ECT and cerebral atrophy
A COMPUTED TOMOGRAPHIC STUDY
S. P. CALLOWAY, R. J. DOLAN, R. J. JACOBY AND R. LEVY

The case-notes of 41 elderly depressives who underwent computed tomography were examined and the ECT history of each patient was assessed. No association was found between ECT and global cortical atrophy or ventricular size, but a significant relationship was demonstrated between frontal lobe atrophy and ECT.

Key words: Depression – electro-convulsive therapy – computed tomography – cortical atrophy – frontal lobes.

The possibility that electro-convulsive therapy (ECT) has lasting effects on the brain has frequently been raised. Research has focussed on the long-term psychological effects of ECT especially with regard to memory (Halliday et al. (1968), Squire & Chace (1975), Weeks et al. (1980)). There is little information about morphological changes in the brain following ECT in man, although animal studies have showed structural changes in neurones and glial cells particularly in the frontal area following electrically induced convulsions (Harrell et al. (1952), Ferraro et al. (1946)). Computed tomography (CT) offers a non-invasive way of examining structural changes in vivo. In order to investigate any association between ECT and cerebral atrophy we re-examined the data of Jacoby & Levy (1980) who looked at the relationship of CT appearance to clinical state in 41 elderly patients with a primary diagnosis of affective disorder.

METHOD
The patients were 41 consecutive admissions to the psychiatric ward of the Bethlem Royal with a primary diagnosis of affective disorder. All 41 case-notes were traced and re-examined. Two patients with a history of excessive alcohol intake and one with a history of syphilis were excluded from the analysis. The case-notes of the remaining 38 patients were examined in order to determine the presence or absence of ECT in their treatment history and the number of...
For analysis ECT was considered by presence or absence patient’s history and estimated number of applications. Patients in one of six groups according to the estimated number of applications: 1-6, 7-12, 13-24, 25-36, over 36.

The technique of scan analysis and assessment of cortical atrophy was described in detail by Jacoby et al. (1980). Cortical atrophy was assessed by a neuroradiologist on a four-point scale for each of the five frontal, temporal, insular, parietal, and occipital lobes.

The relationship of CT changes to ECT was assessed by squared test and the Mann-Whitney U test for non-parametric data.

RESULTS

Twenty-two patients (mean age 71.5) had received ECT and 11 (mean age 73.8) had not. Information was insufficient in one case and was not included in the analysis. Twenty-nine out of 37 patients were taking medication.

No relationship was shown between ventricular measures and age. There was a significant difference between measures of cortical atrophy (Table 1).

Table 1 shows the relationship between history of ECT and age and between ECT and age. Temporal or frontal atrophy was present in only four patients and no statistical evaluation was performed. A chi-square test indicates a significant association between the presence of frontal atrophy ($P < 0.02$) for patients with insular atrophy. ECT and parietal atrophy just failed to reach the 0.05 level.

These differences were not due to age as there was no significant difference between the ECT-treated groups (mean age 71.5) and the controls (mean age 73.8).

The majority of patients had received bilateral ECT. The number of patients was too small for a valid comparison to be made between the two groups.

Table 2 shows the relationship of ECT to frontal atrophy...
Table 2. Estimated number of ECT applications in patients with and without cortical atrophy in the frontal area

<table>
<thead>
<tr>
<th></th>
<th>No. of ECT applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>No atrophy</td>
<td></td>
</tr>
<tr>
<td>Atrophy</td>
<td>2</td>
</tr>
</tbody>
</table>

Mann-Whitney U test = 100.5, two-tailed, $P < 0.05$.

The estimated number of ECT applications given to patients with and without cortical atrophy is shown.

The Mann-Whitney U test for non-parametric data showed that patients with frontal lobe atrophy had received more applications of ECT ($P < 0.05$).

DISCUSSION

The results suggest an association between history of treatment with ECT and cortical atrophy in the frontal region. One possible explanation for these findings is that ECT causes cortical atrophy. An alternative is that there may be a sub-group of patients with depressive symptoms who are more prone to develop frontal atrophy and who are also more likely to be given ECT for clinical reasons. Additionally, these patients might be relatively unresponsive to treatment, perhaps because of the organic changes observed here, and as a consequence might receive more ECT than the other group.

The relationship between ECT and cerebral atrophy has also been considered by Weinberger et al. (1979) who performed CT scans on 75 chronic schizophrenics. Measuring the width of fissures and sulci they found significantly greater cortical atrophy in 17 ECT-treated patients compared with 58 patients who had not received ECT ($P < 0.01$). The only attempt at a prospective study of the putative effect of ECT on brain structure observable on CT scans was undertaken by Menken et al. (1979). In a single case study of a 30-year-old woman who had 10 ECT applications over 45 minutes a CT scan performed 3 hours after the last application showed no 'haemorrhages or oedema', a study which, in our opinion, does not help to resolve the issue of the possible role of ECT in causing structural damage to the brain.

CONCLUSION

The *ad hoc* nature of this study and the difficulty in obtaining an accurate assessment of the number of applications of ECT do not permit us to claim an unequivocal association between ECT and structural change in the brain. Nevertheless, this is a question of such importance that, in our opinion, the finding of a relationship between frontal atrophy and ECT justifies this brief report. It emphasizes the need for a more detailed investigation, with larger numbers of patients including a younger age group.
ACKNOWLEDGEMENTS

We would like to thank Dr. P. Fonagy for assistance with the statistical analysis of the data, also Prof. A. Wakefield and Dr. A. H. Mann for helpful comments on the manuscript. The original investigation was supported by a grant from the Board of Governors of the Bethlem Royal Hospital and the Maudsley Hospital.

REFERENCES

Received May 11, 1981

S. P. Calloway, M.R.C.P.
R. J. Dolan, M.B.
Wellcome Research Fellows
The Royal Free Hospital
London, NW3 2QG

R. I. Jacoby, D.M.
Senior Lecturer and Honorary Consultant
The Middlesex Hospital
London, W1N 8AA

R. Levy, F.R.C.Psych.
Consultant Psychiatrist
The Bethlem and Maudsley Hospitals
London, SE5 8AZ
England