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Abstract

In this paper we investigate acoustic di�erences between vowels in syllables that do or do not carry lexical stress. In

doing so, we concentrated on segmental acoustic phonetic features that are conventionally assumed to di�er between

stressed and unstressed syllables, viz. Duration, Energy and Spectral Tilt. The speech material in this study di�ers from

the type of material used in previous research: instead of specially constructed sentences we used phonetically rich

sentences from the Dutch POLYPHONE corpus. Most of the Duration, Energy and Spectral Tilt features that we used

in the investigation show statistically signi®cant di�erences for the population means of stressed and unstressed vowels.

However, it also appears that the distributions overlap to such an extent that automatic detection of stressed and

unstressed syllables yields correct classi®cations of 72.6% at best. It is argued that this result is due to the large variety in

the ways in which the abstract linguistic feature `lexical stress' is realized in the acoustic speech signal. Our ®ndings

suggest that a lexical stress detector has little use for a single pass decoder in an automatic speech recognition (ASR)

system, but could still play a useful role as an additional knowledge source in a multi-pass decoder. Ó 1999 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Most research on automatic speech recognition
(ASR) of the last few decades has focused on the
segmental level. Of the units on `higher' levels of
linguistic description only words and word se-
quences have received due attention, but only in
terms of Language Models, which can be esti-
mated independently of the acoustics and pho-

netics of actual speech. This focus has certainly
contributed to the enormous progress of the ®eld.
However, it has never been disputed that speech is
more than just a concatenation of segments that
make up words which, in turn, make up phrases.
Suprasegmental features have been studied inten-
sively in phonetics, phonology and linguistics, but
the results of these investigations have had very
little impact on (and so far have hardly made any
contribution to) the progress in ASR.

Two related suprasegmental features that have
received much attention in phonology and lin-
guistics, and also in phonetics, are stress and ac-
cent. Languages like English and Dutch are known
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to have words which consist of essentially identical
phoneme sequences, yet can be distinguished,
thanks to the fact that word stress is on di�erent
syllables. Conventional examples include English
word pairs like `COMment' and `comMENT',
`REcord' and `reCORD', etc., but also less well-
known pairs like FORbear and forBEAR. Exam-
ples in Dutch are word pairs like `VOORkomen'
(exist) and `voorKOmen' (prevent), `Overleggen'
(present) and `overLEGgen' (discuss).

Although both `stress' and `accent' relate to this
distinction, it is now generally accepted that the
two terms should be used for two distinct phe-
nomena. Stress is an abstract feature on the level
of the lexicon: stress is assigned to that syllable of a
word that will stand out more conspicuously if
that word is produced with an accent. By impli-
cation, accent is a phonetic feature, with measur-
able correlates in production, acoustics and
perception. In principle, each word, including
monosyllabic function words, can be accented.
Thus, each and every word in the lexicon has a
stress-hook assigned to one of its syllables. For
monosyllabic words this seems redundant, but if
such a hook were not present, accent could never
be attached to monosyllables, which is clearly in-
adequate. It has been known for a long time that
there is substantial and putatively systematic in-
teraction between stress and the acoustic±phonetic
features of the vowel in stressed syllables. Of
course, it would have been surprising if this had
not been the case, given the de®nitions of stress
and accent. Therefore, one would expect that
clever use of the linguistic feature stress should
contribute to the performance of ASR algorithms:
if vowels in stressed and unstressed syllables are
really di�erent, then training separate models for
the two `contexts' should help to reduce the
amount of `systematic' variance in the models.

In the past a small number of attempts have
been made to use stress in the development of ASR
(e.g., Waibel, 1986; Dumouchel and O'Shaugh-
nessy, 1993; Hieronymus et al., 1992). However,
up to now the contribution of stress to the per-
formance improvement of ASR has been equivo-
cal. In this paper we investigate the relation
between stress and acoustic±phonetic features of
the vowel sounds. The results should help us un-

derstand why previous attempts to deploy stress in
ASR have met with little success, and show pos-
sible routes to using stress in future ASR algo-
rithms.

1.1. Stress in ASR

Van Kuijk et al. (1996) reported on experiments
with lexical stress in an o�-the-shelf HMM-rec-
ognizer. In these experiments, the recognizer was
trained with di�erent models for the stressed and
unstressed variants of each vowel. To this end the
lexical stress was indicated in each word in the
lexicon derived from the training corpus. Although
the concepts stress and accent, as well as their
distinction, have been very fruitful in linguistic
theorizing, they may not be optimally suited for
use in ASR: In the lexicon the abstract feature
stress is not only attributed to the most prominent
syllable in words like TElephone, where the stres-
sed syllable is likely to be acoustically di�erent
from the surrounding unstressed syllables, but also
to monosyllabic function words like the, a, is, etc.,
which are normally pronounced much like the
unstressed syllables in TElephone. This discrep-
ancy between linguistic theory and phonetic `real-
ity' might very well interfere with the systematic
di�erence in the acoustic±phonetic properties of
vowels in stressed and unstressed syllables.
Therefore, Van Kuijk et al. (1996) decided to ex-
periment with di�erent mappings from theoretical
stress to `phonetic' stress in the lexicon, to see
whether this would in¯uence the recognition
scores. In the ®rst mapping stress was removed
from all monosyllables with a schwa, and in
the second mapping also a subset of the Dutch
function words were considered to be unstressed.
Their results showed that none of the mappings
signi®cantly improved the performance of the
recognizer.

Van Kuijk et al. (1996) mentioned several pos-
sible explanations for the failure of the feature
stress to enhance recognition performance. The
®rst possible explanation is that the number of
Gaussian mixtures used for the unseparated hid-
den Markov models (HMM) is high enough to
capture all acoustic±phonetic variation between
stressed and unstressed variants of a vowel. They
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controlled for this possibility by varying the
number of mixtures from 4 up to 32 per state.
Even with 4 mixtures per state the recognizers
which distinguished between models for stressed
and unstressed vowels did not perform better.
However, increasing the number of mixtures did
signi®cantly decrease the Word Error Rates. Thus,
this ®rst explanation is not very likely.

The second possible explanation is to assume
that ± at least in Dutch ± the linguistic concept
stress has no systematic acoustical correlates after
all. In this case no recognizer could ever pro®t
from training separate models for stressed and
unstressed vowels (and any improvement found in
the recognition scores would simply be due to an
increase in the number of parameters). This issue is
the focus of the present paper.

The third explanation assumes that the acoustic
features that are conventionally used in HMM and
Neural Net ASR algorithms (log band ®lter coef-
®cients, cepstral representations of the log spectra,
their delta's, log-energy, delta-log-energy, and
delta-delta-log-energy) are not appropriate to dis-
tinguish stressed vowels from unstressed ones.
Speci®cally, HMM decoders do not explicitly
model duration, while Van Bergem (1993), and
Sluijter and Van Heuven (1996) showed that du-
ration is (one of) the most important indicators for
lexical stress in Dutch. The present paper will also
address this explanation by investigating whether
features which are not commonly used in ASR
algorithms can discriminate between stressed and
unstressed vowels.

Then, the speech material used in Van Kuijk
et al. (1996) was recorded over the telephone. The
distortion due to transmission over the Public
Switched Telephone Network (PSTN) might have
a�ected the acoustic±phonetic properties that
support the distinction between stressed and un-
stressed syllables. However, since humans have no
di�culty in distinguishing words like COMment
and comMENT in telephone speech, this hypoth-
esis is not very likely.

To set the scene for the investigation into the
relation between word stress and acoustic±pho-
netic properties of vowels, we will summarize the
most important ®ndings from the literature. For
two reasons much attention will be given to stress

in Dutch: ®rst, the speech material under investi-
gation is Dutch; second, a relatively large pro-
portion of the phonetic research into stress is
based on Dutch as the target language.

1.2. Acoustical di�erences between stressed and
unstressed vowels

Several researchers have studied the acoustic
correlates of stress in Dutch. Van Bergem (1993) ±
who used sentences read by 15 male speakers in
response to audio prompts that were designed to
put an accent on the syllable of interest or, alter-
natively, to shift accent to another syllable ± found
that stressed vowels have a longer duration, and
that in polysyllabic words the vowels in stressed
syllables have formant patterns that resemble the
formant patterns of vowels produced in isolation
much better than do vowels in unstressed syllables.
Sluijter and Van Heuven (1996) ± using one word
pair, embedded in two short sentences ± found that
duration is the most important acoustic correlate
of stress. Stressed vowels are longer, and the du-
ration of a vowel is a good predictor of its stress-
level. Spectral tilt is almost as good a predictor of
stress as duration. Stressed vowels tend to have a
¯atter negative spectral slope than unstressed
vowels, due to the fact that they are produced with
more vocal e�ort. The energy in the lower fre-
quency regions (0±0.5 kHz) is hardly a�ected by
stress, but the energy in the other regions
(0.5±4 kHz) is higher for stressed vowels than for
unstressed vowels. They also found that, compared
to duration and spectral tilt, intensity and vowel
quality (in terms of formant patterns) are less
powerful predictors of stress.

1.3. Automatic classi®cation of stressed/unstressed
vowels

Another approach to the study of di�erences
between stressed and unstressed vowels is to see
whether it is possible to tell the two classes apart
automatically. Ying et al. (1996) have attempted
automatic classi®cations of stressed and unstressed
vowels for American English. In their study, for
syllables in bi-syllabic stress-minimal word pairs
(e.g. `OBject±obJECT') very good classi®cation
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results (10% errors) were obtained on the speech of
a single male speaker for the words embedded in
112 di�erent carrier phrases. The features used for
classi®cation were normalized duration and nor-
malized energy. For the same set of words, spoken
by the same speaker, in more natural sentences,
4% classi®cation errors were obtained with a three-
feature classi®er (using two di�erent normaliza-
tions for Duration and one for Energy). Adding
three more male speakers and one female speaker
to the database and retraining and testing with this
material, even decreased the error rate to 2%. It is
interesting to note that Energy appears to be in-
strumental in automatic classi®cation of stressed/
unstressed vowels, despite the fact that Sluijter and
Van Heuven (1996) found that it is not the most
e�cient feature in human classi®cation.

Research works like those of Ying et al. (1996),
Sluijter and Van Heuven (1996) and Van Bergem
(1993) certainly have contributed to our under-
standing of the di�erences between stressed and
unstressed vowels. However, the arti®cial charac-
ter of the speech material they used makes gener-
alization of the ®ndings to speech produced under
less controlled conditions questionable. Waibel
(1986) already used continuous speech from a
small database of 50 sentences to train a Bayesian
classi®er for the stressed/unstressed dimension. On
a test set of 192 sentences (including the training
set) he obtained correct classi®cation results of
about 88%. The feature which gave the best results
was the peak-to-peak sound power integral over
the sonorant region of the syllable, which is a kind
of combined duration and energy measure over the
vowel. Although the classi®cation scores obtained
by Waibel (1986) are clearly worse than the per-
formance of the classi®er trained by Ying et al.
(1996), they are still encouraging.

1.4. Aims and design of this study

In this study we want to investigate whether
stressed and unstressed vowels can be distin-
guished automatically in speech material that has
NOT speci®cally been designed for this purpose.
Therefore, we will use recordings of arbitrary (but
relatively short) sentences adapted from newspa-
per text. We will investigate to what extent it is

possible to distinguish stressed and unstressed
vowels from each other in a Bayesian classi®er on
the basis of the acoustic±phonetic features dura-
tion, energy, and spectral tilt (i.e., the features that
have been shown to be most directly related to the
distinction between stressed and unstressed vow-
els). We decided not to try to use formant patterns
as features for classi®cation, because we expected
that any attempt at automatic formant extraction
would generate so much noise as to invalidate the
features. However, if there are systematic spectral
di�erences between stressed and unstressed vowels
that can be expressed in terms of ®lter bank energy
values or cepstral coe�cients, that information
will always be re¯ected in whatever models are
built from these parameters. We also tried to di-
minish the variance resulting from varying re-
cording conditions of our speech material and
from di�erent speaking styles, by studying several
di�erent techniques to normalize the raw acoustic
feature values.

The next section will explain the experimental
design in more detail.

2. Method

For our analyses we used phonetically rich
sentences from the Dutch Polyphone corpus (Den
Os et al., 1995a). These sentences were automati-
cally segmented into phoneme-like units, using the
baseline version of an HMM recognizer trained on
an independent part of the Polyphone corpus.
From the segmentation we could derive for each
vowel the raw acoustic features, and derive nor-
malized measures for those features. The distri-
butions of the raw features in stressed and
unstressed vowels were analyzed, and the raw and
normalized features were used in our classi®cation
experiments.

2.1. Speech material

The Polyphone corpus contains speech from
5050 speakers from all regions of The Netherlands.
These speakers had to answer a number of ques-
tions and read digits and sentences over the tele-
phone. Among the text read out by each
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participant were ®ve phonetically rich sentences,
i.e., sentences selected in such a way that the ca-
nonical transcription of each complete set of ®ve
sentences contained all phonemes of the Dutch
language. No attempt was made to ensure that all
vowels would occur at least twice, viz. in a stressed
and in an unstressed syllable. Nor did we attempt
to balance diphone sequences. The ®ve sentences
in a set were chosen from a total of 12,500 di�erent
sentences used in the corpus. The sentences were
adapted from newspaper text. In order to enhance
readability, none of the sentences in the corpus
contained more than 80 printing characters in the
orthographic transcription.

From these phonetically rich sentences we
composed a training set and a test set, each con-
sisting of 5000 sentences. In our choice of sen-
tences we applied the following constraints:
· use only sentences which are of reasonable

acoustic quality (as marked by the producers
of Polyphone);

· try to use equal numbers of sentences by men
and women;

· try to use an equal number of speakers from
each Dutch province;

· try to keep the ®ve sentences of each speaker to-
gether in one set (so that for each speaker at
least one occurrence of each phoneme is present
in the set).

These constraints maximize the variability in terms
of regional accent, male±female distinction, and
phoneme-variability.

The lexical stress for each word was adopted
from the CELEX database (Baayen et al., 1993),
but we removed the stress mark from the Dutch
function words listed in (Van Wijk and Kempen,
1980). Schwas were excluded from all analyses,
because they can never be stressed.

The total number of words in the 10,000 sen-
tences was 104,310. Of these words 7% were
compounds. The proportion of content words
(Nouns, Verbs, and Adjectives) was 52%, so it was
about equal to the proportion of words from other
word classes (48%). There were less monosyllables
in the content words than in the other word
classes: 31% of the content words were monosyl-
labic, while in the other word classes 89% was
monosyllabic. As can be expected, many of the

content words contained a stressed syllable (87%),
while for the other word classes only 14% of the
words comprised a stressed syllable, according to
the criteria set out above. The reason that not all
content words have a stressed syllable is that the
auxiliary verbs are counted as unstressed in Van
Wijk and Kempen's list. Furthermore, this list
does not contain all the Dutch adverbs, which
explains why also words which are not a content
word can be stressed.

2.2. Preprocessing of the speech data

The speech material was pre-processed by ap-
plying an FFT with a 10-ms frame shift and a
Hamming window with a length of 16 ms. From
the FFT coe�cients we computed 14 Mel-scaled
®lter log power values in the range of 350±
3400 Hz. The log energy for each frame was
computed as the mean over all ®lter bank values in
that frame.

We trained our o�-the-shelf continuous mixture
density HMM-recognizer with the 5000 training
sentences, and then carried out a forced segmen-
tation on both the training and the test set. Seg-
mentation was accomplished by limiting the search
space of the recognizer to exactly the canonical
transcription of each individual utterance, and
storing the trace back information of the Viterbi
search. Part of the resulting segmentation of the
speech material was checked manually by trained
phoneticians, who agreed that for the vowels the
segmentation was similar in quality to a hand-
segmentation by a phonetician. Gross discrepan-
cies between the canonical transcription and the
actually produced speech signal would lead to a
complete failure of the recognizer to obtain an
alignment. Such cases were not observed in the
material used in this study. Nevertheless, local
discrepancies may have gone unnoticed, but we are
con®dent that these did not signi®cantly a�ect our
results.

2.3. Features

In this study we used a comprehensive set of
acoustic features (related to duration, energy and
spectral tilt) that have been reported to be related

D. van Kuijk, L. Boves / Speech Communication 27 (1999) 95±111 99



to stress. The raw features were derived from the
results of the forced segmentation. From these raw
features we computed a number of normalized
features which take the phonetic and linguistic
contexts of the individual vowels into account. The
computations for the raw and normalized features
are explained below.

2.3.1. Raw features
Duration. The feature DURATION is

straightforwardly determined by the forced seg-
mentation. Measurement accuracy is determined
by the 10-ms frames. The minimum DURATION
of the vowel tokens in the speech material is 30 ms,
because in our recognizer a minimum of three
states per acoustic model must be visited. This
minimum length of 30 ms could have been too
long for reduced vowels, but does not cause a
problem for our experiment since all vowels in this
experiment are non-reduced.

Energy. The energy of a particular speech frame
is computed as the average over the spectral fea-
tures. We computed two energy features for each
vowel: the maximum energy (MAXENE), and the
total energy (TOTENE). The MAXENE of a
vowel is de®ned as the log energy of the frame
which has the highest energy value. The TOTENE
of a vowel is an integration of the energy over all
frames within that vowel. So TOTENE is implic-
itly also sensitive to the duration of the vowel. In a
pilot study we found that the Energy features be-
came better predictors of stress if we applied
spectral mean subtraction (with the means com-
puted over the whole utterance) to the spectral
features before computing the energy, so we did
this.

Spectral tilt. The spectral tilt of a vowel was
estimated as the di�erence between the energy in
the lower spectral bands and that in the higher
spectral bands. Di�erent de®nitions of `lower' and
`higher' frequency bands lead to di�erent estimates
of the `tilt' feature. The spectral tilt was computed
over the spectral bands in three frames: the frame
with the highest energy in the vowel (so the same
frame from which we took the MAXENE), and
both the frames preceding and following that
frame. Spectral tilt was expressed in two ways:
TILT1000 was computed from the three frames by

subtracting the sum of the log-energies in the
bands from 1170 up to and including 3400 Hz
from the sum of the log-energies in the spectral
bands ranging from 350 Hz up to and including
1000 Hz. TILT570 was computed in the same way
by summing the log-energies in the bands from 350
up to and including 570 Hz, on the one hand, and
summing the log-energies in the bands from 700 Hz
to and including 3400 Hz on the other hand, and
then subtracting the latter total from the former.
Because of this way of computing TILT570 we can
expect a considerable absolute correlation between
MAXENE and TILT570.

2.3.2. Normalized features
The raw features de®ned above are known to be

highly context dependent. For instance, for a fast
speaker the duration of a stressed vowel may well be
shorter than the duration of the same vowel in an
unstressed syllable spoken by a slower speaker.
Therefore, we de®ned several transformations of
the raw features, which are all meant to reduce the
context dependence. The categories of normaliza-
tions used are summarized in Table 1. In all cases,
`normalization' amounts to expressing the feature
value of a vowel relative to the values in its neigh-
boring vowels. Di�erent de®nitions of `neighbors'
lead to di�erent normalizations. One set of nor-
malizations takes a complete sentence as the context
(numbered 1 and 2 in Table 1). Another set (3, 4)
relates the feature values to the values of only the
preceding vowels in the same sentence; this kind of
normalization is inspired by the observation that
humans can detect stressed syllables in on-line tasks
(i.e., it is not necessary to wait for the sentence or
even for the word to ®nish), as appears from e.g.
shadowing tasks (Radeau and Morais, 1990). Yet
another set of normalizations (5) takes only the
immediate left and right neighboring vowels into
account, while (6) only normalizes for the vowel
immediate left of a vowel. The normalizations 7 and
8 in Table 1 are speci®cally designed for the energy-
features and the DURATION feature. They will be
discussed below.

Normalized duration. The duration of a vowel is
known to be in¯uenced by many factors, like the
intrinsic duration of the vowel, speaking rate,
lexical stress, position in the utterance in which it
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appears, and word class of the word in which it
appears (Wang et al., 1996). We have not at-
tempted to normalize DURATION for word class,
mainly because this factor is already taken into
account by the fact that we de®ned the vowels in a
number of function words as unstressed. The fac-
tor `position in the utterance' is, at least to some
extent, covered by the normalizations in which
only the left context is taken into account. It is
evident that we cannot accurately model the e�ects
of phrase ®nal lengthening in this way. Although
this does increase the unaccounted variance, the
number of utterance ®nal syllables is small relative
to the non-®nal ones. However, the main factor we
wanted to compensate for was articulation rate.
Fig. 1 shows that articulation rate, computed by
dividing the number of phonemes by the total
duration of an utterance (excluding non-speech),
in our material roughly varies between 10 and 15
phonemes per second. The normalizations for
duration listed in Table 1 attempt to compensate
for this variance.

Apart from the normalizations which were ap-
plied to all features, Table 1 shows three normal-
izations which were applied only to duration.
Normalizations 2 and 4 were added here because
we wanted to compare two kinds of computations
for speaking rate. In normalizations 1 and 3

speaking rate is computed over the durations of
the vowels in the utterance, whereas normaliza-
tions 2 and 4 also use the durations of the conso-
nants to compute speaking rate.

Normalization 8 is a complex estimate of
speaking rate developed by Wightman (1992). The

Fig. 1. Distribution of speaking rate in our material.

Table 1

A short description of each of the normalizations applied to the raw features in our classi®cation experiments

Description of di�erent values used for normalizing feature

F in vowel V

DURATION MAXENE TOTENE TILT1000 TILT570

1. Average value of F as computed over all vowels in the

utterance.

X X X X X

2. Average value of F as computed over all phonemes in

the utterance

X

3. Average value of F as computed over all vowels left of

V in the utterance

X X X X X

4. Average value of F as computed over all phonemes left

of V in the utterance

X

5. Values of F of the vowels immediately preceding and

following V

X X X X X

6. Value of F of the vowel immediately preceding V X X X X X

7. The maximal value of F which appeared immediately

left of V

X X

8. Just for duration: A complex estimate of speaking rate

which takes intrinsic duration into account

(Wightman, 1992)

X

An ``X'' in one of the feature columns indicates that the normalization was indeed applied to that feature.
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normalization takes the mean and variance of the
duration of a vowel into account, while also
compensating for the speaking rate in the utter-
ance.

Normalized energy. The energy of a vowel is
known to be dependent on factors like the degree
of openness (Lehiste and Peterson, 1959), and the
position in the utterance (especially vowels fol-
lowing the last sentence accent are known to have
a much lower energy than the vowels preceding the
last accent; Pierrehumbert, 1994). The overall ef-
fort with which an utterance is produced can vary
within a broad range. Furthermore, the telephone
channel may have in¯uenced energy; there is the
possibility that some of the switches that connect
the digital trunk network to the analog local loop
apply automatic gain-control (AGC), although we
have not seen clear indications in our signals that
AGC has been applied. We de®ned several nor-
malizations for energy, which were all applied to
both the MAXENE and TOTENE features. They
are listed in Table 1.

The normalizations for energy are mostly sim-
ilar to those for duration, including normalizations
for the average energy in the utterance and several
conditions for varying context-windows.

Normalization 7 is similar to normalization 6,
but it normalizes an energy feature for the value of
the previous local maximum of that feature in the
utterance. Often, but not always, this value will be
identical to (and stemming from) that of the pre-
vious vowel in the utterance. However, normal-
ization 7 does not require that the location of the
previous vowel is known, so it could theoretically
be used in a classi®er which does not have this
information.

Normalized spectral tilt. According to Sluijter
and Van Heuven (1996) the spectral slope of
stressed vowels will tend to be ¯atter than the
spectral slope of unstressed ones. The explanation
for this would be that stressed vowels are produced
with more e�ort than unstressed vowels, and this
extra e�ort will yield a higher energy-increase in
the higher spectral bands than in the lower spectral
bands. So, like the other features, tilt will also be
context-sensitive. Therefore, the same normaliza-
tions which were applied to the energy-features
were also applied to the tilt-features.

2.3.3. Free normalizations vs. calculated normaliza-
tions

We have attempted to automatically separate
stressed and unstressed vowels by means of linear
classi®ers, based on individual raw features, indi-
vidual normalized features, as well as on a large
number of sets comprising combinations of fea-
tures. In addition to the (sets of) calculated nor-
malized features mentioned above, we have also
performed classi®cation experiments in which the
same underlying set of raw features was used (free
normalizations). To give an example: a calculated
normalization for the MAXENE of a vowel is
computed by dividing the MAXENE of that vowel
by the MAXENE of the vowel immediately pre-
ceding it. In the free normalization corresponding
with this, simply both the MAXENE of the vowel
and the MAXENE of the vowel immediately pre-
ceding it are fed into the classi®er. The di�erence
with the case of calculated normalized features is
that we now leave the optimum use of the data for
normalization purposes to the classi®er, instead of
imposing a predetermined, and deterministic use
of the data. In the results section we will return to
this di�erence between calculated and free nor-
malizations.

2.4. Statistics

We have carried out t-tests on the feature values
of the vowels in the training set, to check whether
the sample means for stressed and unstressed
vowels di�er at all. We also looked at the distri-
butions of the feature values in the two classes.
Next, we computed the correlation between those
features, to check for interdependencies that
should be taken into account when combining in-
dividual features to improve the separation of the
classes. Detailed results of these statistical tests are
given in Section 3.1.

2.5. The classi®er

We have performed a large number of tests to
investigate the extent to which stressed and un-
stressed vowels can be distinguished. In all exper-
iments the identity of the vowels is assumed to be
known. This condition holds in HMM and arti®-
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cial neural network (ANN) recognizers, which
compute the likelihood of top±down generated
hypotheses about the words that were spoken. For
these experiments we use the same simple Bayesian
classi®er as Ying et al. (1996) and Waibel (1986).
We assume that the features can be jointly mod-
eled by an N-dimensional normal distribution for
each of the two classes (stressed and unstressed
vowels).

Then the likelihood p�xjxS� that a speci®c vowel
from the test set is stressed will be given by

p�xjxS� � �2p�ÿN=2
���RS

ÿ1=2
exp

��� ÿ 1

2
�x

�
ÿlS�TRÿ1

S �xÿ lS�
�
; �1�

where N is the number of features, RS the covari-
ance-matrix over the feature vectors from all
stressed vowels in the training set, lS the mean
over the feature vectors from all stressed vowels in
the training set, x the feature vector belonging to
the vowel from the test set.

The likelihood p�x j xU� that a speci®c vowel
from the test set is unstressed will be given by

p�x j xU� � �2p�ÿN=2
���RU

ÿ1=2
exp

��� ÿ 1

2
�x

�
ÿlU�TRÿ1

U �xÿ lU�
�
: �2�

Since in this study we will ensure that the priors
are equal, we can leave them out of the equations,
and then our stress classi®er reduces to a maxi-
mum likelihood classi®er which can be written as

�xÿ lS�TRÿ1
S �xÿ lS� � log jRSj

< �xÿ lU�TRÿ1
U �xÿ lU� � log jRUj: �3�

3. Results

In this section we summarize the results of our
experiments.

3.1. Statistics

Lexical statistics. Although we do not use the
prior probability for a vowel to occur in a stressed

syllable, it is still worthwhile investigating whether
each vowel has roughly the same probability of
being stressed. Phonetic arguments seem to sup-
port the hypothesis that diphthongs (which might
be considered as two vowels in a single syllable)
and long, open vowels can be expected to be in-
herently more conspicuous than short, closed
vowels. Thus, it is interesting to see whether there
is a tendency for stressed syllables to contain
`heavy' instead of `light' vowels. We have investi-
gated three databases of words, viz. the 10,000
Polyphone sentences (Den Os et al., 1995a) com-
prising the training and test sets in the present
study, the frequency lexicon of the SpeechStyles
corpus (Den Os et al., 1995b) and the CELEX
lexical database (Baayen et al., 1993) which con-
tains data on the frequency of use of the words.
CELEX is based on word counts in over 40 million
words of text, and on the largest general purpose
dictionaries of the Dutch language. Thus, it does
not re¯ect word frequencies in a speci®c domain.
The Polyphone corpus is not too di�erent from
CELEX, in that it is composed of 25,000 unrelated
sentences, extracted from a general newspaper
(and selected so as to maximize phonemic cover-
age). SpeechStyles, on the other hand, only con-
tains texts that refer to domestic issues and eating
habits; therefore, its vocabulary is likely to be
much more domain speci®c.

Fig. 2 shows the results. It is clear that diph-
thongs and long vowels are much more likely to
occur in a stressed syllable than short vowels. The
rankings of the vowels in CELEX and Polyphone
are very similar; and even the potentially much
more domain speci®c SpeechStyles corpus shows
the same trend. The relatively high percentage for
the stressed medium-long vowel /y/ 1 (as in the
Dutch word vuur) in the SpeechStyles corpus is
due to its occurrence in several mono- and bi-syl-
labic words that are speci®c for the domestic/food
domain.

As can be seen in Fig. 2 the prior probabilities
can have a considerable e�ect on the classi®ca-
tions which are computed according to Eq. (3).
To avoid any e�ect of prior probabilities in our

1 Throughout this paper SAMPA notation is used.
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classi®cation results, we randomly deleted items
from the bigger of the paired sets. For example:
the test set contained 2865 stressed exemplars of
the vowel /a:/ (as in the Dutch word laan), and
3165 unstressed ones. For this vowel 300 ran-

domly chosen unstressed samples were removed
from the test set.

Distributions of raw features. Fig. 3(a) shows
the distributions of the raw feature values for the
vowel /9y/ (as in the Dutch word huis). It is ob-

Fig. 3. (a) Distributions for the vowel /9y/. The dotted lines are for unstressed realizations. (b) Distributions for the vowel /a:/. The

dotted lines are for unstressed realizations.

Fig. 2. The a priori probability for each vowel that it is stressed in three di�erent databases.

104 D. van Kuijk, L. Boves / Speech Communication 27 (1999) 95±111



vious that the distributions of stressed and un-
stressed vowels overlap heavily. So, t-tests for the
means of the distributions yield only signi®cant
di�erences for TOTENE.

However, from Fig. 3(b) it can be seen that for
the vowel /a:/ much better separation is possible.
In any case, the distributions for the vowel /a:/
seem easier to model by a Gaussian distribution.
For this vowel the t-tests for all features were
signi®cant at the 5% level (with correction for the
number of t-tests by the Bonferroni procedure). To
summarize over all vowels:
· t-tests for DURATIONs of individual vowels

were signi®cant at the 5% level for all vowels, ex-
cept /9y/.

· t-tests for MAXENEs of individual vowels were
signi®cant at the 5% level for all vowels, except
/9y/, /Ei/ and /Au/.

· t-tests for TOTENEs of individual vowels were
signi®cant at the 5% level for all vowels.

· t-tests for TILT1000s of individual vowels were
signi®cant at the 5% level for all vowels, except
/9y/, /Ei/, /Au/, /Y/, /O/, /e:/, /o:/and /i/.

· t-tests for TILT570s of individual vowels were
signi®cant at the 5% level for all vowels, except
/9y/ and /u/.

So TOTENE seems to yield the best separation
between stressed and unstressed vowels, and
TILT1000 the worst. For the vowel /9y/ separation

is hardest. The di�erence between /9y/ and the
other vowels may be due to the special status of
this vowel in Dutch constructions like `stelde UIT'
(postponed). In fact the word `UITstellen' (to
postpone) has lexical stress on UIT, but when it is
used in its separated form, the morpheme `uit' is a
word which will be considered unstressed, because
it is in our list of Dutch function words. For all
vowels except /9y/ and /Ei/ the stressed version has
a signi®cantly higher MAXENE than the un-
stressed version. The feature TOTENE is signi®-
cantly di�erent for all vowels.

Fig. 3(b) clearly shows that even for /a:/ the
distributions overlap considerably. Therefore
classi®cation of vowels as stressed and unstressed
will be very hard on the basis of individual raw
features. Perhaps cleverly selected combinations of
these features, and proper normalizations for their
context might give good classi®cation results.

Correlations between raw features. To prepare
the work on combining features to improve clas-
si®cation, we ®rst look at the correlations between
the raw features. If two features are highly corre-
lated, little additional classi®cation power may be
expected from their combination.

We computed the Pearson-r correlations be-
tween the raw features for each individual vowel.
Table 2 shows these correlations for two vowels.
In general TOTENE correlates highly with

Table 2

Correlations between raw features for the vowel /a:/ and the vowel /9y/

Vowel /a:/

Feature DURATION MAXENE TOTENE TILT1000 TILT570

DURATION 1 0.3731 0.9024 ÿ0.2824 ÿ0.4953

MAXENE 1 0.6224 ÿ0.4838 ÿ0.7930

TOTENE 1 ÿ0.4176 ÿ0.6846

TILT1000 1 0.7361

TILT570 1

Vowel /9y/

Feature DURATION MAXENE TOTENE TILT1000 TILT570

DURATION 1 0.2335 0.7725 ÿ0.1559 ÿ0.3744

MAXENE 1 0.5847 ÿ0.5043 ÿ0.7710

TOTENE 1 ÿ0.3291 ÿ0.6196

TILT1000 1 0.7026

TILT570 1
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DURATION, while the correlation between
MAXENE and DURATION is lower. This pat-
tern is to be expected, since TOTENE combines
contributions of MAXENE and DURATION.
The relatively high (negative) correlations between
MAXENE and TILT570 are also understandable
from the way these features are computed. In
general we can see that even features which are
computed completely independently, like DURA-
TION and TILT570, tend to be more or less cor-
related, thereby indicating that for instance an
increase in duration tends to coincide with a de-
crease in spectral tilt. Note also that the correla-
tions tend to be higher, in an absolute sense, for
/a:/ than for /9y/.

3.2. Classi®cation experiments

In these experiments we trained the Bayesian
classi®ers with features from the vowels in the
training set, and we tested them with the vowels in
the test set. Three sets of classi®cation scores were
obtained, viz. the proportion correct for unstressed
vowels, for stressed vowels and for the full set of
vowels. For comparison we also tested the classi-
®cation performance on the training set. The re-

sults of these last tests were, within the con®dence
intervals, the same as for the test set. This shows
that our classi®ers showed good generalization
behavior from the training set to unseen vowels. In
what follows only classi®cation results obtained on
the test set are discussed.

General. The best result for classi®cation with a
single feature over the individual vowels was
72.6% correct for the vowel /a:/ (see Table 3). This
was achieved by normalizing TOTENE for the
average energy over the vowels in the utterance.
However, this normalization gave no signi®cantly
better (p < 0.05) classi®cation results than the raw
feature TOTENE (70.4%).

Di�erences between features. The results
showed that no one feature or combination of
features will always give the best classi®cation
performance. But the feature TOTENE, or one of
its normalizations is in many cases (10 out of 15)
the best.

Di�erences between vowels. There is a consid-
erable di�erence (15% points) between the best
classi®er for the vowel /a:/ (the highest scoring
vowel), and the best classi®er for the vowel /e:/ (the
lowest scoring vowel). This pattern is not surpris-
ing if one looks at the distributions of the raw

Table 3

Best classi®cation result for each vowel

Vowel Description of winning feature Percentage correct classi®cations Con®dence interval

Stressed Unstressed Total

a: TOTENE, free, 1 76.05 69.14 72.60 71.43±73.77

y DURATION, calculated, 5 64.48 74.68 69.58 66.83±72.33

o: TOTENE, free, 1 71.43 66.50 68.97 67.48±70.46

A TOTENE, free, 6 67.34 66.29 66.81 65.56±68.07

E TOTENE, free, 7 65.61 67.51 66.56 65.31±67.82

Au DURATION, free, 6 74.00 54.50 64.25 61.18±67.33

O TOTENE, free, 7 66.00 60.70 63.35 61.75±64.96

Y MAXENE, free, 5 79.12 46.73 62.93 60.51±65.35

2: MAXENE, calculated, 3 68.59 55.78 62.19 57.83±66.55

i TOTENE, free, 6 61.67 62.61 62.14 60.60±63.69

9y TOTENE, free, 5 66.17 57.14 61.65 58.54±64.78

9y TILT570, free, 7 59.03 64.28 61.65 58.54±64.78

I TOTENE, free, 5 52.03 70.58 61.31 59.86±62.76

u TOTENE, calculated, 3 60.53 57.74 59.13 56.69±61.59

Ei TOTENE, free, 5 44.87 72.03 58.45 56.85±60.06

e: DURATION, calculated, 6 43.38 70.95 57.16 55.54±58.79

Since all `best' results were obtained by normalized features, the second column indicates on which raw feature the normalization was

based, whether the normalization was free or calculated, and the index of the kind of normalization as introduced in Table 1. The /9y/

appears two times because two features had the same score.
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features, where the stressed and unstressed distri-
butions show considerable more overlap in /e:/
than in /a:/.

Normalized versus raw features. For 12 of the 15
vowels the best performing raw feature also pro-
vided the winning normalized feature. But al-
though for all vowels the best classi®er was one
which was trained on normalized features, the
performance was often not signi®cantly better
than that of the best classi®er trained on raw fea-
tures. The largest di�erence was obtained for the
/9y/, where the raw feature TOTENE gave a
54.51% correct classi®cation, while the normalized
winner reaches 61.65% correct classi®cation; a
signi®cant di�erence (p < 0.05) of 7.14% points.
Moreover, the complex normalization for DU-
RATION proposed in (Wightman, 1992) did not
perform better than much simpler approaches (a
simple normalization for the duration of the pre-
vious vowel was signi®cantly better (p < 0.05)
than the raw DURATION whereas the Wight-
man-normalization was not).

Di�erences between normalization-methods. The
free normalizations often give good classi®cation
results; 11 out of 15 of the winning normalizations
are free. Sometimes there are considerable di�er-
ences in performance between the deterministic
normalization and the free normalization: The
most extreme example is the vowel /Ei/, where the
best classi®cation result (58.5%) is achieved by a
free normalization which is much (and also sig-
ni®cantly) better than the result for the determin-
istic normalization (52.49%). The di�erences
between free and deterministic normalization are
not always equally large; there are even occasions
where the deterministic normalization performs
better, but when the di�erences are large it is al-
ways the free normalization which is the winner.
This pattern indicates that our calculations for the
normalizations were not the optimal way to use
the information at hand.

Combining features. The above results were all
obtained with classi®ers that were trained on a
single feature. We also experimented with com-
binations of features. Several di�erent combina-
tions of energy, duration, and tilt features were
used, but only for the vowel /I/ did this yield a
classi®er which signi®cantly outperformed the

best single feature classi®ers for this vowel. This
classi®er was trained on the free normalizations
of normalization type 5 for the features DURA-
TION, MAXENE, and TOTENE. It gave a
classi®cation result of 64.46% correct. The fact
that combinations of features in general did not
give better classi®ers can be explained by the fact
that there is a considerable correlation between
some features (DURATION and TOTENE on
the one hand, and TILT570 and MAXENE on
the other hand), and that one of these correlated
pairs sometimes tends to be much better as sep-
arator than the other (most extreme for /a:/,
where a normalization for TOTENE scores
72.60% correct, and the best normalization for
MAXENE 62.28% correct; a di�erence of more
than 10% points).

Since the experiments with combinations of
features did not bring us much, we will not discuss
these any further, but concentrate on the outcomes
of the single feature classi®ers.

4. Discussion

The most obvious ®nding in this study is that
our classi®cation scores for stressed and unstressed
vowels are far worse than what has been obtained
before, e.g. by Ying et al. (1996) and Sluijter and
Van Heuven (1996). Yet, before embarking on an
attempt to explain this discrepancy, it is interesting
to note that the feature TOTENE, which is in-
troduced in this paper, turns out to be the best
discriminator for �stress. A similar feature was
found to provide good performance on the same
task in (Waibel, 1986). This ®nding corroborates
the intuitive notion that vowels tend to be per-
ceived as stressed when they are longer, louder, or
both longer and louder than their unstressed
counterparts. Because TOTENE captures both
variations in loudness and in duration, it is the best
candidate for a feature which can be applied to all
vowels to discriminate between stressed and un-
stressed exemplars. For short vowels (which in
Dutch cannot vary much in their duration) it will
capture the variance in the energy-levels, and for
intrinsically louder vowels it will capture the
variance in the duration.
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As said before, overall the results for correct
classi®cation of vowels in read sentences recorded
over the telephone as �lexical stress are somewhat
disappointing, especially when they are compared
to previous ®ndings for Dutch stress-minimal pairs
(Sluijter and Van Heuven, 1996) and results in
similar experiments for English (Ying et al., 1996).
On the other hand, our results are in line with what
one should expect from previous research that
attempted to exploit the feature �stress in auto-
matic speech recognition, where the results were
always equivocal at best (Hieronymus et al., 1992;
Dumouchel and O'Shaughnessy, 1993; Van Kuijk
et al., 1996).

The single most important di�erence between
the studies that showed large, systematic di�eren-
ces between stressed/unstressed vowels and the
studies that did not ®nd the same results is the type
of speech material on which the experiments were
based. Sluijter and Van Heuven (1996) used high-
quality, carefully recorded wide band speech. The
speakers had to produce the stress-minimal pair
KAnon±kaNON, 2 or a reiterant version of those
two words, in a carrier sentence which was iden-
tical for all items. This kind of experiments can
help in understanding which acoustical correlates
play a role in the perception or production of a
stressed vowel, but the arti®cial character of the
speech material used makes generalization of the
®ndings to `read' or `spontaneous' speech di�cult.
By limiting the measurements and features to dif-
ferences between exactly the same sounds, in ex-
actly the same left and right phonetic context, in
closely controlled di�erent prosodic contexts, the
bulk of the variation occurring in more realistic
conditions has been removed. This type of re-
search may very well contribute to improved
speech synthesis (where the conditions for gener-
ation are likely to be known a priori), but it is
doubtful whether the type of deterministic know-
ledge that is obtained from these studies can at all

be used in ASR, where the conditions are to be
determined, instead of given a priori. It is our goal
to study the phenomenon stress in continuous
speech. In our speech material the vowels occurred
in random, uncontrolled phonetic contexts, and in
a wide range of prosodic contexts. This cannot but
add tremendously to the amount of variation in
any acoustic phonetic feature, and the results of
the `natural' amount of variation are evident: there
is such a large degree of overlap between stressed
and unstressed vowels that straightforward bot-
tom±up separation becomes very di�cult. So, we
believe that the results of our study give a better
estimate of what stress detection may contribute to
automatic speech recognition than the previous
studies, which were based on somewhat contrived
speech material.

Of course we have to ask ourselves whether the
fact that we used telephone speech instead of wide
band speech may also have played a role. An im-
portant di�erence is that telephone speech is re-
stricted to 300±3300 Hz. So any information in the
lower and higher regions of the spectrum is lost.
However Sluijter and Van Heuven (1996) reported
that the e�ect of stress on the spectral tilt is mainly
to be found in the higher frequency range
(>500 Hz), and that the bands below 500 Hz are
hardly a�ected by stress. The highest frequency
band used in their study had a high cut-o� fre-
quency of 4000 Hz; there are no indications that
the very upper part of the frequency range was
decisive for the superior role of spectral tilt in
separating stressed/unstressed syllables. So the fact
that we used telephone speech should be no
problem for spectral tilt. On our measures for
duration the telephone channel can have no e�ect.

The better results reported in (Waibel, 1986) for
American English were obtained in a study in
which the labeling of vowels as `stressed' or `un-
stressed' was based on perception experiments,
and not on abstract linguistic stress like in the
present study. In Waibel's material the stressed
syllables were labeled (and thus perceived) by hu-
mans as stressed, and therefore we can expect that
these vowels acoustically stand out by being
longer, louder, or having a pitch accent. A second
explanation has to do with di�erences between
English and Dutch. In English unstressed vowels

2 This example is anyway debatable: Although the transliter-

ation of both words is /ka:nOn/, it is perfectly legitimate to

reduce the /a:/ in kaNON to an /A/ or even to a schwa, in which

case one would be comparing acoustic di�erences between two

di�erent vowels, and not di�erences between �stress within one

vowel.
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tend to be much more reduced than in Dutch, so
acoustical di�erences will be larger for English. An
experiment is under way in which we will investi-
gate the performance of a classi®er trained and
tested on vowels that were perceived as stressed or
unstressed by a group of listeners.

It is interesting to discuss our results in the
context of the ®ndings of Van Bergem (1993). He
studied di�erences between vowels in C1VC2 syl-
lables for equal C1 and C2 in six conditions: in
stressed or unstressed syllables of a content word
and in function words, each occurring in a position
that was or was not a�ected by the presence of a
pitch accent. Although Van Bergem concludes that
`accent' contributes less to the di�erences between
vowels than stress and word type, it still strikes the
eye that he ends up with four conditions that di�er
signi®cantly. Vowels in the stressed syllable of an
accented word di�er from stressed vowels in the
same syllable when the word does not receive an
accent. And unstressed vowels in content words
which do carry an accent di�er from their un-
stressed counterparts in non-accented content
words and function words. Thus, it appears that
`accent' has a non-negligible e�ect on the acoustic
realization of vowels, even if the vowel occurs in
unstressed position in the accented word. Again,
this ®nding should help to improve the quality of
speech synthesis, where the location of the accents
is determined by the linguistic pre-processor. In
speech recognition (and speech perception, for that
matter) accent positions are not known in ad-
vance.

Thus, the most likely explanation for our rela-
tively low classi®cation scores is the large number
of phonetic features involved in the realization of
the abstract feature `lexical stress', combined with
the large number of linguistic and phonetic factors
which play a role in the mapping from abstract
lexical stress to the acoustic phonetic surface form.
This problem is especially apparent in languages
like Dutch and German, that easily form nominal
and verbal compounds. According to linguistic
theory, each compound word has just one syllable
that carries lexical stress. But in many cases the
syllable(s) that carry lexical stress in the other
members of the compound may be actually real-
ized with at least the same amount of phonetic

stress as the vowels in function words (or, for that
matter, the vowels in content words that happen
not to carry a pitch accent). Also, phonological
rules that predict stress shifts when two syllables
with lexical stress (eligible for pitch accents) are in
adjacent positions make one doubt whether the
relation between abstract lexical stress and con-
crete phonetic realization can be untangled to such
an extent that e�ective bottom±up stress detection
becomes feasible.

The very large range of variation in all acoustic
phonetic features observed in uncontrolled speech,
due to a very large number of phonetic and lin-
guistic e�ects and contexts, is also the best candi-
date for explaining why normalization of the
features did not improve the classi®cation results
to the same extent as was found in previous studies
on more tightly controlled speech material. Nor-
malization should be more e�ective if one knows
what e�ects should be `normalized away'. In ar-
bitrary sentences, read by a very large number of
speakers, there appear to be too many unknown
factors that play a role to allow the usual nor-
malizations to be e�ective. This interpretation is
corroborated by the ®nding that in most cases a
`free' normalization outperformed a deterministic
use of the normalization context.

An interesting question which arises is of
course: What role can lexical stress play in human
speech recognition and understanding when
stressed vowels are acoustically so very similar to
unstressed vowels? After all, it seems that stress
will be hard to detect bottom±up from the speech
signal, so what use does it have then? We think
that lexical stress is used as a potential carrier for
sentence accent. In practice, there will be no large
acoustic di�erences between the unstressed and
stressed vowels for most words in a sentence, ex-
cept for those words which are in focus, and
should in some way be conspicuous according to
the speaker. So the syllable carrying primary lexi-
cal stress is that syllable whose acoustic properties
(in terms of duration, energy, spectral tilt, and
pitch) will change most if the word is accented in
the sentence. The other syllables of the word will
probably also be a�ected, but never so much as the
stressed syllable. If it should happen that an un-
stressed syllable gets more conspicuous than the
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one marked for stress (as can happen when people
speak a foreign language), listeners will experience
that as a mispronunciation. So there is no rule that
the stressed vowel should be `stronger' than its
unstressed counterparts in the same word, but
there is certainly a rule that ± with the exception of
the use of contrastive stress ± the unstressed vowels
may never be stronger than the stressed one.
Nevertheless, we also saw that strong (intrinsically
longer and louder) vowels tend to be more often
stressed than not. So the ``choice'' of the syllable
which gets lexical stress in a word is certainly not
random, but governed by phonetic arguments.

Our ®ndings suggest that for Dutch little or
nothing is to be gained from the integration of a
lexical stress detector in a single pass decoder in an
automatic speech recognition system. This does
not imply, however, that the feature lexical stress
could not play a useful role as an additional
knowledge source in a multi-pass decoder, where it
could be used to rescore the likelihood of com-
peting solutions, provided of course that suitably
trained models are available to capture the
acoustic (and perhaps also prosodic) e�ects of
lexical stress in the context of higher level prosodic
and syntactic contexts.

5. Conclusions

The main conclusion of this paper is that the
acoustic properties of stressed and unstressed
vowels in (telephone) speech, based on a linguistic
de®nition of lexical stress, are not very di�erent.
Experiments with linear classi®ers showed that the
best classi®cation result we could obtain is 72.6%
correct classi®cation for the vowel /a:/.

Our classi®cation results are low compared to
what has been found in previous studies. We be-
lieve that this is due to two reasons. First, previous
studies have only compared vowels in identical
phonetic contexts, produced under carefully con-
trolled reading conditions. This eliminates most of
the variation that caused the feature distributions
in our experiment to overlap to a very large degree.
Second, at least some of the previous studies seem
to have confused the notions of stress and accent,
so that the claimed di�erences between stressed

and unstressed vowel are in fact often di�erences
between vowels in accented and unaccented words.

There are signi®cant di�erences in duration,
energy and tilt between the unstressed and the
stressed variants of most of the vowels in t-tests,
but the explained variance of each of these features
for stressed and unstressed is low. We hoped that
normalizations of the raw features for contextual
e�ects, and combinations of the normalized fea-
tures could yield better classi®cation results, but
this was not the case. Normalizations can help a
bit, but not much. Combining features does not
help much either. This is probably due to the
considerable correlations between the raw fea-
tures.

The best feature turned out to be a new feature
which integrates over the energy in a vowel. In this
way it represents a combination of Duration and
Energy. Spectral tilt was the worst feature in these
experiments. So, contrary to the ®ndings of Sluij-
ter and Van Heuven (1996), we ®nd that for most
vowels the energy is a better discriminative
acoustic correlate of stress than spectral tilt or
duration.

The normalized versions of the features yield
better classi®cation results than the raw features,
but the improvement is smaller than what one
might expect. With respect to normalization it
seems preferable to feed the classi®er with the raw
features on which the normalizations are based
than computing deterministic normalizations.

Our ®ndings suggest that for Dutch little or
nothing is to be gained from the integration of a
lexical stress detector in a single pass decoder in an
automatic speech recognition system. However,
the feature lexical stress could still play a useful
role as an additional knowledge source in a multi-
pass decoder, where it could be used to rescore the
likelihood of competing solutions.
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