
Visiting Some Relatives of Peirce's �Michael B�ottnerMax-Planck-Institut f�ur Psycholinguistik, Nijmegen, The NetherlandsAbstractThe notion of a relational grammar is extended to ternary relations and illustratedby a fragment of English. Some of Peirce's terms for ternary relations are shown tobe incorrect and corrected.Binary relations have been studied extensively by Peirce and Schr�oder in the nineteenthcentury, and in this century by Tarski and his students. No comparable attention has beenpaid to ternary relations. This is surprising, for Peirce had already dealt with ternaryrelations on various occasions. But Schr�oder strictly con�ned himself to binary relations,and it is the topic of binary relations that has become the focus of interest for Tarski andhis students. For notable exceptions see Carnap (1929), Copi and Harary (1953), andAubert (1955) and the theory of relational database systems.Peirce has illustrated his ternary relational terms by natural language examples. Forinstance, the equation (ba)m = b(am)where b = betray, a = enemy, and m = man was explained in English as follows:\those individuals each of which stand to every man in the relation ofbetrayer to every enemy of his are identical with those individuals each ofwhich is a betrayer to every enemy of a man of that man."1This may be hard to swallow and even Peirce himself had some problems here as we shallsee. Therefore I think that Peirce's discussion of ternary relations can best be studied ina framework that is as rigorous with respect to syntactic structure as it is to semanticstructure. Such a method is provided by relational grammar. Relational grammar wasproposed in Suppes (1976).The purpose of this paper is therefore both to extend the notion of a relational gram-mar by adding ternary relations and to apply this extension to a better understanding ofPeirce's writings about relations, or \relatives" to use his own term. Our focus is there-fore more on the establishment of mapping natural language into the language of relationalgebra than on the development of the algebra of ternary relations. The paper continuesmy work on relational grammar and builds especially on previous results on anaphoricpronouns in B�ottner (1992, 1994, 1997).The paper is organized as follows: in section 1, the notion of a relational grammar isintroduced. In section 2, this notion is extended in order to account for ternary relations.In section 3, an example of a ternary relational grammar is given. In section 4, ouranalyses are compared to Peirce's examples. In section 5, our results are discussed andput in perspective.� Previous versions of this paper have been presented at the RelMiCS III workshop in Hammamet(Tunisia) and at the university of Osnabr�uck. I would like to thank Melissa Bowerman (Nijmegen),Chris Brink (Cape Town), Barry Dwyer (Adelaide), Arnold G�unther (Berlin), Peter Jipsen (Cape Town),Siegfried Kanngie�er (Osnabr�uck), Roger Maddux (Nashville, Tennessee), and Bill Purdy (Syracuse, NY)for many useful comments on a preliminary version of this paper.1Peirce (1870: 379). 71



1 Relational GrammarA denoting grammar is a context-free phrase structure grammar that provides a semanticfunction for each production rule.2 A relational grammar is a denoting grammar withthe restriction that denotations are elements of an extended relation algebra over someset D.3 An extended relation algebra over D is any collection of subsets of and binaryrelations over D that is closed with respect to union, complement, conversion, compositionand Peirce product.4 In line with Brink, Kahl and Schmidt (1997) we use the followingnotation:� union: A [ B� complement: A� intersection: A \ B� Cartesian product: A�B� conversion: �R� composition: R;S� Peirce product: R : AIn addition, we shall use the following operations that can be de�ned in terms of theprevious operations:� domain: domR = fx 2 Dj(9y)(xRy)g� (progressive) involution: RA = (R : A)� range-restriction of R by A: R � A = R \ (D � A)We refer to the identity relation by I. We refer to the maximal subset ofD by the constantU and to the maximal binary relation over D by the constant V .An example of a relational grammar is the following:PRODUCTION RULE SEMANTIC FUNCTIONNP ! TN + P + EQ+NP [NP ] = [TN ] : [NP ]NP ! TN + P + UQ +NP [NP ] = [TN ][NP ]NP ! N [NP ] = [N ]The symbols abbreviate the names of conventional grammatical categories: NP = nounphrase, N = common noun, TN = transitive noun, P = preposition, UQ = universalquanti�er, EQ = existential quanti�er. A lexicon for this grammar would be as follows:P of, toEQ some, a, anN 
ower, lady, horse, ...UQ each, everyTN owner, enemy, lover, woman, ...2Suppes (1973).3Suppes (1976).4Suppes (1976). 72



NP: O : HNP: HTN: O P EQ N: Howner of a horseFigure 13.This grammar derives semantic trees for terms like, e.g., owner of a horse or owner ofevery horse. A semantic tree is a derivation tree in the sense of the theory of formal lan-guages where the nodes of the tree, in addition to their category labels, bear denotationsas semantic labels. An example of a semantic tree is given in Figure 1.2 Ternary RelationsRelational grammar is restricted to subsets of some domain D and binary relations overD. This would not be su�cient to provide meanings for sentences like, e.g., Mary issitting between John and Bill or John gives Mary a book since between denotes a ternaryrelation and so does give. We therefore shall extend our ontology by ternary relations.One way to introduce ternary relations is to introduce them as Cartesian products ofa binary relation over D and a subset of D. This de�nition, however, has the followingdrawback. One and the same ternary relation gets two representations that need to beidenti�ed by stating separately< a;< b; c >>=<< a; b >; c > :We therefore prefer to start from ordered triples and de�ne a ternary relation as a set ofordered triples.Relational operations have been de�ned for binary relations. Adding ternary relationsrequires a slight rede�nition of our relational operations. In the case of union and inter-section it is understood that both operands should be of the same type, i.e. either D, D2or D3. In the case of complement of X we understand the complement with respect toeither D, D2, or D3 depending on the type of X.We assume two operations Rt and Rc as primitive: Rt switches the last two placesof a ternary relation and Rc moves the �rst place of a ternary relation to the end. Theoperation that reverses a ternary relation R can be expressed by the composition of atransposition and a cyclic permutation: Rtc.Since binary relations are sets, the operation of a Peirce product can be generalized toternary relations provided that m < n. Let R denote an n-ary relation on D and let Sdenote an m-ary relation. Then the generalized Peirce product of R and S is de�nedR : S := f< x1; :::; xn�m > j(9xn�m+1):::(9xn)(Sxn�m+ ^ Rx1:::xn)g: (31)This de�nition looks rather complicated but in fact captures only three cases: either R isbinary and S is unary, or R is ternary and S is unary, or R is ternary and S is binary. Ifin particular R is a ternary relation over D and S � D, then R : S is a binary relation73



over D, and if R is a ternary relation over D and S is a binary relation over D, thenR : S � D.In a similar fashion, the operation of range-restriction is generalizedR � S := f< x1; :::; xn >2 Rj < xn�m; :::; xn >2 Sg (32)where R is an n-ary relation and S is an m-ary relation. If R is a binary relation and Ssome subset of the domain the operation coincides with the operation de�ned in section1. If R is a ternary relation and S is a subset of the domain R � S denotes a binaryrelation over D. If R is a ternary relation and S is a binary relation over the domainR � S denotes a subset of D.Composition is de�ned as an operation on the set of binary relations. We extend thisoperation to pairs of a ternary relation R and a binary relation S like this:R �3;2 S = f< x; y; z > j(9u)(Rxyu ^ uSz)g: (33)Therefore (R �3;2 S)xyz i� (9u)(Rxyu ^ uSyg:Since dom can be de�ned in terms of Peirce product, it shares this ambiguity with it:if R is a binary relation, then domR is a set, and if R is a ternary relation, then domR isa binary relation.Since involution can be de�ned in terms of Peirce product and complement, a notionof generalized involution can be de�nedRS := (R : S): (34)Many more operations can of course be de�ned in the context of ternary relations. Butsince our main focus is on the interaction of ternary relations with either binary relationsor sets, so-called exterior operations will be more important than interior operationsinvolving just the set of ternary relations. We have therefore refrained from de�ningvarious types of composition since we have not found them exempli�ed in any constructionof English.De�nition 1 Let D be some nonempty set. An extended ternary relation algebra of setsover D is any subset of P(D) [ P(D2) [ P(D3)that is closed with respect toi. unionii. complementiii. transpositioniv. cyclev. compositionvi. composition of a a ternary relation with a binary relationvii. generalized Peirce productviii. generalized domain-restriction. 74



Notice that this list of operations appears to lack conversion. But in fact it occurs twicebecause both transposition and cycle coincide with conversion in the case of binary rela-tions. Notice that we do not have composition of two ternary relations because this wouldreturn a quaternary relation. This does not mean that quaternary relations of this kinddo not arise in natural language. Peirce himself has given the example praiser of { to amaligner of { to {.5Some simple arithmetical properties of operations of ternary relations are listed below.Theorem 1 Let R � D3.i. Rtt = R.ii. Rccc = R.iii. If X; Y are either both subsets of D or both binary relations over D, thenR : (X [ Y ) = (R : X) [ (R : Y ):iv. If A and B are arbitrary subsets of D, then(Rt : A) : B = (R : B) : A:v. If A and B are subsets of D, then((Rt)B) : A � (R : A)B:Proof of Theorem 1.i. This is simply an extension of the binary case.ii. This follows from the fact that a cyclic transposition of a set with thre elementsneeds to be applied three times to return the original set.iii. Obvious.iv. The left hand side is equivalent to(9z)(z 2 B ^ (9y)(y 2 A ^Rtxzy)):The right hand side is equivalent to(9y)(y 2 A ^ (9z)(z 2 B ^Rxyz)):Since Rtxzy $ Rxyz;both expressions are equivalent.v. By (34), the equation can be reduced toRt : B : A � R : A : B:The left hand side is equivalent to(9z)(z 2 A ^ (8y)(y 2 B ! Rxyz)):The right hand side is equivalent to(8y)(y 2 B ! (9z)(z 2 A ^Rxyz)):Since the second follows from the �rst the theorem is proved. Note that this propertycannot be strengthened to equality, since both expressions are not equivalent.5Peirce (1902). 75



PRODUCTION RULE SEMANTIC FUNCTIONV P ! TV P +EQ+NP [V P ] = [TV P ] : [NP ]V P ! TV P + UQ+NP [V P ] = [TV P ][NP ]TV P ! TV [TV P ] = [TV ]TV P ! DV +EQ+NP + P [TV P ] = [DV ] : [NP ]TV P ! DV + UQ+NP + P [TV P ] = [DV ][NP ]V P ! DV +EQ+NP + P +EQ [V P ] = dom(([DV ]; [TN ]) \ (D3 � I)) : [NP ]+TN + P +Dem+NPV P ! DV +EQ+NP + P +EQ [V P ] = dom(([DV ]; [TN ]) \ (D3 � I)) : [NP ]+TN + P + PersV P ! DV +EQ+NP + P + UQ [V P ] = dom(([DV ]; [TN ]) \ (D3 � I)) : [NP ]+TN + P + PersV P ! DV +EQ+NP + UQ+NP 0 [V P ] = ([DV ] : [NP 0])[NP ]V P ! DV + UQ+NP +EQ+NP 0 [V P ] = ([DV ][NP 0]) : [NP ]V P ! DV +EQ+NP +EQ+NP 0 [V P ] = ([DV ] : [NP 0]) : [NP ]V P ! DV + UQ+NP + UQ+NP 0 [V P ] = ([DV ][NP 0])[NP ]Table 5. Ternary Extension of Relational Grammar3 Grammar ExtensionTo derive semantic trees for English expressions we propose the grammar of Table 5.Familiar grammatical categories are referred to by the following additional symbols: TVP= transitive verb phrase, DV = ditransitive verb, Dem = demonstrative pronoun, andPers = personal pronoun.A lexicon for the extended grammar would be as follows:P toDem thatDV give, betray, ...Pers him, her, it, themDitransitive verbs di�er from monotransitive verbs like, e.g., own by having two objectsrather than one. One object is called the direct object (DO), the other object is calledthe indirect object (IO). A paradigm ditransitive verb is give. In the verb phrase gives a
ower to some lady the direct object is a 
ower and the indirect object is (to) a lady.According to our extended grammar, the semantic tree for this verb phrase would be theone shown in Figure 14 where F and L are subsets of D denoted by the noun 
owerand lady, respectively, and G = f< x; y; z >g is a ternary relation on D denoted by theditransitive verb give where x denotes the giver, y denotes the receiver, and z denotes theobject given.For the expression betray a woman to a man our grammar derives the denotation(B : W ) :Mwhere M is the subset of D denoted by man, W is the subset of D denoted by womanand B is a ternary relation on D denoted by betray. That this denotation provides thecorrect denotation follows from the fact that it is equivalent to the setfxj(9y)(y 2 M ^ (9z)(z 2 W ^ Bxyz)g: (35)76



VP: (G : F ) : LTVP: G : F EQ NP: LNP: F PDV: G EQ N: F N:Lgives a 
ower to some ladyFigure 14.VP: (G : H) : (O : H)TVP: G : H EQ NP: O : HDV: G EQ NP: H P TN: O P EQ NP: HN: H N: Hgive a horse to an owner of a horseFigure 15.For the expression betray every woman to every man our grammar derives the denotation(BW )M : (36)Applying our de�nition, we have(BW )M = (BW :M) = ((B : W ) :M) = (B : W ) :M: (37)An element z of this set ful�ls the condition(8z)(z 2M ! (8y)(y 2 W ! Bxyz)); (38)and this captures the intuitive meaning of the verb phrase in question.Our grammar also derives semantic trees for expressions with binary relations occurringin argument position. An example would be the tree in Figure 15 where H is a set denotedby horse, O is a binary relation denoted by owner and G is a ternary relation as in (14).For the expression betray each man to an enemy of every man (39)our grammar derives the term (BM) : (AM) (40)77



VP: dom((G;O) \ (D3 � I)) : HDV: G EQ NP: H P EQ TN: O P Dem NP: HN: H N: Hgive a horse to an owner of that horseFigure 16.where B is the ternary relation denoted by the ditransitive verb betray, A is a binaryrelation denoted by the transitive noun enemy, and M is the set denoted by the commonnoun man. By de�nition, this term is equivalent to(B :M) : (A :M): (41)By simple computation this expression will turn out to be equivalent tofxj(9y)(8z)(z 2M ! yAz ^ Bxyz)g; (42)which is an appropriate translation of (39).Our grammar also derives semantic trees for expressions with anaphoric pronouns inFigure 16. Notice that the Peirce product and conversion operations are not su�cienthere and some additional operation is required. In a similar fashion, a semantic tree canbe derived for the expression betray a man to an enemy of him. The root denotation ofthis tree is dom((B;A) \ (D3 � I)) :M: (43)Any element x of this set ful�ls the condition(9y)(y 2M ^ (9z)(Bxyz ^ zAy)) (44)which captures the intuitive meaning of the verb phrase. Correspondingly, the expressionbetray a man to every enemy of him (45)would by our grammar be assigned the denotationdom((B;A) \ (D3 � I)) :M: (46)This term is equivalent to the setfxj(9y)(y 2M ^ (8z)(zAy ! Bxyz))g; (47)which is in line with our intuition about the meaning of (45).In Table 1 a grammar was given for a fragment of English that is large enough to derivemany of Peirce's English examples to illustrate his operations and their use to constructcomplex terms. In the next section we use our fragment to check Peirce's constructions.78



4 Peirce's RelativesOur grammar is able to derive semantic trees for most of the terms with ternary relationsconsidered in Peirce (1870). A term expressing a ternary relation is called a \conjugateterm" by Peirce. Peirce illustrates his relational terms by examples from everyday English.Peirce made occasional blunders in his notation as had been pointed out before.6In order to be able to correctly assess the terms proposed by Peirce we need to explainsome of his notation. Peirce uses juxtaposition and exponentiation in case the �rst term isa relation and the second term is relational or absolute. So xy may correspond to standardrelational composition in case both x and y are binary relations, or to the Peirce productin case y is an absolute term and x is a binary relation. Similarly, xy may correspond tostandard involution if x is a binary relation and y is an absolute term, or to generalizedinvolution in case x is a ternary relation and y is a binary relation or absolute.Relations as Arguments Peirce also considers the case of a binary relation occurringin argument position like, e.g., ingiver of a horse to an owner of a horse: (48)In Peirce's notation, this corresponds to the term gohh. This is equivalent to the rootdenotation of the tree of Figure 15. But in the case ofbetrayer of each man to an enemy of every man (49)Peirce appears to have got it wrong. The term he proposed is bam. On our account, thedenotation would be (40). Notice that the respective denotations are not equivalent.This term can be analyzed either by (ba)m or by b(am). Recall that by juxtapositionof two terms x and y, Peirce denotes either relational composition7 or Peirce product.8Assume juxtaposition denotes composition. Then ba denotes a ternary relation and (ba)mdenotes a binary relation. This cannot be correct, since (4) is an absolute term and shoulddenote a set. Assume therefore that juxtaposition denotes the Peirce product. Then b(am)denotes a binary relation too. Consider now the possibility that ba denotes the Peirceproduct. Then ba denotes a set. And if ba denotes a set then (ba)m is not de�ned. Noticethat am always denotes a set. But if am denotes a set, b a ternary relation and b(am)denotes the Peirce product of b and am, then b(am) denotes a binary relation. But this isnot correct, since b(am) is supposed to denote a set. Similar remarks hold for other termswith three quanti�ers proposed by Peirce.Anaphora Some of Peirce's terms involve anaphoric pronouns. For instance, for theexpression betrayer of a man to every enemy of him, the term bam is proposed by Peirce.9This is not correct. For bam is equivalent tofxj(9y)(y 2M ^ (8z)(xAz ! Bxzy)g; (50)and (50) is not equivalent to (47).6Cf. Brink (1978) and Martin (1978).7cf. Brink (1978: 288).8cf. Martin (1978: 27).9Peirce (1870: 378 and 426). 79



Peirce proposed the term goh as a denotation for10giver of a horse to the owner of that horse: (51)Martin pointed out correctly that this is wrong but did not give a correct term for (51).11Recall that our grammar derives a semantic tree in Figure 16 for a structure that is closelyrelated. If we assume the denotation for own to be a left-unique binary relation, then thetree in Figure 16 would also be a semantic tree for (51).Scope Peirce sharply distinguishes two notions of give:12g1: giver of |- to |-g2: giver to |- of |-This distinction corresponds to a di�erence in syntactic structures with g1 occurring in astructure with the direct object preceding the indirect object like in, e.g.give a 
ower to every lady; (52)and g2 occurring in a structure with the indirect object preceding the direct object likein, e.g., give every lady a 
ower: (53)More important than the relative order of the direct and indirect objects is the scope ofdirect and indirect objects. In principle, two situations can be distinguished: either thedirect object is in the scope of the indirect object as is the case in (52) or the indirectobject is in the scope of the direct object. The �rst situation is called the patient analysis.The second situation is called the recipient analysis. It is often claimed that (53) has thesame meaning as (52).13According to Peirce the meaning of bmw would be betrayer of all women to a man.14Notice that bmw is equivalent tofxj(8y)(y 2 W ! (9z)(z 2M ^ Bxyz))g: (54)On this analysis, the indirect object man falls inside the scope of the direct object women,which runs against common linguistic intuition. But the denotation of the phrase betrayerof all women to a man should rather befxj(9z)(z 2M ^ (8y)(y 2 W ! Bxyz))g: (55)Our grammar accounts for this fact by introducing the order DV DO IO in two steps, butintroducing the order DV IO DO in one step and assigning(BW ) :M (56)as a denotation for the phrase betrayer to a man of all women. This denotation is identicalto the one provided for the phrase betrayer of all women to a man.10Peirce (1870: 370).11Martin (1978: 29).12Peirce (1870: 370).13Keenan and Faltz (1985: 193).14Peirce (1870: 378). 80



5 Concluding RemarksIn this paper, we have (i) extended the notion of relational grammar such that it is ableto accommodate ternary relations, (ii) illustrated this notion by a fragment of Englishthat deals with transitive and ditransitive phrases, (iii) pointed out certain inadequaciesin terms proposed by Peirce, and (iv) given correct interpretations for terms that hadbeen pointed out to be 
awed. In addition we would like to point out that our grammarextends the set of syllogisms considerably. For instance, it will be able to identify theargument Some man gave every lady a roseEvery rose is a 
owerEvery lady was given a 
oweras a valid syllogism of English. With additional rules introducing negative particles noand not we may end up with about 88 di�erent syllogistic forms.Our notion of an extended relation algebra as a structure closed with respect to cer-tain operations resembles the notion of a \bonding algebra" proposed by Herzberger.15Herzberger proposed a structure closed with respect to relational composition, majorpermutation, minor permutation, bonding, and relative complement, where major per-mutation shifts the �rst argument into �nal position, minor permutation switches the �rsttwo arguments and bonding identi�es the last two arguments of a relation. In line withPeirce, Herzberger does not distinguish between the operations of relational compositionand Peirce product. This may be satisfactory in the case where only binary relations andsets are considered. However, the operations can be well distinguished: if R is a ternaryrelation and S is a binary relation, then R;S will return a ternary relation but R : S willreturn a set. Moreover, the operations turn out not to be su�cient. Some notion of unionor intersection is required as is a notion of restriction. We would otherwise not be able toderive an appropriate structure for the tree in Figure 16.Relational grammar is not compelled to distinguish two variants of a ternary relationdepending on the order of their arguments. On the contrary, Peirce's assumption of twodi�erent notions for give is rather unnatural from the standpoint of natural English whereone and the same form is used throughout. If we assume only one predicate for give wewould then have to derive g2 from g1 or g1 from g2.16Unlike most conventional linguistic approaches our grammar is semantically drivenrather than syntactically driven. The sentencesgive a horse to an owner of a horsegive a horse to an owner of that horseexhibit an almost identical syntactic structure. The only di�erence is that one structurehas an existential quanti�er a where the other structure has the demonstrative pronounthat. Linguists have speculated that quanti�ers and demonstrative pronouns belong to oneand the same syntactic category of determiners. Under this assumption one should expectthat the semantic trees for these expressions are very similar. But under our anlysis, thisturns out not to be the case. The respective semantic trees are given in Figure 15 andin Figure 16. The semantic tree for the expression with the anaphoric pronoun that ismuch 
atter than the tree for the expression without the anaphoric pronoun. But this is15Herzberger (1981).16This is in fact done in B�ottner (To appear). 81



not surprising since the anaphoric reference requires information given at some locationof the tree to be available at a distant location of the tree. It is an open question whetherrelational semantics has to stay with the 
at tree of Figure 16 or can be tailored to �tbetter a more hierarchical structure.The 
at-tree problem is inherited by any standard one-dimensional representation.Peirce himself proposed a two-dimensional representation better known under the nameof existential graphs. Existential graphs have become a major focus in the design ofsystems of knowledge represention in computer science under the name of conceptualgraphs.17 The problem will be to �nd uniform procedures to map the variant forms of anatural language syntax to two-dimensional graph structures.References[1] Aubert, K. E. (1955) On the foundations of the theory of relations and the logicalindependence of generalized concepts of re
exivity, simmtery, and transitivity. Archivfor Mathematik og naturvidenskab 52, 9-56.[2] B�ottner, M. (1992) Variable-free semantics for anaphora. Journal of PhilosophicalLogic 21, 375-390.[3] B�ottner, M. (1994) Open problems in relational grammar. In Patrick Suppes. Scien-ti�c Philosopher, Vol. 3, ed. by P. Humphreys, Dordrecht: Kluwer, 319-335.[4] B�ottner, M. (1997) Natural Language. In Relational Methods in Computer Science,ed. by Brink, C., Kahl, W. and G. Schmidt, New York: Springer, 229-249.[5] B�ottner, M. (To appear) Relationale Grammatik. T�ubingen: Niemeyer.[6] Brink, C. (1978) On Peirce's notation for the logic of relatives. Transactions of theCharles S. Peirce Society 14, 285-304.[7] Brink, C., Kahl, W. and G. Schmidt (1997) Relational Methods in Computer Science.New York: Springer.[8] Carnap, R. (1929) Abriss der Logistik. Wien: Springer.[9] Copi, I. M. and F. Harary (1953) Some Properties of n-Adic Relations. PortugaliaeMathematica 12, 143-152.[10] Herzberger, H. G. (1981) Peirce's Remarkable Theorem. In Pragmatism and Purpose.Essays presented to Thomas A. Goudge, ed. by L. W. Sumner, J. G. Slater and F.Wilson. University of Toronto Press, 41-58.[11] Keenan, E. L. and Faltz, L. M. (1985) Boolean Semantics for Natural Language.Dordrecht: Reidel.[12] Martin, R. M. (1978) Of lovers, servants, and benefactors. Journal of PhilosophicLogic 7, 27-48.17Sowa (1993).
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