli would seem to require a
distinct aversive opponent45. Either way, this signal must interact with
valence-specific information by some additional mechanism, possibly
through the involvement of different intrinsic sub-populations of
appetitive and aversive neurons within the ventral striatum46.

That pain relief and reward might share a common neural substrate
is also suggested by the fact that many drugs that have rewarding effects
have analgesic properties. Aside from dopamine, there are many
neurotransmitters with clear combined roles in appetitive and aversive
motivation, for example opioid peptides, serotonin, substance P and
glutamate3,47,48. Of particular interest are serotonin-releasing neurons
projecting from the dorsal raphe nucleus to the ventral striatum,
which have emerged as a plausible candidate to mediate an aversive
prediction error11.

In addition to a role in pavlovian motivation, it is also clear that pain
and relief-related expectations exert a strong influence on the actual
subsequent experience of pain, in that perception (of intensity) is
weighted by the prior expectancies acquired through conditioning.
How predictive motivational values influence perceptual inferences
such as pain intensity is not yet clear, although probabilistic perceptual
models that incorporate economic cost functions, such as decision
theory, may offer insight at a theoretical level49. From an implementa-
tional perspective, one putative mechanism exploits an influence of
‘higher’ brain areas on ascending pain pathways via descending
modulatory control centers. A possible target is the ‘on-’ and ‘off-’
cells of the periaqueductal grey and rostral ventromedial medulla,
which show opponent anticipatory pain-related activity under appar-
ent higher control3. Whatever the mechanisms, these influences are
thought to be clinically important both in endogenous pain modula-
tion (including placebo analgesia) and in the pathogenesis of some
chronic pain syndromes3,23,38,39, and we suggest that integrated psy-
chological, neurophysiological and computational approaches offer
some promise in furthering their understanding.

METHODS
Subjects. Thirty-three healthy right handed subjects (14 in a behavioral version

of the task, and 19 in the fMRI version of the task), free of pain or medication,

gave informed consent and participated in the study, approved by the Joint

National Hospital for Neurology and Neurosurgery (University College

London, National Health Service Trust) and Institute of Neurology (University

College London) Ethics Committee. Subjects were remunerated for their

inconvenience (40 GBP).

Stimuli: capsaicin model. We applied topical 1% capsaicin (8-methyl-N-

vanillyl-6-nonenamide, 98%, Sigma, diluted in 5% ethanol-KY jelly) to the

lateral aspect of the left leg over an area of 2.5 � 5 cm, under an occlusive

dressing, and left it for 40 min, after which all subjects reported feeling

persistent (though bearable) pain, at which time the capsaicin and dressing

was removed and the skin cleaned. A thermode matching the size of the

capsaicin application area was applied with a loose tourniquet (easily removable

in case of unbearable pain) to the treated skin. Temperature was then

manipulated using an fMRI-compatible Peltier thermode (MSA thermotest,

Somedic). Phasic variations in temperature were made at a rate of 5 1C/s to the

predetermined upper and lower levels and were controlled by in-house software.

Stimuli and pre-experimental set-up. Before the experiment, required tem-

perature levels for each individual subject were set by slowly increasing the

cutaneous temperature overlying the capsaicin treatment site from 20 1C in

steps of 0.5 1C, with continual monitoring of pain ratings (on a 0–10 rating

scale) to achieve a baseline level of 6/10. Subsequently, subjects received

progressively higher phasic increases to determine a satisfactory temperature

for the pain exacerbations, to at least 8/10 (‘just tolerable’). Pain relief was

induced by phasic cooling to 20 1C, which abolished pain in all subjects.

We obtained subjective ratings of pain for the increase, baseline and

decreases in pain. We asked the subjects, ‘‘Can you give a score, on a scale of

0 to 10, as to how painful the pain is, where 0 is no pain at all, and 10 is the

worst imaginable pain?’’ We also took subjective ratings of pleasantness for the

phasic relief. We first asked the subjects, ‘‘Did you find the change in

temperature unpleasant or pleasant?’’ to check that no subjects found the

cooling as unpleasant, and then, ‘‘Can you give a score, on a scale of 0 to 10, as

to how pleasant you found it, where 0 is not at all, and 10 is highest imaginable

pleasure?’’ Phasic changes were repeated with pain and pleasantness ratings on

capsaicin-treated skin and on a distant area of non–capsaicin treated skin on

the same limb well beyond the area of secondary hyperalgesia, and repeated at

the end of the experiment. We achieved mean ratings (s.e.m. in parentheses) for

the baseline tonic pain of 5.5/10 (1.1) on capsaicin treated skin and 0.9/10 (1.5)

on untreated skin. Phasic increases were rated at 9.3/10 (0.9) for capsaicin-

treated skin and 3.3/10 (3.6) on untreated skin. Phasic decreases (relief;

measured on the pleasantness scale) were rated at 7.0/10 (2.4) and 4.6/10

(2.3) on untreated skin. All comparisons (treated versus untreated) were

significant at P o 0.01 with corresponding t-tests. After transfer into the

scanner or behavioral testing room (with the thermode attached) subjects were

in pain for approximately 40 min to 1 h by the time the experiment started. The

visual cues were abstract colored pictures.

Task. The task was a classical pavlovian delay-conditioning procedure of

temperature increases (exacerbations of pain) or decreases (relief of pain).

Visual cues were presented for 4 s, at the end of which the phasic pain

perturbation was applied for 5 s. The precise timing was determined in

psychophysical pilot testing (to accommodate thermode and C-fiber latencies).

There were three different visual cues, each presented 30 times. Cue A (relief-

related cue) was followed by decreased temperature on 15/30 occasions (50%),

cue B (pain exacerbation related cue) was followed by increased temperature on

15/30 occasions (50%), and cue C was followed by no change in temperature

on 30/30 occasions. The control condition provides additional control in our

parametric design, although it was initially included to permit a more

conventional analysis (data not shown). The five different trial types were

presented in random order.

Behavioral measures. Subjects performed a reaction-time task which consisted

of judging whether the visual cue appeared to the left or right of center on the

display monitor, as quickly as possible. The resulting reaction times were taken

as a behavioral index of conditioning. Performance on this task was not

contingent on the stimuli presented, and subjects were told before imaging that

their success or failure at quickly judging the position would not affect the

amount of pain or relief received. The task was performed with a two-button

key press using the right hand. Heart rate was recorded using a pulse oximeter

in conjunction with Spike 2 software (CED).

A behavioral version of the task was performed that was identical to

that performed in the fMRI scanner, except that it was performed in a testing

room with the subject seated in front of a computer monitor. After this task,

we performed a supplementary cue-preference task designed to investigate

whether the subjects had acquired appetitive and aversive preferences for the

cues as a result of the conditioning procedure. In this task, we presented two

cues side-by-side and asked the subject to judge which cue they preferred,

indicated by a left or right key-press. Each cue-pairing was repeated ten times

and was randomized as to which side the cue appeared on. We calculated

the preference scores by summing the total number of preference choices made

for each cue (as in an all-play-all games table, with a maximum score of 20).

Mean scores for each cue were compared across subjects using Wilcoxon sign

rank tests.

We did not attempt to formally address the issue of conscious versus non-

conscious acquisition of conditioned expectancies. However, to gain some

insight into the level of explicit expectancy learning, we asked the question,

‘‘Did you recognize any relationship between the pictures and subsequent

change in pain level?’’ at the end of the experiment (for the behavioral version

of the task only). Subjects were not told the experiment was a learning and

conditioning study beforehand but rather were simply told that it was a study
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of pain and temperature processing. Ten of fourteen subjects were unable to

report any association between cues and outcomes.

Computational model. We used a temporal difference model to generate a

parametric regressor corresponding to the appetitive prediction error, which

was applied to the imaging data, as previously described17,18. Here, we used a

two–time point temporal difference model with a learning rate (a ¼ 0.3)

determined from behavioral results (see below). In this model, the value v of a

particular cue (referred to as a state s) is updated according to the learning rule:

v(s)  v(s) + ad, where d is the prediction error. This is defined as d ¼ r – a

+ v(s)t+1 – v(s)t, where r is the return (that is, the amount of pain) and a is the

average amount of reinforcement (tonic pain) that was assumed to be constant.

We assigned relief and exacerbations of pain as returns of 1 and –1, respectively

(that is, a linear scale of pain from relief to exacerbation). This is an arbitrary

specification, given that it is difficult to precisely scale the relative oppositely

valenced utilities of relief and exacerbations of pain. Thus, the model treats

predictions relating to relief of pain on equal par with unexpected omission of

exacerbation of pain, and, similarly, it treats exacerbation-related predictions

equivalently to unexpected omissions of relief.

Data acquisition and analysis: behavioral and autonomic measures. These

were taken as measures of cue reinforcement and correlated with the temporal

difference value (that is, the cue expectancy). Reaction time data were

individually (that is, on a subject-by-subject basis) fit to a gamma cumulative

distribution function (using a maximum likelihood function), to allow analysis

across subjects, and correlated with the temporal difference value. This yielded

a best fit with a learning rate of 0.3, and a significant correlation for both the

relief-related and exacerbation-related trials, independently, and in the same

direction. That is, reaction times were shorter for both high reward values and

high aversive values. To remove any possible confounding effects of early trials,

during which reaction time data habituate substantially, we repeated this

procedure after removing the first ten trials. This yielded a correlation which

just failed to reach significance (P ¼ 0.056), across both cue types. We also

looked at sensitivity to the initial temporal difference value by setting this to the

average value of 0.5, which yielded a non-significant correlation.

The heart rate was found to be approximately normally distributed and was

normalized to permit analysis across subjects. We found significant heart rate

correlations with both relief and pain cue types (independently, as for the

reaction time). For both exacerbation and relief trial types, this yielded a best fit

with a learning rate of 0.3. Across both cue types, this remained significant

(Po 0.05, r¼ 0.19) after removal of the first ten trials and with use of different

initial temporal difference values. This is a robust correlation and is reported in

the main text. Consequently, we used a learning rate of 0.3 for the temporal

difference model used in the fMRI analysis.

fMRI. Functional brain images were acquired on a 3-T Allegra Siemens scanner.

Subjects lay in the scanner with foam head restraint pads to minimize any

movement associated with the painful stimulation. Images were realigned with

the first volume, normalized to a standard EPI template and smoothed using a

6-mm FWHM Gaussian kernel. Realignment parameters were inspected

visually to identify any potential subjects with excessive head movement; none

was found. Images were analyzed in an event-related manner using the general

linear model, with the onsets of each stimulus represented as a delta function to

provide a stimulus function. We used a parametric design, in which the

temporal difference prediction errors modulated the stimulus functions on a

stimulus-by-stimulus basis. The statistical basis of this approach has been

described previously50. Regressors were then generated by convolving the

stimulus function with a hemodynamic response function (HRF). Effects of

no interest included the onsets of visual cues, the pain relief and exacerbations

themselves and realignment parameters from the image preprocessing to

provide additional correction for residual subject motion. Linear contrasts of

appetitive prediction errors were taken to a group level (random effects)

analysis by way of a one-sample t-test, and the aversive prediction error was

taken as the inverse. MNI coordinates and statistical z-scores are found in

Table 1. This analysis determines areas which correlate to univalent appetitive

or aversive prediction error and does not identify areas in which these signals

overlap. To explore the possible representation of distinct prediction error

signals for the pain relief and exacerbation trials, we generated two independent

regressors for the prediction error occurring at each. Then, we took the

appetitive relief and aversive exacerbation components of the prediction error

to a second level analysis of variance and exclusively masked the two individual

contrasts (that is, we looked for areas of overlap of the independent appetitive-

relief and aversive-exacerbation prediction errors, both at Po 0.001; Fig. 5a–c).

Group level activations were localized according to the group-averaged

structural scan. Activations were checked on a subject-by-subject basis using

their individual normalized structural scans to ensure correct localization, as

some of the reported activations are in small nuclei (for example, substantia

nigra). We report activity in areas in which we had prior hypotheses on the

basis of previous data, though without specification of laterality. These regions

have established roles in both aversive and appetitive predictive learning, and

included ventral putamen, head of caudate, midbrain (substantia nigra),

anterior insula cortex, cerebellum, anterior cingulate cortex, amygdala, lateral

orbitofrontal cortex, medial orbitofrontal cortex, dorsal raphe and ventral

tegmental area. We report activations at a threshold of P o 0.001, with a

minimum size of five contiguous voxels. We also report brain activations

outside our areas of interest that survive whole-brain correction for multiple

comparisons (Table 1) using family-wise error correction at P o 0.05.

We performed a supplementary fixed-effects analysis on a trial basis to

determine impulse responses, as previously described18. Note that this analysis

refers to the average impulse response across each trial throughout the

experiment and does not embody the time-dependent nature of learning

incorporated within the main parametric analysis.

ACKNOWLEDGMENTS
We wish to thank P. Dayan and N. Daw for many helpful discussions and
O. Josephs, B. Johanssen and C. Rickard for technical assistance. This research
was funded by The Wellcome Trust.

COMPETING INTERESTS STATEMENT
The authors declare that they have no competing financial interests.

Received 15 June; accepted 2 August 2005

Published online at http://www.nature.com/natureneuroscience/

1. Cabanac, M. Physiological role of pleasure. Science 173, 1103–1107 (1971).
2. Craig, A.D. A new view of pain as a homeostatic emotion. Trends Neurosci. 26, 303–307

(2003).

Table 1 MNI coordinates and statistical z-scores for the appetitive,

aversive and joint coexpressed appetitive-aversive temporal difference

prediction error

Region Laterality x y z z-score

Appetitive prediction error

Midbrain (substantia nigra) L –18 –12 –8 3.99

Amygdala L –20 2 –26 3.33

Aversive prediction error

Lateral orbitofrontal cortex R 40 34 –20 3.72

L –34 34 –20 3.71

Genual anterior cingulate cortex R 10 42 –6 4.24

Motor cortex R 14 0 60 5.35a

Combined appetitive-aversive prediction error

Ventral putamen R 18 8 0 4.08

22 10 –10 3.32

L –18 8 –12 3.62

Anterior insula R 30 22 6 3.87

36 2 16 4.78

L –34 12 12 4.55

Rostral anterior cingulate cortex R 2 34 20 3.61

aSignificant after whole brain correction.

NATURE NEUROSCIENCE VOLUME 8 [ NUMBER 9 [ SEPTEMBER 2005 1239

ART ICLES
©

20
05

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



3. Fields, H. State-dependent opioid control of pain. Nat. Rev. Neurosci. 5, 565–575
(2004).

4. Solomon, R.L. & Corbit, J.D. An opponent-process theory of motivation. I. Temporal
dynamics of affect. Psychol. Rev. 81, 119–145 (1974).

5. Konorski, J. Integrative Activity of the Brain: an Interdisciplinary Approach (Chicago,
University of Chicago Press, 1967).

6. Schull, J. A conditioned opponent theory of Pavlovian conditioning and habituation. in
The Psychology of Learning andMotivation (ed. Bower, G.) 57–90 (Academic, New York,
1979).

7. Grossberg, S. Some normal and abnormal behavioral syndromes due to transmitter
gating of opponent processes. Biol. Psychiatry 19, 1075–1118 (1984).

8. Solomon, R.L. The opponent-process theory of acquired motivation: the costs of pleasure
and the benefits of pain. Am. Psychol. 35, 691–712 (1980).

9. Solomon, R.L. Recent experiments testing an opponent-process theory of acquired
motivation. Acta Neurobiol. Exp. (Wars.) 40, 271–289 (1980).

10. Dickenson & Dearing, MF. Appetitive-aversive interactions and inhibitory processes. in
Mechanisms of Learning and Motivation. (eds. Dickinson, A. & Boakes, R.A.) 203–231
(Erlbaum, Hillsdale, New Jersey, 1979).

11. Daw, N.D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and
dopamine. Neural Netw. 15, 603–616 (2002).

12. Tanimoto, H., Heisenberg, M. & Gerber, B. Experimental psychology: event timing turns
punishment to reward. Nature 430, 983 (2004).

13. Barto, A.G. Adaptive critics and the basal ganglia. in Models of Information Processing
in the Basal Ganglia (eds. Houk, J.C., Davis, J.L. & Beiser, D.G.) 215–232 (MIT Press,
Cambridge, Massachusetts, 1995).

14. Sutton, R.S. & Barto, A.G. Reinforcement Learning: an Introduction. (MIT Press,
Cambridge, Massachusetts, 1998).

15. Montague, P.R., Dayan, P. & Sejnowski, T.J. A framework for mesencephalic dopamine
systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

16. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward.
Science 275, 1593–1599 (1997).

17. O’Doherty, J.P., Dayan, P., Friston, K., Critchley, H. & Dolan, R.J. Temporal difference
models and reward-related learning in the human brain. Neuron 38, 329–337 (2003).

18. Seymour, B. et al. Temporal difference models describe higher-order learning in humans.
Nature 429, 664–667 (2004).

19. Dayan, P. & Balleine, B.W. Reward, motivation, and reinforcement learning. Neuron 36,
285–298 (2002).

20. Schwartz, A. A reinforcement learning method for maximizing undiscounted rewards. in
Proceedings of the Tenth International Conference on Machine Learning. 298–305
(Morgan Kaufmann, San Mateo, California, 1993).

21. Mahadevan, S. Average reward reinforcement learning: Foundations, algorithms and
empirical results. Mach. Learn. 22, 1–38 (1996).

22. Fields, H.L. Pain modulation: expectation, opioid analgesia and virtual pain. Prog. Brain
Res. 122, 245–253 (2000).

23. Price, D.D. Psychological Mechanisms of Pain and Analgesia (IASP, Seattle, 1999).
24. Tanaka, S.C. et al. Prediction of immediate and future rewards differentially recruits

cortico-basal ganglia loops. Nat. Neurosci. 7, 887–893 (2004).
25. Ploghaus, A. et al. Dissociating pain from its anticipation in the human brain. Science

284, 1979–1981 (1999).
26. Jensen, J. et al. Direct activation of the ventral striatum in anticipation of aversive

stimuli. Neuron 40, 1251–1257 (2003).
27. McClure, S.M., Berns, G.S. & Montague, P.R. Temporal prediction errors in a passive

learning task activate human striatum. Neuron 38, 339–346 (2003).

28. Setlow, B., Schoenbaum, G. & Gallagher, M. Neural encoding in ventral striatum during
olfactory discrimination learning. Neuron 38, 625–636 (2003).

29. Daw, N.D. & Touretzky, D.S. Long-term reward prediction in TD models of the dopamine
system. Neural Comput. 14, 2567–2583 (2002).

30. Markowitz, H. The utility of wealth. J. Polit. Econ. 60, 151–158 (1952).
31. Camerer, C., Loewenstein, G. & Prelec, D. Neuroeconomics: how neuroscience can

inform economics. J. Econ. Lit. (in the press).
32. Rogan, M.T., Leon, K.S., Perez, D.L. & Kandel, E.R. Distinct neural signatures for

safety and danger in the amygdala and striatum of the mouse. Neuron 46, 309–320
(2005).

33. Watkins, L.R. et al. Neurocircuitry of conditioned inhibition of analgesia: effects of
amygdala, dorsal raphe, ventral medullary, and spinal cord lesions on antianalgesia in
the rat. Behav. Neurosci. 112, 360–378 (1998).

34. Holland, P.C. & Gallagher, M. Amygdala-frontal interactions and reward expectancy.
Curr. Opin. Neurobiol. 14, 148–155 (2004).

35. O’Doherty, J., Kringelbach, M.L., Rolls, E.T., Hornak, J. & Andrews, C. Abstract reward
and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4,
95–102 (2001).

36. Small, D.M., Zatorre, R.J., Dagher, A., Evans, A.C. & Jones-Gotman, M. Changes
in brain activity related to eating chocolate: from pleasure to aversion. Brain 124,
1720–1733 (2001).

37. Glascher, J. & Buchel, C. Formal learning theory dissociates brain regions with different
temporal integration. Neuron 47, 295–306 (2005).

38. Petrovic, P., Kalso, E., Petersson, K.M. & Ingvar, M. Placebo and opioid analgesia–
imaging a shared neuronal network. Science 295, 1737–1740 (2002).

39. Wager, T.D. et al. Placebo-induced changes in FMRI in the anticipation and experience
of pain. Science 303, 1162–1167 (2004).

40. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological
investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

41. Stefanovic, B., Warnking, J.M. & Pike, G.B. Hemodynamic and metabolic responses to
neuronal inhibition. Neuroimage 22, 771–778 (2004).

42. Altier, N. & Stewart, J. The role of dopamine in the nucleus accumbens in analgesia. Life
Sci. 65, 2269–2287 (1999).

43. Horvitz, J.C. Mesolimbocortical and nigrostriatal dopamine responses to salient non-
reward events. Neuroscience 96, 651–656 (2000).

44. Smith, A.J., Becker, S. & Kapur, S. A computational model of the functional role of the
ventral-striatal D2 receptor in the expression of previously acquired behaviors. Neural
Comput. 17, 361–395 (2005).

45. Ungless, M.A., Magill, P.J. & Bolam, J.P. Uniform inhibition of dopamine neurons in the
ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).

46. Roitman, M.F., Wheeler, R.A. & Carelli, R.M. Nucleus accumbens neurons are innately
tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to
motor output. Neuron 45, 587–597 (2005).

47. Johansen, J.P. & Fields, H.L. Glutamatergic activation of anterior cingulate cortex
produces an aversive teaching signal. Nat. Neurosci. 7, 398–403 (2004).

48. Gadd, C.A., Murtra, P., De Felipe, C. & Hunt, S.P. Neurokinin-1 receptor-expressing
neurons in the amygdala modulate morphine reward and anxiety behaviors in the mouse.
J. Neurosci. 23, 8271–8280 (2003).

49. Dayan, P. & Abbott, L.F. Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems (MIT Press, Cambridge, Massachusetts, 2001).

50. Buchel, C., Holmes, A.P., Rees, G. & Friston, K.J. Characterizing stimulus-response
functions using nonlinear regressors in parametric fMRI experiments. Neuroimage 8,
140–148 (1998).

1240 VOLUME 8 [ NUMBER 9 [ SEPTEMBER 2005 NATURE NEUROSCIENCE

ART ICLES
©

20
05

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e


