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Abstract

Motivation: Current sequencing technologies are able to produce reads orders of magnitude lon-

ger than ever possible before. Such long reads have sparked a new interest in de novo genome as-

sembly, which removes reference biases inherent to re-sequencing approaches and allows for a

direct characterization of complex genomic variants. However, even with latest algorithmic advan-

ces, assembling a mammalian genome from long error-prone reads incurs a significant computa-

tional burden and does not preclude occasional misassemblies. Both problems could potentially

be mitigated if assembly could commence for each chromosome separately.

Results: To address this, we show how single-cell template strand sequencing (Strand-seq) data

can be leveraged for this purpose. We introduce a novel latent variable model and a corresponding

Expectation Maximization algorithm, termed SaaRclust, and demonstrates its ability to reliably

cluster long reads by chromosome. For each long read, this approach produces a posterior prob-

ability distribution over all chromosomes of origin and read directionalities. In this way, it allows to

assess the amount of uncertainty inherent to sparse Strand-seq data on the level of individual

reads. Among the reads that our algorithm confidently assigns to a chromosome, we observed

more than 99% correct assignments on a subset of Pacific Bioscience reads with 30.1� coverage.

To our knowledge, SaaRclust is the first approach for the in silico separation of long reads by

chromosome prior to assembly.

Availability and implementation: https://github.com/daewoooo/SaaRclust

Contact: t.marschall@mpi-inf.mpg.de

1 Introduction

The ability to accurately reconstruct a person’s genome is a crucial

pre-requisite for studies of genetic variation in clinical as well as

basic research. In order to capture the full extent of genetic variation

of an individual’s genome, there is a shift towards replacing re-

sequencing based workflows, which use a reference genome, by

de novo assembly of personal genomes. Long read sequencing tech-

nologies, such as marketed by Pacific Biosciences (PacBio) and

Oxford Nanopore Technologies (ONT), can produce reads of tens

of kilobases in length. This allows for much improved genome

assemblies in comparison to short read (Illumina) sequencing plat-

forms (Chin et al., 2016; Gordon et al., 2016; Koren et al., 2017;

Lin et al., 2016; Myers, 2014). In particular, long reads can resolve

many repetitive regions that are inaccessible to short reads, which

yields more accurate and contiguous assemblies (Treangen and

Salzberg, 2012).

Despite this progress, even contigs (continuously assembled

sequences) produced from long-read-based assembly fall short of
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spanning entire chromosomes. Current assembly workflows there-

fore rely on an additional scaffolding step that uses orthogonal data

to place contigs into their respective chromosomes, for instance

through chromatin conformation data (e.g. Hi-C) (Burton et al.,

2013). This, however, comes with the disadvantage that mis-

assemblies present in the contigs are difficult to detect and correct at

this stage of genome assembly (Jiao et al., 2017; Jiao and

Schneeberger, 2017). In particular, this applies to chimeric contigs

that erroneously join sequences originating from different chromo-

somes. These errors could be avoided, if the chromosomal origin of

each read was known prior to genome assembly.

Such knowledge of chromosomal origin would also entail sub-

stantial computational advantages: if reads were sorted by chromo-

some, genome assembly could then be performed separately per

chromosome, which has the potential of saving large amounts of

runtime and memory, as well as improving parallelization. This is

particularly crucial since assembling third generation sequencing

reads is a computationally challenging problem due to high sequenc-

ing error rates.

Here, we explore the potential of single-cell template strand

sequencing data (Strand-seq, introduced by Falconer et al., 2012) to

cluster long reads, such as from the PacBio platform, into their

chromosome of origin––and as such enable definite physical assign-

ment of long reads to a chromosome, to considerably facilitate

chromosomal scaffolding or de novo assembly. We stress that we

aim to cluster long reads in silico, without using a reference genome

and before genome assembly.

1.1 Strand-seq
To date, Strand-seq has been successfully applied to answer several bio-

logical questions including inversion detection (Sanders et al., 2016),

haplotype phasing (Porubsk�y et al., 2016, 2017) and mapping sister

chromatid exchange (SCE) events (Claussin et al., 2017; Falconer

et al., 2012; van Wietmarschen et al., 2018). We illustrate the underly-

ing idea in Figure 1. Strand-seq sequences only the template strand

used for DNA replication during a single mitotic cell division. In doing

so, it preserves the directionality of the template strands, which we

refer to as Watson (W) and Crick (C; Fig. 1a, left). That means, each

chromosome inherits template strands with one of the three possible

strand states (WC, WW, or CC), as shown in Figure 1b. One key fea-

ture of Strand-seq data consist in the preservation of strand directional-

ities. That is, reads stemming from a Watson or Crick strand map in

forward or reverse direction to a reference genome, respectively.

Therefore, different strand state signatures imply different chromo-

somes of origin. The only exception to this are occasional SCEs,

(Claussin et al., 2017; Falconer et al., 2012; van Wietmarschen et al.,

2018), which lead to changes in strand state, as apparent in

Chromosome 7 shown in Figure 1b. Because the yield from one single-

cell library is usually low, one typically applies Strand-seq to many in-

dividual single cells (e.g. 132 single cells for the datasets we use in this

study). Each single cell library comes with its own strand state profile,

because mitotic cell divisions and segregation happen independently of

each other. We use the terms ‘single cell’, ‘library’ and ‘single cell li-

brary’, interchangeably in this manuscript.

Strand-seq technology has also been used to cluster contigs into

their original chromosomes, as proposed in BAIT and ContiBAIT

tools (Hills et al., 2013; O’Neill et al., 2017). These tools rely on

mapping Strand-seq reads first to a contig-stage assembly, and then

using the strand states of the contigs to scaffold them into chromo-

somes (Hills et al., 2018). The major limitation of this approach is

that any assembly errors, such as chimeric contigs, result in mixed

states that confound the clustering method. Additionally, this

(a)

(b)

Fig. 1. Principle of directional single-cell Strand-seq. (a) Maternal and paternal homologues are composed of one positive template strand (Crick; teal) and a nega-

tive template strand (Watson; orange). During DNA replication in the presence of bromodeoxyuridine (BrdU), which is a thymidine analogue, a cell incorporates

BrdU into the newly synthesized DNA strands. This results in sister chromatids that contain one original template template strand (solid line) and one newly syn-

thesized, BrdU-incorporated strand (dashed line). One single cell division leads to assortment of paternal and maternal sister chromatids to daughter cells, with

three possible combinations of template strands: Option 1 (WC), Option 2 (CC) and Option 3 (WW). Newly formed DNA strands containing BrdU are selectively

removed in daughter cells during library preparation, such that only the original template DNA strands are being sequenced. (b) Each chromosome is repre-

sented as a vertical ideogram, and the distribution of directional sequencing reads is plotted as horizontal lines along each chromosome, with Watson (W) in or-

ange and Crick (C) in teal. Each chromosome inherits its template strand as either Crick or Watson, which results in three possible states WW, CC or WC. Some

chromosome can have a combination of strand states as a results of sister chromatid exchance (SCE) events, as shown in Chromosome 7
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method is not designed to work with the extremely sparse data

resulting from mapping Strand-seq reads to individual long reads.

1.2 Our contributions
Here, we present a novel Expectation Maximization (EM, Dempster

et al., 1977) approach for clustering long sequencing reads into their

original chromosomes and implement it in an R package called

SaaRclust. It allows us to ‘physically’ separate long reads by

chromosome through exploiting data from an easily scalable mo-

lecular protocol (i.e. Strand-seq, Falconer et al., 2012). SaaRclust is

the first tool for computationally clustering individual sequencing

reads by chromosome without relying on a reference genome. We

emphasize that Strand-seq data are extremely sparse and one single-

cell library typically yields a genomic coverage on the order of

0.03�. To address this challenge, we developed an EM-based soft

clustering technique that is able to aggregate the weak signal inher-

ent to individual single cell libraries. As a result, we obtain a poster-

ior probability distribution over all chromosomes for each long

read. We evaluate our approach on real NA12878 data and find the

clustering to yield very favourable results: When imposing a cutoff

of 0.8 on the posterior probability, we assign 71% of all long reads

to a chromosome and those reads that have been assigned are cor-

rect in more than 97% of all cases. With a cutoff of 0.99, we still as-

sign 61.1% of all reads while reaching an accuracy of above 99%.

1.3 Idea
Let us assume we are given a set of long sequencing reads, e.g.

PacBio reads. As shown in Figure 2a, we map all Strand-seq reads to

all PacBio reads and then count the number of Strand-seq reads

from different libraries that are mapped to each PacBio read in ei-

ther Watson (–) or Crick (þ) orientations. This read-to-read map-

ping does not involve a reference genome. As a central observation,

we note that PacBio reads originating from the same chromosome

will show the same strand states across the different single cell

libraries. Therefore, we can use these directional Strand-seq read

counts in order to cluster PacBio reads into their original

chromosomes.

The main idea of the EM algorithm, as shown in Figure 2b, is

that the knowledge of single-cell strand states for each chromo-

some is informative of the chromosomal origin of PacBio

reads and vice versa; that is, knowing the true chromosomes of

PacBio reads enables us to find the chromosome strand

states. This flow of information can be repeated in an iterative

manner, starting from an arbitrary initialization, using an EM al-

gorithm. We model the process of sampling Strand-seq read

counts from different libraries by a mixture model. Clustering

then commences through an EM algorithm that iteratively esti-

mates strand state parameters, cluster weights and read assign-

ments to clusters.

Mapping of all Strand-seq reads against all PacBio reads
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Fig. 2. Overview on algorithmic workflow. (a) After mapping Strand-seq to PacBio reads, their (relative) directionality with respect to the PacBio reads is recorded.

That is, for each PacBio read and each Strand-seq single-cell library, the number of Crick (þ) and Watson (–) reads is tabulated (right). For example, 2/1 refers to

two Crick reads and one Watson read mapped to the corresponding PacBio read in a given row. Note that the data are sparse, with many zero entries in the table.

This table is the input to our EM clustering method. (b) Illustration of the main idea of the EM algorithm, which iterates between E-step and M-step. On the left, a

table of chromosomal strand states probabilities (H) is shown, which contains the current estimates of a certain strand state (i.e. WW, CC, or WC) for each single

cell library (Lib 1, Lib 2, Lib 3) and chromosome (C 1, C 2, C 3). On the right, we illustrate that PacBio reads in the same cluster (chromosome) display the same

strand signatures (in terms of the Strand-seq reads mapped to them); the table shows, for each PacBio read, the probabilities of stemming from a given chromo-

some (C 1, C 2, C 3). In the E-step, the current estimates of chromosomal strand states probabilities (H) are used to estimate cluster assignments. In the M-step,

the current (probabilistic) cluster assignments are used to estimate strand state probabilities
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2 Mixture model and the EM algorithm

We consider two clusters per chromosome corresponding to PacBio

reads oriented in forward and backward direction, respectively. Let

N; J; K be the number of PacBio reads, single cell libraries and clus-

ters, respectively. We present a full list of notations that we use

throughout the paper in Table 1.

We model the number of Watson and Crick Strand-seq reads

mapped to PacBio reads by a mixture model, shown in plate nota-

tion in Figure 3. The component weights of the mixture model are

P ¼ p1; . . . ; pKð Þ, which are the probabilities of sampling PacBio

reads from different clusters. In the following, hk,j,t denotes the

probability that single cell j has state t in cluster k. One should

note that a single cell may have more than one state in a cluster

because of SCE events (Fig. 1b, Chromosome 7). To sum up, there

are two sets of parameters in the mixture model: cluster weights

P ¼ p1; . . . ; pKð Þ and strand state parameters H, which have the

following constraints based on their definitions:

XK

k¼1

pk ¼ 1

8 k; jð Þ 2 1 : K½ � � 1 : J½ �;
X
t2T

hk;j;t ¼ 1:

(1)

According to Figure 3, for the n-th PacBio, a cluster Zn is first

chosen based on the discrete distribution P. Then, based on the

chosen cluster, strand states for all single cells are generated based

on the strand state probabilities hk in the chosen cluster k¼Zn. At

the end, given the strand states, a random matrix Xn of size J � 2

containing pairs of Watson and Crick read counts for each single

cell is generated by a binomial distribution. More precisely, the like-

lihood of observing a Watson and Crick read count, given a certain

strand state t is computed as follows:

P XW
n;j;X

C
n;jjtk;j ¼ t

� �
¼

mn;j

XW
n;j

 !
p

XW
n;j

t 1� ptð ÞX
C
n;j ; (2)

where mn;j is the total number of Strand-seq reads from library j

mapped to read n (and therefore XW
n;j þXC

n;j ¼ mn;j, which we con-

sider to be a constant) and pt is the probability of having a Watson

read from a single cell with state t is defined as follows:

pt ¼

1� a if t ¼WW

0:5 if t ¼WC

a if t ¼ CC

8>><>>:
In the above definition, a is the fraction of background reads (reads

in the opposite direction of the strand state) in WW or CC strand

states, which is considered as a constant parameter in our model. In

the rest of the manuscript, we abbreviate P XW
n;j;X

C
n;jjtk;j ¼ t

� �
as

Bt Xn;j

� �
. The likelihood of the mixture model parameters given the

observed Strand-seq read counts for all PacBio reads can be then

computed as follows:

L h; p; Xð Þ ¼
YN
n¼1

XK

k¼1

pk

YJ

j¼1

X
t2T

hk;j;tBt Xn;j

� � ! !

) logL h;p; Xð Þ ¼
XN
n¼1

log
XK

k¼1

pk

YJ

j¼1

X
t2T

hk;j;tBt Xn;j

� � ! ! (3)

The maximum likelihood problem is maximizing the objective

function logL h; p; Xð Þ (log-likelihood function) in the above for-

mula. This maximization problem does not have a closed form solu-

tion, therefore we use the EM algorithm for solving this problem,

which has been shown to converge to a local optimum (Wu, 1983).

In order to have a simple form complete-data log-likelihood

function (likelihood of the mixture model parameters given both

hidden and observed random variables), we define the hidden

random variables of the EM algorithm as follows: for every

n;k; j; tð Þ 2 1 : N½ � � 1 : K½ � � 1 : J½ � � T, we define a hidden binary

random variable Zn;k;j;t which is equal to 1 if and only if PacBio read

n belongs to cluster k and stems from a locus where the single cell j

has strand state t. Based on this definition, there are some con-

straints on the hidden random variables: for every n 2 1 : N½ �, there

is only one cluster k0 2 1 : K½ � (where that PacBio read belongs to)

such that the following conditions hold.

8j 2 ½1 : J�;
X
t2T

Zn;j;k0 ;t ¼ 1

8ðj; k; tÞ 2 ½1 : J� � ð½1 : K�nfk0gÞ � T; Zn;j;k;t ¼ 0

(4)

The complete-data log-likelihood function is computed as

follows:

Table 1. Overview of notations

Notation Definition

XW
n;j The number of Strand-seq reads from single cell j

mapped to the n-th PacBio read in Watson direction

XC
n;j The number of Strand-seq reads from single cell j

mapped to the n-th PacBio read in Crick direction

Xn;j ðXW
n;j;X

C
n;jÞ

XC
n ðXC

n;1; . . . ;XC
n;JÞ

XW
n ðXW

n;1; . . . ;XW
n;JÞ

Xn ðXn;1; . . . ;Xn;JÞ
T The set of all possible strand states {WW, WC, CC}

tk;j 2 T The state of single cell j in cluster k

tk ðtk;1; . . . ; tk;JÞ
hk;j;t The probability that single cell j has state t in cluster k

hk;j ðhk;j;WW; hk;j;WC; hk;j;CCÞ
hk ðhk1; . . . ; hkJÞ
pk The probability that a PacBio read comes from cluster k

Zn;k A binary random variable showing whether PacBio read

n comes from cluster k

½1 : a� The set of all integers between 1 and a

Fig. 3. SaaRclust’s mixture model expressed in plate notation. pk denotes the

weight (relative size) of cluster k. hk ;j denotes a discrete probability distribu-

tion over three different strand states of single cell j in cluster k. Zn and tn;j are

the chosen cluster and the chosen strand state of single cell j for PacBio read

n, respectively. Xn;j is a pair of Watson and Crick Strand-seq read counts of

single cell j for PacBio read n
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lnL h; p; X;Zð Þ ¼X
n;k;j;t

Zn;k;j;t
1

J
lnpk þ lnhk;j;t þ lnBt Xn;j

� �� �
(5)

The EM algorithm iterates over the two following steps

(Dempster et al., 1977):

Q h; pjh mð Þ;p mð Þ
� �

¼ EZjX;h mð Þ ;p mð Þ lnL h; p; X;Zð Þ Eð Þ

h mþ1ð Þ; p mþ1ð Þ ¼ argmax
h;p

Q h;pjh mð Þ; p mð Þ
� �

Mð Þ
(6)

Let c mð Þ Zn;k;j;t

� �
denote the expectation of the hidden random

variable Zn;k;j;t given the observed data and the model parameters

at the mth iteration. This expectation can be computed as

follows:

c mð Þ Zn;k;j;t

� �
:¼

p mð Þ
k

� � 1
Jð Þ

h mð Þ
k;j;tBt Xn;j

� �
PK

k0¼1

P
t02T p mð Þ

k0

� � 1
Jð Þ

h mð Þ
jk0t0Bt0 Xn;j

� � (7)

Based on the Equations (3)–(7), the objective function of the EM

algorithm can be written as

Q h; pjh mð Þ; p mð Þ
� �

¼X
n;k;j;t

c mð Þ Zn;k;j;t

� � 1

J
lnpk þ lnhk;j;t þ lnBt Xn;j

� �� � (8)

Maximizing the objective function in Equation (8) by Lagrange

multipliers corresponding to the constraints in Equation (1) leads to

the following update rules for the parameters:

p mþ1ð Þ
k ¼

PN
n¼1

PJ
j¼1

P
t2T c mð Þ Zn;k;j;t

� �PN
n¼1

PK
k0¼1

PJ
j¼1

P
t2T c mð Þ Zn;k0 ;j;t

� � (9)

h mþ1ð Þ
k;j;t ¼

PN
n¼1 c mð Þ Zn;k;j;t

� �P
t02T

PN
n¼1 c mð Þ Zn;k;j;t

� � (10)

After estimating parameters of the mixture model, the cluster as-

signment probabilities can be computed as follows:

P Zn;k ¼ 1jpk; hk

� �
¼ pk

YJ

j¼1

P Xn;jjhk;j

� �

¼ pk

YJ

j¼1

X
t2T

hk;j;tP Xn;jjtk;j ¼ t
� � !

¼ pk

YJ

j¼1

X
t2T

hk;j;tBt Xn;j

� � !
;

(11)

where Zn;k denotes a binary random variable showing whether the

nth PacBio read is from cluster k, as defined in Table 1.

2.1 Initializing EM parameters
For initializing the EM parameters, we use a combination of

k-means and hierarchical clustering. First, we run the k-means algo-

rithm with a number of clusters that is higher than the target num-

ber of 46 clusters for a female human genome. Note that the

number of clusters in k-means is a user parameter, and we set it to a

higher number in order to avoid missing small clusters. We use the

J-dimensional feature vector
XW

n;j
�XC

n;j

XW
n;j
þXC

n;j

� �J

j¼1

to encode PacBio read n.

Once we have run k-means on these input vectors, we compute the

single cell strand states with maximum likelihood for each cluster.

Note that in this step, we use the simplifying assumption that there

is no combination of strand states (resulting from SCEs) in any pair

of single cell and chromosome, which makes these maximum likeli-

hood computations straightforward. Lastly, using these single cell

strand states as a feature vector for each cluster, we merge similar

clusters to obtain the desired number of clusters based on agglom-

erative hierarchical clustering. At the end, we use the final clusters

with their maximum likelihood single-cell strand states to initialize

the EM parameters. More precisely, we set the p parameters to the

relative sizes of the formed clusters, and we initialize hk;j, for each

cluster k and single cell j, as follows:

hk;j;t ¼
0:9 if t ¼ btk;j

0:05 otherwise

(

where btk;j is the estimated strand state in cluster k and single cell j.

2.2 Pairing clusters with the same chromosome
There are two clusters per chromosome corresponding to the PacBio

reads having forward or backward direction, respectively. The direc-

tionality of mapped Strand-seq reads is exactly the opposite in a pair

of clusters corresponding to PacBio reads in forward or backward

direction on a chromosome. As a result, WC strand states are similar

in the aforementioned pair of clusters, but WW and CC strand states

are the opposite over all single cells. Based on this relation between

the strand states for the clusters coming from the same chromosome,

we defined a distance measure d over all pairs of clusters as follows:

d clustk1
; clustk2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

j¼1

hk1 ;j;WW � hk2 ;j;CC

� �2

vuut (12)

To convert this distance measure to a similarity measure, we sub-

tracted each computed pairwise distance from the maximum of all

pairwise distances. We then used the maximum matching algorithm

to find the pairs of clusters with the maximum similarities.

3 Experimental setup

We evaluated the performance of SaaRclust on the human female

individual NA12878. The fastq files of 132 Strand-seq libraries for

this individual are publicly available at the European Nucleotide

Archive (http://www.ebi.ac.uk/ena) under accession number

PRJEB14185. Additionally, aligned reads in BAM format for all

Strand-seq libraries used in this study are available at Zenodo (doi:

10.5281/zenodo.1203703). PacBio reads are available from the

Sequence Reads Archive (https://www.ncbi.nlm.nih.gov/sra/) under

accession number SRX1837675 (We thank Tina Graves and Rick

Wilson for making this dataset available). For our study, we used the

corresponding BAM file made available by PacBio (https://down

loads.pacbcloud.com/public/dataset/na12878/hg38.NA12878-

WashU.bam). We extracted all reads from this BAM file, including

unmapped ones, without applying any filters, to ensure that the reads

correspond to the raw data. We reverse complemented each read

mapped in reverse orientation such that all reads reflect the original

direction present in raw reads. We stored the original genome map-

ping location as well as the mapping directionality for evaluation pur-

poses, but did not use this information in any other way. In case of

Strand-seq reads, we exported only the first mates of each read pair

into fastq files. We decided not to use the second mates since the

Minimap tool (Li, 2016), the aligner we used in our analysis, does not
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handle paired-end alignment. Out of all extracted PacBio reads, those

of length at least 10 kb were exported as a fasta file to be used for the

clustering. Since all reads in the original BAM files were sorted

according to the genomic position, we have randomly shuffled

Strand-seq and PacBio reads before exporting them into a fastq or

fasta file, respectively.

3.1 Mapping strand-seq reads to PacBio reads
Mapping of short Strand-seq reads to the long PacBio reads was

done using the Minimap tool (Li, 2016). To allow parallel process-

ing, we split PacBio reads into equally sized chunks of 50 000 reads

per chunk. Minimap alignment was then performed on multiple

chunks in parallel. We explored different parameter settings for min-

imap alignment, and we set the optimum parameter setting as fol-

lows: –t 8 (number of threads), –w 1 (minimizer window size, 1

means all k-mers are considered for high sensitivity), –k 15 (k-mer

size), –L 50 (minimum number of matching bases per alignment)

and –f 0.05 (fraction of repetitive minimizers to be removed).

The total number of PacBio reads for individual NA12878 was

20.7M, out of which 5.8% were unmapped. After filtering them

based on the minimum length of 10 kb, we processed 10.8 M PacBio

reads, which were split in 217 chunks in total. By using Minimap,

we obtained 9.1 M PacBio reads with at least one Strand-seq read

mapped to them.

3.2 Performance metrics
Original chromosomes and directionality of PacBio reads based on

their mapping to the reference genome were used as a ground truth

for accuracy assessment of our method. In the evaluation process,

we used only the set of PacBio reads for which a ground truth was

available, that is, those reads mapped to one of the autosomes or

Chromosome X in the original BAM file. Note that the clustering

proceeded on all reads, including unmapped ones, but the assign-

ment of those unmapped reads cannot be evaluated.

To evaluate clustering accuracy, we first divided PacBio reads

with respect to their true known chromosome and directionality.

For each cluster, we determined a “true” chromosome and direc-

tionality based on the origin of the majority of PacBio reads in that

cluster. Given this assignment, we computed the fraction of PacBio

reads that were correctly assigned to a cluster corresponding to their

original chromosome and orientation. Such evaluation was used for

hard as well as for EM soft clustering. In case of EM soft clustering,

we assign each PacBio read to the cluster with highest posterior

probability.

3.3 Hard clustering settings
For hard clustering, we selected a set of 50 000 PacBio reads that

were represented in at least 35 Strand-seq libraries, i.e. the PacBio

reads that have Strand-seq reads mapped to them from at least 35

different Strand-seq libraries. Such strict filtering criteria proved fa-

vorable to obtain good cluster centres using hard clustering.

To do hard clustering, we used k-means on the aforementioned

subset of PacBio reads, with 54 clusters, 100 random initializations

and 10 iterations for each initialization. After k-means, we per-

formed hierarchical clustering to merge the resulting clusters into 47

clusters, based on the estimated single cell strand states in the clus-

ters. Note that we observed that the PacBio reads coming from re-

petitive genomic regions tend to form an extra (false) cluster. This

extra cluster was estimated being WC in almost all libraries (which

is unlikely to reflect a true cell state based on the random distribu-

tion of strand states). For this reason, we set the number of clusters

to 47 instead of 46, which would be an expected number of clusters

for a female human used in this study.

3.4 Soft (EM) clustering settings
PacBio reads with an abnormally high numbers of Strand-seq reads

mapped to them might adversely affect the performance of the EM

algorithm in estimating the model parameters. Those reads are likely

to originate from the complex repetitive regions of the genome and

therefore do not have a clean Strand-seq strand state signal. We

therefore removed PacBio reads that are among the top 95% quan-

tile based on the coverage of Strand-seq reads mapped to them.

We ran our EM algorithm on each chunk of Minimap align-

ments independently based on the initialization of parameters result-

ing from hard clustering. The number of EM iterations was set to 50

in each chunk, and the a parameter was set to 0.01.

3.5 Runtime and convergence of the EM algorithm
We measured running times of different steps of our pipeline. The

runtime for the alignment of Strand-seq reads to PacBio reads

amounted to 414.3 CPU hours, and the runtimes for hard and soft

clusterings were 0.87 and 400.5 CPU hours, respectively.

To confirm convergence of the algorithm, we also ran the EM al-

gorithm with 100 iterations in 10 chunks of PacBio reads, and we

obtained almost the same clustering accuracy as the default number

of 50 iterations in those chunks. For example, we observed that in

the 100 iterations experiment, there are 78.76% of PacBio reads

with the maximum cluster assignment probability of at least 0.5,

among which 92.75% were correctly clustered. The two aforemen-

tioned percentages for 50 iterations are 78.72% and 92.7%, respect-

ively, which are almost identical to the results of 100 iterations. This

observation indicates that the EM algorithm has sufficiently con-

verged after 50 iterations.

4 Results

4.1 Quality control
To evaluate the overall performance of aligning Strand-seq reads to

PacBio reads, we looked at a number of data quality measures

shown in Figure 4a. The leftmost histogram shows how many differ-

ent Strand-seq libraries are represented per PacBio read. This metric

highly depends on the number of Strand-seq libraries as well as the

stringency of the mapping step. We observe that the majority of

PacBio reads is covered by less then 25 (out of 132) single cell libra-

ries. The peak on the right stems from reads in repetitive contexts

which we remove in a pre-processing step (Section 3.4). The middle

histogram represents the number of Strand-seq reads per PacBio

read per Strand-seq library. Note that we removed the zero read

counts from this statistics. That is, this historgram only shows cases

in which at least one read from a Strand-seq library mapped to a

given PacBio read. This plot reveals that only in a minority of cases

there are two or more reads from a single Strand-seq library that

cover the same PacBio read. These two histograms highlight the

overall sparsity of the data, where each PacBio read is covered by

only a handful of Strand-seq reads from a few libraries. This data

sparsity is explained by observing the limited PacBio read length

(Fig. 4a, right) and the fact that Strand-seq is a single cell sequencing

technique with a limited coverage per library.

4.2 Clustering accuracy
For each PacBio read, we sorted the clusters in decreasing order

based on their soft clustering probabilities. We then computed the
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rank of the true cluster in this sorted list for every PacBio read. The

histogram in Figure 4b shows the distribution of these ranks across

PacBio reads. For the majority (74.6%) of PacBio reads, the true

cluster appeared at rank 1, meaning that the cluster with the highest

probability was the true (correct) cluster. This means that such reads

can be correctly clustered if we choose only the cluster with the high-

est probability. Besides that, there was a noticeable amount (11.5%)

of PacBio reads with ranks 2–5, highlighting the benefits of soft clus-

tering: In such a way, some PacBio reads can be assigned to a small

list of clusters with a true one among them, even though there is an

ambiguity with respect to the cluster assignment. These results are in

line with the fact that some PacBio reads have a low Strand-seq

coverage and true clusters might not be well distinguishable from

the others.

To see how confidently we can assign each PacBio read to the

chromosome with the highest probability, we computed the differ-

ences between the highest and second highest probability for all

PacBio reads and observed that it was larger than 0.95 in 65.2%

and smaller than 0.05 in 13% of all cases. This indicates that for the

majority of PacBio reads, the difference is quite pronounced, where-

as only a minority shows an ambiguous signal (those with sparse

Strand-seq coverage), which is in line with the statistics displayed in

Figure 4b.

Next, we sought to investigate the main determinants of a

PacBio read being assigned to a correct cluster (chromosome). We

assigned each PacBio read to the cluster with the highest probability.

We evaluated each cluster assignment as correct or incorrect by

comparison to the known original chromosome of each PacBio read.

Subsequently, we investigated the distribution of the number of

Strand-seq libraries being represented per PacBio read in the set of

correctly and incorrectly clustered PacBio reads, respectively, as

shown in Figure 4c. It is evident that there is a clear difference be-

tween the number of Strand-seq libraries represented in these two

groups of PacBio reads, with median values of 62 and 19 for correct-

ly and incorrectly assigned PacBio reads, respectively. The low num-

ber of represented Strand-seq libraries in the incorrectly clustered

PacBio reads meets our expectation that finding the true cluster is

difficult when the data are too sparse. However, according to

Figure 4b, the true cluster for these sparse data usually lies among

the top clusters. The red points in the yellow box plot show the out-

liers that likely correspond to PacBio reads falling in repetitive

regions of the genome and hence are receiving a lot of Strand-seq

reads. Moreover, PacBio reads coming from repetitive regions of the

genome are prone to have mis-mapped Strand-seq reads what might

violate observed strand states.

To further evaluate the accuracy of our clustering algorithm, we

filtered out all PacBio reads that are represented in less than five

Strand-seq libraries, which leads to a set of remaining reads with an

average genome coverage of 48.9�. Among those selected PacBio

reads, we computed the clustering accuracy using a set of probability

thresholds (0, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99). In other words,

we only evaluated PacBio reads whose maximum cluster probability

(a)

(b)

(c)

(d)

Fig. 4. (a) Data quality measures representing unfiltered data after mapping of Strand-seq read to PacBio reads. Clustering accuracy is reported after filtering out

5% of PacBio reads with the highest Strand-seq read coverage. (b) Distribution of PacBio reads based on the ranks of their true clusters sorted by probabilities

(the cluster with the highest probability for any given PacBio read has rank 1 etc.) (c) Distribution of the amount of Strand-seq libraries being represented per

PacBio read as a function of a given PacBio read being assigned to a correct or incorrect cluster (chromosome and directionality). (d) The accuracy for various

probability thresholds (0, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.9) among PacBio reads represented in at least five Strand-seq libraries. Each curve represents a different

number of Strand-seq libraries used (132, 100, 75, 50)
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was above the respective threshold (Fig. 4d). Additionally, results

for using varying numbers of Strand-seq libraries are represented as

different curves, confirming the importance of including a large

number of Strand-seq libraries. For all curves, there is a clear trade-

off between the fraction of assigned reads and the clustering accur-

acy. That is, the more stringently we filter, the higher the accuracy,

which confirms that the posterior probabilities indeed capture the

degree of certainty about the assignment of a read to a chromosome.

For instance, we were able to reach very high clustering accuracy

(97.0%) corresponding to the probability threshold 0.8, while

retaining 71.0% of PacBio reads. This amount of PacBio reads was

sufficient to cover the human genome with 34.8� coverage. With a

threshold of 0.99, we attain an accuracy of more than 99% while

still retaining 61.1% of all reads and reaching a genome coverage of

30.1� (rightmost dot in top curve in Fig. 4d).

4.3 Hard clustering-based versus random initialization
To assess the merits of our initialization procedure based on hard

clustering, we replaced it by random initialization and compared the

results. We ran the EM algorithm for the same number of itera-

tions (50) and observed markedly worse performance for random

initalizations: When assigning each PacBio read to the cluster with

maximum probability, we obtained an accuracy of 9.6% using ran-

dom initialiation as opposed to an accuracy of 79.6% when using

the hard-clustering initialization (leftmost data point in top curve of

Fig. 4d). This experiment shows that the hard clustering step, which

is orders of magnitude faster than the EM procedure (Section 3.5),

drastically improves the final results.

4.4 De novo assembly on clustered PacBio reads
Lastly, we have tested the performance of de novo assembly on clus-

tered PacBio reads. We selected all PacBio reads that were repre-

sented in at least five single-cell libraries and that were assigned to

Chromosome 1 with a probability of 0.5 and higher. This yields

489 203 of PacBio reads, corresponding to 35� coverage of

Chromosome 1. Recall that the outcome of SaaRclust is two clus-

ters, one contains PacBio reads in forward and the other contains

PacBio reads in reverse direction. We have reverse complemented

all PacBio reads assigned to reverse directionality cluster. In

this way, we have synchronized directionality of all Pacbio reads

belonging to Chromosome 1. The resulting reads were used as

input to the Canu assembler (Koren et al., 2017) with parameters

correctedErrorRate¼0.1 and minOverlapLength¼200.

These settings resulted in 460 contigs for Chromosome 1 with an

N50 length of 1.05 Mbp as reported by Assemblytics (Nattestad and

Schatz, 2016).

Next, we explored whether the contiguity can be further

improved by including more reads. To this end, we also included

reads where Chromosome 1 was among the top clusters with prob-

abilities markedly higher than the rest of them, based on detecting

a peak in the differences between pairs of consecutive probabilities

(after sorting by probability). With this approach, we have

increased the number of PacBio reads assigned to Chromosome 1

to 667 346, corresponding to 47� coverage of Chromosome 1. We

have repeated the assembly (using the same Canu parameters) with

this new read set and obtained a more contiguous assembly con-

sisting of 330 contigs (N50¼1.64 Mbp) that cover 92.7% of

Chromosome 1 after mapping them to the reference genome

(Fig. 5a and b). Interestingly, since all contigs are expected to be of

the same directionality, any change in directionality might be an

indication of structural variation. Based on this assumption we

have been able to confirm a large inversion on Chromosome 1 pre-

viously reported by Sanders et al. (2016) (Fig. 5a, arrowhead).

However, we observed other regions of switched directionality

that do not correspond to known inversions (Fig. 5a, asterisks).

Overall, the de novo assembly of pre-clustered PacBio reads pro-

vided highly specific contigs of which the vast majority (98%) was

localized on the expected genomic chromosome (Fig. 5b, iii).

Moreover, almost all (93.6%) assembled contigs were mapped

back to the reference sequence in forward directionality covering

90% of Chromosome 1 (Fig. 5b, i, ii).

5 Discussion

We presented a latent variable model and a corresponding EM algo-

rithm to leverage single-cell Strand-seq data for clustering long

(a) (b)

Fig. 5. (a) An ideogram showing genomic locations of contigs assembled from PacBio reads assigned to Chromosome 1 by SaaRclust. Horizontal lines represent

individual chromosomes and vertical lines (green and yellow) depicts genomic location and directionality (’þ’: green, ’–’: yellow) of contigs mapped against refer-

enge genome assembly. Black arrowhead points to a switch in contig directionality overlapping with known inversion. Asterisks points to directionality switches

not presented as inversion before. Text inset presents various assembly statistics. CPU time is reported for the whole de novo assembly pipeline including read

correction, read trimming and assembly using Canu. (b) Statistics of Chromosome 1 assembly (i) Reports how many contigs were mapped in expected direction-

ality to the reference genome. (ii) Shows total percentage of Chromosome 1 covered by contigs with both expected and reversed directionality. White chunk rep-

resents uncovered portions of Chromosome 1. (iii) Illustrates specifity at which assembled contigs map to Chromosome 1
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sequencing reads by chromosomal origin and directionality. We

implemented this algorithm in an R package, called SaaRclust and

tested it on the female human genome NA12878. SaaRclust exhibits

a high accuracy even though the input data are extremely sparse and

the read mapping process is complicated by the high error rates of

PacBio sequencing. It is the first tool able to cluster long reads by

chromosome. This constitutes a major improvement compared to

BAIT (Hills et al., 2013) and ContiBAIT, (O’Neill et al., 2017),

which can perform clustering at the level of contigs, but are not

designed to work with sparse read-level data.

We observed that the reliability of assigning a given PacBio read

to a chromosome strongly depends on the Strand-seq coverage it

received. In case of ambiguity, however, the true chromosome was

among the top five clusters in most of these cases. The reliability of

our clustering is further corroborated by the quality of the resulting

de novo assembly of Chromosome 1, which achieved a high

N50 value as well as high specificity of assembled contigs to

Chromosome 1. Most likely, optimization of assembly parameters

will bring further improvements in both accuracy and contiguity of

assembled genomes using our approach and we plan to thoroughly

test this on whole genomes in the future. Modifying existing assem-

blers to take advantage of the facts that the input reads have

synchronized directionality and come with probabilities for chrom-

somal assignments is another promising direction we plan to

explore.

As third generation sequencing technologies advance further,

reads are anticipated to become even longer. We expect a major

boost in the performance of SaaRclust on longer reads, such as from

the ONT platform. Beyond that, our single cell sub-sampling ana-

lysis shows that increasing the number of single cell Strand-seq libra-

ries enhances the clustering accuracy significantly, and saturation

has not yet been reached. Given the comparatively low cost for

Strand-seq, increasing the number of libraries would be possible

while still keeping the costs of Strand-seq significantly below those

of long read sequencing. We also plan to explore the utility of pool-

ing Strand-seq libraries from different samples for clustering, for in-

stance using the libraries for nine samples produced by the Human

Genome Structural Variation Consortium (Chaisson et al., 2017).

We hypothesize that PacBio reads with poor clustering accuracy

despite sufficient coverage are originating from repeat regions in the

genome. Such ambiguities can be accounted for by extending our

model, and we plan to explore the potential of our approach for

resolving segmental duplications in the future.

Here, we have focused on developing the necessary methodology

and have benchmarked its performance. There is a wealth of appli-

cations of our framework that we aim to address in the future.

Genomes comprising complex structural variation are interesting

cases for future studies since these variants are difficult to resolve

with extant methods. Beyond human genomes, we envision our

method to be of high utility for the assembly of plant genomes,

which can be very large. Furthermore, clustering by chromosome is

a prerequisite for using Strand-seq capabilities for whole-

chromosome haplotype phasing. The present work might hence

allow lifting our work on reference-based phasing (Porubskỳ et al.,

2016, 2017) to de novo assembly settings.
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