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Local Hamiltonians for one-dimensional critical models
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Conformal field theory has turned out to be a powerful tool to derive interesting lattice models with
analytical ground states. Here, we investigate a class of critical, one-dimensional lattice models of
fermions and hardcore bosons related to the Laughlin states. The Hamiltonians of the exact models
involve interactions over long distances that are difficult to realize experimentally. This motivates
us to study the properties of models with the same type of interactions, but now only between
nearest and possibly next-nearest neighbor sites. Based on computations of wavefunction overlaps,
entanglement entropies, and two-site correlation functions for systems of up to 32 sites, we find that
the ground state is close to the ground state of the exact model. There is also a high overlap per
site between the lowest excited states for the local and the exact models, although the energies of
the low-lying excited states are modified to some extent for the system sizes considered. We also
briefly discuss possibilities for realizing the local models in ultracold atoms in optical lattices.

I. INTRODUCTION

The physics that can be realized in strongly-correlated
quantum many-body systems is rich and far from being
fully understood. The systems are challenging to investi-
gate, because the resources needed to do numerical stud-
ies of the systems are often at the borders of or beyond
what can be done. Analytical models therefore play an
important role in getting insight into the physics of the
systems.
It has turned out that conformal field theory provides

an interesting technique to construct different quantum
many-body models on lattices, where the ground state,
and sometimes also excited states, are known analytically
[1, 2]. The idea is to interpret certain conformal field the-
ory correlation functions as ground state wavefunctions
and then use the mathematical properties of these objects
to derive parent Hamiltonians of the states. The result-
ing Hamiltonians typically consist of terms that are few-
body and nonlocal. The method has, for instance, been
used to obtain 2D lattice models with ground states that
are lattice versions of the Laughlin state at filling factor
1/q, where q = 2, 3, . . . [3]. These states are topologically
ordered and can host Abelian anyons.
One can also obtain 1D versions of the lattice Laughlin

models by doing the same derivation in one dimension [3].
The resulting models are critical and have interactions
that decay as the inverse of the square of the distance
(1/r2). The model for q = 2 turns out to coincide with
the famous Haldane-Shastry model [4–6]. The Haldane-
Shastry model is interesting, since all the excited states of
the model can be found analytically, and since the model
allows for semionic excitations. It is likely that the ex-
cited states of the one-dimensional models for other val-
ues of q are also interesting and related to the anyons that
can be obtained in the 2D versions of the models. One-
dimensional quantum many-body models with nonlocal
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interactions of the kind 1/r2, as well as truncated ver-
sions of them, have gained considerable interest over the
years [1–12], exploring interesting aspects of integrable
systems. A common feature of quantum 1/r2 systems is
that the ground state can be exactly represented by a
Jastrow-type wavefunction [1–12], namely a product of
two-body functions.
One purpose of constructing analytical models of quan-

tum many-body systems with interesting properties is to
use them as a guide to find ways to implement the physics
experimentally. In many cases, it may not be possible to
directly implement the analytical model itself, but with
some suitable modifications one may be able to simulate
a model displaying the same physics. Ultracold atoms in
optical lattices provide an interesting and flexible setup
for simulating quantum models, and there is a rapid de-
velopment in the field [13, 14]. As far as the models de-
rived from conformal field theory are concerned, a chal-
lenging aspect for experimental implementation is that
the models involve nonlocal interactions. This poses the
question, whether the same physics can be realized in a
model with only local interactions, and whether one can
use the form of the exact model to predict a suitable
choice of local interactions. In this article, we investigate
this question for the family of 1D models related to the
Laughlin states. We do the investigation with exact di-
agonalization, and we find that it is possible to obtain
local Hamiltonians, whose low-energy eigenstates have
high overlap per site with the eigenstates of the exact
Hamiltonians.
Investigations of whether a nonlocal 1D Hamiltonian

derived from conformal field theory can be replaced by a
local Hamiltonian have been done for other systems pre-
viously with affirmative conclusions [1, 2, 15, 16]. These
investigations have focused mainly on models with SU(2)
or SU(n) symmetry or spin models with a symmetry
when flipping all the spins and have looked only at ground
state properties and mainly ground state overlaps. In the
present article, we do a more thorough investigation for
a family of models without these symmetries (the model
with q = 2 has SU(2) symmetry, but the others do not).
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The presence of symmetries simplifies the study, since
the symmetry reduces the number of possible local in-
teractions, and this makes it interesting to ask the ques-
tion also for models with less symmetry. In addition to
ground state overlap, we compute entanglement entropy
and correlation functions for the ground states of the lo-
cal models, which are important quantities for determin-
ing the physics of the models. The low-energy excited
states are, however, also crucial when considering dy-
namics or systems at low, but nonzero, temperature. We
therefore also compute the low-lying part of the energy
spectra and overlaps for the low-lying excited states. Fi-
nally, we briefly discuss possibilities for implementing the
local models in ultracold atoms in optical lattices. Imple-
menting the models would allow the power law decay of
the correlation functions and the logarithmic grows of en-
tanglement entropy with subsystem size to be measured
[17–19]. In addition, one could investigate the low-lying
excited states, such as the semionic excitations for q = 2.
The results presented in this article suggest that the

interesting physics of the exact models can be realized
in models with local interactions. The studies are lim-
ited to systems of up to 32 lattice sites, as we are using
exact diagonalization to compute the eigenstates of the
local models. Implementing the models experimentally
would allow even larger systems to be considered and
could hence provide further insight into how well the lo-
cal models reproduce the physics of the exact models.
The paper is organized as follows. In Sec. II, we in-

troduce the family of exact Hamiltonians and their an-
alytical ground states. We show that the interaction
strengths decay with distance, and we propose different
local models with nearest-neighbor (NN) and possibly
next nearest-neighbor (NNN) couplings. We also briefly
discuss possibilities for realizing the local models in ultra-
cold atoms in optical lattices. In Sec. III, we quantify how
well the local models capture the physics of the nonlo-
cal models by computing properties of the ground states,
including overlap, entanglement entropy, and correlation
functions. In Sec. IV, we compute the lowest energies
of the models and the overlap between excited states of
the local and the exact models. Section V concludes the
paper.

II. MODEL HAMILTONIANS

A. Exact model

Our starting point is a family of exact 1D models with
nonlocal interactions that have been constructed using
tools from a conformal field theory in [3]. The models
are defined on a 1D lattice with periodic boundary con-
ditions, and it is convenient to think of the N lattice sites
as sitting on a unit circle in the complex plane with the
jth site at zj = ei2πj/N . Each site can be either empty
or occupied by one particle, and nj denotes the number
of particles on site j. The members of the family are

labeled by a positive integer q, and for q odd (even), the
particles are fermions (hardcore bosons).
The Hamiltonian takes the form

H1D =
∑

i6=j

[[[

(q − 2)wij − w2
ij

]]]

d†idj

−
1

2
(q2 − q)

∑

i6=j

w2
ijninj . (1)

Here, d†idj is the particle hopping operator from site j
to site i, the operator ninj denotes the density-density

interaction terms between sites i and j, and wij =
zi+zj
zi−zj

.

Explicitly,

dj =

(

1 0
0 1

)

1

⊗

(

1 0
0 1

)

2

⊗ . . .⊗

(

1 0
0 1

)

j−1

⊗

(

0 0
1 0

)

j

⊗

(

(−1)q 0
0 1

)

j+1

⊗ . . .⊗

(

(−1)q 0
0 1

)

N

. (2)

The Hamiltonian conserves the number of particles, and
we shall assume throughout that the number of particles
in the system is fixed to N/q.
It has been shown analytically in [3] that the state

|ΨExact〉 =
∑

n1,n2,...,nN

ΨExact(n1, n2, . . . , nN )|n1, n2, . . . , nN 〉 (3)

with

ΨExact(n1, n2, . . . , nN)

∝ δnχn

∏

i<j

(zi − zj)
qninj−ni−nj , (4)

is an eigenstate of the Hamiltonian (1) with energy

E0 = −
(q − 1)

6q
N [3N + (q − 8)], (5)

and numerical investigations for small systems show that
this state is the unique ground state in the subspace with
N/q particles. The factor δn is defined by

δn =

{

1 for
∑

i ni = N/q

0 otherwise,
(6)

and it fixes the number of particle in the state to N/q.

The factor χn = (−1)
∑

j
(j−1)nj is a sign factor. A sub-

set of the excited states of the model can also be found
analytically as discussed in [3].
Monte Carlo simulations for systems with a few hun-

dred sites have already shown that the exact model is
critical with a ground state entanglement entropy that
grows logarithmically with the size of the subsystem and
ground state two-site correlation functions that decay as
a power law [3]. In the following, we concentrate on the
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FIG. 1. (Color online) Behavior of the coefficients C1 = (q −

2)wij − w2
ij (upper) associated with the operator d†idj and

C2 = − 1

2
(q2−q)w2

ij (lower) associated with the operator ninj

as a function of distance for the Hamiltonian (1) with q = 3.
The system sizes are as specified in the legends.
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FIG. 2. (Color online) Behavior of the coefficients C1 = C2 =

−w2
ij associated with the operators d†idj or ninj as a function

of distance for the Hamiltonian (1) with q = 2. The legend
shows the system sizes considered.

cases q = 3, 2, and 4. We do so, because we want to
study both the fermionic and the hardcore bosonic case,
and because the q = 2 model has an SU(2) invariant
ground state, while the q = 4 model does not.

Let us investigate the behavior of the coefficients C1 =
(q− 2)wij −w2

ij of the hopping terms and C2 = − 1
2 (q

2 −

q)w2
ij of the density-density interaction terms of the exact
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FIG. 3. (Color online) The coefficients C1 = (q− 2)wij −w2
ij

(upper) associated with the operator d†idj and C2 = − 1

2
(q2 −

q)w2
ij (lower) associated with the operator ninj as a function

of distance for the Hamiltonian (1) with q = 4. The different
system sizes we consider are shown in the legends.

Hamiltonian (1) with respect to distance. First we note
that

wjk =
zj + zk
zj − zk

=
−i

tan[ πN (j − k)]
. (7)

From this and the expressions for C1 and C2, we observe
that the strength of the interactions decay as |i−j|−2 for
short distances (π|i − j|/N ≪ 1), and for long distances
(|i − j| ≈ N/2) both C1 and C2 approach zero. Plots of
C1 and C2 for different system sizes are given in Figs. 1, 2,
and 3 for q = 3, q = 2, and q = 4, respectively. The fact
that the interaction strengths decay fast with distance
suggest that it may be possible to truncate the nonlocal
Hamiltonian to a local Hamiltonian without significantly
altering the low-energy physics of the model.

B. Local models

Replacing the exact Hamiltonian with a local one is an
advantage experimentally, both because it removes the
need to engineer couplings between distant sites and be-
cause it reduces the number of terms in the Hamiltonian.
Ultracold atoms in optical lattices provide an interesting
framework for simulating quantum physics. By trapping
ultracold atoms in a 1D optical lattice, one naturally gets
a model with hopping between NN sites and on-site in-
teractions [20]. The hardcore constraint can be imple-
mented by ensuring that the on-site interaction is large
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FIG. 4. (Color online) Schematic diagram showing a zigzag
lattice. The geometry allows for adjusting the strengths of
the NNN terms relative to the strengths of the NN terms.

enough. Density-density interactions between neighbor-
ing sites can be achieved through dipole-dipole interac-
tions, see e.g. [21–23].

If one changes the geometry of the 1D lattice into a
zigzag lattice, one can have couplings between both NN
and NNN sites, as schematically depicted in Fig. 4. There
are already more methods available to realize zigzag lat-
tices with cold atoms, see e.g. [24–27]. Anisimovas et al.
have proposed a scheme for realizing a zigzag lattice [27]
using ultracold bosons. In their study, the two legs of
the ladder correspond to a synthetic dimension given by
two spin states of the atoms, and the tunneling between
them can be realized by a laser-assisted process. Sub-
sequently, by employing a spin-dependent optical lattice
with the site position depending on the internal atomic
state, a zigzag ladder can be achieved. In another ex-
perimental proposal, Zhang et al. have described a feasi-
ble method to achieve the zigzag lattice in one dimension
[26]. They use a superlattice generated by commensurate
wavelengths of light beams to realize tunable geometries
including zigzag and sawtooth configurations. Also, in a
theoretical study, Greschner et al. have suggested that
the zigzag chain may be formed by an incoherent super-
position between a triangular lattice and a 1D supperlat-
tice [24].

In the following, we will therefore restrict ourselves to
models with at most NNN couplings in the Hamiltonian.
Specifically, we study four different models. The first one
is the NN model defined by the Hamiltonian

HNN =
∑

<i,j>

[[[

(q − 2)wij − w2
ij

]]]

d†idj

−
1

2
(q2 − q)

∑

<i,j>

w2
ijninj . (8)

Here, the sum over i and j is restricted to NN terms as
denoted by the symbol < . . . >. (Note that we include
both, e.g., (i, j) = (1, 2) and (i, j) = (2, 1) in the sum,
which ensures that the Hamiltonian is hermitian.)

The second model is the model obtained by truncating
the full Hamiltonian to only include terms up to NNN

TABLE I. Optimal values of UNN and UNNN.

q UNN UNNN

2 1.00 1.00

3 1.70 0.70

4 5.36 0.60

distance, i.e.,

HNNN =
∑

<<i,j>>

[[[

(q − 2)wij − w2
ij

]]]

d†idj

−
1

2
(q2 − q)

∑

<<i,j>>

w2
ijninj , (9)

where << . . . >> is the sum over NN and NNN terms.
Instead of simply cutting the Hamiltonian as done

above, one could try to partially compensate for the re-
moved terms by adjusting the relative strengths of the
couplings. We therefore also consider the optimized NN
model

Hopt
NN =

∑

<i,j>

[[[

(q − 2)wij − w2
ij

]]]

d†idj

−
UNN

2
(q2 − q)

∑

<i,j>

w2
ijninj , (10)

and the optimized NNN model

Hopt
NNN =

∑

<<i,j>>

[[[

(q − 2)wij − w2
ij

]]]

d†idj

−
UNNN

2
(q2 − q)

∑

<<i,j>>

w2
ijninj . (11)

In these models, UNN and UNNN are parameters that are
chosen to maximize the overlap between the ground state
of Hopt

NN or Hopt
NNN with the analytical state |ψExact〉 in (4).

The optimized values are given in Tab. I. We find that
the optimal value is independent of N . For the case of
q = 2, the optimal value is unity, and the optimized mod-
els hence coincide with the models that are not optimized.
This probably happens because when UNN = UNNN = 1,
q = 2, and the number of particles is N/2, the Hamilto-
nian is SU(2) invariant like the ground state.

III. PROPERTIES OF THE GROUND STATES

OF THE LOCAL MODELS

We now compute properties of the ground states of the
local models to quantify how well the local models repro-
duce the physics of the exact models. The results are
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TABLE II. Overlap ∆ and overlap per site ∆1/N between the
state |ψExact〉 in (4) and the ground state of HNN, HNNN,
H

opt

NN , or Hopt

NNN for q = 3. The different rows are for different
numbers of lattice sites N .

N ∆ ∆1/N

NN NNN NNopt NNNopt NN NNN NNopt NNNopt

15 0.953 0.981 0.965 0.996 0.9968 0.9987 0.9976 0.9998

18 0.939 0.973 0.954 0.995 0.9965 0.9985 0.9974 0.9997

21 0.926 0.966 0.944 0.994 0.9963 0.9984 0.9973 0.9997

24 0.913 0.959 0.934 0.992 0.9962 0.9983 0.9971 0.9997

27 0.899 0.953 0.923 0.991 0.9961 0.9982 0.9971 0.9997

30 0.880 0.944 0.912 0.987 0.9957 0.9981 0.9970 0.9996

obtained using exact diagonalization, and we hence con-
sider systems with q = 2, 3, and 4 with at most 32 lattice
sites and N/q particles. We first show that overlaps per
site higher than 0.999 can be obtained for all these cases
with at most optimized NNN interactions. We then show
that the behavior of important properties like entangle-
ment entropy and two-site correlation functions is also
reproduced well (possibly except for a bit of discrepancy
for q = 3 and N even).

A. Overlap between ground state wavefunctions

We have calculated the overlap ∆ between the ground
state |ΨLocal〉 of the local Hamiltonian (Eq. (8), (9), (10)
or (11)) and the analytical wavefunction |ΨExact〉 in (4).
For a non-degenerate ground state, we define the overlap
as

∆ = |〈ΨLocal|ΨExact〉|
2. (12)

The overlap is expected to decay exponentially with sys-
tem size even if the states deviate only a bit from each
other, since the dimension of the Hilbert space increases
exponentially in N . We therefore also consider the over-
lap per site ∆1/N , which is expected to remain roughly
constant with system size. We find that the ground state
is non-degenerate for all the system sizes we consider.
The overlap for the fermionic case (q = 3) is given in

Table II. For a complete analysis, these ∆ values are ex-
plicitly calculated with and without optimization for dif-
ferent system sizes. The overlaps are higher for the NNN
Hamiltonian than for the NN Hamiltonian, and optimiza-
tion also improves the overlaps. The overlap decreases
with system size, but the overlap per site is almost con-
stant. The overlap per site is already around 0.996 for

TABLE III. Overlap ∆ and overlap per site ∆1/N between the
state |ψExact〉 in (4) and the ground state of HNN or HNNN for
q = 2. The different rows are for different numbers of lattice
sites N .

N ∆ ∆1/N

NN NNN NN NNN

16 0.9930 0.9960 0.9996 0.9997

18 0.9917 0.9950 0.9995 0.9997

20 0.9904 0.9940 0.9995 0.9997

22 0.9891 0.9931 0.9995 0.9997

24 0.9878 0.9922 0.9995 0.9997

26 0.9864 0.9912 0.9995 0.9997

28 0.9852 0.9903 0.9995 0.9997

30 0.9839 0.9894 0.9995 0.9996

TABLE IV. Overlap ∆ and overlap per site ∆1/N between
the state |ψExact〉 in (4) and the ground state of HNN, HNNN,
H

opt

NN , or H
opt

NNN for q = 4. The different rows are for different
numbers of lattice sites N .

N ∆ ∆1/N

NN NNN NNopt NNNopt NN NNN NNopt NNNopt

16 0.837 0.988 0.865 0.997 0.9881 0.9993 0.9910 0.9998

20 0.785 0.984 0.820 0.996 0.9880 0.9992 0.9901 0.9998

24 0.736 0.980 0.777 0.994 0.9873 0.9992 0.9895 0.9998

28 0.690 0.976 0.736 0.992 0.9868 0.9992 0.9891 0.9997

32 0.672 0.968 0.702 0.973 0.9877 0.9990 0.9890 0.9991

only NN interactions without optimization, and for the
NNN Hamiltonian with optimzation it is around 0.9997.

Next, we report the overlap values for half-filling (q =
2) and quarter-filling (q = 4) of the lattice with hardcore
bosons. These results are shown in Tables III and IV,
respectively. For q = 2, the NN model is enough to obtain
overlaps per site around 0.9995, and these overlaps are
slightly improved by considering the NNN model.

The scenario is different for q = 4. In this case,
the overlap per site is around 0.987 for the NN model.
Adding NNN interactions increases the overlap per site to
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FIG. 5. (Color online) Entanglement entropy S as a function
of subsystem size L for q = 3. The numerical results for
S are computed using the ground state of Hopt

NNN and (4),
respectively. The different plots are for different system sizes
as specified in the legends.

around 0.999. The optimized NN model produces lower
overlaps than the NNN model. Optimizing the NNN
model gives overlaps slightly better than for the NNN
model. For q = 4, the average distance between particles
is four sites, which could be part of the explanation why
NNN interactions are more important in this case than
for q = 2.
From the above analysis of the overlap, we conclude

that for the q = 2 case, it is sufficient to consider the
local Hamiltonian with only NN interactions to study
the ground state properties, whereas for the q = 3 and
q = 4, the local NNN Hamiltonian with optimization is
an appropriate choice.

B. Entanglement Entropy

We next consider the entanglement entropy. The en-
tanglement entropy quantifies bipartite entanglement be-
tween two subsystems and is a typical measure of entan-
glement [28]. Besides its own fundamental theoretical
interest, a principal reason for the success of the entan-
glement entropy as an entanglement measure in extended
quantum systems is its universal scaling at 1D conformal
critical points. It has already been investigated that the
entanglement entropy and its spectra carry signatures of
the underlying conformal field theory: In 1D, the entan-
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FIG. 6. (Color online) Entanglement entropy S for a sub-
system of L consecutive sites and q = 2. The discrete data
points are for the ground state of HNN and for the analytical
state (4). The different plots are for different system sizes as
specified in the legends.

glement entropy of a conformal field theory exhibits a
logarithmic violation of the area law and this character-
istic has also been observed in lattice systems [29, 30].
For a general 1D system in a state |Ψ〉, one can define

the entanglement entropy by partitioning the whole sys-
tem into two subsystems A and B. The reduced density
operator of subsystem A (B) is

ρA = TrB(ρ), ρB = TrA(ρ), (13)

where ρ = |Ψ〉〈Ψ| is the density operator of the full sys-
tem. The von Neumann entanglement entropy of subsys-
tem A is then defined as

S(A) = −TrA[ρA ln(ρA)]. (14)

It can be shown that S ≡ S(A) = S(B), so that only the
partitioning of the system is important.
One can also express the von Neumann entanglement

entropy in terms of the eigenvalues λA,i of ρA as

S = −
∑

i

λA,i ln(λA,i). (15)

We use this formula to calculate the von Neumann en-
tanglement entropy for our 1D system. We consider sub-
systems that consist of L consecutive sites. Due to the
translational invariance of the models we are considering,
all such entanglement entropies can be expressed in terms
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FIG. 7. (Color online) Entanglement entropy S as a function
of subsystem size L for q = 4. The S values are calculated
using the ground state of Hopt

NNN and (4), respectively. The
different plots are for different system sizes as specified in the
legends.

of the entanglement entropies obtained when region A is
site number 1 to site number L with L ∈ {1, 2, . . . , N/2}
for N even and L ∈ {1, 2, . . . , (N + 1)/2} for N odd.

The von Neumann entanglement entropy of a critical
system in 1D is given by [31]

S =
c

3
ln[sin(πL/N)] + constant, (16)

when L is large compared to 1. The central charge c was
found to be c = 1 for the exact model in [3]. Plotting S
as a function of ln[sin(πL/N)], we should hence compare
to a line of slope 1/3.

Plots of the entanglement entropy for q = 3, 2, and 4
and different system sizes are shown in Figs. 5, 6, and 7,
respectively. For q = 2, the data for the NN model and
the exact model are seen to fit very well and also fit well
with a line of slope 1/3. For q = 3, there is a good match
for N odd, while there is a bit of deviation for N even.
For q = 4, the data for the local model are displaced by a
constant, but the slope for L not too small fits well with
1/3. The central charge is hence the same as in the exact
model.
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FIG. 8. (Color online) G2 for the ground state of Hopt

NNN and
for |ΨExact〉 for q = 3.
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FIG. 9. (Color online) G2 for the ground state of HNN and
for |ΨExact〉 for q = 2.

C. Correlation function

Correlation functions are also an important character-
istic property for determining the physics of a system.
Here, we compute the two-site correlation function de-
fined as

G2 = 〈Ψ|ninj|Ψ〉 − 〈Ψ|ni|Ψ〉〈Ψ|nj |Ψ〉, (17)

where |Ψ〉 is the state of the system. In our case,
〈Ψ|nj |Ψ〉 = 1/q for all j. In the exact model, G2 decays
with the distance between the points to the power −2/q
and also shows oscillations with period q. For the local
models, it is difficult to determine the precise behavior of
the decay, since we cannot go to sufficiently large system
sizes. Instead we simply compare the values of G2 for the
local and the exact models.
Plots of G2 are shown for q = 3, 2, and 4 and different

system sizes in Figs. 8, 9, and 10, respectively. In all
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FIG. 10. (Color online) G2 for the ground state of Hopt

NNN and
for |ΨExact〉 for q = 4.
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FIG. 11. (Color online) Energies of the 5 lowest states of the
NNNopt model (11) and of the exact model (1) for q = 3 (the
ground state energy has been set to zero, and the energies have
been scaled by a constant factor such that the first excited
state is at energy 1). The different plots are for 21, 24, and
27 sites, respectively, as indicated.

cases, there is a good agreement between the local and
the exact models.

1 2 3 4 5 6 7
0

1

2

3

4

1 2 3 4 5 6 7
0

1

2

3

4

1 2 3 4 5 6 7
0

1

2

3

4

FIG. 12. (Color online) Energies of the 7 lowest states of the
NN model (8) and of the exact model (1) for q = 2 (the ground
state energy has been set to zero, and the energies have been
scaled by a constant factor such that the first excited state is
at energy 1). The different plots are for 20, 24, and 28 sites,
respectively, as indicated.

IV. LOW-LYING EXCITED STATES

Achieving a good overlap for the ground state wave-
functions is a good starting point, but if the system is at
nonzero temperature or we are interested in dynamics,
it is also important that the low-lying excited states are
not affected significantly in going from the exact to the
local Hamiltonian, and we now investigate this question.

The energies of the seven lowest states are plotted in
Figs. 11, 12, and 13 for q = 3, 2 and 4, respectively, for
both a local model and the exact model. We have added a
constant to the energies and divided by a constant factor
to fix the ground state energy to zero and the energy of
the first excited state to one. For q = 3, the differences in
energy between the local and the exact models are small,
in particular for the first four excited states. For q = 2
and q = 4, the differences are a bit larger. It is interesting
to note that the plots for a given value of q are almost
independent of N for q = 2 and q = 3, but not for q = 4.
Finite size effects hence play a role.

When we look at the overlaps (see Tabs. V, VI, and
VII), there is an excellent match between states in the
local model and corresponding states in the exact model.
The overlap per site is higher than 0.998 in all the con-
sidered cases.
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FIG. 13. (Color online) Energies of the 5 lowest states of the
NNNopt model (11) and of the exact model (1) for q = 4 (the
ground state energy has been set to zero, and the energies have
been scaled by a constant factor such that the first excited
state is at energy 1). The different plots are for 20, 24, and
28 sites, respectively, as indicated.

V. CONCLUSION

We have started from a class of one-dimensional mod-
els derived from conformal field theory and used exact
diagonalization to investigate to what extent the same
physics is realized by different models containing only
NN and possibly NNN couplings. For the q = 2 model
we found that already the NN model gives a good de-
scription, while for q = 3 and q = 4 an optimized model
with both NN and NNN couplings is preferred. With
these models we find that the overlap per site between the
ground states of the local models and the ground states
of the exact models is larger than 0.999 for the consid-
ered system sizes. The overlaps per site for the low-lying
excited state are larger than 0.998. We also find that
the ground state entanglement entropy and the correla-
tion functions are reproduced well by the local models,
except that there is a bit of discrepancy for q = 3 for
N even for the entanglement entropy. The low energy
spectra are modified to some extent in the local models
compared to the exact models. For q = 4, the modifica-
tion varies with system size, so finite size effects play a
role for the considered system sizes.
The high agreement between the ground state prop-

erties and the excited states suggest that most of the
physics will remain the same in the local models. This
paves the way to experimentally realize the physics in op-
tical lattices using ultracold atoms, since the local mod-

TABLE V. Overlap ∆ and overlap per site ∆1/N between the
first six excited states of the NNNopt Hamiltonian and the first
six excited states of the nonlocal Hamiltonian (1) for q = 3.
The number of sites is N = 21, 24, and 27, respectively.

State ∆ ∆1/N

N = 21 N = 24 N = 27 N = 21 N = 24 N = 27

2 0.9933 0.9921 0.9908 0.9997 0.9997 0.9997

3 0.9933 0.9921 0.9908 0.9997 0.9997 0.9997

4 0.9894 0.9887 0.9878 0.9995 0.9995 0.9995

5 0.9894 0.9887 0.9878 0.9995 0.9995 0.9995

6 0.9893 0.9887 0.9795 0.9995 0.9995 0.9992

7 0.9893 0.9887 0.9795 0.9995 0.9995 0.9992

TABLE VI. Overlap ∆ and overlap per site ∆1/N between the
first six excited states of the NN Hamiltonian and the first six
excited states of the nonlocal Hamiltonian (1) for q = 2. The
number of sites is N = 20, 24, and 28, respectively.

∆ ∆1/N

State N = 20 N = 24 N = 28 N = 20 N = 24 N = 28

2 0.9900 0.9879 0.9856 0.9995 0.9995 0.9995

3 0.9707 0.9668 0.9634 0.9985 0.9986 0.9987

4 0.9914 0.9800 0.9772 0.9996 0.9992 0.9992

5 0.9914 0.9800 0.9772 0.9996 0.9992 0.9992

6 0.9894 0.9763 0.9739 0.9995 0.9990 0.9991

7 0.9894 0.9763 0.9739 0.9995 0.9990 0.9991

els are simpler to realize experimentally than the corre-
sponding exact models derived from conformal field the-
ory. The ingredients needed to realize the different terms
in the Hamiltonian are already available experimentally.
The observation that the local models resemble the ex-
act models also shows that conformal field theory can not
just be used to obtain exact, nonlocal models, but is also
a powerful tool to obtain interesting, local models.
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TABLE VII. Overlap ∆ and overlap per site ∆1/N between
the first six excited states of the NNNopt Hamiltonian and
the first six excited states of the nonlocal Hamiltonian (1) for
q = 4. The number of sites is N = 20, 24, and 28, respectively.

State ∆ ∆1/N

N = 20 N = 24 N = 28 N = 20 N = 24 N = 28

2 0.9915 0.9906 0.9893 0.9996 0.9996 0.9996

3 0.9933 0.9917 0.9900 0.9997 0.9997 0.9996

4 0.9860 0.9845 0.9828 0.9993 0.9993 0.9994

5 0.9883 0.9858 0.9835 0.9994 0.9994 0.9994

6 0.9632 0.9678 0.9743 0.9981 0.9986 0.9991

7 0.9697 0.9715 0.9624 0.9985 0.9988 0.9986
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