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ABSTRACT
We investigate the problem of projection-based interpolation for model
reduction of quadratic-bilinear descriptor systems. Existing two-sided pro-
jection techniques are analysed and a modified sequence of projection
matrices is proposed. It is observed that the proposed technique gener-
ates better reduced order systems. Numerical results for some benchmark
examples are presented in support of our observation.
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1. Introduction

The problem of model reduction is to compute a reduced system for a given system such that the
responses to all feasible excitations of the two systems are comparable and the size of the reduced
system allows the use of simulation, control and optimization in a computationally efficient way. We
consider model reduction techniques for a single-input single-output quadratic-bilinear descriptor
system of the form:

Eẋ(t) = Ax(t) + Nx(t)u(t) + Qx(t) ⊗ x(t) + Bu(t),

y(t) = Cx(t),
(1)

where E, A, N ∈ R
n×n, Q ∈ R

n×n2
, B, CT ∈ R

n are the system matrices. x(t) ∈ R
n is the state vector

and u(t), y(t) ∈ R are the input and output of the system, respectively. In addition to systems that
naturally appear in the quadratic-bilinear form such as certain discretized Burgers and Navier–Stokes
equations, a large class of nonlinear systems can be written in to quadratic-bilinear form by using exact
transformations [14]. Model order reduction (MOR) of such nonlinear systems constructs a reduced
system of dimension r � n with structure similar to that in (1). That is

Erẋr(t) = Arxr(t) + Nrxr(t)u(t) + Qrxr(t) ⊗ xr(t) + Bru(t),

yr(t) = Crxr(t).
(2)
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The reduction approach should ensure that the output response yr(t) approximates y(t) to a certain
accuracy. Various techniques have been proposed in the literature to compute such reduced order
models, cf., [2, 7]. Here, we discuss projection-based interpolatory techniques [3, 13] that are widely
used in the linear case and are recently extended to quadratic-bilinear systems [1, 6, 14].

Projection involves the following steps:

• Approximate the state vector: x(t) ≈ Vxr(t), where V ∈ R
n×r .

• Ensure Petrov–Galerkin orthogonality condition on the residual:
WTr(t) = 0, where W ∈ R

n×r and

r(t) = EVẋr(t) − (AVxr(t) + NVxr(t)u(t) + QVxr(t) ⊗ Vxr(t) + Bu(t))

is the residual.

The projection is orthogonal if W = V and is often called one-sided projection, otherwise it is
oblique and called two-sided projection. The oblique projection framework leads to a set of reduced
system matrices of the form:

Er = WTEV , Ar = WTAV , Qr = WTQ(V ⊗ V), Nr = WTNV ,

Br = WTB, Cr = CV .
(3)

The important question is how to compute the basis matrices V and W. Analogous to the linear case,
the choice of the basis matrices V and W can be linked to the input–output representation of the
system. However, quadratic-bilinear systems involve a series of multivariate transfer functions, each
representing a subsystem of the original system. Thus the problem is how to construct V and W such
that the first K multivariate transfer functions associated with the reduced system are interpolating
the corresponding original multivariate transfer functions, at multiple frequency shifts. To achieve
this, orthogonal projections [14] as well as oblique projections [1, 6] have been used in the literature
with some simplifications. For example, the approach in [6] constructs V and W such that the reduced
system ensures interpolation of the first two subsystems only. Also the choice of interpolation points
for each frequency variable is assumed to be the same. The method in [1] identified a simplified
structure of the generalized transfer functions, which allowed us to avoid the above simplifications.
However, it can be observed that for systems with dominant quadratic part, the symmetric structure
of the generalized transfer functions used in [6] is more stable. Therefore, our focus in this paper is on
the moment matching of symmetric generalized transfer functions. We discuss these results further
in Section 2.

Recently a new framework [9] for quadratic-bilinear systems has been proposed that is based on
generalized Sylvester-type matrix equations. The approach involves truncated solution of two com-
plex matrix equations to identify a good choice for the basis matrices V and W. The idea in [9] is
motivated from the bilinear reduction techniques [4, 11] and the weighted sum of the generalized
transfer functions for quadratic-bilinear systems is regarded. It is not clear how the quasi-optimal
shift frequencies are interpolating the individual generalized transfer functions [6, 14]. Moreover, the
construction of the H2-quasi-optimal truncation matrices is quite time-consuming, leading to large
offline times for constructing the reduced order model. Our target in this paper is to interpolate,
separately, the first two or three generalized transfer functions, so that multiple moment matching
techniques can also be utilized for model order reduction of quadratic-bilinear systems. The involved
computations will in general require much less computational resources than the technique from [9].
Therefore in what follows we will mainly focus on the two-sided moment matching technique of
Benner and Breiten [6].

In this paper, we use a modified sequence of column spaces in the basis matrices V and W and
prove the multi-moment matching properties of the resulting reduced order system. Besides the
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multi-moment matching achieved in [6], the modified sequences ensure that the derivative of the
first subsystem is also matched by the reduced system. The choice of the interpolation points or shift
frequencies is random or linked to the linear part of the system (using IRKA [15] on (E, A, B, C)).

The remaining part of the paper is organized as follows. Section 2 shows the transfer function
representation for quadratic-bilinear systems and the existing multi-moment matching framework.
Section 3 introduces the modified form of the multi-moment matching approach. Section 4 shows
numerical results for some benchmark examples. Finally we present the conclusions and future work.

2. Background

In this section, we briefly review the concept of moment matching discussed in [1, 6] for quadratic-
bilinear systems. Before going into the details of nonlinear moment matching, we begin with the
structure of high-order transfer functions.

2.1. Multivariate transfer functions

The input–output representation for the system in (1) can be expressed by the Volterra series
expansion of the output y(t) with quantities analogous to the standard convolution operator. That
is,

y(t) = c
∞∑

k=1

∫ t

0

∫ t1

0
· · ·

∫ tk−1

0
hk(t1, . . . , tk)u(t − t1) · · · u(t − tk)dtk · · · dt1, (4)

where it is assumed that the input signal is one-sided, u(t) = 0 for t < 0. In addition, each of the
generalized impulse responses, hk(t1, . . . , tk), also called the k-dimensional kernel of the subsys-
tem, is assumed to be one-sided. In terms of the multivariable Laplace transform, the k-dimensional
subsystem can be represented as

Yk(s1, . . . , sk) = Hk(s1, . . . , sk)U(s1) · · · U(sk), (5)

where Hk(s1, . . . , sk) is the multivariable transfer function of the k-dimensional subsystem and si ∈ C

for i = 1, . . . , k. The structure of the generalized transfer functions can be identified by the growing
exponential approach [19]. To this end, we assume that the matrix pencil sE−A is regular, i.e. sE−A is
singular only for finitely many values of s ∈ C [12]. The first three transfer functions of the quadratic-
bilinear system (1) can be written as

H1(s1) = C(s1E − A)−1B,

H2(s1, s2) = C((s1 + s2)E − A)−1X(s1, s2),

H3(s1, s2, s3) = C((s1 + s2 + s3)I − A)−1X(s1, s2, s3),

(6)

where

X(s1, s2) := Q(X1(s1) ⊗ X1(s2)) + 1
2!

N(X1(s1) + X1(s2)),

X(s1, s2, s3) := 1
3!

N [X2(s1, s2) + X2(s2, s3) + X2(s1, s3)]

+ 1
3

Q [X1(s1) ⊗ X2(s2, s3) + X1(s2) ⊗ X2(s1, s3)

+X1(s3) ⊗ X2(s1, s2)] ,

(7)

in which X1(s) := (sE − A)−1B, X2(s1, s2) := ((s1 + s2)E − A)−1X(s1, s2) and Q satisfies Q(u ⊗ v) =
Q(v ⊗ u) for all u, v ∈ R

n. Similarly, if we define X3(s1, s2, s3) := ((s1 + s2 + s3)E − A)−1X(s1, s2, s3),
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the first three symmetric transfer functions can be written as

H1(s1) = CX1(s1), H2(s1, s2) = CX2(s1, s2),

H3(s1, s2, s3) = CX3(s1, s2, s3).

Before going into the partial differentiation of the multivariate transfer functions, we briefly describe
the concept of matricization. The process of reshaping a tensor into a matrix is called matricization.
In [6], the matrix Q ∈ R

n×n2
is considered as the mode-1 matricization of a three-dimensional tensor

Q ∈ R
n×n×n. The n × n column components of Q are the frontal slices Qi ∈ R

n×n of the tensor Q,
i.e. Q = [Q1 · · · Qn]. The mode-2 and mode-3 matricization can be defined as

Q(2) = [QT
1 · · · QT

n
]

, Q(3) = [
vec(Q1) · · · vec(Qn)

]T .

It is observed that the following property holds:

wTQ(u ⊗ v) = uTQ(2)(v ⊗ w), (8)

where w, u, v ∈ R
n are arbitrary and Q is symmetric in the sense that Q(u ⊗ v) = Q(v ⊗ u), see [17].

Let G(s) := sE − A, then by using

∂G(s)−1

∂s
= −G(s)−1 ∂G(s)

∂s
G(s)−1,

and (8), we have

∂H1(s1)

∂s1
= −Z1(s1)TEX1(s1),

∂H2(s1, s2)

∂s1
= −Z1(s1 + s2)TEX2(s1, s2) − X1(s1)TETZ2(s1, s2),

∂H2(s1, s2)

∂s2
= −Z1(s1 + s2)TEX2(s1, s2) − X1(s2)TETZ2(s2, s1),

(9)

where Z1(s) := (sE − A)−TCT and Z2(s1, s2) := (s1E − A)−TZ(s1, s2)T in which

Z(s1, s2) = Q(2) (X1(s2) ⊗ Z1(s1 + s2)) + 1
2!

NTZ1(s1 + s2).

Notice that when s1 = s2 = σ , the two partial differentiations for H2(s1, s2) are the same.

2.2. Moment matching in QBDAE

The goal of a moment matching based reduction approach is to ensure that the high-order transfer
functions are well approximated. In case of symmetric transfer functions, we can represent it as

Hk(s1, . . . , sk) ≈ Ĥk(s1, . . . , sk), for k = 1, . . . , K, (10)

with Ĥk(s1, . . . , sk) being the multivariate transfer functions of the reduced system �̂ in (3). With
the task in (10) achieved for some K, we can expect that the output y(t) is well approximated by ŷ(t).
To recycle vectors for approximation subspaces, it is assumed in [5] that s1 = s2 = σ . The following
proposition summarizes the result introduced in [5].
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Proposition 2.1: Let σ , 2σ /∈ {�(A, E), �(Ar , Er)}, where �(A, E) represents the generalized eigen-
values of the matrix pencil λE − A. Also let q1, q2 ∈ N and q2 ≤ q1. Assume that Er = WTEV is
nonsingular and Ar, Qr, Nr, Br, Cr are as in (3) with full rank matrices V , W ∈ R

n×r such that

span(V) = span{V1, V2N , V2Q}
span(W) = span{W1, W2N , W2Q},

where

V1 = [X1(σ ), G(σ )−1X1(σ ), . . . , G(σ )−q1+1X1(σ )],

Vi
2N = [G(σ )−1NV1i, . . . , (G(σ )−1E)q2−iG(σ )−1NV1i],

Vi,j
2Q = [G(σ )−1QV1i ⊗ V1j, . . . , (G(σ )−1E)q2−i−j+1G(σ )−1QV1i ⊗ V1j],

for i = 1, . . . , q2, j = 1 : min(q2 − i + 1, i) and V1i represents the ith column of V1. Similarly

W1 = [Z1(2σ), Ḡ(2σ)ETZ1(2σ), . . . , (Ḡ(2σ)ET)q1−1Z1(2σ)],

Wi
2N = [Ḡ(2σ)NTW1i, . . . , (Ḡ(2σ)ET)q2−iḠ(2σ)NTW1i],

Wi,j
2Q = [Ḡ(2σ)Q(2)V1i ⊗ W1j, . . . , (Ḡ(2σ)ET)q2−i−j+1Ḡ(2σ)Q(2)V1i ⊗ W1j],

in which Ḡ(2σ) := (2σET − AT)−1. Then the reduced QBDAE satisfies the following conditions:

∂ i

∂si
1
H1(σ ) = ∂ i

∂si
1
Ĥ1(σ ),

∂ i

∂si
1
H1(2σ) = ∂ i

∂si
1
Ĥ1(2σ), i = 0, . . . , q1 − 1,

∂ i+j

∂si
1sj

2

H2(σ , σ) = ∂ i+j

∂si
1sj

2

Ĥ2(σ , σ), i + j ≤ 2q2 − 1.

See [5] for a proof. The above framework of high-order interpolation is not easy to follow in case of
multiple interpolation points. A simplified form of Proposition 2.1 for multiple interpolation points
is proposed in [6] that ensures Hermite interpolation type conditions. These results are presented in
the following proposition.

Proposition 2.2: Let σi, 2σi /∈ {�(A, E), �(Ar , Er)}, where �(A, E) represents the generalized eigen-
values of the matrix pencil λE − A. Assume that Er = WTEV is nonsingular and Ar, Qr, Nr, Br, Cr are
as in (3) with full rank matrices V , W ∈ R

n×r such that

span(V) = span
i=1,...,k

{X1(σi), X2(σi, σi)},

span(W) = span
i=1,...,k

{Z1(2σi), Z2(σi, σi)}.

Then the reduced QBDAE satisfies the following (Hermite) interpolation conditions:

H1(σi) = Ĥ1(σi), H1(2σi) = Ĥ1(2σi),

H2(σi, σi) = Ĥ2(σi, σi),
∂

∂sj
H2(σi, σi) = ∂

∂sj
Ĥ2(σi, σi), j = 1, 2.

The proof of this result is available in [6].

Remark 2.1: Propositions 2.1 and 2.2 are applicable to descriptor systems as long as Er is nonsingular
and σi, 2σi /∈ {�(A, E), �(Ar , Er)}, that is (σiE − A) and (σiEr − Ar) are invertible. For our proposed
method discussed in the following section, we do not require Ê to be nonsingular.
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3. Modified two-sided projection

Here we show the interpolation properties of a modified projection framework for model reduction
of quadratic-bilinear systems.

Theorem 3.1: Let σi, 2σi, 3σi /∈ {�(A, E), �(Ar , Er)}, where �(A, E) represents the generalized eigen-
values of the matrix pencil λE − A. Let all variables be as defined in (6)–(9) and Er, Ar, Qr, Nr, Br, Cr
are as in (3) with full rank matrices V , W ∈ R

n×r such that

span(V) = spani=1,...,k{X1(σi), X2(σi, σi), X3(σi, σi, σi)},
span(W) = spani=1,...,k{Z1(σi), Z1(2σi), Z2(σi, σi)}.

(11)

Then the reduced QBDAE satisfies the following (Hermite) interpolation conditions:

H1(σi) = Ĥ1(σi), H2(σi, σi) = Ĥ2(σi, σi), H3(σi, σi, σi) = Ĥ3(σi, σi, σi),

H1(2σi) = Ĥ1(2σi),
∂

∂s1
H1(σi) = ∂

∂s1
Ĥ1(σi),

∂

∂sj
H2(σi, σi) = ∂

∂sj
Ĥ2(σi, σi), j = 1, 2.

(12)

Proof: The statement is well known for G1(s1) from interpolation-based MOR, however, for com-
pleteness we briefly show how to proceed. Note that for any vector v ∈ range V , we have v = Vzv ,
and for any w ∈ range W, w = Wzw. This implies that

VX̂1(σi) = V(σiÊ − Â)−1B̂

= V(σiÊ − Â)−1WT(σiE − A)(σiE − A)−1B

= V(σiÊ − Â)−1WT(σiE − A)X1(σi)

= V(σiÊ − Â)−1WT(σiE − A)VzX1

= V(σiÊ − Â)−1(σiÊ − Â)zX1

= VzX1 = X1(σi),

(13)

where the equalities follow by using X1(σi) = VzX1 , since X1(σi) ∈ range V . Also we can show that

VX̂2(σi, σi) = V(2σiÊ − Â)−1
(
Q̂X̂1(σi) ⊗ X̂1(σi) + N̂X̂1(σi)

)

= V(2σiÊ − Â)−1WT (QX1(σi) ⊗ X1(σi) + NX1(σi))

= V(2σiÊ − Â)−1WT(2σiE − A)X2(σi, σi)

= V(2σiÊ − Â)−1WT(2σiE − A)VzX2

= V(2σiÊ − Â)−1(2σiÊ − Â)zX2

= VzX2 = X2(σi, σi).

(14)
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Here we have used X2(σi, σi) = VzX2 , since X2(σi, σi) ∈ range V . Similarly for the third subsystem,
we can write

VX̂3(σi, σi, σi) = V(3σiÊ − Â)−1
(

Q̂X̂1(σi) ⊗ X̂2(σi, σi) + 1
2

N̂X̂2(σi, σi)

)

= V(3σiÊ − Â)−1WT
(

QX1(σi) ⊗ X2(σi, σi) + 1
2

NX2(σi, σi)

)

= V(3σiÊ − Â)−1WT(3σiE − A)X3(σi, σi, σi)

= V(3σiÊ − Â)−1WT(3σiE − A)VzX3

= V(3σiÊ − Â)−1(3σiÊ − Â)zX3

= VzX3 = X3(σi, σi, σi),

(15)

where X3(σi, σi, σi) = VzX3 , since X3(σi, σi, σi) ∈ range V . Now we write

WẐ1(σi) = W(σiÊ − Â)−TĈT

= W(σiÊ − Â)−TVT(σiE − A)T(σiE − A)−TCT

= W(σiÊ − Â)−TVT(σiE − A)TZ1(σi)

= W(σiÊ − Â)−TVT(σiE − A)TWzZ1

= W(σiÊ − Â)−T(σiÊ − Â)TzZ1

= WzZ1 = Z1(σi),

(16)

where the equalities follow by using Z1(σi) = WzZ1 , since Z1(σi) ∈ range W. This also means that

WẐ1(2σi) = Z1(2σi). (17)

Finally, we have

WẐ2(σi, σi) = W(σiÊ − Â)−T
(

Q̂(2)(X̂1(σi) ⊗ Ẑ1(2σi)) + 1
2!

N̂TẐ1(2σi)

)

= W(σiÊ − Â)−TVT
(

Q(2)(X1(σi) ⊗ Z1(2σi)) + 1
2!

NTZ1(2σi)

)

= W(σiÊ − Â)−TVT(σiE − A)TZ2(σi, σi)

= W(σiÊ − Â)−TVT(σiE − A)TWzZ2

= W(σiÊ − Â)−T(σiÊ − Â)TzZ2

= WzZ2 = Z2(σi, σi).

(18)

Here, Z2(σi, σi) = WzZ2 , since Z2(σi, σi) ∈ range W. The first three conditions in (12) follow
from (13), (14) and (15) by multiplying C from the left on both sides and the fourth condition is
due to (17). The first partial differentiation in (12) holds by taking the transpose of (16) and multi-
plying E times (13) from the right. Similarly the final condition in (12) holds by using (13), (14), (17)
and (18). �

Remark 3.1: The result in Theorem 3.1 is similar to Proposition 2.2 but with a different sequence
of column vectors in V and W and therefore different interpolation conditions. Unlike the result in
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Proposition 2.1 (and Proposition 2.2), the idea here is to ensure Hermite interpolation for H1(s1)

before proceeding to H2(s1, s2).

Remark 3.2: There are different possible options for the third column vector of V in (11).
These include X1(2σi), X2(2σi, 2σi) and X3(σi, σi, σi) ensuring H1(2σi) = Ĥ1(2σi), H2(2σi, 2σi) =
Ĥ2(2σi, 2σi) and H3(σi, σi, σi) = Ĥ3(σi, σi, σi), respectively. It is observed that the choice of
X3(σi, σi, σi) gives better results as compared to other options in terms of relative H2 errors.

4. Numerical results

In this section, we compare the results of the existing two-sided projection method given in Proposi-
tion 2.2 (called 2s-qbmor in the following) with the proposed modified two-sided projection method
given in Theorem 3.1 (and represented by m2s-qbmor) for model reduction of two benchmark exam-
ples. In each case, the interpolation points are computed by using IRKA applied to the linear part of
the quadratic-bilinear system.

4.1. Nonlinear RC circuit

The first example is a nonlinear RC circuit [10] as shown in Figure 1. The nonlinearity is due to the
nonlinear resistor with I–V characteristics given as g(v) = e40v + v − 1, where g(v) is the current
function and v is the voltage across the resistor. All the capacitances are fixed to C = 1. The non-
linearity in the RC circuit example can be transformed [14] to quadratic-bilinear form as in (1) by
introducing some auxiliary variables. The transformation is exact, but the dimension of the system
increases to n = 2 · l, where l is the number of nodes in Figure 1, and is also the dimension of the
original nonlinear system.

We fixed the number of nodes to l = 500, so that the size of the quadratic-bilinear model (full
order model (FOM)) is n = 1000. We consider two cases for reduction of the FOM. In the first case,
the size of the reduced quadratic-bilinear model is fixed to r1 = r2 = 6 for both 2s-qbmor and m2s-
qbmor. This means that for 2s-qbmor we compute three interpolation points using linear IRKA while
for m2s-qbmor we use two interpolation points. Using an input u(t) = e−t , where e represents the
exponential function, the transient response of FOM and the two ROMs along with relative errors
are shown in Figure 2. Notice that the reduced system obtained from the proposed m2s-qbmor has
better transient response as compared to the one obtained from 2s-qbmor. The higher relative errors
for larger t is because y(t) → 0 as t → ∞.

The second case involves fixed interpolation points for both 2s-qbmor and m2s-qbmor. We used
five interpolation points to obtain reduced systems of size r1 = 10 via 2s-qbmor and r2 = 15 using
m2s-qbmor. Again with u(t) = e−t , the transient responses and the relative errors for the same
interpolation points are shown in Figure 3.

Figure 1. Nonlinear RC circuit.
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Figure 2. Results for nonlinear RC circuit with u(t) = e−t and s1 = 3, s2 = 2 IRKA points; FOM of size n = 1000 ( ); ROM
via 2s-qbmor of size r1 = 6 ( ) and ROM via m2s-qbmor of size r2 = 6 ( ): (a) transient response and (b) relative error
e(t) = (y(t) − ŷ(t))/y(t).

Figure 3. Results for nonlinear RC circuit with u(t) = e−t and s1 = s2 = 5 IRKA points; FOM of size n = 1000 ( ); ROM via
2s-qbmor of size r1 = 10 ( ) and ROM via m2s-qbmor of size r2 = 15 ( ): (a) transient response and (b) relative error
e(t) = (y(t) − ŷ(t))/y(t).

Although the two reduced systems are of different sizes, they are using the same interpolation
points. The same number of interpolation points means the same number of sparse linear systems
need to be solved, so the cost for constructing the reduced model is essentially the same. In that
regard, it is a fair comparison regarding the efficiency of the offline phase. Clearly, for a given set of
interpolation points, the proposed method computes more accurate reduced order models.

4.2. Burgers equation

As a second example, we consider the two-dimensional Burgers equation [6, 18]. The Burgers
equation with domain, � = (0, 1) × (0, T) along with boundary conditions can be written as

vt + vvx = ν · vxx, in �,

αv(0, t) + βx(0, t) = u(t), vx(1, t) = 0, t ∈ (0, T),

v(x, 0) = v0(x), v0(x) = 0, x ∈ (0, 1),
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Figure 4. Results for Burgers equation with u(t) = cos(π t) and s1 = 3, s2 = 2 IRKA points; FOM of size n = 1000 ( ); ROM via
2s-qbmorof size r1 = 10 ( ) andROMviam2s-qbmorof size r2 = 15 ( ): (a) transient response and (b) relative error e(t) =
(y(t) − ŷ(t))/y(t).

Figure 5. Nonlinear RC circuit with u(t) = cos(π t) and s1 = s2 = 5 IRKA points; FOM of size n = 1000 ( ); ROM via 2s-qbmor
of size r1 = 10 ( ) and ROM via m2s-qbmor of size r2 = 15 ( ): (a) transient response and (b) relative error e(t) =
(y(t) − ŷ(t))/y(t).

where ν is the viscosity and v0(x) is the initial condition. Semi-discretization of such partial differen-
tial equations naturally leads to a quadratic-bilinear system as given in (1). We set the state dimensions
to n = 1000 and compute reduced systems with both 2s-qbmor and m2s-qbmor having the same size,
i.e. r1 = r2 = 6, but different interpolation points (both using linear IRKA for interpolation points).
The results are shown in Figure 4, for an input u(t) = cos(π t). Notice that even though the proposed
method m2s-qbmor utilizes only two interpolation points, it still computes a reduced system with
better accuracy as compared to 2s-qbmor where three interpolation points are used.

Next, we show the results for the same interpolation points. We compute five interpolation points
using Linear IRKA and use these interpolation points to compute reduced systems of size 10 (via 2s-
qbmor) and 15 (via m2s-qbmor). The transient responses of the actual and reduced systems along
with their relative errors are shown in Figure 5. Clearly, the proposed method outperforms the stan-
dard two-sided projection method for a given set of interpolation points and as discussed in the first
example, this comparison is fair because the cost for constructing the reduced model is essentially
the same.

5. Conclusion

A modified sequence of projection matrices is identified in the two-sided projection technique for
model reduction of quadratic-bilinear descriptor systems. The modified approach computes better
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reduced order models as compared to the existing two-sided projection techniques for a given set of
interpolation points. An important future work would be to identify a sequence of projection matrices
that can easily be extended to multi-input multi-output systems. Also, we would like to point out that
despite the applicability of the proposed technique to descriptor systems (i.e. systems of the form (1)
with E singular), we expect that some modifications of the method are necessary to achieve good
approximation properties as in the linear [16] and bilinear [8] cases.
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