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This research exploits the English and Dutch CELEX lexical database to investigate the
form similarity relations between words. Lexical statistics analyses replicate and extend the
findings of Landauer and Streeter (1973) concerning the relation between a word's fre-
quency and the density and frequency of its similarity neighborhood. The results for both
Dutch and English reveal only a weak tendency for high-frequency written and spoken
words to have more neighbors than rare words and for these neighbors to be more frequent
than those of rare words. However, the number of neighbors was found to correlate more
highly with bigram frequency than with word frequency. To clarify the relations between
these properties, a stochastic model is presented which captures the relevant effects of
phonotactic structure on neighborhood similarities. The implications of these findings for

models of language production and comprehension are considered.

Research in lexical processing suggests
that the identification of any given word-
form in the mental lexicon depends not just
on the evidence in the signal for the word
itself, but also on existence in the lexicon of
other words that are similar in form to the
target. The influence of these lexical com-
petitors or neighbors upon word recogni-
tion is expressed in one way or another in
most models of word recognition. Indeed,
in theoretical accounts of word recognition
for both the spoken (Luce, (1986); Marslen-
Wilson & Welsh, (1978); Marslen-Wilson,
(1987) and the visual (Grainger, (1990);
Humphreys, Evett, & Quilian, (1987)) do-
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main, the perceptual choice made in recog-
nizing a target word is assumed to be con-
ditioned by the target’s competitor environ-
ment. The exact definition of the members
of the competitor set and the competitor’s
influence upon word recognition—which
both may differ across modality—is still un-
der intense experimental investigation.

If indeed, the timing of the word recog-
nition processes can only be understood
with reference to the set of lexical choices
which a listener (or a reader) must discrim-
inate, then research into these processes
will have to be based on a proper descrip-
tion and understanding of this set. The de-
scription of the on-line lexical search space
requires the statistical analysis of lexical
databases that accurately represent the cur-
rent state of the language. Analyses of com-
puterized lexical databases can thus pro-
vide us with detailed characterizations of
the structural and distributional properties
of the words in a language. Such character-
izations are essential for assessing the con-
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sequences of various hypotheses and ex-
perimental results concerning lexical pro-
cessing and representation.

Landauer and Streeter (1973) were
among the first to study the distribution of
words in the lexicon as represented in a lex-
ical database. They defined a similarity
neighborhood within the lexicon as that set
of words or neighbors from which a given
target word cannot be distinguished when
there is a specific loss of information (a sin-
gle letter substitution in their study) about
this target word. Two different properties
of the similarity neighborhoods were exam-
ined: neighborhood density—the number of
neighbors of a word—and neighborhood
frequency—the frequency of these neigh-
bors. In their analysis, Landauer and
Streeter (L & S) compared the similarity
neighborhoods of common (frequency
greater than 75 occurrences per million in
Kucera & Francis (1967)) and rare (one oc-
currence per million) written English words
to test the assumption that these two
classes of words do not differ in their sim-
ilarity neighborhoods. Neighbors were de-
fined as those words that differed from the
target by a single letter in any position (e.g.,
Sfun, sin, and sum are all neighbors of sun).
Using this definition, they contrasted the
similarity neighborhoods of 50 common and
rare English four-letter words. They found
that common and rare words were not
equivalent in either the density or in the
frequency of their neighborhoods; common
words had more neighbors than rare words,
and the mean frequency of the neighbors of
common words was higher than that of the
neighbors of rare words.

This finding that common and rare words
occupy, on average, different similarity
neighborhoods has some important conse-
quences for word recognition research. As
L & S pointed out, these results argue
against the perceptual equivalence hypoth-
esis, according to which high- and low-
frequency words do not differ from each
other in any dimensions other than word
frequency itself. Common words were
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shown to have different similarity neighbor-
hoods than rare words. These observed dif-
ferences in the similarity neighborhoods are
hard to reconcile with the well-known word
frequency effect (Gardner, Rothkopf, La-
pan, & Lafferty, 1987; Rubenstein & Pol-
lack, 1963; Whaley, 1978). According to
most accounts of word recognition, the ef-
ficiency and speed with which a given word
can be recognized is a function of how eas-
ily it can be discriminated from its neigh-
bors. This discrimination has been argued
(Luce. 1986) to depend upon the number
and frequency of the word’s neighbors; the
more neighbors and the more frequent
these neighbors, the slower and more diffi-
cult the recognition process is. If, as the
results of L & S suggest, high-frequency
words have more neighbors that are them-
selves high frequency, then we would in-
correctly predict that high-frequency words
are harder to identify than low-frequency
words. This apparent conflict between
word frequency and the properties of the
similarity neighborhoods constitutes an ap-
parent paradox as has been pointed out by
L & S and by Nusbaum (1985). It also raises
the more fundamental question of how
neighborhood density and neighborhood
frequency influence the time course of lex-
ical processing.

Given the important implications of these
results for current theorizing about the sim-
ilarity structure of the lexicon and the pro-
cesses of word recognition, it is essential
that these facts about lexical neighbor-
hoods be established clearly. Closer exam-
ination of the L. & S study reveals several
shortcomings that may undermine its reli-
ability. First, it was based upon relatively
small samples of words; L. & S arbitrarily
limited their analysis of 50 randomly se-
lected words of the 260 possible in the fre-
quency classes they defined. Second, their
analysis was restricted to only a single
length (four letters). Third, the neighbor-
hoods of words in only two frequency
ranges were examined. By restricting the
analyses in this fashion, the authors were
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unable to document the changes in similar-
ity neighborhoods across the entire fre-
quency range and therefore could not shed
light on the more general relationship be-
tween frequency and similarity neighbor-
hoods. Fourth, the two properties of simi-
larity neighborhoods (neighborhood den-
sity and neighborhood frequency) were
analyzed separately. An analysis combin-
ing the two measures into one global mea-
sure may provide more insight into similar-
ity neighborhoods, as we will show below.
Lastly, they restricted their analysis to
written words.

More recently, however, Pisoni, Nus-
baum, Luce, and Slowiaczek (1985) re-
ported on a study that compared the simi-
larity neighborhoods of common and rare
spoken words. Their study improved on the
original L & S study in two ways. First, it
expanded on this study by analyzing words
of different lengths (ranging from one to
eight phonemes) rather than using one sin-
gle length. Second, it characterized lexical
neighborhoods with an additional measure
based on the Luce-choice rule that incorpo-
rated both neighborhood frequency and
density. One major defect of the study was
its use of a very restricted high-frequency
range (above 1000 per million). This defini-
tion had the negative consequence of pro-
ducing extremely small samples (2, 36, 39,
14, and 1 item(s) for common words with
lengths 1 to 5, respectively).

The results of the Pisoni et al. study only
partially replicated the pattern obtained by
L & S. On the whole, their results for neigh-
borhood density were quite different. High-
frequency words did not have more neigh-
bors than low-frequency words for any of
the lengths examined—if anything, the dif-
ference went in the other direction (al-
though none of the differences were tested
statistically). The mean neighborhood fre-
quency of common words was higher than
that of rare words for the two shortest
lengths examined (two and three phoneme
words).

The divergent pattern of results obtained
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for visual and auditory neighborhoods may
be due in large part to differences in the
methodology adopted in the two respective
studies. Most importantly, the frequency
ranges examined in the two studies were
very different. The frequency ranges of rare
words in the two studies did not overlap
and the set of common words included by
Pisoni et al. (1985) represented only a small
subset of the words analyzed by L & S. If
the properties of similarity neighborhoods
of frequent and infrequent words do depend
on the specific frequency ranges adopted,
then some serious doubts about the gener-
ality and robustness of the original L & S
findings must be raised.

The first objective of this paper is test
the validity of the L. & S findings con-
cerning the relation between a written
word’s frequency and its similarity neigh-
borhood. We first replicate the L & S study
with the CELEX database. To deal with
the limitations of their study, we then con-
duct a more complete and systematic anal-
ysis of the similarity neighborhoods of En-
glish written words of different lengths
across the entire frequency distribution.
This analysis provides a test of the gener-
ality of the L & S findings which were re-
stricted to a single length and two fre-
quency ranges.

Our second objective is to establish
whether the neighborhood properties of
written and spoken words actually differ as
the Pisoni et al. results suggest. We present
an analysis of spoken words, repeating the
procedure used by these authors. Later we
compare the similarity neighborhoods of
English phonological forms of different
lengths across the entire frequency range
using the same procedure as for ortho-
graphic neighborhoods.

Under Similarity Neighborhoods of
Dutch Words we examine the cross-
linguistic generality of the findings concern-
ing the similarity neighborhoods of English
spoken and written words, turning our at-
tention to another language in the CELEX
database, Dutch. An analysis of the similar-
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ity neighborhoods of orthographic and pho-
nological forms in Dutch allows us to com-
pare the two languages.

The goal of Probabilistic Aspects of Lex-
ical Density is to get a better picture of the
similarity neighborhoods of words the lis-
tener or reader normally encounters. To do
so we move from the type-based analyses
adopted in the previous sections to a token-
based analysis. This allows us to compute
the probability that a listener will be con-
fronted with words with a particular simi-
larity neighborhood and, more generally, to
assess the probability of identification of
words in the lexicon. Furthermore, we
present a unifying analysis in which the re-
lation between word frequency, number of
neighbors, neighborhood frequency and bi-
gram frequency are examined in terms of a
Markov model. The implications of these
findings for lexical processing are discussed
under the General Discussion.

The analyses reported here all exploited
the CELEX lexical databases (Baayen,
1991b; Burnage, 1988) for English and
Dutch. Here is a short description of each
database.

English: The English database (V1.0) is
drawn from several different sources. It
constitutes the overlap of the Ascot version
of the Longman dictionary of Contempo-
rary English and the Oxford Advanced
Learner’s Dictionary. It includes 80,531
word forms with 29,967 lemmas. The token
frequencies are those of the Collins/Cobuild
frequency count of the 17,979,343-word
corpus of current English compiled at the
University of Birmingham over the past
few years.

Dutch: The Dutch database (V3.1) con-
tains 124,136 Dutch lemmas and 381,292
word forms. Its frequency counts are de-
rived from the 42,380,000-word token cor-
pus of the Institute for Dutch Lexicology in
Leiden. This corpus was taken from 835
different contemporary texts. Note that,
since compounds in Dutch are written with-
out intervening blanks, the number of lem-
mas in the Dutch database is much larger
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than the number of lemmas in the English
database.

SIMILARITY NEIGHBORHOODS OF
ENGLISH WORDS

In this section, we examine the neighbor-
hood density and frequency of English writ-
ten and spoken words.

L & S Replication for
Orthographic Neighborhoods
Method

The original L & S study was based on
the 1,000,000-token frequency counts of
Kuéera and Francis (1967). The CELEX
frequency counts, in contrast, are based on
18,000,000 English tokens. In order to
make a more direct comparison with the L
& S study possible, 1,000,000 tokens were
sampled (without replacement) from the
18,000,000 tokens of the English corpus.’
For each type in this smaller sample, the
token frequency was obtained. The result-
ing scaled-down English database was used
to replicate the L & S results.

All the four letter words falling into the
common (frequency = 76/1,000,000) and
rare (frequency = 1/1,000,000) frequency
classes used by L & S were selected from
the reduced database along with their fre-
quency. This database produced 278 rare
words and 285 common words. It should be
noted that the size of the resulting fre-
quency classes corresponds closely to that
obtained by L & S (260 rare and 260 com-
mon words).

The procedure used was essentially the
same as that employed in the L & S study.

! The reduction procedure used here is virtually
identical to Muller’s (Muller, 1977) reduction method.
The pracess of sampling without replacement can be
viewed as an attempt to construct a smaller corpus on
the basis of a random selection of the texts which con-
stitute the original corpus. There is some evidence (see
e.g., Brunet (1978)) that these methods tend to overes-
timate the number of types in the reduced sample. This
is undoubtedly due to the fact that the method builds
on the incorrect assumption that words occur indepen-
dently in texts. Nevertheless, this is the most reliable
method available for scaling down corpora (see e.g.,
Khmaladze & Chitashvili, 1989).
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The N-count neighborhood definition was
used. Thus, all words that differed from a
given word in a single letter in any position
were counted as neighbors. However, all
the words in the two frequency ranges were
analyzed, unlike the L & S study which
only used a random sample of 50 words
from each class. For each word in the two
frequency classes, the number of neighbors
and the mean of the frequencies of these
neighbors were computed. From these val-
ues both the mean and median number of
neighbors and the mean and median of the
(mean) neighborhood frequencies were
computed for the two frequency classes.

Results

The results of our replication study with
the CELEX database are displayed in Ta-
ble 1. We can see that common and rare
words do differ in their similarity neighbor-
hoods as the original study suggested.
Common four-letter words have more
neighbors than do rare words. This differ-
ence between the two word classes was sig-
nificant by the Mann-Whitney U test (Z =
4.26, p < .001). Further, the neighbors of
common words were more frequent than
those of rare words.”

Discussion

While this analysis provides a useful rep-
lication, it necessarily suffers from the
same defects as the original study. By re-
stricting the analysis to two frequency
ranges, we cannot assess the overall rela-
tion between word frequency and the prop-
erties of the similarity neighborhood. Fur-

2 If, like L & S, we use the same nonparametric test
we find that this difference is again highly significant
(Z = 8.48, p < .001). Unfortunately, however, the
Mann-Whitney U test is not appropriate here. The
problem is that the test presupposes that the observa-
tions for the dependent variable (neighborhood fre-
quency) are independent of the observations for the
independent variable (word frequency). This condition
is not met: the frequency of some type X may appear
both in the independent variable (as word frequency)
and in the dependent variable (as the neighbor fre-
quency of other words ¥, Z, . . ).
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TABLE 1
MEAN AND MEDIAN NEIGHBORHOOD DENSITY AND
FREQUENCY FOR ENGLISH FOUR-LETTER WORDS IN
THE ORIGINAL AND REPLICATION STUDIES

L&S analysis Our analysis

Rare  Common Rare  Common

Number of neighborhood

Mean 4.85 8.64 5.96 7.63
Median 4 9 5 8
Frequency of neighborhood
Mean 100.36 116.21 93.24 163.33
Median 20.21 55.12 19.30 69.78
Number of words 50 50 265 285

thermore, the choice of a broad frequency
range (=75) for common words makes it
impossible to determine how neighborhood
density varies within this large class. To de-
termine more systematically how neighbor-
hood density and neighborhood frequency
vary with word frequency, we conducted a
neighborhood analysis for the full fre-
quency distribution. By comparing the
properties of the similarity neighborhoods
across the complete frequency range, we
hoped to get a more precise picture of the
relationship between these important vari-
ables. In addition, we decided to study
words of different length (three to eight let-
ters) to investigate how the relation be-
tween word frequency and neighborhood
properties varied with word length.

English Orthographic
Neighborhood Analysis

Method

All English word forms, ranging in length
from three to eight letters, were selected
from the CELEX database for English.
These words were of diverse morphological
structure: base, inflected, and derived
forms. For each word the number of neigh-
bors and the mean of the logarithmic trans-
form of the frequencies of these neighbors
were calculated. The frequencies were
based on an 18,000,000 English token
count. Neighbors were again defined as
those words that differed from the target by
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TABLE 2

FREQUENCY CLASSIFICATION BASED ON MARTIN (1983)

Characterization

Definition Cobuild frequency ranges
1 Very frequent/common f = 1:10,000 S = 1800
2 Frequent/common 1:100,000 < f < 1:10,000 180 < f =< 1800
3 Upper neutral 1:500,000 = f < 1:100,000 36 < f< 180
4 Lower neutral 1:1,000,000 < f < 1:500,000 18 < f< 36
S Rare 1:10,000,000 < f < 1:1,000,000 2=<f<18
6 Extremely rare S < 1:10,000,000 f=1

only a one letter substitution in any posi-
tion.? In order to gain insight into the rela-
tion between word frequency and the simi-
larity neighborhood structure for the full
frequency range, we assigned each word to
one of the six frequency classes listed in
Table 2. This frequency classification is
based on that proposed by Martin (1983,
1988). Martin’s frequency classification is
especially useful here because it also takes
into account some psycholinguistic results
on the subjective perception of frequency
differences (Shapiro, 1969), building on
work by Carroll (1967, 1969) on the lognor-
mal model for word frequency distribu-
tions. As such it is the best motivated fre-
quency classification that has come to our
attention. However, since the corpora un-
derlying the present investigations are very
much larger than the 1,000,000-word cor-
pora for which Martin developed his classi-
fication, we have subdivided Martin’s
lower two frequency classes into upper
neutral and lower neutral and rare and ex-
tremely rare, respectively. This allows us
to study the lower frequency ranges in
more detail.

Results

The analysis of the neighborhood proper-
ties of four-letter words will be presented

3 The logarithmic transform of the neighbor frequen-
cies was used to minimize the effect of the skewness of
the neighborhood frequency distributions. Without
this correction the mean neighborhood frequency
would be determined almost completely by the high
frequency outliers, whereas we were interested pri-
marily in the distributional pattern of the whole neigh-
borhood.

first to allow a comparison with the repli-
cation study just reported. The results of
the analysis of neighborhood density are
summarized in Fig. 1. The results revealed
a gradual increase in both the mean and the
median number of neighbors as a function
of word frequency. The lowest frequency
class showed the lowest density values
(median 5.0; mean 6.16) and the two upper
frequency ranges showed the highest val-
ues (median: 9.0, 8.5; mean 9.15, 8.68),
with the intermediate ranges falling some-
where in between (median: 6.0, 8.0, 8.0;
and mean: 7.18, 7.88, 7.95). The boxplot
also reveals a large amount of variance in
the separate classes. Although the highest
frequency class appears with the higher me-
dian (or mean) number of neighbors when
compared with the lowest frequency class,
many low-frequency words exist with a
high number of neighbors and vice-versa.
This suggests that the correlation between
word frequency and neighborhood density
is rather weak.

To gain further insight into how fre-
quency and number of neighbors are corre-
lated, we made use of the WARPing ap-
proximation to the Nadaraya—Watson esti-
mate for nonparametric kernel regression
smoothing (Haerdle, 1991, 123-143). This
nonparametric regression technique was
used in light of the decided nonnormality of
the marginal distributions.* Figure 2 shows

4 Using the x° test to evaluate the goodness-of-fit of
the normal distribution it was found that the word fre-
quency, logarithmically transformed, is highly unlikely
to be riormally distributed (x> = 76.78, df = 22, p <
.0001). The same holds for the number of neighbors (x*
= 19302, df = 23, p < .0001).
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Fi1G. 1. Boxplots showing the number of neighbors
d for six frequency classes (FC) of Table 2 for English
four-letter word forms. The plot lists the median, the
upper and lower quartiles, and the most extreme data
points within 1.5 of the IQR of the upper and lower
quartiles by means of horizontal lines. Outliers are
represented by dots. The arithmetic mean is repre-
sented by a dotted line.
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the scatterplot and the regression curve
corresponding to Fig. 1, with the indepen-
dent variable, word frequency, on the hor-
izontal axis and the dependent variable,
number of neighbors, on the vertical axis.’
The word frequencies were transformed
logarithmically to reduce the effect of out-
liers.

Figure 2 reveals the same trend as Fig. 1,
although the downward curvature for the
higher frequency word appears to be more
pronounced than suggested by the slight
lowering of mean and median observable
for the highest frequency class in Fig. 1.
Evidently, the positive correlation reported
by L & S for frequency and number of
neighbors is reversed for the highest-
frequency types. Because L & S compared
means and medians for extreme frequency
classes (logarithmically transformed: [0.0;
2.89] and [7.22, =]}, they failed to observe
this downward trend for their class of com-
mon words, probably because the majority

5 The regression curve of Fig. 2 was obtained using
an Epanechnikov Kernel. For bin width 8 = .5 the
optimal cross-validation score was obtained for win-
dow width & = 2.5 (see Haerdle, 1991, pp. 151-171).
This is the window width underlying Fig. 2.
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F16. 2. Neighborhood frequency nonparametric re-
gression curves for Dutch orthographic word forms of
lengths 3-8.

of their common types appeared at the
lower end of this frequency range (see
Fig. 2).

We can test whether the main trend for
the number of neighbors to increase with
type frequency is significant using the
Spearman rank correlation coefficient r,.
Interestingly, word frequency and neigh-
borhood density emerge as being signifi-
cantly correlated (r, = .16, which is statis-
tically highly significant (p < .0001) for
2151 degrees of freedom). However, the
huge scatter shown in Fig. 2 considerably
reduces the potential importance of the
neighborhood density effect. In fact, the
amount of variance explained for the rank-
based transform of the data is only r? =
.026.% We are forced to conclude that (i) the
neighborhood density effect reported by L
& S, even though it is significantly present,
is extremely weak, and (ii) that the positive
correlation is reversed for the 300-odd high-
est-frequency types.

It is also possible to use the Pearson correlation
coefficient r. For the present data r equals .1370. The
estimated slope of the associated regression line is
.026. Note that the amount of variation explained by
the linear regression of neighborhood density on (log)
target frequency is even less (© = .019) than in the
case of the rank-coded transform of the data (/2 =
.026). Also note that the slope of the linear regression
line suggests a weaker neighborhood density effect (an
increase from E[Y]X = 1] = 7.98 to only E{Y]X = 12}
= 8.30) than the nonlinear effect which emerges from
Fig. 2. However, due to the nonnormality of both mar-
ginal distributions, we cannot use r to ascertain wheth-
er the observed correlation is significant. Hence we
have opted for carrying out our analyses in terms of r_.
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F1G. 3. Scatterplot and corresponding nonparamet-
ric regression curve for the mean log neighbor fre-
quency as a function of the number of neighbors for
English four-letter word forms.

The neighborhood frequency effects
were analyzed in a slightly different way
than was done in the L & S study. To avoid
the problem of nonindependence between
word frequency and (mean) neighborhood
frequency (see footnote 2), we focused on
the relation between the number of neigh-
bors of words and the mean of the logarith-
mically transformed frequencies of their
neighbors.

Figure 3 presents the scatterplot and the
corresponding nonparametric regression
line for English orthographical word forms
of length 4.7 Figure 3 suggests that neigh-
borhood frequency increases slightly as a
function of the number of neighbors (E[Y]X
= 1] = 4.50, E[Y|X = 24] = 4.89). Asin
the case of a neighborhood density effect,
we can test whether this slight increase is
significant. The Spearman rank-order cor-
relation coefficient for these neighborhood
frequency data equals r, = .115 (df = 2067,
p < .0001). As before, we are dealing with
a very weak but statistically significant cor-
relation.®

7 The regression curve of Fig. 3 was obtained using
an Epanechnikov Kernel. For bin width 8§ = 1 the
optimal cross-validation score was obtained for win-
dow width 4 = 6. This is the window width underlying
Fig. 3.

8 The Pearson correlation coefficient for these data
equals .083, the amount of variance being explained by
the regression analysis being .007. The estimated slope
of the regression line is slightly less than that of the
nonparametric regression line of Fig. 3 (.0035 versus
.0172). Note that the heteroskedasticity in the data
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Fi16. 4. Neighborhood density nonparametric re-
gression curves for English orthographic word forms
of length 3-8.

We performed the same analyses of the
similarity neighborhoods for words of other
lengths (three, five, six, seven, and eight
letters). The results of these analyses are
summarized in Figs. 4 and S in terms of the
nonparametric regression curves. Figure 4
shows that the neighborhood density ef-
fects were the strongest for words with
three and four letters. The number of neigh-
bors first increases with log word frequency
and then decreases. Note that the curves
for words with five or more letters are
nearly flat, showing that there is no density
effect here. Turning to the neighborhood
frequency effect as plotted in Fig. 5, we find
that only four-letter words evidence a small
but steady increase in mean neighborhood
frequency as the number of neighbors in-
creases. Both the density and frequency ef-
fects become weaker as word length in-
creases.

Table 3 summarizes the corresponding
Spearman rank-order correlation coeffi-
cients. What we find is that there is no sig-
nificant density correlation for word length
3, and that the density correlations for
lengths 5-8 are so weak that their relevance
becomes highly doubtful, even though they
are statistically significant. The four-letter
words show up with a significantly stronger

renders the interpretation of r somewhat problematic.
Since both marginal distributions are decidedly non-
normal (x4, = 149.16, p = .0001 for the number of
neighbors (hermits excluded), x,, = 411.24, p = .0001
for the mean log neighborhood frequency), again no
significance testing can be carried out on the basis of r.
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F1G. §. Neighborhood frequency nonparametric re-
gression curves for English orthographic word forms
of lengths 3-8.

correlation than the six- and seven-letter
words.”

The downward curvature at the right
hand side of the regression curve of ortho-
graphic four-letter word forms requires fur-
ther investigation. We examined whether
this downward curvature is due to closed
class words which dominate the highest fre-
quency range. Figure 6 shows that the
closed class words, represented by small
circles, dominate the high frequency ranges
and are responsible for the downward cur-
vature of the regression line observable for
words with log frequency exceeding 8. Al-
though there are not too many open class
types with higher frequencies, the regres-
sion line for open class words only, also
plotted in Fig. 6, has roughly the same slope
for the whole frequency range. Not surpris-
ingly, the corresponding rank-order corre-
lation coefficient is slightly higher (r, =
2110).1°

Turning to the neighborhood frequency
effect, the only significant correlations at
the .01 level appear for word lengths 4 and

? In general it is impossible to use r, to test whether
two samples have been drawn from the same popula-
tion. However, it is possible to ascertain whether two
7 correlation coefficients are significantly different, us-
ing Kendall’s conservative significance test (Lienert,
1986). The difference in density correlations measured
in terms of Kendall's 7 for lengths 4 and 6 is minimally
significant at the 10% level (Z = 1.426) minimally. For
the lengths 4 and 7 it is significant at the 5% level.

' The contribution of the closed class items to the
downward curvature for three- and five-letter words is
weaker than for the four-letter words.
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TABLE 3

SPEARMAN RANK-ORDER NEIGHBORHOOD DENSITY

{WORD FREQUENCY AND NUMBER OF NEIGHBORS)

AND NEIGHBORHOOD FREQUENCY (NUMBER OF
NEIGHBORS AND MEAN NEIGHBORHOOD

FREQUENCY) CORRELATION COEFFICIENTS,
SIGNIFICANCE LEVELS p AND NUMBER OF

OBSERVATIONS # FOR ENGLISH ORTHOGRAPHICAL

WORD FORMS OF LENGTH 3-8

Density Frequency

Length r, p n re p n
3 0.052 0.056 554 —-0.012 0.787 542
4 0.156 0.000 2153 0.115 0.000 2069
5 0.086 0.000 3936 —0.003 0.850 3343
6 0.078 0.000 5846 0.036 0.026 3920
7 0.046 0.000 7381 0.072 0.000 399%
8 7217

0.085 0.000 0.043

0.024

7. Again the four-letter words show up with
higher correlations than the three-, five-,
and six-letter words.!" Interestingly, the
upward curvature of the regression line of
words of length 7 is entirely due to the pres-
ence of large numbers of words with the
extremely productive suffix -ing. Of all
seven-letter words with more than five
neighbors, 70% end in -ing and more than
90% of all types with more than eight neigh-
bors similarly contain this suffix. In fact,
when all words ending in -ing, which can
only be neighbors among themselves, are
removed from the set of seven-letter words,
no significant neighborhood frequency ef-
fect remains (r, = .0037, p = .093). The
same holds for the neighborhood density ef-
fect for seven-ietter words, where r, as-
sumes its lowest value: removal of targets
ending in -ing lowers r, from .046 to .026,
which is no longer significant at the 1%
level (p = .0347 instead of .0001). This sug-
gests that the neighborhood effects found
for seven-letter words are due to the pres-
ence of these effects for the four-letter
verbs to which -ing attaches. Note that the
only other significant neighborhood fre-

" The differences are again evaluated by means of
Kendall's 7. The significant (p < .10) Z scores for the
comparisons ((4,3), (4,5), and (4,6)) are 1.32, 2.33, and
2.40, respectively.
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quency effect was found for precisely the
four-letter word length. '

Finally we checked the effect of closed
class items on the neighborhood frequency
effect. A comparison of the neighborhood
frequency effect with and without closed
class items showed only a negligible and
nonsignificant effect of this word class on
the shape of the regression line.

Discussion

The preceding analyses of the similarity
neighborhoods of all the English four-letter
words in the CELEX database only par-
tially confirm the pattern initially identified
by L & S. Although neighborhood density
increased with increasing word frequency,
it decreased for the highest frequency
words (some 9% of all types). The mean log
frequency of the neighbors also increased
as a function of word’s neighborhood den-
sity. However, both correlations were very
weak. Given our rank-coding of the data,
word frequency explained less than 2.5%
percent of the variance for both neighbor-
hood density and frequency. The correla-
tions are very much weaker or even non-
significant for the other lengths examined,
except for the cases in which the neighbor-

2 Hence we predict no significant neighborhood
frequency effect for eight-letter words in -ing. This is
indeed what we find. Although r, is somewhat higher
(.0815), the correlation fails to reach significance at the
1% level (p = .026). Conversely, the significant neigh-
borhood density correlation observed for five-letter

words allows the eight-letter complex words ending in
-ing to just reach significance (r, = .080, p = .0095).

FRAUENFELDER ET AL.

hood effects depended on effects for
shorter words via morphological structure.
These analyses also revealed that lexical
properties, other than word frequency, also
influence the similarity neighborhood ef-
fects. For example, the highest frequency
English closed-class words tend to have
fewer neighbors than open-class words in
the same frequency range.

These findings put the relation between a
word’s frequency and its similarity neigh-
borhood into a clearer perspective. The re-
sults suggest that L. & S were fortunate in
their choice of both word length (four-
letters) and the particular frequency ranges
used. Had they examined other word
lengths or other frequency ranges, they
would not have found any effects of neigh-
borhood density or frequency.

Next, we turn our attention to phonolog-
ical neighborhoods. Our goal here is to rep-
licate with the CELEX database the results
obtained by Pisoni et al. (1985) for spoken
words.

Pisoni et al. (1985) Replication of
Phonological Neighborhoods

In undertaking an analysis of phonologi-
cal neighborhoods, we must ask whether
the N-count neighborhood definition
adopted for orthographic neighborhoods is
actually appropriate for spoken words." It
may be objected that spoken and written
words do not have the same neighbors. In-
deed, it is widely accepted that the neigh-
bors of spoken words are defined sequen-

'3 1t is also unclear how to best define lexical neigh-
borhoods for written words. The N-count definition is
an exiremely crude measure that does not take into
account a number of possibly important factors. For
example, the degree and the position of mismatch be-
tween words do not play a role in this definition. Im-
portant properties such as the CV-structure and the
letter or sound similarity between words are simply
ignored. Moreover, under the N-count definition
neighbors are matched for length. Fortunately, when
we performed additional lexical statistical analyses for
words with another neighborhood definition—
counting words differing in length by one letter or pho-
neme also as neighbors—we did not obtain a substan-
tially Jdifferent pattern of results.
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tially given the properties of the speech in-
put. The most explicit sequential account of
spoken word neighborhoods is provided by
the cohort model (Marslen-Wilson, 1987) in
which the neighbors or so-called cohort
members are those words that share their
initial part with the target word. A word is
assumed to be recognized when it no longer
has any neighbors. Thus, a target word’s
recognition point is assumed to correspond
to the uniqueness point or the moment at
which this word diverges from all other
words in the lexicon.

Although there is some empirical support
(Marslen-Wilson, 1984; Radeau & Morais,
1990) for the uniqueness point as a predic-
tor of spoken word recognition perfor-
mance, other definitions of neighbors have
received some empirical support as well.
Luce and his colleagues (Luce, Pisoni, &
Goldinger, 1988) have taken the similanty
neighborhoods to include all words that dif-
fer in a single phoneme in any position.
They have conducted a number of experi-
ments that support the predictions of the
N-count definition. Thus, the problem of
the proper neighborhood definition for spo-
ken words remains unresolved. For the
present purposes of comparing modalities
and evaluating the Pisoni et al. study, we
will continue to exploit the N-count defini-
tion.

Method

The neighborhood analysis in the Pisoni
et al. study, like the L & S analysis, was
based upon the one-million-token fre-
quency count of Kucera and Francis (1967).
Again, to allow a more direct comparison
with this study, we used the frequency
counts of the resized database as discussed
above. All three- and four-phoneme words
falling into the common (frequencies =
1000/1,000,000) and rare (frequencies rang-
ing between 10 and 30) frequency classes
were selected from this database. The se-
lection process produced 315 and 604 rare
words and 55 and 16 common words that
were three- and four-phonemes in length,
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respectively. The procedure used for com-
puting neighborhood frequency and density
was the same employed above.

Results

The results of the analysis are shown in
Table 4 along with those of Pisoni et al. An
analysis using the Mann-Whitney U test re-
vealed that only the difference in neighbor-
hood frequency between three phoneme
common and rare words was significant (Z
= 5.48).

Discussion

The present replication presents a pat-
tern similar to the one obtained by Pisoni et
al. However, our results contrast rather
strikingly with those reported for written
words both by L & S and by us here. For
example, the neighborhood density and fre-
quency effects obtained for four-letter
words do not emerge for the phonological
word forms of the same length. The most
obvious explanation for this discrepancy is
that different words went into the phono-
logical and orthographic analyses. In En-
glish there is no regular correspondence be-

TABLE 4
MEAN AND MEDIAN NEIGHBORHOOD DENSITY AND
FREQUENCY FOR ENGLISH THREE- AND
FOUR-PHONEME WORDS IN THE ORIGINAL AND
REPLICATION STUDIES

Pisoni analysis CELEX analysis

Length 3
Rare Common Rare Common
Number of neighborhood
Mean 22.64 19.97 16.67 16.36
Median — —_ 17 17
Frequency of neighborhood
Mean 119.29 501.22 175.15 322.25
Median — — 83.37 263.61
Number of words 278 39 315 55
Length 4
Rare  Common Rare  Common
Number of neighborhood )
Mean 7.88 6.21 7.72 6.44
Median — — 7.0 6.0
Frequency of neighborhood
Mean 69.35 69.91 37.18 41.71
Median - — 18.80 26.39
Number of words 441 14 604 16
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tween either the identity of graphemes and
phonemes (i.e., English is not orthographi-
cally shallow) or the number of symbols de-
fining these two units (e.g., four-letter
words often become three-phoneme
words). Furthermore, very different fre-
quency ranges were used in the two stud-
ies.

To sort out these differences and to com-
pare more systematically the similarity
neighborhoods of spoken and written
words, we conducted analyses of phonolog-
ical word forms of different lengths for the
entire frequency range.

English Phonological
Similarity Neighborhoods

Method

We followed exactly the same procedure
as for written word forms, computing the
neighborhood density and frequency of all
English words ranging in length from three
to eight phonemes.

5.5 3 T T T T T
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F1G. 8. Neighborhood frequency nonparametric re-

gression curves for English phonological word forms,
lengths 3-8.
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TABLE §

SPEARMAN RANK-ORDER NEIGHBORHOOD DENSITY
(WORD FREQUENCY AND NUMBER OF NEIGHBORS)
AND NEIGHBORHOOD FREQUENCY (NUMBER OF
INEIGHBORS AND MEAN NEIGHBORHOOD
FREQUENCY) CORRELATION COEFFICIENTS,
SIGNIFICANCE LEVELS p AND NUMBER OF
OBSERVATIONS nn FOR ENGLISH PHONOLOGICAL
WOoRD FORMS OF LENGTH 3-8

Density Frequency

Length re p n re p n

3 0.169 0.000 1886 0.218 0.000 1882

4 0.129 0.000 4443 0.094 0.000 4244

S 0.037 0.002 7323 0.035 0.006 6132

6 0.087 0.000 7848 0.051 0.000 4888

7 0.097 0.000 6919 0.085 0.000 2919

8 0.138 0.000 5728 0.087 0.000 2015
Results

The results of the analyses across the dif-
ferent lengths for phonological neighbor-
hood density and frequency are plotted in
Figs. 7 and 8, respectively. The corre-
sponding Spearman rank-order correlation
coefficients are given in Table S5, together
with the associated p-values. Table 5 shows
weak but significant effects for both neigh-
borhood density and frequency across the
different lengths examined. The density ef-
fect is significantly stronger for four-
phoneme words than for five-phoneme
words but not for the other lengths, where
the differences fail to reach significance
with the conservative test used here.'® The
neighborhood frequency effect is stronger
for three-phoneme words than for four-
phoneme words and stronger for four-
phoneme than for five-phoneme words.'’

Discussion

This analysis of the English spoken
words revealed a significant, but weak re-
lation between a word’s similarity neigh-

"4 According to Kendall's 7-based test of signifi-
cance, the four- and five-phoneme words differ signif-
icantly at the 5% level.

'* The differences between the 1-values correspond-
ing with the (4,3) and (4,5) comparisons are significant
at the 5 and 10% levels, respectively.
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borhood and its frequency. For the shorter
words (lengths 3-5), there is a gradual in-
crease in neighborhood density with in-
creasing word frequency but then a de-
crease for the highest-frequency words.
The pattern emerging is roughly similar to
that obtained for orthographic word forms:
a gradual increase in density followed by a
decrease. However, for spoken words this
downward curvature tends to be steeper
and its onset tends to begin at higher fre-
quencies than for the orthographic regres-
sion curves. As for written words, the pres-
ence of high-frequency closed-class items
contributes to the downward trend ob-
served. For these shorter words, this de-
crease disappears when the closed-class
items are eliminated.

The present analyses suggest that the dis-
crepancy between the previously obtained
results for spoken and written words is in
large part due to the specific methodology
used. The failure of Pisoni et al. to find ef-
fects of frequency upon neighborhood den-
sity can be understood by looking at Fig. 7.
Their rare and common words were located
in the frequency ranges in which lexical
density rose (log frequency in the range
2.3-3.4) and fell (log frequency > 6.9), re-
spectively. The problems associated with
sampling in restricted frequency ranges
again demonstrate the importance of exam-
ining the entire frequency range.

SIMILARITY NEIGHBORHOODS OF
DuTcH WORDS

To examine the generality of the findings
for English, we repeated our analyses for
the CELEX database of Dutch word forms.

Method

All Dutch word forms, ranging in length
from three to ecight letters or phonemes,
were selected from the CELEX database
for Dutch. Neighbors were again defined as
those words that differed from the target
word by only one character in any position.
The number of neighbors and the mean log
frequency of the neighbors was computed
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F1G. 9. Neighborhood density nonparametric re-
gression curves for Dutch orthographic word forms of
lengths 3-8.

for each word. The nonparametric regres-
sion curves were estimated, and the Spear-
man rank-order correlations were calcu-
lated.

Results

The nonparametric regression curves are
shown in Figs. 9-12. The corresponding
Spearman rank-order correlation coeffi-
cients appear in Table 6. The correlations
for orthographical and phonological word
forms were significant for all lengths for
both orthography and phonology. The
shorter word lengths, especially the lengths
4 and 5, showed up with the larger values of
r..'® For these lengths, the correlations for
the phonological word forms were slightly
higher than those for the corresponding or-
thographical word forms, suggesting that
the effects were stronger in the phonologi-
cal word forms. The differences failed to
reach significance by the highly conserva-
tive test used here, however.

Discussion

The results of this analysis revealed a
weak but significant correlation between
word frequency and neighborhood density
and neighborhood frequency in Dutch.
These effects appear to be stronger than
those in English, where some correlations

'6 Measured in terms of differences in Kendall's T,
four-phoneme words show up with significantly stron-
ger effects (p < .05) than the longer words. For ortho-
graphic words, the differences between four-letter

words and the lengths 7 and 8 reach significance (p <
10).
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Fi1G. 10. Neighborhood frequency nonparametric
regression curves for Dutch orthographic word forms
of lengths 3-8.

failed to reach significance. Some caution is
required in making this cross-language
comparison, however, as the corpora un-
derlying the present analyses are different
in size (18 million for English, 42 million for
Dutch). Since the Dutch corpus contained
more types than the English corpus, types
can have more neighbors. Similarly, the
word frequency range is greater, perhaps
allowing the density effects to emerge
somewhat more clearly.

One important difference between En-
glish and Dutch is the virtual absence in
Dutch of an inverse relation between target
frequency and neighborhood density for the
highest frequency types. We observed ear-
lier that this trend in English was caused by
the closed-class items. In Dutch, closed-
class items do not behave differently with
respect to the neighborhood effects than
open-class words. In fact, the regression
lines are virtually identical for open- and
closed-class items combined on the one
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F1G. 11. Neighborhood density nonparametric re-
gression curves for Dutch phonological word forms of
lengths 3-8.
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FiG. 12. Neighborhood frequency nonparametric
regression curves for Dutch phonological word forms
of lengths 3-8.

hand and only open-class words on the
other, the only difference being that the re-
gression line of open-class items is slightly
shorter. Interestingly, the neighborhood
frequency effect for English orthographical
word forms of length 4, with the closed-
class items excluded, is of the same order of
magnitude as for the Dutch orthographical
word forms, closed-class items included (r,
= .21 (E), r, = .20 (D)). It appears that the
difference in the strength of the effects be-
tween the two languages is in part due to

TABLE 6
SPEARMAN RANK-ORDER NEIGHBORHOOD DENSITY
(WORD FREQUENCY AND NUMBER OF NEIGHBORS)
AND NEIGHBORHOOD FREQUENCY (NUMBER OF
NEIGHBORS AND MEAN NEIGHBORHOOD
FREQUENCY) CORRELATION COEFFICIENTS,
SIGNIFICANCE LEVELS p AND NUMBER OF
OBSERVATIONS 1 FOR DUTCH ORTHOGRAPHICAL AND

Density Frequency
Length r, D n ro /] n

Orthography
3 0.161  0.000 685 0.199 0.000 675
4 0.204 0.000 2132 0.262 0.000 2032
S 0.205 0.000 3818 0.239 0.000 6432
6 0.155 0.000 7182 0.189 0.000 5265
7 0.114 0.000 10602 0.154 0.000 6046
8 0.121 0.000 13546 0.109 0.000 5569

Phonology
3 0.215 0.000 1374 0.279 0.000 1362
4 0.266 0.000 3620 0.321 0.000 3424
5 0.196 0.000 6488 0.243 0.000 5382
6 0.137 0.000 11313 0.123 0.000 7578
7 0.141 0.000 15058 0.125 0.000 7442
8 0.139  0.000 0.109 0.000 5874
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closed-class items. Note that the differen-
tial properties of closed class items across
the two languages show that it is inappro-
priate to draw general conclusions about
the possible functional role of the low den-
sity of closed-class words from one lan-
guage (English) to another (Dutch). An-
other interesting cross-linguistic difference
can be found in comparing the regression
lines for orthographic and phonological
forms in the two languages. The regression
lines for lexical density for Dutch phono-
logical and orthographic forms are more
similar to each other than those for English.
This is caused by the closer correspon-
dence between orthography and phonology
in Dutch.

It is instructive on the basis of the pre-
ceding analyses to reconsider the claims of
L. & S. These authors used their results to
argue against the perceptual equivalence
hypothesis and to suggest that the observed
difference in the similarity neighborhoods
of common and rare words constitutes a po-
tential processing paradox. The tendency
for higher frequency words to have more
higher frequency neighbors suggests that,
contrary to fact, high-frequency words
should be harder to identify than low-
frequency words. They resolved this para-
dox by showing that common and rare
words are not equivalent on a second di-
mension. The frequency distributions of
phonemes and letters in common and rare
words were found not to be equivalent; cer-
tain phonemes were found to occur more
frequently in rare words or in common
words. They also reported the results of a
perceptual identification experiment in-
volving two classes of test stimuli that were
matched in word frequency but made up of
phonemes typically found in common and
rare words, respectively. The words made
up of phonemes primarily found in high-
frequency words were identified more eas-
ily in noise than those words made up of
low-frequency phonemes. They took the
word frequency effect to be consistent with
their phoneme distribution data, but incon-
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sistent with the structure of similarity
neighborhoods.

The results reported here weaken the em-
pirical foundation for the proposed paradox
for lexical processing considerably. Neigh-
borhood density and neighborhood fre-
quency increased only slightly across the
entire frequency range. Moreover, the vari-
ance was huge; a large number of low-
frequency types showed up with as many
neighbors as the high-frequency types. At
the same time, these neighborhood effects
did not generalize to words of all lengths.
Thus it is doubtful whether the similarity
relations in the lexicon really give rise to a
processing paradox. Moreover, the rela-
tions between phoneme frequency, word
frequency, and neighborhood density and
frequency are closely interrelated, as we
will demonstrate below.

PROBABILISTIC ASPECTS OF
LEXICAL DENSITY

Having characterized the neighborhood
density and frequency effects in English
and Dutch in a type-based analysis, we now
turn to consider the consequences of a to-
ken-based approach. Then we will consider
what factors give rise to the observed lexi-
cal density effects.

Types and Tokens

A primary objective of statistical analy-
ses of large lexical databases such as those
presented here is to constrain theories of
lexical processing and representation. It is
important to note that—although informa-
tive—the preceding analyses of lexical
neighborhoods are not optimally suited for
evaluating the processing consequences of
lexical similarity relations in the Dutch and
English lexica. This is because these anal-
yses are type-based. Type-based analyses
consider each word to be equiprobable.
More realistic from a processing point of
view is a token-based analysis in which lex-
ical entry has a probability of being encoun-
tered and processed that is proportional to
its token frequency. Since higher-
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frequency words have significantly more
neighbors than low-frequency words, we
can expect the probability of having to pro-
cess word types with more neighbors to be
underestimated in the type-based analysis.

Figure 13 contrasts the estimated type-
based and token-based probability density
functions of Dutch orthographic word
forms of length 4. Note that given a partic-
ular interval on the horizontal axis, the area
under the curve represents the probability
of encountering words with a number of
neighbors falling in the specified range. The
total area under each curve equals unity.
The highly skewed density function for the
type-based analysis would appear to sug-
gest that the lexicon is so composed as to
avoid words with very many neighbors;
roughly half the types have less than 10
neighbors. However, the token-based prob-
ability density function is moved to the
right with respect to the type-based distri-
bution such that some 20% of the probabil-
ity mass is shifted from the lowest numbers
of neighbors to the higher number of neigh-
bors. This shift is a direct consequence of
the neighborhood density effect. It raises
the question why lexical usage tends to fa-
vor precisely those types that occupy
densely populated neighborhoods, if an in-
creasing number of neighbors is indeed det-
rimental to processing efficiency. Perhaps
these facts suggest that there are no pro-
cessing costs associated with the presence
of neighbors.

Luce (1986) and Luce, Pisoni, and
Goldinger (1988) have developed an alter-
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Fi1G. 13. Type- and token-based density estimates
for neighborhood density (Dutch four-letter words).
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native method of estimating the processing
cost of neighbors which simultaneously
takes into account both neighborhood den-
sity and neighborhood frequency. They as-
sumed that each lexical competitor has a
probability of being activated that depends
on its frequency. They defined the proba-
bility of identifying the target in its neigh-
borhood in terms of the choice rule of Luce
(1959)

fi

pliy=""=—, (D
fi+ ijﬁ)
j

where f; is the frequency of the target and
fio the frequency of its /M neighbor. The
relation between log word frequency and
the probability of identification is shown in
Fig. 14. What we see is that both in a type-
based and in a token-based analysis higher-
frequency words tend to have higher prob-
abilities of identification (cf., rank effect,
Frauenfelder, 1990). However, the concen-
tration of types with medium frequency
(range 2 to 8) and low probability of identi-
fication seen in Fig. 14 suggests that, on
average, the probability of identification in
the lexicon is quite low.

This pattern raises the more general
question how often words with a high prob-
ability of identification are encountered in
the course of language processing. To an-
swer this question, we computed the prob-
ability of encountering a word with a par-
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FiG. 14. Probability of identification ptid) as a func-
tion of log word frequency for Dutch four-letter words.
The type-based curve is represented by the lower line
and the token-based curve by the upper line.
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ticular probability of identification as
shown in Fig. 15. The type-based analysis
in which each type is assumed to occur
equiprobably shows that the majority of
types has a very low probability of identi-
fication (Pr(p(id) < .1) = .67). However,
when we take into account the fact that
some words are more likely to be used than
others, a substantially different and more
uniform distribution is obtained. As shown
in this figure words with lower probabilities
of identification do not have the highest
probabilities of being encountered in this
token-based distribution (Pr(p(id) < .1) =
.12). The flat distribution suggests that
there are many word tokens which are con-
fusable with other words. A probability dis-
tribution suggesting even a considerably
greater processing efficiency is obtained
when density and word frequency are un-
correlated. This is represented in Fig. 15 by
the ‘“‘random” density function, estimated
on the basis of 20 resampled distributions in
which the empirical token frequencies were
assigned at random to the types. In this hy-
pothetical distribution, where no density ef-
fects are present, most word tokens have
relatively high probabilities of identifica-
tion. Assuming that Luce et al.’s analysis of
the processing consequences of lexical den-
sity is correct, we are forced to conclude
that the presence of density effects in the
lexicon is not optimally adapted to lexical
processing. Alternatively, we can conclude
that lexical processing is not aversely af-
fected by lexical competition.

— T T T
types
tokens

N, random —
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Fi1G. 15. Density estimation for the probability of

identification according to Luce’s choice rule for
Dutch orthographic four-letter words.
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Language Structure, Language Use, and
Lexical Density

Here we consider how regularities in lan-
guage structure contribute to the neighbor-
hood relations observed in the lexicon.
Next we examine the crucial role played by
phonology (phonotaxis) and morphology
(internal constituent structure of words) in
creating lexical neighborhoods. Later we
discuss a stochastic model that generates
word frequency distributions with density
effects that are qualitatively similar to the
density effects in natural language. The
model predicts that the number of neigh-
bors is more closely correlated with di-
phone frequency than with word fre-
quency. An examination of the English and
Dutch data shows that this is indeed the
case.

Phonology and Morphology

The contribution of phonological and
morphological structure to creating neigh-
borhood structure can be gauged by com-
paring the observed density for a linguisti-
cally structured lexicon with the expected
density of a lexicon sampled at random
from a linguistically unstructured set of
“‘words.”” To estimate the mean number of
neighbors for both structured and unstruc-
tured theoretical lexica, it is convenient to
start with what we will call saturated lexica,
lexica that contain all possible ‘‘words”’ of
that length. In the baseline unstructured
saturated lexicon, if there are & different
phonemes, any string of length m will have
m(k — 1) neighbors. For an arbitrary selec-
tion of n word types from the complete set
of £ words of length m, the number of
neighbors will on average be

N = kim (mk — 1)]. @)

Given 2, we can compute the expected
mean number of neighbors (N) for the un-
structured Dutch saturated lexicon consist-
ing of 3620 words (n) with four phonemes in
length (m) made up from a set of 40 pho-
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nemes (k = 40). Here n is fixed at 3620 in
order to compare the theoretical mean den-
sity with the observed mean density of the
3620 Dutch four-phoneme words in our da-
tabase. The resulting density of 0.22 neigh-
bors is much less than the actual observed
mean number of neighbors: 8.5. For longer
words such differences become even more
pronounced. For instance, we calculate a
mean of 0.01 for an arbitrary selection of
the 6488 five-phoneme words from the sat-
urated lexicon, while the mean observed
for the 6488 five-phoneme words in our da-
tabase equals 4.07."

To evaluate the density of a lexicon with
phonotactic restrictions, we used a re-
stricted saturated lexicon in which the only
legal segmental structure for four phoneme
words was a CVCV pattern. With 20 con-
sonants (¢) and 20 vowels (v) the average
number of neighbors for a random selection
of n words from this lexicon is given by

S52Ac-D+2v - DL ()
.

With n = 3620 the average number of
neighbors is now found to be 1.72, which is
substantially higher than 0.22. The phono-
tactic restrictions in force for languages
such as Dutch and English are much more
varied, of course, greatly reducing the num-
ber of legal strings in the language. Their
effect is to restrict severely the number of
possible strings in such a way that these
strings are highly similar to each other.
Like phonotaxis, morphological struc-
ture also increases the density of similarity
neighborhoods. For instance, the 3620
Dutch four-phoneme words contain a sub-
set of roughly 1150 CVCV words with a
word-final inflectional schwa. With a satu-

'7 Equation [2] shows why the mean number of
neighbors decreases rapidly as words become longer.
The numbers of observed types m for the lengths 4 to
8 are roughly of the same order of magnitude, differing
by maximally a factor 5. On the other hand, the num-
ber of possible types increases by a factor k& with each
additional phoneme. Hence the outcome is a rapid de-
crease in the expected numbers of neighbors.
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rated lexicon that is similarly structured
and without any assumptions about the
phonotaxis of the 2470 remaining nonschwa
final words, an average number of 2.6
neighbors is obtained for an arbitrary selec-
tion of 3620 words from the saturated lexi-
con. These calculations show how neigh-
borhood relations emerge thanks to phono-
logical and morphological structure. To this
we should add that for the longer words the
observed neighborhood relations are al-
most entirely due to morphological struc-
ture. This structure leads to a large num-
bers of types which are neighbors on the
basis of their stems, as discussed above for
the neighborhood frequency effect in En-
glish seven-letter words.

Neighborhood Effects and
Bigram Frequencies

We have shown that phonological and
morphological structure bring about the
clustering of formally similar words in the
lexicon. We now consider how this cluster-
ing interacts with the frequency properties
of werds and their neighbors. An important
study that deals with the relation between
word frequency and neighborhood density
is Nusbaum (1985). Nusbaum studied the
behavior of a zero-order'® Markov approx-
imation of English orthography, where the
transitional probability into a given letter
was defined as its relative frequency in En-
glish, independent of the preceding letter.
What he found was that for fixed word
lengths the neighborhood density effect
critically depended on the letters having
different relative frequencies. On the basis
of this result he hypothesized that phono-
tactic rules play an important role in con-
straining the process by which words ap-
pear 1n language.

In what follows we will first clarify why
the neighborhood density effect appears in
more general first-order Markov approxi-
mations of natural language, and extend the

" We follow the convention that an ath order

Markov process denotes a process that is conditioned
on n preceding states of the system.
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analysis to cover the neighborhood fre-
quency effect. We will then discuss a par-
ticularly striking prediction of this ap-
proach, namely that diphone frequency and
neighborhood density should be more
closely correlated than word frequency and
neighborhood density.

To see why the neighborhood density
and frequency effects emerge in a first-
order Markov approximation of the lexi-
con, consider the probability p, of some
word y with length m:

Py = PoiPig, » * + Pipsin_Pip 0 (D

Here p; is the probability of encountering
the j'" element of the alphabet after having
processed the i element. The zero repre-
sents the word boundary. The expected to-
ken frequency N, of a word y in a sample of
size N is known to be

E(N,] = N,. )

Consider the conditions under which a tar-
get may obtain a high token frequency. A
high token frequency requires that the
probability p, be high. Hence the transi-
tional probabilities p; should be large.
Since a neighbor of a high-frequency word
¥ is obtained by replacing a single phoneme
and hence two adjacent transitional proba-
bilities, we find that for longer word lengths
m, the remaining m — 2 relatively high tran-
sition probabilities will generally prevent
the resulting neighbors from assuming
probabilities that are very different from
that of the original target word y. In other
words, the probabilities of the neighbors of
some target y will on average be similar to
that of y itself, with the proviso that for
extremely high or low p, the likelihood of
higher-frequency neighbors decreases and
increases, respectively (regression toward
the mean).

The consequences are twofold. If a target
has a high probability, p,, the probabilities
of its neighbors will therefore on average be
high too, hence the expected number of
neighbors will be large. For target words
with low probabilities, p,, the reverse
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holds. This is how the neighborhood den-
sity effect arises in a first-order Markov ap-
proximation of language. Second, since
high word probabilities give rise to high to-
ken frequencies by [5], we expect high-
frequency words to have high-frequency
neighbors. For low-frequency words the re-
verse holds: the few neighbors that are
found will, on average, have low token fre-
quencies. What we find, then, is that the
neighborhood frequency effect is brought
about by the same mechanism that under-
lies the neighborhood density effect.
Perhaps one of the most interesting pre-
dictions of this Markovian approach is that
the correlation between word frequency
and neighborhood density should, at least
in part, be due to both word frequency and
neighborhood density being correlated with
diphone frequency. In other words, the
model predicts that the correlation between
neighborhood density and word frequency
is substantially weaker when the correla-
tion between word frequency and bigram
frequency is factored out. Table 7 shows
that this is in fact the case. This table lists
the correlation coefficients obtained for a
second-order Markov approximation of
Dutch words of length 4 (see Baayen,
1991a), where a second-order Markov ap-
proximation was chosen in order to model
the phonotactics of Dutch more precisely.
Neighborhood density and target frequency
are strongly correlated, but the correlation
between neighborhood density y and di-

TABLE 7
CORRELATION RESULTS IN TERMS OF KENDALL'S T
FOR THE MARKOV MoDEL (MM), THE HYBRID
MobpEeL (HM), DutcH PHONOLOGICAL WORD FORMS
OF LENGTH 4 (DPL), AND ENGLISH PHONOLOGICAL
Worp ForMs oF LENGTH 4 (EPL)

MM HM DPL EPL
o 0.525 0.227 0.182 0.090
Ter 0.507 0.245 0.213 0.160
o 0.604 0.622 0.457 0.325
Teps 0.298 0.079 0.088 0.038

Note. x, word frequency; ¥, number of neighbors; z,
(geometric mean) diphone frequency.
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phone frequency z is even stronger. When
the correlation with diphone frequency is
factored out, the neighborhood density ef-
fect emerges in a much reduced form, the
partial correlation coefficient being only
.298.

When we turn to our English and Dutch
data sets, we find a highly similar state of
affairs, as shown by the last two columns of
Table 7. For both languages, the correlation
between target frequency x and diphone
frequency z is stronger than that between
target frequency x and neighborhood den-
sity v, while the strongest correlation of all
is that between neighborhood density y and
diphone frequency z. Since the partial cor-
relation coefficients 7,,.. are substantially
smaller than the corresponding coefficients
T, it is likely that the observed correlation
between neighborhood density and target
frequency is brought about mainly by di-
phone structure.

Interestingly, the empirical differences in
the strengths of the correlations are under-
estimated by the Markov model. For in-
stance, 1,, = .87 - 1, in the Markov model
whereas for English 7., = .28 - r,.. This
suggests that the Markov model is not quite
correct, the density effects emerging in too
strong a form. This problem is discussed in
detail in Baayen (1991), who shows that a
severe mismatch in the type—token ratio is
characteristic of such Markov approxima-
tions. The solution proposed there is to
combine a Markovian source for words
with a model of lexical usage inspired by
Simon’s (1955) model for word frequency
distributions. The addition of this second
component serves a dual purpose. First, it
forces words to be reused to a far greater
extent than in the purely Markovian ap-
proach. This has the effect of correcting the
type-token imbalance and of reducing the
strengths of the density effects, as required.
Second, it allows words to be assigned to-
ken frequencies that are not a direct func-
tion of their probability. This is a desirable
property of lexical models, because word

FRAUENFELDER ET AL.

frequencies are also influenced by factors
such as fashion and language change. The
Markovian ‘‘front-end’’ of this hybrid
model can be thought of as defining a prob-
ability distribution that reflects the relative
ease with which words can be pronounced
by the human vocal tract. The second com-
ponent of the model can be thought of as
simulating the random effects on word fre-
quency of factors pertaining to language
use.

As shown in Table 7, the correlations ob-
tained with the hybrid model are more in
line with empirical data, although the cor-
relation between neighborhood density and
diphone frequency is still too strong. This is
undoubtedly due to the inability of this
model to take the effects of morphological
structure on lexical density and diphone se-
quencing into account. In spite of this de-
fect, the partial correlation 7, , produced
by the hybrid model is of the right order of
magnitude, suggesting that the uncoupling
of the strict link between word frequency
and diphone structure is an important step
toward the correct modeling of the way
neighborhood structure, word frequency,
and diphone frequencies are correlated in
actual lexica.

To conclude, we have seen that the
neighborhood density and frequency ef-
fects are brought about by differences in
diphone frequencies. We return to the pos-
sible consequences of this result for lexical
processing below.

GENERAL DISCUSSION

This paper reports on the findings of sev-
eral analyses of the similarity neighbor-
hoods of words across different modalities
(written and spoken) and languages (En-
glish and Dutch). We replicated the original
findings of L & S for comparable restricted
sets of four-letter words. An extensive
analysis of all words with length ranging
from three to eight letters and phonemes
showed, however, that both the neighbor-
hood density effect and the neighborhood
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frequency effect are very weak. The vari-
ance is huge, and for longer words, these
effects are either absent or too weak to be
of interest. Nevertheless, we were able to
observe some noteworthy differences be-
tween English and Dutch. In English, but
not in Dutch, function words have rela-
tively few neighbors given their high fre-
quencies. Furthermore, the regression
curves for the neighborhood density of or-
thographic and phonemic representations
are more similar in Dutch than in English,
due to the more shallow orthography of
Dutch. In addition to type-based analyses,
we also conducted token-based analyses,
which produced rather different patterns of
results. For instance, the density function
obtained for a type-based analysis is
skewed to the left, suggesting that most
words will have relatively few neighbors. In
a token-based analysis, however, a density
function is obtained that is shifted towards
the higher numbers of neighbors. Since it is
the higher frequency words that tend to
have the larger neighborhoods, listeners
will encounter more words with many
neighbors than a type-based analysis sug-
gests.

In their study, L & S used the density
effects they uncovered to argue against the
perceptual equivalence hypothesis, accord-
ing to which high- and low-frequency words
do not differ from each other in any dimen-
sions other than word frequency itself.
They identified what they thought were two
independent dimensions along which high-
and low-frequency words differed. The first
dimension concerns the properties of the
similarity neighborhoods, the second per-
tains to the segmental make-up of the two
word classes. However, we have seen that
the two dimensions are causally linked.
Common phonemes will generally be found
in the more common words of the language.
By extension, these common words will
have the more common diphone transi-
tions, hence they will appear in larger
neighborhoods and have higher-frequency
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neighbors. The Markov model discussed
under Language Structure, Language Use,
and Lexical Density allows us to formulate
a unitary explanation for the distributional
phenomena discussed by L & S.

L & S also attempted to draw the impli-
cations of their findings for lexical process-
ing, and, more specifically, for the word-
frequency effect. They construed their pho-
neme distribution data as being consistent
with the word-frequency effect and the
structure of similarity neighborhoods as be-
ing at odds with it. However, the results we
have presented here raise doubts about
whether the lexical similarity relations are
strong enough to attenuate the word-
frequency effect. The increase with fre-
quency of the number of neighbors is small,
the variance on the other hand is huge, as
the scatterplots (Fig. 2 and 3) show. Thus
our analyses have demonstrated that the
density structure of the lexicon cannot
serve as evidence against the perceptual
equivalence hypothesis. We conclude that
it is hazardous to advance sweeping claims
about lexical organization on the basis of
restricted samples.

What are the consequences of our find-
ings for theories of lexical organization and
processing? We have argued that the simi-
larity effects that have emerged in our more
encompassing analyses arise due to phono-
tactic constraints on segmental sequences,
constraints that appear to be imposed on
language by the mechanical properties of
the human vocal tract (Lindblom, 1983).
This finding pushes the source of the weak
but significantly present density effects into
the domain of production. The question
then arises how the resulting neighborhood
structure of the lexicon affects word recog-
nition. The obvious way to answer this
question is to determine the effect of neigh-
bors on word recognition experimentally.
Unfortunately, no consensus on the role of
neighbors has emerged in the experimental
literature, despite considerable effort. In
the absence of conclusive evidence for one
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of the three logically possible types of
neighborhood influence, no influence, facil-
itation, and inhibition, it is worthwhile to
try to assess by means of lexical statistics
what the global consequences of such pro-
cessing assumptions are.

The main body of the present paper has,
in fact, been concerned with the most inter-
esting processing assumption, namely the
one made by L & S that neighbors slow
down word recognition. Their claim has re-
ceived some experimental support both in
the auditory and the visual domain. Luce
(1986, 1988) argues that the influence of
neighbors in auditory word recognition is
best described by the choice rule 1. If we
now ask the question whether the similarity
structure of the lexicon is optimal for audi-
tory word recognition, the answer is clearly
negative. A comparison of the probabilities
of identification of lexica with and without
density effects showed that lexical organi-
zation would be better from a processing
perspective if no density effects were
present at all (see Fig. 15).'

Turning to the visual domain, Grainger
(1993) and Jacobs and Grainger (1992) also
found an inhibitory effect of neighbors.
More specifically, they claim that the exis-
tence of a single substantially higher fre-
quency neighbor is crucial for inhibition to
take place. It can be shown that especially
the lower-frequency words have a neigh-
borhood structure that would siow down
their recognition and that the number of
such tokens is extremely small (less than
0.5%).%° Thus Grainger’s assumptions ap-

!9 Although Fig. 5 is based on orthographical rep-
resentations, a highly similar pattern of results can be
obtained for phonological representations.

20 Tentatively operationalizing Grainger's claim, we
defined a substantially higher-frequency neighbor as a
word with a frequency that is higher by a factor 2 on
the 10 log scale. For Dutch four-letter words, we
counted 284 word types with exactly one such neigh-
bor on a total of 2437 word types. The mean log fre-
quency of the words supposedly suffering inhibition
equals 3.13. The complementary set has a mean log
frequency of 4.74 (p < .001, Welch Modified Two-
Sample 1 test). For the range of word lengths studied
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pear to imply that lexical processing is only
minimally affected by neighborhood den-
sity and frequency. Unfortunately, lexical
statistics alone cannot provide us with a
means of evaluating the functionality of lex-
ical structure given Grainger’s model of
word recognition, as they did for Luce’s
auditory word recognition model. The rea-
son is that Grainger explains the effects he
observes in terms of an interactive activa-
tion model for which the predictions cannot
be translated into a simple formula. How-
ever, one may use his computational model
to obtain recognition scores for every word
in two contrasting lexicons: a lexicon in
which words appear with their proper fre-
quencies of use and a lexicon in which the
empirical word frequencies are assigned at
random. By comparing not individual rec-
ognition times but the resulting distribu-
tions of recognition times, the functionality
of lexical structure may be gauged just as
has been done above for Luce’s approach.
An analysis along these lines can be used to
evaluate the consequences of the assump-
tion of a positive effect of neighborhood
size on word recognition (Andrews, 1989)
as well. In fact, this methodology is more
generally applicable to the study of the con-
sequences of other properties of the lexicon
for lexical processing like morphological
structure (see Schreuder and Baayen,
(1993)). We believe that language statistics
are essential in that they allow us to evalu-
ate processing models by confronting them
with the language data which these models
are designed to handle.

Finally, it is important to take into ac-
count that the lexicon is shaped by both
perception and production factors and that
it is impossible to evaluate consequences of
lexical relations for the efficiency in per-
ception without taking production into ac-
count and vice versa. In our study, we have
attributed the similarity relations in the lex-

here (3-8), a token-based analysis shows that 0.36%,
less than four in one thousand, of the tokens are in-
volved
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icon to phonotactic constraints. Since these
constraints are presumably motivated by
articulatory factors, minor processing dis-
advantages in perception, if they exist
(Coltheart, Davelaar, Jonasson, & Besner,
1977), may well be counterbalanced by
greater efficiency in production.
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