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Highlights 

►Recognizing visual speech, compared to face identity, increased LGN responses  

►LGN modulation to speech was higher than for control tasks with non-speech stimuli  

►LGN response to speech correlated positively with speechreading accuracy  

►LGN modulation to speech was independent of eye-movement and task difficulty 
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The cerebral cortex modulates early sensory processing via feed-back connections 

to sensory pathway nuclei. The functions of this top-down modulation for human 

behavior are poorly understood. Here, we show that top-down modulation of the 

visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-

speech recognition. In two independent functional magnetic resonance imaging 

(fMRI) studies, LGN response increased when participants processed fast-varying 

features of articulatory movements required for visual-speech recognition, as 

compared to temporally more stable features required for face identification with 

the same stimulus material. The LGN response during the visual-speech task 

correlated positively with the visual-speech recognition scores across participants. 

In addition, the task-dependent modulation was present for speech movements 

and did not occur for control conditions involving non-speech biological 

movements. In face-to-face communication, visual speech recognition is used to 

enhance or even enable understanding what is said. Speech recognition is 

commonly explained in frameworks focusing on cerebral cortex areas. Our 

findings suggest that task-dependent modulation at subcortical sensory stages has 

an important role for communication: Together with similar findings in the 

auditory modality the findings imply that task-dependent modulation of the 

sensory thalami is a general mechanism to optimize speech recognition.  

 

Keywords: functional MRI, lateral geniculate nucleus, lipreading, speech. 
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1. Introduction 

Sensory thalami receive massive feed-back connections from the cerebral cortex 

(Jones, 1985). Many studies in animals have shown that these corticothalamic 

connections have the power to fine-tune or even change the receptive field properties of 

sensory thalamic neurons (Andolina et al., 2007; Krupa et al., 1999; Lee et al., 2008; 

Murphy and Sillito, 1987; Sillito et al., 1994, 1993; Temereanca and Simons, 2004; Zhang 

et al., 1997). These findings have challenged the classical view of the sensory thalamus as 

a passive relay station (Camarillo et al., 2012). They opened up a debate regarding 

thalamic function and the behavioral relevance of top-down corticothalamic modulation 

(for reviews see Briggs and Usrey, 2008; Cudeiro and Sillito, 2006; Ghazanfar and 

Nicolelis, 2001; Ghodrati et al., 2017; Guillery and Sherman, 2002; Makinson and 

Huguenard, 2015; Saalmann and Kastner, 2011; Suga and Ma, 2003). 

In humans, the contribution of top-down modulation of the sensory thalamus to 

perception and cognition is still poorly understood (Saalmann and Kastner, 2011). In the 

auditory modality, top-down modulation of the auditory thalamus, the medial geniculate 

body (MGB), is relevant for auditory speech recognition (Díaz et al., 2012; von Kriegstein 

et al., 2008). MGB responses increased when participants recognized fast, spectro-

temporal changes in speech (i.e., speech sounds), as compared to recognizing other 

changes occurring at a slower time-scale in the same stimulus. The employment of the 

same stimuli for the two recognition tasks ensured that the MGB response increase in the 

speech task was driven by task requirements and not by differences in stimulus 

properties. In the following we will call such modulation, ‘task-dependent modulation’. 

The amplitude of the task-dependent modulation of the MGB correlated positively with 

auditory speech-recognition skills (von Kriegstein et al., 2008). In the visual modality, 

several studies have shown task-dependent modulation of the visual thalamus, the lateral 
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geniculate body (LGN), by attention to visual stimuli, such as flickering checkerboards or 

moving dots (Ling et al., 2015; O’Connor et al., 2002; Schneider, 2011; Schneider and 

Kastner, 2009). For example, the LGN response increased when participants attended to 

a peripheral flickering checkerboard as compared to when they did not attend it 

(O’Connor et al., 2002). LGN responses also increased when participants attended to 

moving white dots in contrast to stationary colored dots in a dot display (Schneider, 

2011). However, whether task-dependent modulation of the LGN is relevant for human 

communicative functions is unknown.  

Speech recognition in face-to-face communication relies on auditory- and visual-

speech signals (Arnold and Hill, 2001; Navarra and Soto-Faraco, 2007; Ross et al., 2007; 

Sumby and Pollack, 1954). Visual-speech recognition is the ability to recognize speech 

based solely on the visible and fast-varying articulatory movements of the speech 

articulators such as the lips and the tip of the tongue. The perception of the visual-speech 

signal enhances the understanding of what is said by up to 45% (Arnold and Hill, 2001; 

Navarra and Soto-Faraco, 2007; Ross et al., 2007; Sumby and Pollack, 1954), and is 

particularly important in situations with high background noise (MacLeod and 

Summerfield, 1987) or for populations with hearing impairments (Bernstein et al., 2000; 

Giraud et al., 2001; Rouger et al., 2007). Yet, we also use information from visual-speech 

when the auditory signal is clear (Arnold and Hill, 2001; Mcgurk and Macdonald, 1976). 

The co-occurrence of auditory and visual information in speech opens up the question 

whether auditory and visual systems require similar processing mechanisms for the 

analysis of the fast-varying speech signals. The aim of the present study was therefore to 

test whether the LGN has similar response properties for visual-speech recognition as 

previously found for the MGB in auditory-speech recognition (Díaz et al., 2012; von 

Kriegstein et al., 2008). If that were the case, it would indicate that there is a unifying 
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mechanism of task-dependent modulation of the sensory thalamus in the auditory and 

visual modalities: in the LGN for visual-speech recognition and in the MGB for auditory-

speech recognition. 

In two fMRI experiments, we measured the LGN blood oxygen level dependent 

(BOLD) response while participants performed a visual-speech recognition task and a 

face-identity task with the same visual stimulus material (i.e., muted videos of several 

speakers). The visual-speech recognition task required processing the fast-varying, 

spatio-temporal visual features of articulatory movements. The face-identity task 

required recognizing relatively constant visual features. The two task conditions in each 

experiment differed only in the specific visual feature that participants had to recognize 

(i.e. visual-speech or face-identity), all other aspects of the tasks where kept the same.   

We tested two key hypotheses. First, we hypothesized a task-dependent 

modulation of the LGN with a greater BOLD response for visual-speech recognition, as 

compared to face-identity recognition. Second, we hypothesized a positive correlation of 

the task-dependent LGN modulation with visual-speech recognition task performance. 

Such a correlation would provide a first indication that the task-dependent LGN 

modulation is relevant for visual-speech recognition. The two hypotheses were derived 

from the analogous response characteristics in the MGB for auditory speech found in 

previous studies: (i) a greater BOLD response of the MGB when processing fast-varying, 

spectrotemporal features in auditory-speech as compared to more slowly varying voice-

identity features (Díaz et al., 2012; von Kriegstein et al., 2008), and (ii) a positive 

correlation of the task-dependent MGB modulation with auditory speech recognition 

performance (von Kriegstein et al., 2008). Besides testing the two key hypotheses, we 

also explored whether the task-dependent modulation of the LGN was stronger for visual-
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speech in contrast to non-speech biological movements. To do this, we included two 

control conditions with non-speech biological movement stimuli in Experiment 1. In the 

control conditions, participants performed a task that required tracking fast movements 

of a thumb pressing cell phone keys in contrast to recognizing the identity of the cell 

phone. Thus, the control conditions involved recognizing fast (thumb movement on cell 

phone keys) or more stable (identity) spatio-temporal changes in a similar fashion as the 

visual-speech conditions. A stronger task-dependent modulation for visual speech in 

contrast to non-speech biological movement stimuli would be a first indication that the 

task-dependent modulation of the LGN is particularly relevant for the processing of 

movement features that are present in visual speech.  

 

2. Methods 

The Ethics Committee of the Medical Faculty, University of Leipzig, Germany, 

approved the procedures and all participants gave their written informed consent.  

 

2.1. Participants, stimuli, and fMRI task design: Experiment 1 

2.1.1. Participants 

Twenty-one healthy volunteers participated in Experiment 1 (native German 

speakers, 10 female, mean age 26 years, age range 23–34 years; all right handed 

according to the Edinburgh questionnaire, Oldfield, 1971). None of the participants had 

a history of auditory, neurological, or psychiatric disorders and they all had normal or 

corrected-to-normal vision. Three participants were excluded from the analysis: one 

because of difficulties with acquiring the field-map during fMRI, one because he did not 

follow the task instructions, and one due to intermittent technical problems with the 
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response box. Therefore, the analyses were based on 18 participants (9 females; mean 

age 27 years).  

 

2.1.2. Stimuli 

Stimuli consisted of muted videos and of auditory-only files. Stimuli were created 

by recording three native German male speakers (22, 23, and 25 years old) and three cell 

phones. Audiovisual videos were taken of the speakers' faces and of a hand operating the 

cell phones. The key sounds of each cell phone had an idiosyncratic timbre and frequency 

(i.e., 205, 405, 470 Hz, respectively) implemented by the manufacturer of the cell phone 

(Supplementary Fig. 1). All the speaker videos started and ended with the speaker’s 

mouth closed. Speech samples of each speaker included the same 12 two-syllable words 

(Example: “Dichter”, English: “poet”). For each cell phone there were 12 videos of 

different sequences of two to five key presses per sequence. For the experiment, we 

created muted videos (mean duration 1.77 s ±0.23) and auditory-only stimuli (mean 

duration 0.95 s ±0.15) from the 12 speaker videos and, likewise, muted videos (mean 

duration 1.73 s ±0.25) and auditory-only stimuli (mean duration 1.76 s ±0.27) from the 

12 cell phone videos.  

Videos were recorded with a digital video camera (Canon, Legria HF S10 HD-

Camcorder). High quality auditory stimuli were simultaneously recorded with a 

condenser microphone (Neumann TLM 50, pre-amplifier LAKE PEOPLE Mic-AmpF-35, 

soundcard PowerMac G5, 44.1 kHz sampling rate, and 16 bit resolution) and the software 

Sound Studio 3 (felt tip inc, USA). All recordings were made in a sound-attenuated 

chamber (IAC-I200 series, Winchester, UK) under constant luminance conditions. 

All videos were processed and cut in Final Cut Pro (version 6, HD, Apple Inc., USA). 

They were converted to mpeg format and presented at a size of 727 × 545 pixels. In the 
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MRI scanner, the image subtended a visual angle of 11° x 8° at a viewing distance of 98 

cm. The auditory stimuli were post-processed using Matlab (version 7.7, The MathWorks, 

Inc., MA, USA) to adjust overall sound level. The audio files of all speakers and cell phones 

were adjusted to a root mean square (RMS) of 0.083. 

In the following we will call all stimuli derived from the speaker recordings, 

person stimuli and from the cell phone recordings, cell phone stimuli.  

 

2.1.3. FMRI experimental design 

The experiment was a 2x2x2 factorial design (Fig. 1A,B) with the factors stimulus 

type (person stimuli/cell phone stimuli), tasks (movement task/identity task), and 

audiovisual (AV) congruency (AV same/AV different). In the person-stimulus conditions 

(Fig. 1A), each trial consisted of a visual-only video of a speaker saying a word followed 

by an auditory-only word said by one of the speakers. In the cell phone-stimulus 

condition (Fig. 1B) each trial consisted of a visual-only video of a hand pressing the keys 

of a cell phone followed by an auditory-only presentation of key-tones of one of the cell 

phones. The auditory and visual stimulus could be the same or different in content and/or 

identity. This means that in the person stimulus condition, the visual and auditory 

stimulus of each trial could represent the same or a different word and that the word 

could be spoken by the same or a different speaker. In the cell phone stimulus condition, 

the visual and auditory stimulus of each trial could represent the same or a different 

number of key-presses and these could be performed on the same or a different cell 

phone identity.  
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Fig. 1. Experiment 1: Experimental Design.  
The experiment contained the factors task and stimulus condition. (A) Person stimulus 
tasks: One trial consisted of a muted video of one speaker (represented here by a face 
image) followed by the presentation of a visual fixation cross together with an auditory 
word. Balloons show the name of the speaker and the word. Participants performed two 
tasks: In the visual-speech recognition task, participants indicated whether the words in 
the video and audio stream were the same or different. In the face-identity task, 
participants indicated whether the speaker in the visual and audio stream were the same 
or different. Stimuli were identical for the two task conditions. Correct responses are 
represented by the hands color-coded for each task and color-coded circle for each type 
of response. Stimuli were organized in blocks of the same task condition. Before each 
block, participants saw a screen with task instructions. (B) Cell phone stimulus tasks: One 
trial consisted of a muted video of a thumb pressing cell phone keys followed by the 
presentation of a fixation cross together with auditory keypad tones. Balloons show the 
identity of the cell phones and the number of key presses/tones. Participants performed 
two tasks: For the keypress task, participants indicated whether the number of key 
presses shown in the video were the same as the number of keypad tones heard in the 
auditory stimulus. This task required tracking the movements of the thumb on the 
keypad. In the cell phone-identity task, participants indicated whether the same cell 
phone-identity was present in the video and audio streams. Stimuli were identical for the 
two task conditions. Correct responses are represented by the hands color-coded for each 
task and color-coded circle for each type of response. Stimuli were organized in blocks of 
the same task condition. Before each block, participants saw a screen with task 
instructions. AV, audio-visual. 
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Participants performed two types of tasks on the person and cell phone stimuli – 

a “movement” and an “identity task”. In the following we will call the “movement task” in 

the person-stimulus condition “visual-speech recognition task” and in the cell phone-

stimulus condition “keypress task”. The “identity task” will be called “face-identity” and 

“cell phone-identity task”, respectively.  

In the visual-speech recognition task (Fig. 1A), participants were requested to 

indicate, via button press, whether the auditory-only presented word was the same as in 

the preceding visual-only (i.e., muted) word in the video or not. This task required visual–

speech recognition during the visual-only stimulus presentation. In the keypress task 

(Fig. 1B), participants indicated, via button press, whether the number of auditory-only 

keypad tones heard was the same or different as the number of pressed cell phone keys 

in the muted video previously presented. In the identity task during person-stimulus 

conditions (face-identity task, Fig. 1A), participants indicated, via button press, whether 

or not the auditory-only voice and the preceding visual-only face belonged to the same 

person. This task required recognizing the identity of the face in the video. For the 

identity task during cell phone-stimulus conditions (cell phone-identity task, Fig. 1B), 

participants indicated whether the auditory-only key-tones and the preceding visual-

only cell phone belonged to the same cell phone or not. The identity associations were 

learned in a training session prior to the fMRI experiment (for details about the training 

see the Supplementary Methods). 

In total, the experiment contained 12 different speech stimuli and 12 different key-

tone sequences. Each stimulus was repeated three times per task condition. The order of 

presentation of the word and key-tone sequences was randomized.  
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Within each trial, the visual-only and auditory-only stimuli were presented 

sequentially for 1.6 s on average each. Between the visual-only and auditory-only 

stimulus a fixation cross was presented (average duration 1.6 s; range 1.2 to 2.2 s). To 

indicate the response phase, a blue frame appeared on the screen during the auditory-

only stimuli. The response phase lasted 2.3 s. Between trials, a fixation cross was 

presented (average 1.6 s; range 1.2 to 2.2 s). A third of the trials were null events in which 

a fixation cross was presented for 1.6 s. The null events were randomly presented within 

the experiment (Friston et al., 1999). Trials were grouped into 24 blocks of 12 trials each. 

There were 6 blocks per task condition. Participants performed one of the tasks in each 

block (i.e., visual-speech recognition task, keypress task, face-identity task, or cell phone-

identity task). The grouping of trials into blocks was done to minimize the time spent 

instructing the participants on which task to perform and to avoid frequent task 

switching. Blocks were presented in pseudo-random order, not allowing neighboring 

blocks of the same task condition. All blocks were preceded by a short task instruction. 

The written words “Wort” (Eng. “word”) and “Anzahl der Tastentöne” (Eng. “number of 

key press”) indicated the visual-speech recognition and keypress tasks respectively. The 

written words “Person” (Eng. “person”) and “Handy” (Eng. “cell phone”) indicated the 

face- and cell phone-identity tasks respectively. Each instruction was presented for 2.7 s. 

The whole experiment consisted of two 16.8 min runs. Participants were allowed to rest 

for approximately two minutes between runs. Before the experiment, participants were 

briefly familiarized with all tasks outside of the MRI-scanner. 

Beside the factors task (visual-speech recognition/keypress and face-identity/cell 

phone-identity), stimulus (person/cell phone), and AV congruency (same/different), the 

whole experiment included a fourth factor: modality of the first stimulus of a trial 

(auditory-only first/visual-only first). The “visual-only first” condition is described 
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above. The setup for the “auditory-only first” condition was exactly the same as the 

“visual-only first” condition, with the difference that the first stimulus was auditory-only 

and the second stimulus was the visual-only video. This condition was part of a different 

research question and the experimental procedures and results for cortical areas are 

described in detail elsewhere (Blank et al., 2011; Blank and von Kriegstein, 2013). We 

only used the cell phone stimuli of these conditions to functionally localize the LGN 

independently of the conditions of interest (see below section 2.4.3.5. Definition of regions 

of interest (ROIs)). 

 

2.2. Participants, stimuli and fMRI task design: Experiment 2 

Experiment 2 served to replicate the findings of Experiment 1 using different 

stimuli and a different task design, as well as to control for potential eye-movement 

differences between the visual-speech recognition and face-identity task conditions (Lal 

and Friedlander, 1989; Sylvester et al., 2005). We used visual stimuli (i.e., vowel-

consonant-vowel syllables) and a 1-back task. We used this design in the visual modality 

to parallel as much as possible the design of our previous studies in the auditory modality 

(in which we found task-dependent modulation of the MGB, Díaz et al., 2012; von 

Kriegstein et al., 2008).  

 

2.2.1. Participants 

 Sixteen healthy volunteers participated in Experiment 2 (native German 

speakers, two female, mean age 27 years, age range 22–32 years; all right-handed 

according to the Edinburgh questionnaire, Oldfield, 1971). None of the participants had 
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a history of auditory, neurological, or psychiatric disorders and they had normal or 

corrected-to-normal vision. None of them had participated in Experiment 1. 

 

2.2.2. Stimuli 

Stimuli consisted of muted videos of three native German female speakers (22, 26, 

and 26 years old) and a native German male speaker (22 years old). In all videos the 

speakers' face were shown while articulating speech and they started and ended with the 

speakers’ mouth closed. The three female speakers were recorded while saying 54 vowel-

consonant-vowel syllables. The syllables were all possible combinations of the vowels 

/a/, /e/, /u/, and the consonants /p/, /t/, /n/, /f/, /s/, /r/. Each of the speech sounds 

corresponds to a different and discriminable visual articulatory unit, commonly called 

visemes, in German (Aschenberner and Weiss, 2005). The video recordings of the 

syllables were used for the main experiment. The male speaker was recorded while 

saying forty 5-word sentences that were semantically neutral (e.g., ‘’Der Junge trägt einen 

Koffer’’, English: “The boy carries a suitcase”) and syntactically similar (i.e., subject–verb–

object). The video recordings of the sentences were used for functionally localizing the 

LGN (see below section 2.2.3. fMRI experimental task). 

All the speakers were recorded with a digital video camera (Canon, Legria HF S10 

HD-Camcorder) under constant luminance conditions. All videos were processed and cut 

in Final Cut Pro (version 6, HD, Apple Inc., USA). Videos of the female speakers were on 

average 1.89 s (± 0.19 s) long and those of the male speaker were on average 3.11 s (± 

0.25 s) long. Videos were converted to mpeg format and presented at a size of 727 × 545 

pixels. In the MRI-scanner, the image subtended a visual angle of 11° x 8° at a viewing 

distance of 98 cm. 
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2.2.3. FMRI experimental task 

The study consisted of two parts: the main experiment and a functional localizer 

to identify the location of the LGN.  

During the main experiment participants performed two tasks: a visual-speech 

recognition task and a face-identity task. The main experiment consisted of blocks of 

muted videos of three female speakers saying vowel-consonant-vowel syllables (Fig. 2). 

Blocks started with a task instruction screen (2 s) followed by a sequence of eight videos. 

Between the videos, a fixation cross was presented for 0.3 s at approximately the same 

position of the speakers’ mouth. Each block lasted on average 20 s. During each block, 

participants performed one of the two experimental tasks according to the written 

instruction at the beginning of the block: “Silbe” (Eng. “syllable”) for the visual-speech 

recognition task and “Person” (Eng. “person”) for the face-identity task. For the visual-

speech recognition task blocks, participants responded via button press whenever the 

syllable in the current video was different from the one in the previous video. For the 

face-identity task blocks, participants responded via button press whenever the speaker 

of the current video was different from the one in the previous video. Videos were 

randomly presented within the block with the constraints that (i) each syllable/speaker 

occurred at least twice, and (ii) changes between two consecutive syllables/speakers 

occurred between three and four times within a block. The same blocks were presented 

for both tasks.  
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Fig. 2. Experiment 2: Experimental Design. 

The experiment included muted videos of speakers 
articulating syllables and had two task conditions. In 
the visual-speech recognition task, participants 
indicated when the syllable spoken by the speaker in 
the muted video was different from the one in the 
preceding video. In the face-identity task, 
participants indicated when the speaker in the 
muted video was different from the one in the 
preceding video. Balloons show the syllable 
articulated. Correct responses are represented by 
the hands color-coded for each task and by a black 
circle for the type of response. Stimuli were 
organized in blocks of the same task condition. 
Before each block, participants saw a screen with 
task instructions. Stimuli were identical for the two 
tasks. 

 

 

 

 

Participants were asked to fixate on the speakers’ mouth and the fixation cross to 

minimize potential differences in participants’ eye movements between the two tasks. In 

addition, a reminder to fixate on the mouth was presented at the beginning of each block 

below the task instruction (“Bitte auf den Mund schauen", Eng. “please, look at the 

mouth”). We monitored participants’ eye movements via an eye tracking system (ASL 

Eye-Trac 6, Applied Science Laboratories, Bedford, USA).  

The experiment consisted of two runs, each run had 36 blocks: 12 blocks for each 

task (i.e., visual-speech recognition and face-identity tasks) and 12 rest blocks, in which 

participants only had to look at a fixation cross for 20 s. The different types of blocks were 

presented in random order. Participants were allowed to rest for ca. five minutes 

between the two runs. The runs lasted approximately 11 minutes each. Before the 



17 

experiment, participants were familiarized with the tasks outside of the MRI scanner by 

performing five blocks for each experimental task. 

In the functional localizer for the LGN, participants were presented with 15 blocks 

of six randomly selected muted videos of the male speaker pronouncing a sentence. Each 

block of muted videos lasted on average 18 s. A fixation cross was presented for 0.4 s 

between the videos approximately where the speaker’s mouth was located. Participants 

were asked to press a button at the end of each sentence to ensure that they watched the 

videos. The instruction was done via a task instruction displaying the written word 

“Satzende” (Eng. “end of the sentence”) for 2 s immediately before the beginning of each 

block. In addition, the design included 15 rest blocks of 18 s each in which participants 

looked at a fixation cross. All blocks were presented in random order. The duration of the 

functional localizer was approximately 10 minutes.  

 

2.3. Image acquisition: Experiments 1 and 2 

Functional images and structural T1-weighted images were acquired on a 3 T 

Siemens Tim Trio MR scanner with a 12-channel head coil (Siemens Healthcare, Erlangen, 

Germany). 

For the functional MRI, a gradient-echo EPI (echo planar imaging) sequence was 

used (TE 30 ms, flip angle 90 degrees, TR 2.79 s, 42 slices, whole brain coverage, 

acquisition bandwidth 116 kHz). The voxel size was 3 mm3 (2 mm slice thickness, 1 mm 

interslice gap, in-plane resolution 3 mm × 3 mm), a resolution sensitive to capture signals 

from small brain structures such as the LGN (Kastner et al., 2004; Mullen et al., 2010; 

Noesselt et al., 2010; O’Connor et al., 2002; Sylvester et al., 2005; Wunderlich et al., 2005). 

For Experiment 1, 403 volumes were acquired. The volumes covered the presentation of 
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all experimental conditions including also those that we used for functionally localizing 

the LGN. For experiment 2, 524 volumes were acquired for the main experiment (two 

runs) and 228 for the functional localizer (one run). Geometric distortions were 

characterized by a B0 field-map scan. The field-map scan consisted of gradient-echo 

readout (24 echoes, inter-echo time 0.95 ms) with standard 2D phase encoding. The B0 

field was obtained by a linear fit to the unwrapped phases of all odd echoes.  

The structural images were acquired with a T1-weighted magnetization-prepared 

rapid gradient echo sequence (3D MP-RAGE) with selective water excitation and linear 

phase encoding. Magnetization preparation consisted of a non-selective inversion pulse. 

The imaging parameters were TI = 650 ms, TR = 1300 ms, TE = 3.93 ms, alpha = 10°, 

spatial resolution of 1 mm3, two averages. To avoid aliasing, oversampling was performed 

in the read direction (head–foot).  

 

2.4. Data analysis: Experiments 1 and 2 

2.4.1. Quantification of visual movement 

We estimated the amount of movement present in the person and cell phone 

stimuli of Experiment 1 by tracking the position in the x- and y-axis of the upper and 

lower lips for the person stimuli and the tip of the thumb for the cell phone stimuli on a 

frame-by-frame level. Two coders that were blind to the aim of the study performed the 

tracking by means of the software Tracker 

(http://www.cabrillo.edu/~dbrown/tracker/) developed by the Open Source Physics 

project(Christian et al., 2011). We run statistical analyses (SPSS 18.0, SPSS Inc., Chicago, 

IL, USA) on four measures: the average displacement in the x- and y-axis between 

consecutive frames, and the average velocity and acceleration parameters. All these 
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parameters were computed automatically by the software Tracker for each video frame. 

For the person stimuli, the values for the upper and lower lips were added to obtain a 

global estimation of the movement parameters.  

 

2.4.2. Behavioral data 

2.4.2.1. Task performance 

We computed the percentage of correct responses for each task and participant 

and transformed them to rationalized arcsine units (RAU) to alleviate ceiling effects 

(Studebaker G.A., 1985). Statistical tests were performed by means of SPSS 18.0 (SPSS 

Inc., Chicago, IL, USA) to assess for potential differences in task difficulty between the 

movement and identity tasks. The normal distribution of the data was assessed with the 

Shapiro-Wilk normality test. All datasets satisfied the normality assumption and we 

compared task performance by means of paired sample t-test. In addition we compared 

participants’ performance across the two experiments by means of a multivariate ANOVA 

with the between-subjects factors “Experiment” (1 and 2) and the within-subjects factor 

“Task” (visual-speech recognition and face-identity task). 

 

2.4.2.2. Eye tracking data  

For experiment 2, we also collected eye tracking data to test whether LGN 

modulation could be caused by differences in eye movements between the visual-speech 

recognition and face-identity recognition tasks (Lal and Friedlander, 1989; Sylvester et 

al., 2005). Eye data were analyzed offline with ASL-software (ASL Results Plus, Applied 

Science Laboratories, Bedford, USA). We used SPSS 18.0 (SPSS Inc., Chicago, IL, USA) for 

statistical comparisons. We run two analyses on the eye data. Firstly, we tested whether 
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there were differences in the average number and duration of fixations between the 

visual-speech recognition and face-identity tasks. For one participant there were no eye 

data because of difficulties with the calibration of the eye tracker. Hence, the analysis 

included the data from 15 participants. Secondly, we analyzed whether the location of the 

fixations on the experimental videos differed depending on the task. For this analysis we 

assessed the average number and duration of fixations on the experimental stimuli for 

three different regions of interest: the speakers’ mouth, eyes, and nose (Supplementary 

Fig. 2). In this second analysis we included the data from a subset of the participants, 7, 

for whom we obtained reliable localization of the fixations. The specific details about the 

eye tracking analyses are reported in the Supplementary Methods. 

 

2.4.3. Functional MRI data 

2.4.3.1 Preprocessing 

MRI data were analyzed with SPM8 (v5236; Wellcome Trust Centre for 

Neuroimaging, UCL, London, UK, www.fil.ion.ucl.ac.uk/spm) in a Matlab environment 

(version 9.2.0.556344, R2017a) (The MathWorks). EPI-Scans were realigned and 

unwarped to correct for motion artifacts. To achieve high precision in intersubject 

alignment we spatially normalized the images to the MNI template by means of the 

Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL) 

procedure (Ashburner, 2007). For this procedure, we co-registered the participants’ 

structural images to a participant’s mean of the realigned functional images. The 

structural images were then segmented into tissue-class images for gray matter, white 

matter, and cerebrospinal fluid (New Segment in SPM8). The participants’ tissue-class 

images were used to create a mean structural template representative of all participants’ 

brains and to calculate the deformation fields (i.e., flow fields) for each participant’s 
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native space image to the common space. Functional images were normalized to MNI 

space by mapping the group structural template to an MNI template in combination with 

the participant specific deformation fields. The normalized functional images preserved 

intensities of the original images (i.e., no “modulated”). Images were spatially smoothed 

with a Gaussian smoothing kernel of 4 mm full width at half maximum (FWHM). 

Smoothing is necessary to increase the signal-to-noise ratio, compensate for between-

subject variability, and to normalize error distributions to permit application of Gaussian 

random field theory for the statistics inference (Friston et al., 2000). Additionally, we also 

ran analyses without spatially smoothing the data and with a smoothing kernel of 2 mm 

to check whether smoothing misplaced the local maxima (Mikl et al., 2008). Geometric 

distortions due to susceptibility gradients were corrected by an interpolation procedure 

based on the B0 map (the field-map).  

 

2.4.3.2. Design matrices  

For Experiment 1, statistical parametric maps were generated by modeling the 

evoked hemodynamic response of the events of interest separately for each condition as 

boxcar functions convolved with a synthetic hemodynamic response function using the 

general linear model approach (Friston et al., 2007). The events of interest were the 

visual stimuli of the visual-speech recognition task, face-identity task, keypress task, and 

cell phone-identity task for the visual-first condition. In the same model, we included the 

events used to localize the LGNs (see below section 2.4.3.5. Definition of regions of interest 

(ROIs)). The rest of the events were not modeled. For Experiment 2, statistical parametric 

maps were generated by modeling the evoked hemodynamic response for the visual-

speech recognition and face-identity task blocks as boxcar functions convolved with a 
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synthetic hemodynamic response function using the general linear model approach 

(Friston et al., 2007).  

 

2.4.3.3. Categorical analyses 

The contrast of interest to test our main hypothesis, i.e., that LGN responses are 

modulated by the visual-speech recognition task, was “visual-speech recognition task – 

face-identity task”. We computed this contrast for each participant at the first-level by 

means of a t-contrast. At the second-level, we used a one-sample t-test across the first-

level contrast images of all participants. We performed two different second-level 

analyses on the contrast of interest. For Analysis 1, we created a design matrix with the 

first-level contrast images of all participants. For Analysis 2, we created a design matrix 

with the first-level contrast images of all participants and we entered as covariate of no 

interest the difference in correct responses (in RAU) between the visual-speech and face-

identity tasks to control for task difficulty. For Experiment 2 only, Analysis 2 included as 

additional covariates of no interest the average number of eye fixations and the duration 

of eye fixations to control for potential eye-movement effects. The categorical analysis of 

Experiment 1 also allowed exploring whether the task-dependent modulation of the LGN 

was stronger for visual-speech in contrast to non-speech biological movements. To do 

that we computed the interaction between stimulus type and task by means of an F 

contrast in SPM “(visual-speech recognition task/person stimuli – face-identity 

task/person stimuli) – (keypress task/cell phone stimuli – cell phone-identity task/cell 

phone stimuli)”. The F contrast was computed at the second-level based on the contrast 

images of each condition (compared against the implicit baseline) computed for each 

participant at the first-level.  

2.4.3.4. Correlation analyses 
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We used correlation analyses to test our second hypothesis, i.e. that the task 

dependent modulation of the LGN correlates positively with visual-speech recognition 

accuracy. We created a design matrix at the second-level with the contrast “visual-speech 

recognition task – face-identity task” of each participant and each participants’ behavioral 

score (in RAU) for the visual-speech recognition task as covariate of interest. We ran an 

additional exploratory analysis to check whether there is a positive correlation between 

the BOLD response for the visual-speech recognition task and the participants’ visual-

speech recognition score. To do that we created a design matrix at the second-level with 

the contrast images “visual-speech recognition task – implicit baseline” of each 

participant and each participant’s behavioral score (in RAU) for the visual-speech 

recognition task as a covariate of interest. We expected no positive correlation between 

LGN responses in the other conditions and behavioral accuracy in these conditions and 

checked this by computing the correlations between the BOLD response for each of the 

other tasks and the respective behavioral scores.  

 

2.4.3.5. Definition of regions of interest (ROIs) 

We used the functional localizers to define group-based ROIs combined with 

probabilistic cytoarchitectonic maps of the LGNs (from the Anatomy toolbox v.2.2c for 

SPM, Eickhoff et al., 2005). Intersubject averaging is a reliable tool to assess LGN 

responses (Büchel, Turner, & Friston, 1997) and a group-based ROI approach has been 

used for the study of other small, subcortical structures such as the MGB (Díaz et al., 2012; 

Thompson et al., 2006; von Kriegstein et al., 2008). In addition, in the present study we 

used DARTEL to optimize intersubject registration. For Experiment 1, the LGNs were 

functionally mapped by contrasting the conditions with videos of cell phones from the 

auditory-only first conditions (not used for the experimental contrasts) against the 
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implicit baseline at the first-level and a one-sample t-test across the first-level contrast 

images of all participants at the second-level. This means that the LGN localizer was 

independently defined from the contrast of interest used to address our hypotheses. For 

Experiment 2, the LGNs were localized by contrasting the blocks of muted videos of the 

male speaker saying sentences against the implicit baseline at the first-level and a one-

sample t-test across the first-level contrast images of all participants at the second-level. 

These analyses were run on the 4 mm, 2 mm, and unsmoothed data. Following previous 

studies (Mullen, Thompson, & Hess, 2010; Schneider & Kastner, 2009; Wunderlich, 

Schneider, & Kastner, 2005), the LGNs were defined as all contiguous voxels responsive 

to the videos and located in the anatomical position of the LGN (Table 1 provides the 

location of the maximum statistic of the LGN clusters, which were similar to the ones 

reported by previous studies as showed in Supplementary Table 1). The ROI was defined 

by the intersection of the functional clusters with the probabilistic cytoarchitectonic 

maps of the visual thalamus provided by the Anatomy toolbox for SPM (version 2.2c) 

(Eickhoff et al., 2005) (Supplementary Fig. 3). The ROIs were created with the Marsbar 

Toolbox and exported to the functional image space (http://marsbar.sourceforge.net). 

 

Table 1. Definition of the LGN regions of interest (ROIs).  

 ROIs MNI coordinates Volume 
(mm3) 

Experiment 1  rLGN 24, -27, -3 88 
lLGN -21, -27, -3 232 

Experiment 2  rLGN 27, -24, -3 176 
lLGN -21, -27, -3 216 

The MNI coordinates of the local maxima in millimeters are x, y, z. rLGN and lLGN stand 
for the right and left lateral geniculate nucleus, and ROI stands for region of interest. 
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2.5. Statistical thresholds 

 For the quantification of the movement in the videos, the behavioral response, 

and eye tracking data analyses, effects were considered significant if present at p < 0.05. 

For the fMRI analyses (categorical and correlation analyses), effects were considered 

significant if present at P < 0.05 family-wise error (FWE) corrected for multiple 

comparisons at the peak level within the regions of interest (i.e., right and left LGN). We 

computed the FWE correction for the ROIs by means of small volume correction.  

 
 

3. Results 

3.1. Visual-speech recognition modulates LGN responses 

To address our first hypothesis, we tested whether the LGN response was 

modulated by the visual-speech recognition task in contrast to the face-identity task in 

the person stimulus conditions of Experiment 1 (Fig. 1A). In the visual-speech recognition 

task, participants indicated whether a word spoken in a muted video matched a 

subsequently presented auditory word or not. In the face-identity task, participants 

indicated whether the identity of the speaker in the muted video matched the identity of 

the voice in a subsequently presented auditory sample (Fig. 1A). The stimuli for both task 

conditions were exactly the same. The experiment also included cell phone stimulus tasks 

(Fig. 1B). 

As hypothesized, we found that the BOLD response in left and right LGNs (Fig. 3A) 

was significantly higher during the visual-speech recognition task, as compared to the 

face-identity task (Fig. 3B and 2C, Table 2 “Analysis 1, categorical/person stimuli”). 
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Fig. 3. Experiment 1: fMRI results for person stimulus conditions. 
(A) We identified the LGNs based on the independent localizer conditions (shown here) 
and an intersection with probabilistic maps (see supplementary Figure 3). (B) Within the 
LGN ROIs, there were higher responses to the visual-speech recognition in contrast to the 
face-identity task. Significance testing was done in the statistical parametric mapping 
software (SPM). For visualization purposes only, we masked the results with the LGN 
clusters from the visual localizer (indicated by the black outline surrounding the LGN). 
(C) The bar plots serve to illustrate the amount of LGN response for each person stimulus 
task condition separately. The bars depict the parameter estimates (au: arbitrary units) 
at the local response maxima of the contrast between visual-speech recognition and face-
identity tasks (MNI coordinates: 24, -27, -6 and -21, -27, -6). Error bars indicate SEM.  
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       Table 2. Experiment 1: Local fMRI response maxima and statistics.  

 

Analysis 1 Analysis 2 

Categorical/ 

person stimuli 

‘visual-speech rec. – 

face-identity’ 

Categorical/ 

Interaction 

Task x stimuli type 

Categorical/ 

cell phone 

stimuli 

‘keypress – cell 

phone-identity’ 

Categorical/ 

person stimuli 

‘visual-speech rec. – 

face-identity’ 

rLGN 

coordinates 24, -27, -6 24, -27, 6  24, -27, -6 

P value  0.037, FWE 0.025, FWE n.s. 0.041, FWE 

Z score 2.25 2.45  2.43 

lLGN 

coordinates -21, -27, -6 -24, -27, -6  -21, -27, -6 

P value  0.030, FWE 0.033, FWE n.s. 0.037, FWE 

Z score 2.56 2.54  2.48 

The MNI coordinates of the local maxima in millimeters are x, y, z. Analysis 2 differs from 
Analysis 1 in that it additionally included a covariate of no interest with the behavioral 
performance difference (percentage of correct responses in RAU) between the visual-
speech and face-identity task to control for differences in task difficulty. rLGN, right 
lateral geniculate nucleus; lLGN, left lateral geniculate nucleus; FWE, family-wise error 
corrected for region of interest; n.s., not significant even at a lenient statistical threshold 
(P < 0.05, uncorrected). 

 

3.2. LGN modulation for visual-speech but not for non-speech biological (thumb) 

movements 

We next explored whether the task-dependent LGN modulation is higher for the 

person stimuli (Fig. 1A) than for the cell-phone stimuli (Fig. 1B), which contained non-

speech biological movement. The tasks in the cell-phone stimulus conditions were similar 

to the person stimulus tasks in that one required to focus on the movement present in the 

stimulus (keypress task), and the other on the identity of the cell phone (cell phone-

identity task; for more details see legend of Fig. 1B). We performed an interaction analysis 

between task conditions and stimulus type. The interaction “(visual-speech recognition 

task/person stimuli – face-identity task/person stimuli) – (keypress task/cell phone 

stimuli – cell phone-identity task/cell phone stimuli)” was significant within the left and 

right LGN (Fig. 4, Table 2 “Analysis 1, categorical/interaction”). The direction of the 
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interaction was as expected: The LGN responses were higher for the visual-speech 

recognition task as compared to the face-identity task (Table 2 “Analysis 1, 

categorical/person stimuli”). There was however no significant response for the keypress 

task in contrast to the cell phone-identity task (Table 2 “Analysis 1, categorical/cell phone 

stimuli”), even at a lenient statistical threshold (P < 0.05, uncorrected). 

 

Fig. 4. Experiment 1: fMRI results 
for interaction between task and 
stimulus conditions. 
Within the LGN ROIs, there was a 
significant interaction between task 
and stimulus conditions:  “(visual-
speech recognition task/person 
stimuli – face-identity task/person 
stimuli) – (keypress task/cell phone 
stimuli – cell phone-identity 
task/cell phone stimuli)”. 
Significance testing was done in the 
statistical parametric mapping 
software (SPM). For visualization 
purposes only, we masked the 
results with the LGN clusters from 
the visual localizer (indicated by the 
black outline surrounding the LGN). 
The bar plots serve to illustrate the 
amount of LGN response for each 
condition separately. The bars 
depict the parameter estimates (au: 
arbitrary units) at the local response 
maximum of the interaction 
between task and stimulus 
conditions (MNI coordinates: 24, -

27, -6 and -24, -27, -6). Error bars indicate SEM.  

 

The entire lack of task-dependent modulation for the cell phone stimuli was 

somewhat unexpected, as a previous study had shown that attention to moving stimuli 

(white dots) in contrast to attention to static stimuli (colored dots) leads to LGN BOLD 

response increase (Schneider, 2011). To check whether the lack of task-dependent 



29 

modulation for the cell phone stimuli in our study might be explained by less movement 

in these stimuli compared to the person stimuli, we analyzed the amount of movement 

and speed in the videos. The results showed that the cell phone stimuli contained even 

larger and faster movements than the person stimuli (Table 3). Thus the lack of task-

dependent modulation of the LGN for the cell phone stimuli cannot be accounted for by 

less movement present in the cell phone stimuli in comparison to the person stimuli. 

 

Table 3. Experiment 1: Quantification of visual movement in person and cell phone 
stimuli. 

 Person stimuli  Cell phone stimuli  Two-sample t-test 
X-displacement 0.25 ± 0.07 pixels 4.39 ± 0.82 pixels t(70) = 30.05, p < 0.001 

Y-displacement 1.04  ± 0.27 pixels 9.63 ± 1.11 pixels t(70) = 44.92, p < 0.001 
Velocity* 0.86 ± 3.54 m/s  2.85 ± 0.29 m/s t(70) = 3.35, p = 0.001 
Acceleration* 15.86 ± 68.21 m/s2 33.59 ± 4.39 m/s2 t(70) = 1.55, p > 0.05  

The table displays the average movement measures ±standard deviations for each 
stimulus type (person and cell phone) and statistical comparisons between the stimulus 
types. *Velocity and acceleration measures do not correspond to the world coordinates but 
to the image size in pixels. We used an arbitrary correspondence of 1 pixel = 1 centimeter.  

 

3.3. Task-dependent LGN modulation is independent of task difficulty 

In Experiment 1, the visual-speech recognition task was significantly more 

difficult than the face-identity task (Table 4). We therefore investigated whether task 

difficulty differences could explain the LGN modulation. We included a behavioral 

measure for task difficulty (i.e., percentage correct responses in RAU for the visual-speech 

recognition task – face-identity task) as a covariate of no interest in the analysis. 

Participants showed large individual variability in their performance pattern across the 

tasks: The task difficulty covariate ranged from 14.81 to -43.58 RAU (mean: -

12.97±14.37). When we included the task difficulty covariate the results for the task 

contrast stayed qualitatively the same (Table 2 “Analysis 2, categorical/person stimuli”). 

Furthermore the amount of task difficulty did not correlate with the amount of task-
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dependent LGN modulation even at a lenient statistical threshold (P < 0.01, uncorrected). 

In addition, for the cell phone conditions (Fig. 1B), the cell phone-identity task was 

significantly more difficult than the keypress task (Table 4). Despite this difference in 

difficulty, there was no task-dependent LGN modulation for the contrast “cell phone-

identity task – keypress task” even at a lenient threshold (P < 0.01, uncorrected). In 

summary, it seems very unlikely that the task-dependent modulation of LGN responses 

can be explained by differences in difficulty between the visual-speech and face-identity 

task: (i) there was no correlation between task difficulty and LGN modulation for the 

person stimuli, (ii) there was no task-dependent LGN modulation for the cell phone 

conditions although there was a statistically significant differences in task performance, 

and (iii) the task-dependent modulation of the LGN for the person stimuli remained the 

same when difficulty differences were entered as covariate of no interest in the model. 

 

Table 4. Experiment 1: Behavioral performance.  

Visual-speech recognition task Face-identity task Paired samples t-test 

RAU: 82.79 ±13.33 

W(18) = 0.95, p = 0.50 

% hits: 81.60 ± 10.81 

RAU: 95.76 ±13.67 

W(18) = 0.94, p = 0.39 

% hits: 90.47 ± 7.87  

t(17) = 3.82, p = 0.001 

Keypress task Cell phone-identity task Paired samples t-test 

RAU: 96.35 ±13.66 

W(18) = 0.92, p = 0.16 

% hits: 90.93±8.28  

RAU: 87.33 ±14.01 

W(18) = 0.92, p = 0.15 

% hits: 85.02±10.70  

t(17) = 2.1, p = 0.042 

The table displays the percentage of correct responses in rationalized arcsine units 
(RAU) ±standard deviations and the normality tests (Shapiro-Wilk normality test: W 
statistic and p value) for each task condition. For completeness we also provide the 
untransformed percentage of correct responses ±standard deviations. The last column 
provides the statistical comparisons between the tasks.  
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3.4. LGN responses during visual-speech recognition correlated with visual-speech 

recognition performance 

We next tested our second hypothesis, i.e., that the amount of LGN modulation 

correlates positively with visual-speech recognition performance. Against our 

hypothesis, the correlation was not significant even at a lenient statistical threshold (P < 

0.05, uncorrected). We therefore explored whether there was a positive correlation 

between LGN responses and behavioral responses for the visual-speech task. This was 

indeed the case: left LGN: P value = 0.041, FWE corrected, MNI coordinates = -21, -27, -6, 

Z = 2.43; right LGN: P value = 0.034 FWE corrected, MNI coordinates = 21, -27, -3, Z = 2.54 

(Fig. 5). It is unlikely that the positive correlation between LGN responses and visual-

speech recognition scores can be explained by potential compensatory responses during 

difficult visual tasks. The difficult tasks in this experiment were the visual-speech task 

and the cell phone-identity task. If the LGN response was related to compensatory 

mechanisms in difficult visual tasks, we would expect similar correlations between the 

LGN response and behavioral scores for the cell-phone identity task and the visual-

speech task. This was however not the case. There was no correlation for the LGN 

responses in the cell-phone identity task and the behavioral scores in the cell phone 

identity task (left LGN: P = 0.223, FWE corrected; right LGN: P = 0.582, FWE corrected; 

both p<0.05 uncorrected). As expected, there were also no correlations between the LGN 

responses in the other two conditions (face-identity task; keypress task) with their 

respective behavioral scores (all p values were > 0.05, uncorrected and >0.258, FWE 

corrected). 
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Fig. 5. Experiment 1: Correlation analysis results.  
There was a significant positive correlation between the LGN responses during the visual-
speech recognition task (au: arbitrary units) and participants’ accuracy in the visual-
speech recognition task (in RAU). Significance testing was done in the statistical 
parametric mapping software (SPM). For visualization purposes only, we masked the 
results with the LGN clusters from the visual localizer (indicated by the black outline 
surrounding the LGN).  For the scatter plots we used the parameter estimates (au: 
arbitrary units) at the local response maximum of the correlation (MNI coordinates: -21, 
-27, -6 and 21, -27, -3). The scatter plots were produced for visualization purposes and 
SPSS was used only to calculate R2.  
 

 

3.5. Task-dependent LGN modulation is independent of eye-movements 

We performed Experiment 2 to replicate the findings of the task-dependent LGN 

modulation with a different design and to control for eye movements. The design 

included sequences of muted videos from several persons (Fig. 2). Participants 
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performed a visual-speech recognition and a face-identity one-back task on the same 

stimulus material. In the visual-speech recognition task, participants indicated when the 

presented video had different speech content than the previous one. In the face-identity 

task, participants indicated when the person in the video was of a different identity from 

the person in the previous video. To control for eye movements, participants were asked 

to fixate on the same point of the screen (i.e., the mouth of the speakers) across the two 

task conditions and eye movements were monitored with an MRI-compatible eye tracker 

system.  

The results of Experiment 2 were similar to those of Experiment 1. Analysis 1 

showed that the right LGN (Fig. 6A) had a significantly higher BOLD response to the 

visual-speech recognition task as compared to the face-identity task (Fig. 6B and 6C, 

Table 5 “Analysis 1”). 
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Fig. 6. Experiment 2: fMRI results. 
(A) We identified the LGNs based on the independent localizer conditions (shown here) 
and an intersection with probabilistic maps (see supplementary Figure 3). (B) There was 
a significantly higher response to the visual-speech recognition in contrast to the face-
identity task in the right LGN. Significance testing was done in the statistical parametric 
mapping software (SPM). For visualization purposes only, we masked the results with 
the LGN clusters from the visual localizer (indicated by the black outline surrounding the 
LGN). (C) The bar plots serve to illustrate the amount of LGN response for each condition 
separately. The bars display the parameter estimates (au: arbitrary units) at the local 
response maximum for the contrast between visual-speech recognition and face-identity 
tasks (MNI coordinates: 24, -27, -3 and -27, -27, -3). Error bars indicate SEM. 
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Table 5. Experiment 2: Local fMRI response maxima and statistics.  

 

Analysis 1 Analysis 2 

Categorical  
‘visual-speech rec. – 

face-identity’ 

Categorical  
‘visual-speech rec. – 

face-identity’ 

rLGN 

coordinates 24, -27, -3 24, -27, -3 

P value  0.049, FWE 0.046, FWE 

Z score 2.16 2.46 

lLGN P value  n.s. n.s. 

The MNI coordinates of the local maxima in millimeters are x, y, z. Analysis 2 differs 
from Analysis 1 in that it additionally included covariates of no interest with (i) the 
behavioral performance difference between the visual-speech and face-identity task to 
control for differences in task difficulty, (ii) the average number of eye fixations, and (ii) 
the duration of eye fixations. rLGN, right lateral geniculate nucleus; lLGN, left lateral 
geniculate nucleus; FWE, family-wise error corrected for region of interest; unc., 
uncorrected; n.s., not significant.  

 

LGN responses can be modulated by eye-movement and fixations (Lal and 

Friedlander, 1989; Sylvester et al., 2005). In the eye-tracking data we therefore first 

checked whether there was a difference in the average number and duration of fixations 

during the visual-speech recognition task and the face-identity task. The tasks did not 

significantly differ in the number of fixations (paired t-test: t(14) = 1.85, p = 0.085; visual-

speech: 13.84 ±6.63; face-identity: 15.48 ±7.50) and the duration of the fixations (paired 

t-test: t(14) < 1, p = 0.57; visual-speech: 2.09 s±1.14; face-identity: 2.04 s±1.09). We 

checked whether these statistically non-significant differences had nevertheless an 

influence on the LGN responses. To do this, we calculated the difference in the average 

number and duration of fixations between the two tasks (visual-speech recognition – 

face-identity task) for each participant and entered them as covariates of no interest in 

Analysis 2 at the second-level. Analysis 2 also included the task difficulty as regressor of 

no interest (i.e., the behavioral difference between the visual-speech recognition and 

face-identity task performance for each participant; Table 6). The task difficulty covariate 

ranged from -1.94 to -24.03 RAU (mean: -12.67±7.19). The fMRI results for Analysis 2 
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stayed qualitatively the same, that is, there was a significantly higher BOLD response in 

the right LGN for the visual-speech recognition, as compared to the face-identity task 

(Table 5 “Analysis 2, categorical”). In addition, the average number of fixations and the 

duration of fixations did not correlate with the task-dependent modulation of the right 

LGN, even at a lenient statistical threshold (P < 0.05, uncorrected). 

 

Table 6. Experiment 2: Behavioral performance.  

Visual-speech recognition task Face-identity task Paired samples t-test 

RAU: 91.73 ±8.12 

W(16) = 0.91, p = 0.12 

% hits: 89.55 ± 5.56  

RAU: 104.41 ±6.55 

W(16) = 0.95, p = 0.59 

% hits: 96.61 ± 2.66  

t(15) = 7.04, p < 0.001 

The table displays the percentage of correct responses in rationalized arcsine units 
(RAU) ±standard deviations and the normality tests (Shapiro-Wilk normality test: W statistic 
and p value) for each task condition. For the sake of completeness we also provided the 
untransformed percentage of correct responses ±standard deviations. The last column 
provides the statistical comparisons between the tasks.  

  

 

In a next step, we checked the fixation location in seven participants for which 

these data were available (Supplementary Methods). To do that, we defined 3 ROIs on the 

face of the speaker corresponding to the eyes, nose, and mouth (Supplementary Fig. 2). 

There were no significant differences between the visual-speech recognition and face-

identity tasks for the fixation location (main effect of experimental task: F(1,6) < 1; 

experimental task x ROI: F(1,6) < 1). There was a main effect of ROI, indicating that 

participants did not look equally to all the regions of the speakers’ face (main effect of 

ROI: F(1,6) = 23.51, p < 0.001). As instructed, participants fixated more on the mouth 

region (mean fixations per block: 7.68 ±1.65) as compared to the nose (paired t-test: t(6) 

= 3.74, mean fixations per block: 3.01 ±3.15, p = 0.01) and eye regions (paired t-test: t(6) 
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= 10.66, p < 001; mean fixations per block: 0.75 ±0.62,). Overall, fixations were slightly 

longer (+0.1 s) for the visual-speech task, as compared to the face-identity task, but the 

difference was not significant (main effect of tasks: F(1,6) = 4.48, p = 0.079; visual-speech 

recognition: 0.077 s ±0.38; face-identity: 0.66 s ±0.10). We cannot exclude that the other 

participants for whom fixation location data was not available behaved differently. We 

therefore checked (for Analysis 2) whether the task-dependent modulation of the LGN 

was present in the seven participants for whom we can be sure that they fixated on the 

mouth in both tasks. In this analysis, we found a trend towards significantly higher BOLD 

response to the visual-speech recognition task as compared to the face-identity task in 

the right LGN (P = 0.063, FWE corrected; Z = 2.08; MNI coordinates: 27, -27, -3). 

Altogether, the results suggested that the task-dependent LGN modulation is 

independent of the amount and duration of fixations and not caused by different fixation 

locations between the tasks.  

In Experiment 2, no significant correlation was found between participants’ 

visual-speech recognition accuracy and the LGN responses . We speculate that the lack of 

correlation between BOLD response and behavior in Experiment 2 was due to the lower 

inter-individual variability in performance for the visual-speech recognition task in 

Experiment 2 in contrast to Experiment 1 (Tables 3 and 5). 

Experiment 2 seemed to yield weaker results than Experiment 1, as only the right 

LGN showed significant task-dependent modulation in Experiment 2 while the task-

dependent modulation in Experiment 1 was significant in the right and the left LGN. To 

check whether this descriptively weaker task-dependent modulation of the LGN in 

Experiment 2 could be explained by task difficulty levels, we tested for differences in task 

difficulty for the visual-speech recognition and face-identity tasks between the two 
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experiments This was done with a multivariate ANOVA with the between-subjects factors 

“Experiment” (1 and 2) and within-subjects factor “Task” (visual-speech recognition and 

face-identity task). Overall, participants performed better in Experiment 1 than 

Experiment 2 (main effect of experiment: F(1,64) = 10.69, p < 0.01) and they also 

performed better in the face-identity task compared to the visual-speech task (main effect 

of task: F(1,64) = 22.74, p < 0.001). However, there was no interaction between 

experiments and tasks (experiment x task: F(1,64) < 1), indicating that the difficulty 

difference between visual-speech recognition and face-identity task was comparable in 

Experiment 1 and 2. This suggested that the descriptively weaker results in Experiment 

2 were not related to a smaller task difficulty difference in Experiment 2 in comparison 

to Experiment 1. 

 

3.6. Task-dependent modulation is specific to signals within the LGN ROIs 

We ran further analyses for both experiments to ensure that the task-dependent 

modulation was due to response changes in the LGNs and not due to signal spread from 

neighboring regions. The LGN is a relatively small structure (i.e., volume ca. 115-121 

mm3, Andrews et al., 1997). The pulvinar is directly adjacent to the LGN and several of its 

nuclei have been reported as being task-dependent modulated (Arcaro et al., 2015; 

Kastner et al., 2004; Schneider, 2011). Particularly, the ventral pulvinar 1 and 2 are close 

to the LGN (Arcaro et al., 2015). A neuroimaging study in humans has shown that ventral 

pulvinar 1 and 2 are located more medial, posterior, and superior than the LGN and their 

centers are in total approximately 10-14 mm away from that of the LGN (Arcaro et al., 

2015). We checked whether the LGN modulation in our study was due to signal of 

neighboring regions displaced as consequence of data smoothing (Mikl et al., 2008). To 

investigate the effects of smoothing on the location of the maximum statistics we 
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reanalyzed the data with less and no smoothing applied to the functional MR-images. For 

some effects, coordinates of the local maxima varied slightly (in total 3-6 mm) depending 

on the smoothing applied (Supplementary Table 2). Yet, in no case the displacement of 

the maximum statistic was large enough to correspond to the ventral pulvinar nuclei (>10 

mm) nor in the direction of their location (the displacements were never towards more 

medial, posterior, and superior locations as expected for the ventral pulvinar nuclei, 

Arcaro et al., 2015). The location of the maximum statistics for the different smoothing 

strongly suggested that the task modulation by visual speech and its correlation with 

accuracy in visual-speech recognition originate from the LGN.  

  

4. Discussion 

In two fMRI experiments we compared the responses of the visual sensory thalamus, the 

LGN, when participants performed a task which required processing fast spatio-temporal 

changes of faces for visual-speech recognition or a task which required processing more 

stable spatio-temporal features of faces used for face identification. The tasks were 

performed on exactly the same stimulus material in order to avoid any differences driven 

by the sensory input. Furthermore, in both experiments, all the task conditions, 

experimental and control, had very similar structure; hence, the multiple stages of the 

task that are not exclusively dedicated to speech processing were controlled for as much 

as possible. The design and hypotheses of our study were motivated by two previous fMRI 

studies on auditory-speech recognition (Díaz et al., 2012; von Kriegstein et al., 2008). 

These studies showed that the BOLD responses in the auditory thalamus, the MGB, 

increased when participants processed fast-varying, spectro-temporal changes of 

auditory-speech, as compared to other features of the same auditory-speech signal, and 
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the MGB modulation correlated positively with speech recognition skills (von Kriegstein 

et al., 2008). In the present study, we found that our findings in the visual modality by-

and-large parallel those of the auditory modality: The two independent experiments 

confirmed our first hypothesis that LGN response is enhanced when recognizing visual-

speech, as compared to processing more stable features of the same visual stimuli. The 

replication of this task-dependent LGN modulation in two independent studies with 

different experimental designs, task structure, video material, and participants speaks for 

the reproducibility and the reliability of the findings.  Our second hypothesis was partly 

confirmed. There was a correlation of the visual-speech task with the LGN response 

during visual speech recognition, and we take this finding as a first indication that the 

amount of LGN response might be relevant for performance accuracy in visual-speech 

recognition. However, we did not find the initially hypothesized positive correlation of 

the task-dependent LGN modulation during visual-speech recognition with the 

performance of the visual-speech recognition task. We had expected such a correlation 

as we had found a correlation between task-dependent MGB modulation and 

performance in auditory-speech recognition in two independent experiments previously 

(von Kriegstein et al., 2008). It is an open question why we did not find a similar 

correlation in the present experiment for the LGN and visual-speech recognition. It could 

be based on an inherent difference between functioning of the LGN for visual-speech 

recognition and the MGB for auditory-speech recognition or on methodological 

differences between the studies  

The hypothesis that the LGN has a similar function for visual-speech recognition 

to that of the MGB in auditory-speech recognition was not self-evident given the many 

differences between the two thalamic structures. The LGN is mainly composed of six 

layers, the two ventral layers contain magnocellular neurons and the four dorsal layers 
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contain parvocellular neurons (Malpeli and Baker, 1975). The MGB is subdivided into 

three parts—the ventral, medial, and dorsal divisions—each containing different cell 

types (Winner, 1984). The LGN has a retinotopic representation (Chen et al., 1999; 

Malpeli and Baker, 1975), whereas the MGB is partially tonotopically organized (Aitkin 

and Webster, 1972; Moerel et al., 2015; Rouiller et al., 1989). The LGN receives visual 

input directly from the complex neuronal system of the retina, and the MGB receives the 

auditory input from a hierarchy of brainstem nuclei. Thus, the LGN and MGB not only 

differ in the type of sensory input they receive, visual or auditory, but also in their 

histological structure and organization. Albeit these differences, our findings imply that 

the LGN has similar task-dependent modulation during visual-speech recognition as the 

MGB has for auditory-speech recognition (Díaz et al., 2012; von Kriegstein et al., 2008).  

The task-dependent LGN modulation by visual speech was independent from 

variables such as task difficulty or eye gaze behavior, which could potentially modulate 

LGN responses (O’Connor et al., 2002; Sylvester et al., 2005). For instance, a more difficult 

task could lead to more attention allocation to the stimulus (Ling et al., 2015; O’Connor 

et al., 2002; Schneider, 2011; Schneider and Kastner, 2009). However, our control 

analyses showed that the task-dependent LGN modulation was unrelated to task 

difficulty or to compensatory mechanisms during difficult visual tasks in better 

performers. Task difficulty was also unrelated to the descriptively weaker results in 

Experiment 2 than Experiment 1. We also controlled for potential effects of eye gaze 

differences between the visual-speech recognition and the face-identity tasks as previous 

fMRI studies showed that repetitive and large (i.e., 35 degrees) eye movements lead to a 

decrease of LGN BOLD activity as compared to fixation (Lal and Friedlander, 1989; 

Sylvester et al., 2005). The eye-tracking results and control analyses of Experiment 2 

showed that the task-dependent modulation of the LGN was independent from eye gaze 
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behavior. Experiment 2 also controlled for potential effects of the over-representation of 

central vision in the LGN (Azzopardi and Cowey, 1996; Schneider et al., 2004) by asking 

participants to fixate on the same part of the visual input (i.e., the speakers’ mouth) 

during the two tasks of interest, the visual-speech recognition and face-identity tasks. 

Participants processed the same foveal and peripheral visual information during the two 

tasks but a stronger right LGN response was present for the visual-speech recognition 

tasks.  Thus, the present LGN modulation cannot be fully explained by the magnification 

of the fovea relative to the periphery in the LGN. 

Modulation of thalamic responses according to relevant features of the sensory 

input has been repeatedly reported by electrophysiological recording studies in animals 

across sensory modalities (Andolina et al., 2007; Cudeiro and Sillito, 1996; Krupa et al., 

1999; Murphy and Sillito, 1987; Sillito et al., 1993; Zhang et al., 1997). However, the 

computational mechanism as well as the behavioral relevance of this modulation is 

controversially discussed (Camarillo et al., 2012; Saalmann and Kastner, 2011; von 

Kriegstein et al., 2008). Sillito and colleagues (1994) showed feature-linked synchronized 

firing of LGN neurons with non-overlapping receptive fields aligned to the orientation of 

moving visual stimuli. No synchronization was present when the cortex was removed or 

the neurons were simultaneously stimulated by flashing or drifting squares. Based on 

these cortical-feedback dependent response properties of LGN neurons to object 

movement, Sillito and colleagues (1994) proposed that the cerebral cortex generates 

“hypotheses” about the incoming movement trajectory against which the sensory input 

is then tested. Such a view is reminiscent of computational hierarchical models and 

predictive coding accounts of brain function that posit that internal models of the 

environment are dynamically exploited by the brain to predict sensory input (Friston, 

2005; Kiebel et al., 2008). Predictive coding accounts have also been extended to explain 
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speech processing (Blank and Davis, 2016; van Wassenhove et al., 2005; von Kriegstein 

et al., 2008), where it is assumed that the speech recognition system reaches fast and 

robust processing by generating predictions about the incoming input. The optimal 

encoding of relatively fast-temporal dynamics in the visual and auditory modalities is 

important for speech recognition (Campbell et al., 1997; Shannon et al., 1995). The 

trajectories of these fast changes in the sensory input are highly predictable. For example, 

because of co-articulation, the features of a speech sound/movement already predict the 

features of the following speech sound/movement (Jesse and Massaro, 2010; Warren and 

Marslen-Wilson, 1987). We speculate that such predictions could be implemented by 

task-dependent modulation of the LGN to fine-tune visual processing according to 

expected visual changes in a dynamic, iterative process. Similar mechanisms could also 

be present in the auditory modality (Díaz et al., 2012; von Kriegstein et al., 2008). The 

LGN and the MGB are tuned to high frequencies, between 10 and 20 Hz (Giraud et al., 

2000; Hicks et al., 1983), whereas visual and auditory cortices are tuned to frequencies 

between 4 and 8 Hz (Foster et al., 1985; Giraud et al., 2000). The very high temporal 

resolution of the sensory thalamus combined with the fast transfer of information 

between thalamus and cortex trough the corticothalamic loop (around 52 ms/loop) 

(Briggs and Usrey, 2007) renders the sensory thalamus an ideal structure for optimized 

processing of fast-varying components of auditory- and visual-speech.  

In a predictive coding view, task-dependent modulation of the sensory thalamus 

would be particularly relevant in situations where the stimulus is predictable. Such a 

view might reconcile the findings of the present as well as previous studies: There is task-

dependent modulation of sensory thalami for auditory (Díaz et al., 2012; von Kriegstein 

et al., 2008) and visual speech (present study) as well as (predictable) dot movements 

(Schneider, 2011). In contrast we found no task-dependent modulation for tracking the 
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relatively unpredictable movement of a thumb pressing the keys of a cell phone. To 

directly test the hypothesis that task-dependent modulation of the LGN is dependent on 

the predictability of the stimuli is, unfortunately, not possible with the present data set. 

The findings, however, highlight the need to systematically study the exact conditions 

under which task-dependent modulation of the LGN (and also the MGB, Díaz et al., 2012; 

von Kriegstein et al., 2008) occurs.   

The present findings fundamentally contribute to our so far very scarce 

knowledge (Díaz et al., 2012; Schneider, 2011; von Kriegstein et al., 2008) on the 

behavioral relevance of task-dependent thalamus modulation: They suggest an 

important role of task-dependent modulation of the visual sensory thalamus for 

analyzing speech—one of the most important and complex signals that humans are faced 

with. The present and previous findings (Díaz et al., 2012; von Kriegstein et al., 2008) 

challenge current neuroscience models (Friederici and Alter, 2004; Hickok and Poeppel, 

2007; Poeppel et al., 2012), which explain speech perception by-and-large on the basis of 

cerebral cortex areas. The similar task-dependent modulation of the sensory thalamus in 

the auditory (Díaz et al., 2012; von Kriegstein et al., 2008) and visual modalities for 

speech recognition however implies that a full understanding of speech perception might 

need to take dynamic corticothalamic interactions into account. 
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Supplementary Information 

 

 

Supplementary Methods  

Training Experiment 1  

To enable participants to perform the identity tasks during fMRI scanning in 

Experiment 1, they were trained on the audio-visual identity of the three speakers and 

the three cell phones, directly before entering the MRI-scanner. The stimulus material 

used for the training was different from the material used for the fMRI experiment but 

training and experimental stimuli were acquired from the same speakers (three native 

German male speakers) and cell phones (three different brands) during the same 

recording session and with the same apparatus and settings. In the person videos, each 

speaker said eight two-syllable words and twelve semantically neutral and syntactically 

homogeneous five-word sentences (Example: “Der Junge trägt einen Koffer”, English: 

“The boy carries a suitcase”). Keypad tone samples of each cell phone included eight 

sequences of two to five key presses and twelve sequences of six to nine sequences.  

For the training, participants first viewed audio-visual videos of the speakers 

(learning phase) and the cell phones, and then were tested in their knowledge of the 

speakers and cell phone identities (test phase). For the learning phase in the person 

condition, there were twelve audiovisual videos of each speaker and each video 

contained a different five-word sentence (mean duration 3.10 s ±0.40). The sentences 

were the same for all speakers. Videos were randomly presented and the name of each 

speaker was written on the screen during the presentation of the video. Between the 

videos a fixation cross appeared on the screen for 1 s. Participants were instructed to 
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learn the association between three speaker’s names, faces, and voices. Participants 

learned the cell phone identities in a similar manner to the person identities. Twelve 

audiovisual videos for each cell phone were randomly presented which differed in the 

number of key presses, from six to nine, and the specific keys pressed (mean duration 

3.31 s ±1.06). An asterisk was presented on the screen for 1 s between the videos. 

Participants were asked to learn the association between the cell-phone image and 

keypad tones. Participants were explicitly told before the learning phase that they would 

be tested on their knowledge of the name-voice-face and cell phone-identity-key tone 

associations after the learning phase. 

In the recognition test phase, visual-only and auditory-only stimuli were created 

from the audiovisual videos. The test phase for the person identities included 8 words 

visual-only (mean duration 1.74 s ±0.16) and auditory-only (mean duration 0.89 ±0.11).  

The test phase for the cell phone identities included 8 key presses sequences visual-only 

(mean duration 1.64 s ±0.23) and auditory-only (mean duration 1.66 s ±0.24). 

Participants first watched a muted video of a person saying a two-syllable word (or a 

sequence of two to five key presses on a cell phone keypad) and subsequently listened to 

a voice saying the given word (or a key-tone sequence). Between the visual and auditory 

stimuli an asterisk was present for 1 s. Participants were asked to indicate whether the 

auditory voice (or key-tone) belonged to the face (or cell phone) in the previous video. 

Participants received feedback on responses that were correct, incorrect, and too slow 

(for responses > 2 s after onset of the second stimulus). The feedback was presented for 

600 ms. Trials were separated by an interstimulus interval of 2 s.  The training, including 

the learning and the test, took ca. 25 minutes. Training was repeated twice for all 

participants (50 minutes in total). If a participant performed less than 80% correct after 

the second training session, the training was repeated a third time.  
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Eye tracking data analysis 

Normal distribution of the data was assessed with a Shapiro-Wilk normality test. 

The analysis included the data from 15 (of the total 16) participants because for one 

participant there were difficulties with the calibration of the eye tracker. For another 

participant only the eye tracking data for the first run were available, because track of the 

eye was lost during the second run.  

We first computed the average number and duration of fixations for each 

participant and each type of task (visual-speech recognition task and face-identity task). 

Fixations were defined as periods in which eye movement dispersion did not exceed 1° 

at least for 100 ms (Hannula and Ranganath, 2009; Wolf et al., 2014). Blocks in which the 

eye tracker lost fixation were excluded from analyses (10.46% in the visual-speech 

recognition task and 11.55% in the face-identity task). The average number and duration 

of fixations for both tasks followed a normal distribution (all Ws(15) > 0.92, all ps > 0.05) 

and eye measures for each task were compared by means of a paired samples t-test. 

In a second step, we computed the average number and duration of fixations for 

each participant and each type of task within four regions of interest (ROI): the speakers’ 

eyes, nose, mouth, and the rest of the video. This analysis served to assess whether there 

might be eye-movement differences between the two task conditions, depending on the 

ROI. The face ROIs (i.e., eyes, nose, and mouth) had similar sizes. Together they covered 

most of the face of the speakers (except for the tip of the chin and the top of the forehead) 

(Supplementary Fig. 1).  We included in the analysis only those blocks for which at least 

75% of the fixations fell within the face ROIs (i.e., the eyes, mouth, and nose) to control 

for drifts in eye movement position caused by the participants slow drift of head 

movement and the lack of recalibration of the eye-tracker in between sessions. Note that 
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the average number of fixations should not be influenced by slow head movement since 

eye movements (i.e., end of fixations) were considered as fast movements of 1º within 

100 ms. However, when analyzing eye position the coordinates are greatly influenced by 

slow drifts of the head that carry misallocations of the eyes from block to block. Eight 

participants were excluded from the analysis because only 1 block for one experimental 

task survived the 75% criterion of fixations within the face ROIs. For the remaining seven 

participants there was an average of 14.14 (±6.54) blocks for the visual-speech 

recognition task and 11.57 (±5.99) for the face-identity task that survived the 75% 

criterion of fixations within the face ROIs. The average number of fixations for each ROI 

and experimental task followed a normal-distribution (all Ws(7) > 0.81, all ps >0.05). We, 

therefore, analyzed the eye position for each task by means of a repeated-measures 

ANOVA on the number of fixations with the factors ROI (eye, nose, and mouth) and 

experimental task (visual-speech recognition and face-identity tasks). 
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Supplementary Figures 

 

 

Figure 1. Experiment 1: Cell phone key tones.  Waveform graphs of the key tones used 

as auditory stimuli for the cell phone conditions. Graphs were created with the software 

Audacity (2.0.3). 

 

 

 

Figure 2. Experiment 2: Regions of interest (ROIs) for the eye tracking data 

analysis. The figure displays the eye, nose, and mouth ROIs for the eye tracking data 

analysis overlaid on an image extracted from one of the videos used as stimuli for 

Experiment 2. 



55 

 

Figure 3.  Definition of the regions of interest. We functionally localized the LGNs at 

the group level by means of the independent functional localizers. The clusters localized 

in the anatomical position of the LGNs were then combined with probabilistic 

cytoarchitectonic maps of the LGNs. The intersections of the group functional clusters 

and the probabilistic maps were used as regions of interest for the analyses of the 

experimental conditions. 
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Supplementary Tables 

Table 1. LGN coordinates reported by fMRI studies.  

Study 
Experiment 

MNI Local maxima (x,y,z) 

Right LGN Left LGN 

Present study 
Experiment 1: localizer, n=18 
Experiment 1: task modulation, n=18 
Experiment 2: localizer, n=16 
Experiment 2: task modulation, n=16 

 
24, -27, -3 
24, -27, -6 
27, -24, -3 
24, -27, -3 

 
-21, -27, -3 
-21, -27, -6 
-21, -27, -3   
----- 

O’connor et al. (2002)*, n = 4  
Anatomical experiment 
Enhancement experiment 
Suppression experiment 
Baseline experiment                         

 
24,-21,-11 
25,-19,-9 
22,-20,-9 
23,-20,-10 

 
-24,-21,-10 
-22,-31,-10 
-25,-21,-10 
-23,-19,-10 

Kastner et al. (2004)* 
Anatomical experiment, n=9 
Localizer, n=6 
Contrast, n=5 
Frequency, n=4 

 
24,-20,-11 
22,-18,-11 
22,-23,-10 
24,-22,-10 

 
-24,-20,-11 
-23,-20,-10 
-21,-20,-10 
-21,-22,-11 

Schneider et al. (2004)* 
Polar angle maps, n=7 
Eccentricity maps, n=7 
Contrast sensitivity maps, n=5 

 
24,-22,-9 
Not reported 
Not reported 

 
-22,-22,-9 
Not reported 
Not reported 

Wunderlich et al. (2005), n=5 Not reported Not reported 

Schneider & Kastner (2009),  n=4 Not reported Not reported 

Mullen et al. (2010)*, n=6 22,-25,-8 -22,-24,-9 

Schneider (2011), n=11 Not reported Not reported 

Arcaro et al. (2015), n=9 24,-25,-6 -24,-25,-6 

The table lists the average coordinates for the LGNs of the present study and those 

reported by previous studies. The Talairach coordinates reported by some studies 

(marked with an asterisk in the table) were transformed to MNI coordinates by means of 

the Yale BioImage Suite Package 

(http://sprout022.sprout.yale.edu/mni2tal/mni2tal.html). The MNI to Talairach 

conversion is based on Lacadie et al. (2008). 
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Table 2. Comparison of the maximum statistics of the significant effects across 
different smoothing kernel sizes for the fMRI data. 

 Smoothing 

kernel size  

Left LGN 

(MNI coordinates: x,y,z) 

Right LGN 

(MNI coordinates: x,y,z) 
Experiment 1  

Categorical Analysis 1 

4 mm -21, -27, -6  24, -27, -6 

2 mm -21, -27, -6 24, -27, -6 

 0 mm displacement 0 mm displacement 

0 mm -24, -27, -6 24, -27, -6 

 3 mm more lateral 0 mm displacement 

Correlation Analysis 2 

4 mm -21, -27, -6 21, -27, -3 

 
2 mm -21, -30, -3 24, -27, -6 

 
 3 mm more anterior 

and 3 more superior 

3 mm more lateral and 3 

more inferior 

0 mm -21, -30, -3 24, -27, -3 

 
    3 mm more anterior 

and 3 more superior 

3 mm more lateral  

Experiment 2  

Categorical Analysis 1 

4 mm n.s. 24, -27, -3 

2 mm ----- 24, -27, -3 

  0 mm displacement 

0 mm ----- 27, -27, -3 

  3 mm more lateral 

The table lists the maximum statistic for the contrast visual-speech recognition vs. face-

identity task (Analysis 1) of Experiments 1 and 2. The results with 4 mm smoothing are 

reported in the main text. For the 2 mm and 0 mm smoothing, we report direction in the 

x, y, and z axis of the displacement and the amount (in mm) in relation to the coordinate 

reported in the manuscript for 4 mm smoothing.  
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