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‘Everything changes, permanently. How boring if it wouldn’t.’

- Klaus Schulze
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Abstract

The possibility of credible climate forecasts for several years ahead - on the decadal

time scale - has received considerable public and economic attention. Scientific studies

quantify the credibility of such forecasts by evaluating the average predictive quality

(skill) over the last 50-60 years (in so-called hindcasts). Decadal hindcasts of surface

temperatures were shown to be on average particularly skillful in the North Atlantic

region. However, the reason for the high skill of these hindcasts is still unclear. Mean-

while, North Atlantic sea surface temperatures (SSTs) are on the decadal time scale

strongly influenced by subpolar ocean heat transport (OHT) variability. I here connect

OHT variability and SST predictability and test whether the knowledge of the strength

of subpolar OHT at the beginning of a single SST forecast can improve its credibility.

By using initialized global climate simulations of the twentieth century, I confirm pre-

vious studies in that OHT variability influences SST variability for 3-10 years. A char-

acteristic SST pattern of warm anomalies in the northeast Atlantic and cold anomalies

in the Gulf Stream region emerges after strong OHT phases and vice versa. This pat-

tern originates from persistently growing upper ocean heat content anomalies that arise

from Southward propagating OHT anomalies in the North Atlantic. Extending previ-

ous work, I analyze strong and weak OHT phases at 50◦N separately. This reveals an

asymmetry between strong and weak phases of ocean heat transport: When subpolar

OHT is strong, North Atlantic SSTs show stronger and more persistent decadal anoma-

lies than when subpolar OHT is weak.

For the first time I show that the hindcast skill of northeast Atlantic SSTs 3-10 years

ahead is linked to the characteristic SST pattern, and therefore OHT variability in the

subpolar North Atlantic. When subpolar ocean heat transport is strong at the initial-

ization of a hindcast, the skill of SST hindcasts in the northeast Atlantic 2 to 9 years

into the future is significantly higher than when the ocean heat transport is weak at

initialization. The asymmetric effect of strong and weak phases of subpolar OHT on

SST variability that preconditions asymmetric hindcast skill is robust in non-initialized

versions of the same climate model. The skill of decadal SST predictions therefore ro-

bustly depends on the climate state at the start of a prediction.

I show in this dissertation that hindcast skill changes over time and thus cannot be

immediately translated into the credibility of a forecast. Instead, the credibility of a

decadal climate forecast depends on the climate state at the start of the forecast. For

North Atlantic SST forecasts, the strength of subpolar North Atlantic OHT at the

start of the forecast can be used to estimate its credibility. Findings presented in this

dissertation suggest that physical mechanisms might be used to improve conventional

estimates of the credibility of a climate forecast on the economically and politically

relevant decadal time scale.
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Zusammenfassung

Die Möglichkeit, das Klima für einige Jahre glaubhaft vorherzusagen, erweckte zuletzt

umfangreiches öffentliches und ökonomisches Interesse. Wissenschaftliche Studien quan-

tifizieren die Glaubwürdigkeit solcher Vorhersagen, indem sie die durchschnittliche Vor-

hersagequalität der letzten ca. 50 Jahre diagnostizieren. Solche dekadischen Vorher-

sagen von Erdoberflächentemperaturen in der Nordatlantikregion zeigten besonders

hohe Qualität. Der Grund für diese hohe Vorhersagequalität in der Nordatlantik-

region ist bisher jedoch unbekannt. Indes beeinflussen Schwankungen im Transport von

Wärme aus dem tropischen in den subpolaren Nordatlantik (ocean heat transport, OHT )

nordatlantische Wasseroberflächentemperaturen (sea surface temperatures, SSTs) für

etwa zehn Jahre. In dieser Dissertation zeige ich Verbindungen von niederfrequenten

Schwankungen des OHT zu der Qualität dekadischer SST-Vorhersagen auf. Weiterhin

diskutiere ich, wie die Kenntnis der Stärke des OHT im subpolaren Nordatlantik zu Be-

ginn einer einzelnen SST Vorhersage genutzt werden kann, um die erwartbare Qualität

dieser Vorhersage abzuschätzen.

Mit Hilfe initialisierter numerischer Modellsimulationen des gesamten zwanzigsten Jahr-

hunderts bestätige ich frühere Studien, indem ich zeige, dass OHT-Schwankungen die

Variabilität von SSTs für bis zu 3-10 Jahre beeinflussen können. Ein charakteristisches

SST-Muster mit warmen Temperaturen im nordost-Atlantik und kalten Temperaturen

in der Golfstromregion erscheint nach starken OHT-Phasen und anders herum. Dieses

Muster entsteht aus stetig wachsenden Wärmeanomalien im oberen Ozean, welche aus

OHT-Anomalien resultieren, die sich im Nordatlantik südwärts fortpflanzen. Basierend

auf diesen Analysen erweitere ich bisherige Studien und analysiere starke und schwache

OHT-Phasen separat. Dies offenbart einen asymmetrischen Effekt starker und schwacher

OHT-Phasen: starke OHT Phasen bei 50◦N beeinflussen SSTs stärker und nachhaltiger

als schwache.

Ich zeige hier erstmals, dass die Qualität von SST-Vorhersagen für 3-10 Jahre in die

Zukunft mit diesem charakteristischen SST-Muster, und somit mit ozeanischem Wärme-

transport, zusammenhängt. Wenn OHT zu Beginn einer Vorhersage in einer starken

Phase ist, ist die Vorhersagequalität von SSTs für 2-9 Jahre in die Zukunft signifikant

besser, als wenn der Ozean zu Beginn der Vorhersage wenig Wärme transportiert. Diese

Asymmetrie ist robust in unterschiedlichen Realisationen des selben Klimamodells. Die

Qualität dekadischer SST-Vorhersagen hängt daher vom klimatischen Zustand zu Be-

ginn der Vorhersage ab.

Ich zeige in dieser Dissertation, dass die Qualität dekadischer Temperaturvorhersagen

zeitabhängig ist, und daher Qualitätsabschätzungen für die Vergangenheit für Vorher-

sagen der Zukunft nicht anwendbar sind. Tatsächlich bedingt der klimatische Zustand

zu Beginn einer Vorhersage deren Qualität. Bei der dekadischen Vorhersage nordat-
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lantischer SSTs kann der ozeanische Wärmetransport im Nordatlantik als Kriterium

zur Abschätzung der erwarteten Qualität einer Vorhersage genutzt werden. Ergebnisse,

die ich in dieser Dissertation präsentiere, deuten darauf hin, dass physikalische Mech-

anismen genutzt werden können, um konventionelle Abschätzungen der Qualität von

Klimavorhersagen für den ökonomisch und politisch interessanten dekadischen Zeitraum

zu verbessern.
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1

1 | Decadal Predictions of the Climate

System

1.1 Introduction

We do not know how warm or cold it is going to be in Europe in 8 years. Temperature

predictions for the next few months or years - on the seasonal-to-decadal timescale - are

still largely uncertain and subject to intense scientific debate. As a result, predictions

on this time scale have received increasing scientific attention in the past decade, not

just because of the scientific challenge, but also because predicting the climate on the

(sub-)decadal time scale is particularly interesting for both policy makers and economic

decision makers. It remains largely unknown, however, to which degree a single forecast

of the temperature development over the next few years can be expected to be credible.

In this dissertation, I present an approach to estimate the credibility of a forecast of

North Atlantic surface temperatures several years into the future, on the decadal time

scale, using a physical process in the ocean.

Without an estimate of the credibility of a climate forecast, any forecast is essentially

useless. This credibility is in climate prediction studies usually referred to as skill. In

the absence of knowledge of the future, series of predictions are commonly performed

for the past (in so-called hindcasts) and evaluated against known past climate (e.g.

Boer et al., 2016). The hindcast skill that is found for the past is then used as an

estimate of how reliable decadal predictions are. There is still substantial scientific

discourse on the reliability of decadal predictions after more than 10 years of research

(e.g. Marotzke et al., 2016). In the face of the high confidence scientists put into both

weather forecasts (on the time scale of days) and climate projections (on the scale of

multiple decades to centuries), this dispute about the reliability of decadal predictions

might appear puzzling. However, the climate variability on a decadal time scale results

from a combination of factors that makes setting up successful hindcast climate simu-

lations particularly challenging.

Weather forecast is considered an initial value problem (e.g. Pielke Sr. et al., 1999).

Thus, the quality of a weather forecast mainly depends on using the correct current cli-

mate state to start the weather model from. If the initial conditions are correct and the
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Figure 1.1: Seasonal-to-decadal climate predictions are both an initial value problem and a forced
boundary problem (from Boer et al., 2016).

computational model reproduces the physics of the atmosphere somewhat accurately,

weather forecasts are likely to be accurate for several days into the future. The notion of

weather forecast as an initial value problem is also mirrored in the expectation towards

it: a weather forecast is commonly expected to accurately capture weather patterns on

very small spatial scales of only few kilometres.

For a successful climate projection, starting the climate model from the correct climate

state is less important than the capability of the model to accurately reproduce climate

variability patterns on the decadal to multidecadal time scale; climate projections are

considered a boundary value problem (e.g. Boer et al., 2016). Unlike weather forecasts,

climate projections are not expected to resolve small spatial scales: the expectation

towards a climate projection is to accurately capture trends or changes in climate vari-

ability on spatial scales of several hundred kilometers, or even globally. It is therefore

paramount for a climate projection model to accurately reproduce trends and variability

in the underlying physics on (multi-)decadal time scales to produce a skillful climate

projection.

Decadal climate predictions combine the expectations towards weather forecasts and cli-

mate projections: they are expected to capture long-term trends and variability changes

in the climate system while producing predictions that can be used by decision makers.

These decision makers mostly need information on relatively small spatial scales to use.

Studies showed that both the initial conditions and low-frequency variability in the cli-

mate system should be accurately represented in a climate model to produce skillful

decadal climate predictions (e.g. Palmer et al., 2004; Matei et al., 2012; Doblas-Reyes

et al., 2013). Climate predictions on the decadal timescale can therefore be considered

both an initial value problem and a boundary value problem (fig. 1.1).

So-called assimilation experiments combine the good representation of initial conditions

from weather forecasting with the good representation of boundary forcing in climate

models (e.g. Keenlyside et al., 2008). Assimilation experiments use a global climate

projection model, or general circulation model (GCM), and use (assimilate) observations

to constrain the GCM to observed past climate states and variability. Usually, because
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of the availability of observations, assimilation experiments cover the time between 1960

and today. For this time horizon, studies showed skillful decadal climate predictions in

many regions around the globe (e.g. Smith et al., 2007; Doblas-Reyes et al., 2013). The

North Atlantic region has been subject to particularly high attention (e.g. Smith et al.,

2007; Yeager et al., 2012; Müller et al., 2012; Monerie et al., 2017).

The highest skill in decadal climate hindcasts was found for temperatures over the

oceans, whose inertia forms a memory in the climate system that preconditions decadal

climate predictability (e.g. Branstator and Teng, 2010; Matei et al., 2012; Collow et al.,

2015). For other climate variables, e.g. precipitation, the skill of decadal hindcasts was

found to be modulated by the ocean as well (e.g. Gaetani and Mohino, 2013). Specif-

ically, decadal temperature skill can be expected to be high in areas that are strongly

influenced by low-frequency ocean variability, like ocean overturning dynamics (e.g. Yea-

ger et al., 2012; Robson et al., 2013). This indicates that mechanisms of low-frequency

variability in the ocean precondition skill of decadal climate hindcasts. Understanding

why decadal climate predictions are successful therefore requires understanding decadal

climate variability.

1.2 Ocean Overturning and North Atlantic Temperatures

Sea surface temperature (SST ) variability reflects a balance between the low-frequency

variability of upper ocean heat content and the higher-frequency variability of ocean-

atmosphere surface heat fluxes. This was first described for the North Atlantic by

Bjerknes (1964), who interpreted SSTs as a coupled ocean-atmosphere mode with a

driving role for the ocean and a dampening role for the atmosphere on decadal time

scales. Later, simulations using computational models supported Bjerknes’ hypothe-

sis by showing that on decadal time scales and longer, SST fluctuations in the North

Atlantic are driven by ocean overturning variability (e.g. Eden and Willebrand, 2001;

Gulev et al., 2013). Specifically, studies underscored that, in the North Atlantic, the

variability of the ocean mass transport, the Atlantic Meridional Overturning Circula-

tion (AMOC ), and associated oceanic heat transport (OHT ) strongly shapes decadal

surface temperature variability (e.g. Timmermann et al., 1998).

A robust climatic feature that was found consistently is the lagged relationship between

North Atlantic deep water formation, AMOC/OHT, and SSTs in that order (Yeager

and Robson, 2017). The formation of deep water in the North Atlantic, particularly in

the Labrador Sea region, was shown to be connected to persistent forcing from the At-

mosphere, specifically the North Atlantic Oscillation (NAO, e.g. Marshall et al., 2001).

This deep water formation is one of the drivers of AMOC variability in the North At-

lantic. The AMOC and OHT are therefore important features of the climate system
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that connect atmospheric variability to the variability of SSTs in the North Atlantic on

the decadal time scale (e.g. Zhang, 2008).

The ocean contribution to SST variability is often approximated by integrating tem-

peratures from the surface to some characteristical depth (e.g. Yeager et al., 2012).

The characteristical depth depends on the region of interest; in the North Atlantic,

some previous studies have used 700m as lower bound (e.g. Zhang and Zhang, 2015).

The integrated temperatures in this water volume are called upper ocean heat content

(UOHC ).

Changes in UOHC in the North Atlantic are controlled by convergence of heat in the

ocean and vertical heat fluxes (surface heat fluxes, SHFs) at the ocean-atmosphere in-

terface. The low-frequency changes of UOHC were linked to SST variability on the

multi-decadal time scale under the term Atlantic Multidecadal Oscillation or, more re-

cently because of its lack of clear periodicity, Atlantic Multidecadal Variability (AMV,

e.g. Kerr, 2000; Ting et al., 2011; Peings et al., 2016). The connection of UOHC vari-

ability to the AMV indicates that SST variability on the decadal time scale and longer

is in parts of the North Atlantic dominated by low-frequency ocean dynamics (e.g. Eden

and Willebrand, 2001; Zhang et al., 2016). The idea of an ocean dominated AMV was

contested recently by studies suggesting that the AMV is mainly the result of stochas-

tic atmospheric forcing (Clement et al., 2015; Bellomo et al., 2016; Cane et al., 2017).

However, several papers attributing SST variability in the North Atlantic to changes in

ocean overturning and explaining a physical mechanism seem to support the hypothesis

that the ocean dominates AMV variability (e.g. Zhang, 2008; Zhang and Zhang, 2015).

Zhang (2008) and Zhang and Zhang (2015) described a mechanism connecting strong

phases of AMOC-related OHT to ocean heat convergence and consequently UOHC

variability in the North Atlantic (fig. 1.2). Strong phases of the AMOC and associ-

ated OHT in the northern North Atlantic were shown to originate from surface density

anomalies in the subpolar North Atlantic and to propagate southward at a slow advec-

tion speed. The authors showed that this slow southward propagation of strong OHT

phases led to a heat convergence anomaly North of the OHT anomaly and a heat di-

vergence anomaly South of the OHT anomaly, constituting an UOHC anomaly dipole

between positive anomalies in the North Atlantic Subpolar Gyre and negative anomalies

in the Gulf Stream region, the so-called AMOC Fingerprint (Zhang and Zhang, 2015,

figs. 1.2a,b). Because of the slow propagation of OHT phases, the time lag between

the initial AMOC and OHT anomaly at 50◦N and the AMOC Fingerprint was found

to be between 2 and 12 years, depending on the model setup (fig. 1.2c; Zhang and

Zhang, 2015). The meridional coherence of AMOC anomalies is a necessary prerequi-

site for studying the propagation of AMOC anomalies across latitudes. Zhang (2010)

showed that AMOC anomalies were particularly meridionally coherent when calculated

in density coordinates.
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a b 

c 

Figure 1.2: An illustration of the physical mechanism connecting AMOC variability in the subpolar
North Atlantic to SST variability proposed by Zhang (2008) and Zhang and Zhang (2015). (a) shows
the regression of temperature anomalies in the North Atlantic on AMOC in the GFDL-CM2.1 (Zhang,
2008). In (b), this temperature pattern is conceptualized by Zhang (2008). (c) shows a conceptual
depiction of the AMOC-SST mechanism presented in Zhang and Zhang (2015), illustrating the south-
ward propagation of positive AMOC anomalies (here: MHT = Meridional Heat Transport) over time
and associated heat convergences and divergences.

The AMOC Fingerprint was connected to the AMV and thus hypothesized to influence

the skill of decadal UOHC and SST hindcasts (Zhang, 2008; Zhang and Zhang, 2015).

In this dissertation I use the Max-Planck-Institute Earth System Model (MPI-ESM ) to

examine this hypothesis. However, the mechanism connecting ocean circulation changes

to SST variability on decadal time scales suggested by Zhang and Zhang (2015) was

shown in only one climate model, the GFDL Climate Model 1.2, so far. For an ap-

plication to a hindcast study in the MPI-ESM, this mechanism therefore has to be

understood in the MPI-ESM prior to analyzing hindcasts. I thus derive the following

first central research question:

⇒ Can the mechanism leading to the AMOC Fingerprint proposed by

Zhang and Zhang (2015) be found in the MPI-ESM-LR, and how is

this mechanism characterized?

I will in this chapter establish a mechanism in the MPI-ESM connecting AMOC and

OHT to SST variability on the decadal time scale. Going further, I will examine the

effect of this mechanism on surface air temperatures (SATs). I will then proceed to

examine how this mechanism affects temperature predictability on the same time scale.
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Figure 1.3: A typical map of surface temperature hindcast skill 2-5 years into the future, evaluated
as anomaly correlation coefficients (from Müller et al., 2014). The North Atlantic region shows high
skill.

1.3 Decadal Hindcasts in the North Atlantic Region

Climate prediction several years into the future has received increasing scientific at-

tention recently (e.g. Palmer et al., 2004; Smith et al., 2007; Keenlyside et al., 2008;

Doblas-Reyes et al., 2013; Müller et al., 2014). Good hindcast skill was found in the

North Atlantic region and in surface temperatures over Europe on time scales of 2-8

years (fig. 1.3, e.g. Smith et al., 2007; Yeager et al., 2012; Müller et al., 2012). While

hindcast skill for surface temperatures was found to have a tendency to be weaker over

continental regions, it was found to be mostly high over the ocean. This stems from

the inertia of the ocean, a memory in the climate system, which preconditions decadal

temperature predictability in the North Atlantic region (e.g. Branstator and Teng, 2010;

Matei et al., 2012; Collow et al., 2015). Recent studies suggested that phases of strong

OHT in the subpolar Atlantic Ocean linked to AMOC variability influence North At-

lantic UOHC (defined as the heat contained in the top 700m of the ocean, e.g. in Zhang

and Zhang, 2015), which might improve surface temperature predictability on a time

scale of 2 to 12 years (Zhang, 2008; Zhang and Zhang, 2015). However, the specific

advantage of knowing the OHT-strength at the start of a prediction on the quality of

the predictability estimate of North Atlantic UOHC and surface temperatures was not

shown so far. Here, I analyze the dependency of the decadal predictability of North

Atlantic UOHC, SSTs, and SATs on the state of the OHT at 50◦N at the start of the

prediction.

Decadal SST and SAT hindcasts were demonstrated to be particularly skillful in the

North Atlantic in several recent studies (e.g. Matei et al., 2012; Yeager et al., 2012;

Klöwer et al., 2014; Müller et al., 2014; Robson et al., 2017; Yeager and Robson, 2017).

Since surface temperature hindcast skill is often found to be stronger over the ocean than

over land, it is commonly assumed that the source of decadal temperature prediction
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skill in the North Atlantic resides in the ocean (Yeager and Robson, 2017). Specifi-

cally, high decadal surface temperature hindcast skill was found in regions where ocean

dynamics influence surface temperature variability more strongly than atmospheric dy-

namics in many studies (e.g. Yeager and Robson, 2017). There are two current hy-

potheses concerning the origin of the oceanic memory that preconditions hindcast skill

in the North Atlantic region: that decadal surface temperature hindcast skill originates

from the persistence of heat content in the ocean (e.g. Meehl et al., 2009), and that skill

originates from low-frequency ocean circulation (e.g. Robson et al., 2013, 2014).

Case studies showed that low-frequency variability of the oceanic circulation can pre-

condition hindcast skill of UOHC and SSTs on the decadal time scale. Specifically, the

1960s cooling of the North Atlantic Subpolar Gyre (Robson et al., 2014), and the 1920s

(Müller et al., 2014) and 1990s (Yeager et al., 2012; Robson et al., 2013) warmings were

shown to be predictable several years in advance when the state of the ocean was ini-

tialized in the respective model simulation. These studies showed that individual events

of strongly anomalous UOHC in the North Atlantic could have been predicted in the

past. Found predictability might even be connected to decadal predictability for SATs

over parts of Europe as well (Robson et al., 2012). While the connection of subpolar

AMOC and OHT variability on UOHC predictability was shown in these case studies,

there was no systematic evaluation yet. The physical mechanism connecting OHT to

UOHC variability in the North Atlantic region suggested by Zhang and Zhang (2015)

provides a framework to test the influence of OHT dynamics on UOHC predictability

more generally.

In this dissertation, I go beyond previous studies and systematically identify the spe-

cific influence of variability of subpolar AMOC and OHT on decadal hindcast skill of

surface temperatures in the North Atlantic. Based on the findings from chapter 3, I

assess hindcast skill in the 20th century for strong and weak subpolar OHT phases sep-

arately. I then compare the influences of OHT variability and UOHC persistence on

decadal surface temperature hindcast skill. To reconcile the hypothesis brought up in

previous studies that ocean overtuning dynamics dominate decadal surface temperature

predictability, I ask:

⇒ How strongly do ocean overturning dynamics influence the skill of SST

hindcasts in the North Atlantic region?

Following the findings from chapters 3 and 4, I will show some of their implications for

the evaluation of decadal hindcast skill. Specifically, I will first place these findings in

the context of other model simulations with the same climate model and in the context

of observations to see how representative they are of different modes of climate variabil-

ity. I will then discuss how representative skill estimates found for any period of the

past can be for actual forecasts.
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1.4 Understanding North Atlantic Climate Variability in

the MPI-ESM-LR

In assimilation model experiments, observational data is used to constrain the variabil-

ity the model produces on its own to stay within the bounds of observed variability

(e.g. Palmer et al., 2004). The hope of applying this technique in the context of decadal

hindcast studies is to generate a four-dimensional climate state estimate that is similar

to the observed climate (e.g. Keenlyside et al., 2008). This state estimate is then used

to start hindcast runs with the free model from a relatively realistic climate state to

produce skillful hindcasts (e.g. Yeager et al., 2012; Robson et al., 2013). In the past, this

approach has proved to be very effective in improving decadal hindcast skill. However,

there is an issue connected to the assimilation of observations into climate models: it is

from the assimilation model itself unclear how representative dynamical features found

within it are with respect to observations and the underlying model. In this disserta-

tion, I present an approach to place findings from the first two chapters in the context

of observations and the MPI-ESM-LR.

Numerous studies reported differences between assimilation experiments, non-initialized

model simulations, and observations (e.g. Balsameda and Anderson, 2009; Pohlmann

et al., 2017). The relative contribution of model and observed climate variability to cli-

mate variability in assimilation experiments varies in space and time (Servonnat et al.,

2015). It is therefore inherently unclear how the dynamics found in assimilation model

experiments need to be interpreted: as observed variability, as model variability, or as

something else.

In the latter case - the interpretation of assimilation model simulations as their own

domain of model simulation with its very own mode of climate variability - findings

concerning climate variability and predictability obtained from these model simulations

need an extra step of analysis to be fully understood. Because while it is relatively

clear what climate variability found in model studies or observational studies represents

(model variability and observed climate variability, respectively), the respective roles of

observed and modeled climate variability in producing climate variability in an assimi-

lation run are unclear for the aforementioned reasons.

I will in chapter 5 examine findings from chapters 3 and 4 in more detail, placing them

in the broader climatic context of model-based and observed climate variability. I will

put particular focus on North Atlantic OHT and SST variability. Specifically, I will

answer the following question:

⇒ Is the previously discussed climate variability reasonable with respect

to both model variability produced by the MPI-ESM-LR and observa-

tions?

After placing the findings concerning decadal temperature variability and hindcast skill
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in the North Atlantic in the context of overall climate variability, I move on to show

how hindcast skill can be expected to change over time. This will not only help to

understand climate hindcasts of the past, but also suggest how to translate hindcast

skill found for the past into the credibility of forecasts.

1.5 Non-Stationary North Atlantic Surface Temperature

Prediction Skill

In this dissertation I shed light on the time-dependence, or non-stationarity, of decadal

climate hindcasts. I also suggest an approach to accurately estimate the credibility of

individual forecasts using hindcast simulations.

Decadal climate hindcasts are conventionally evaluated over a certain period in the past.

The mean skill found for these hindcasts is then assumed to reflect the credibility of an

individual forecast. However, several studies showed recently that hindcast skill esti-

mates can differ substantially depending on the period that the hindcasts are evaluated

for. This was shown for seasonal hindcasts of the winter North Atlantic Oscillation

(Weisheimer et al., 2017; O’Reilly et al., 2017) and for decadal hindcasts of the North

Atlantic Subpolar Gyre region (Brune et al., 2017). The skill estimates derived for

the past by conventional hindcast studies are therefore not representative for the whole

period they cover. Hindcast skill estimates are thus likely not directly applicable for

individual forecasts.

To examine the applicability of current measures of decadal hindcast skill for the esti-

mation of the credibility of any individual forecast, I ask:

⇒ Are mean hindcast skill estimates appropriate to estimate the credibil-

ity of a single temperature forecast in the North Atlantic region?

This chapter will provide some exciting insights into where decadal climate prediction

research might, or should, develop in the future. It will also draw on the findings from

chapters 3 and 4 and highlight their implications.

In this dissertation, I examine the influence of low-frequency ocean variability on the

predictability of surface temperatures, studying the North Atlantic region. Chapter 2

presents the methods I will use in this dissertation. In chapter 3, I use an initialized

version of the MPI-ESM to examine a physical mechanism suggested by Zhang and

Zhang (2015) that connects variability of the heat transported by the AMOC into the

subpolar North Atlantic to North Atlantic SST variability on the decadal time scale. I

discuss the influence of this mechanism on decadal surface temperature predictability in

chapter 4. A paper that was published in the Journal of Climate summarizes findings
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presented in chapters 3 and 4.

In chapter 5, I elaborate on the findings from chapter 3 and investigate which mode of

climate variability (model-based or observed) is found in the assimilation experiment.

This will help to place the findings from chapters 3 and 4 in the wider climatic context.

In chapter 6, I examine how representative hindcast skill estimates for the past can be

considered for individual decadal climate forecasts. This will allow me to integrate my

findings into the scientific context and discuss implications of these findings for future

decadal climate hindcast and predictability studies in the concluding chapter. Findings

presented in chapter 6 are the subject of a paper that is currently in preparation for

submission.
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2 | Model and Methods

To answer the questions I bring forward in this dissertation, I use the fully coupled Max

Planck Institute Earth System Model (MPI-ESM ). Specifically, I use the low-resolution

(LR) model version that was used in the 5th phase of the Coupled Model Intercompari-

son Project. This model version uses the ocean model MPIOM (Jungclaus et al., 2013)

at a nominal horizontal resolution of 1.5◦ and 40 vertical levels which is interactively

coupled to the atmospheric model ECHAM6 (Stevens et al., 2013) of the horizontal

resolution T63 with 47 vertical levels with the top at 0.1 hPa. The model used here

has a curvilinear grid with three poles, one over Greenland, one over Sibiria, and one

over Antarctica. Therefore, the actual model resolution in the North Atlantic region

is considerably higher than the average resolution, which improves the representation

of climate variability in the North Atlantic region. I use several configurations of the

MPI-ESM-LR that I will outline in the following.

2.1 piControl, HIST and RCP

To understand how ocean overturning influences surface temperatures in the MPI-ESM-

LR, I use a pre-industrial control (piControl) simulation of 1000 years, and a historical

simulation for 1896-2005 (HIST ). Atmospheric greenhouse gas emissions are kept con-

stant at the pre-industrial level in piControl. Therefore, the 1000 years of the piControl

simulation represent an estimate of the internal variability created by the MPI-ESM-LR.

In HIST, atmospheric greenhouse gas concentrations follow the observed trend for that

time period. HIST can therefore be used to examine the reaction of the MPI-ESM-LR

to greenhouse gas warming until the end of the 20th century. I subtract the linear trend

from piControl and HIST before performing any analysis.

In addition to the piControl and HIST model simulations, I use two greenhouse gas

emission scenario projections with the MPI-ESM-LR to assess the change of physical

mechanisms identified in this thesis with global warming. Specifically, I consider the

time period 2191-2300 in the two warming scenarios RCP4.5 and RCP8.5. These cor-

respond to a moderate warming scenario (RCP4.5) and a business-as-usual scenario of

strong warming (RCP8.5). To assess climate variability in the 22nd century beyond the
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global warming trend within that century, I subtract the linear trend from the 110-year-

long time series of RCP4.5 and RCP8.5.

2.2 The MPI-ESM-LR Decadal Prediction System

In this dissertation, I use the decadal prediction system from Müller et al. (2014) with

the fully coupled MPI-ESM-LR to explore decadal climate variability and predictability

in the North Atlantic. The setup consists of an assimilation experiment covering the

period 1901-2010, and ten-year-long hindcast runs with the fully coupled MPI-ESM-

LR, which are started (initialized) from the assimilation experiment at the beginning

of every year, and are after that only subject to observed greenhouse gas forcing.

The assimilation experiment consists of three ensemble members that are constructed

by forcing the MPIOM at the surface with fluxes of momentum, energy, and freshwater

(Müller et al., 2015). These fluxes are obtained for the period 1872-2010 from three

different randomly selected realizations of the 20th century reanalysis (Compo et al.,

2011). Four-dimensional salinity and temperature fields from the resulting ocean states

are then nudged into the fully coupled MPI-ESM-LR for the period 1901-2010 (Müller

et al., 2014). I use the ensemble mean of the three resulting climate states as an esti-

mate of climate variability in the 20th century.

I remove the mean seasonal cycle from each ensemble member of the assimilation ex-

periment separately to ensure that my analyses are not dominated by the signal of a

seasonal cycle. I then form an ensemble mean of the three realizations of the assimi-

lation run. I detrend the ensemble mean and form anomalies against its mean state.

Detrending ensures that the variability and predictions that I examine in this disserta-

tion refer to the internal variability of the climate system, and are not contaminated

by the long-term trend. The detrended ensemble mean of anomalies will henceforth be

referred to as ASSIM.

From every individual ensemble member, Müller et al. (2014) started ten year long

simulations with the free fully coupled MPI-ESM-LR at the beginning of every year. I

evaluate the ensemble mean of these hindcasts against the assimilation experiment to

reconstruct the skill of decadal predictions for the 20th century.

I remove the mean seasonal cycle from every ensemble member of the hindcasts indi-

vidually. The ensemble members of the hindcast experiments are bias corrected against

the corresponding realization of the MPIOM simulation from Müller et al. (2015), by

setting the mean climate state in the hindcast experiments to that of the corresponding

MPIOM simulation. Then, I construct an ensemble mean from the hindcast ensemble

members. I detrend the ensemble mean hindcasts, and form anomalies against the mean

state of the ensemble mean. The resulting detrended and bias corrected ensemble mean
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hindcasts will be referred to as HC throughout this dissertation.

Starting coupled model simulations from assimilation experiments can lead to a strong

drift where model physics and real physics disagree (e.g. Smith et al., 2013; Sanchez-

Gomez et al., 2016; Pohlmann et al., 2017). Because the ocean state estimate used here

for assimilation was based on the same model version as the ocean component of the

coupled model it was assimilated into, and because it was forced exclusively at the ocean

surface, data assimilation in this simulation represents a relatively soft approach to data

assimilation. This potentially reduces the amount of drift that can be expected from

this assimilation model simulation. Moreover, the interior ocean can freely adjust to the

surface forcing. This enables an examination of the temporal and spatial development of

surface-induced changes in the ocean state and dynamics, like the mechanism leading to

the AMOC Fingerprint (Zhang and Zhang, 2015), with minimal perturbance from data

assimilation. On the other hand, a surface-forced ocean state estimate might represent

the three-dimensional ocean state only to a limited degree. However, the ocean state

estimate that was used to produce ASSIM was previously found to produce reasonable

climate variability in the North Atlantic region that is in agreement with observations

and reanalyses in the atmosphere as well as the ocean for the entire 20th century, like

the 1960 cooling and the 1920 and 1990 warmings (Müller et al., 2015). A drawback

of the HC simulations is the limited ensemble size of three members. Regardless, the

HC ensemble mean was shown to reproduce climate variability in the North Atlantic

region robustly for the entire time series 1901-2010, which led to an increase in North

Atlantic surface temperature prediction skill when using 1901-2010 for the evaluation

of skill compared to 1960-2010 (Müller et al., 2014). Because of the aforementioned

reasons, ASSIM and HC are appropriate tools for the examination of the research ques-

tions brought forward in this dissertation.

2.3 Observations

Wherever possible, I place my findings in the context of temperature observations. I

use in this dissertation the Hadley Center Sea Ice and Sea Surface Temperature data set

(HadISST ) from Rayner et al. (2003). This SST state-estimate is an ocean reanalysis

based on SST and sea ice concentration data that is interpolated onto a grid using a

reduced scale optimal interpolation procedure (Rayner et al., 2003). HadISST provides

an SST and sea ice reanalysis for the period 1870 to 2018 (as of April 2018) that is

widely used to verify model simulations and hindcasts (e.g. Brune et al., 2017). In

this dissertation I use the period 1901-2010 of HadISST data. To assess internal cli-

mate variability beyond linear warming, I subtract the linear trend for 1901-2010 from

HadISST.
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2.4 Post-Processing and Methods

In this dissertation, I use AMOC anomalies in density coordinates, calculated from ver-

tical diapycnal transports that are calculated from divergences of horizontal transports.

I define total OHT in time (Q(t)) as the depth- and longitude- integrated product of

three-dimensional y-velocity (v) and potential temperature (Θ) fields as in Jayne and

Marotzke (2001). This is formulated as

Q(t) = ρ0cp

∫ ∫

0

−H

vΘdzdx,

with ρ0: density of sea water (1025 kg ·m−3), and cp: specific heat of sea water (3994 J ·

kg−1 ·◦ C−1) integrated over depth z, up to maximum depth level H, and longitudinal

extent of the Atlantic basin x (Jayne and Marotzke, 2001).

Upper ocean heat content (UOHC(t)) at every horizontal grid point is calculated by

integrating potential temperature Θ in the upper 700 m of the ocean (the upper 20

layers in the MPI-ESM-LR):

UOHC(t) = ρ0cp

∫

0m

700m

Θdz.

In this dissertation, I examine the heat exchange between the ocean and the atmosphere

using surface heat fluxes (SHF ). These are here defined as the total surface heat fluxes

over sea. This includes shortwave, longwave, sensible and latent heat fluxes. These

fluxes are defined positive downward.

Climate co-variability is assessed using Pearson correlation coefficients. These correla-

tion analyses sometimes involve lagging one time series with respect to the other to find

temporal shifts between variability patterns. The statistical significance of these corre-

lations is assessed using a Monte-Carlo procedure. This procedure shows the likelyhood

that the correlation values occur by chance. The amount of total climate variability

explained by certain features of the climate system is analyzed using an Empirical Or-

thogonal functions (EOF ) analysis (Storch and Zwiers, 1999). Wherever I compare

different physical modes of the climate system, like strong and weak phases of ocean

heat transport, I use a composite mean analysis, i.e. I compare the mean states of the

different physical modes. These composite means are lagged against each other where

appropriate. To test whether composite mean climate states related to different climate

modes are statistically different from the mean climate variability, I use a two-sided

t-test.

I assess the hindcast skill of HC using Anomaly Correlation Coefficients (ACCs). ACCs
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are formulated as

ACC =

∑n
i=1

f ′

ia
′

i
√

∑n
i=1

f ′2

i

∑n
i=1

a′2i

,

with n: number of samples, f ′: anomaly of the forecast value, and a′: anomaly of the

verifying value (Jolliffe and Stephenson, 2012). ACCs thus provide an estimate of the

co-variability of HC and ASSIM for a given period of time in the past. The statistical

significance of the skill estimates of the hindcasts presented in this dissertation is as-

sessed using a Monte-Carlo procedure. This procedure shows the likelyhood that HC

produces ‘observed’ climate variability by chance. The predictability I discuss here is

tested using a leave-one-out cross-validation (Arlot and Celisse, 2010) to ensure that

hindcast skill that I diagnose is not dominated by individual years.

I form annual mean anomalies of OHT, AMOC, UOHC and SSTs. From SATs, I

construct annual and seasonal mean anomalies for winter (January, February, March;

JFM ), spring (April, May, June; AMJ ), summer (July, August, September; JAS ), and

autumn (October, November, December; OND) from HC and ASSIM. The definition

of these seasons is chosen to avoid averaging over model initialization in HC. I use full

values of both annual and seasonal mean SHFs, not anomalies, to understand the full

energy exchange between the ocean and the atmosphere. Analyses in piControl, HIST,

the RCP scenarios, and HadISST only use annual means.
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3 | Ocean Overturning and North Atlantic

Temperatures

3.1 Introduction

The objective of this chapter is to identify the specific influence of strong and weak

phases of the AMOC and associated ocean heat transport on SSTs in the North At-

lantic up to a decade into the future. Zhang and Zhang (2015) used simulations with the

GFDL-CM2.1 model to present a physical mechanism that connects ocean overturning

variability in the subpolar North Atlantic with a particular SST pattern, the AMOC

Fingerprint, about a decade later. The AMOC Fingerprint features a SST dipole of a

positive SST anomaly in the North Atlantic subpolar gyre and a negative SST anomaly

in the Gulf Stream region.

In their study, Zhang and Zhang (2015) showed that the evolution of the AMOC Fin-

gerprint depends on a slowly southward propagating AMOC and OHT anomaly that

originates from a surface density anomaly in the North Atlantic. While propagating

southward slowly, this AMOC and OHT anomaly constantly transports heat north-

ward, leading to a heat convergence anomaly North of the AMOC and OHT anomaly

and a heat divergence anomaly South of it (cf. fig. 1.2c; Zhang and Zhang, 2015). At

35◦N, the AMOC and OHT anomaly breaks down and continues to travel southward

at the speed of a coastal Kelvin wave, which inhibits the formation of the AMOC Fin-

gerprint South of that latitude.

The evolution of the AMOC Fingerprint has so far only been examined in the GFDL

model. I therefore use in this chapter the ASSIM simulation to examine the robust-

ness of the evolution of the AMOC Fingerprint in the MPI-ESM-LR. In the process, I

identify possible model-specific aspects in the formation of the AMOC Fingerprint. I

begin by replicating the study by Zhang and Zhang (2015) in the ASSIM simulation.

Subsequently, I address some questions that the study by Zhang and Zhang (2015) left

open: I investigate in composite mean upper ocean heat content and SST anomalies

to determine whether there is a difference in the influences of strong and weak phases

of AMOC and OHT on the formation of the AMOC Fingerprint. I then examine the

influence of the AMOC Fingerprint on surface air temperatures.
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Figure 3.1: (a) Detrended anomalies of AMOC maximum at 50◦N (dashed line, [Sv]) and total OHT
at 50◦N (solid line, [10−1 PW]) in the ASSIM-simulation. The grey area denotes a half standard
deviation above and below the mean of the previous 30 years. Strong and weak OHT phases, i.e.
years where the solid line lies outside the grey area, are marked with red and blue dots at the bottom,
respectively. Hovmöller Diagrams of OHT anomalies (b) and AMOC maximum anomalies (c) illustrate
the development of strong and weak anomalies of OHT and AMOC in space (y-axis, [◦latitiude]) and
time (x-axis [yrs]). OHT and AMOC time series are detrended at each latitude.

3.2 Meridional Coherence of AMOC and OHT in the North

Atlantic

The key feature of the findings by Zhang and Zhang (2015) is the slow southward prop-

agation of OHT phases in the North Atlantic. I therefore first analyze the meridional

coherence of AMOC maximum and total OHT in the assimilation model experiment

ASSIM, and test whether AMOC variability and heat transport variability are linked in

this model. Annual mean anomalies of AMOC maximum and OHT are largely coher-

ent at 50◦N (corr = 0.84, fig. 3.1a), and seem closely connected across the entire North

Atlantic at both decadal and longer time scales (fig. 3.1b,c). In ASSIM, the 20th cen-

tury is characterized by substantial multidecadal variability in both AMOC and OHT

with stable strong anomalies in the 1920s and 1990s and an episode of less stable weak

anomalies in between. This variability is similar to previously published estimates (e.g.

Robson et al., 2013, 2014; Müller et al., 2014).
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Figure 3.2: ASSIM-based lead-lag correlations of OHT at 50◦N with AMOC maximum anomalies
(a), OHT anomalies (b), and ocean heat convergence (c). Lead-lag correlations of OHT at 45, 50, and
55◦N with oceanic heat convergence between 40-50◦N, 45-55◦N, and 50-60◦N, respectively, are shown
in (d). Positive lags indicate that OHT leads and vice versa.

As suggested by Zhang and Zhang (2015), OHT anomalies in ASSIM generally originate

in the North Atlantic between 50-60◦N and propagate southward slowly; this propaga-

tion is closely linked to AMOC dynamics (fig. 3.2a,b). South of 35◦N, both AMOC

and OHT anomalies show only limited correlation to OHT anomalies at 50◦N, and the

correlation that can be seen shows the same lag to OHT at 50◦N. The latter indicates

that South of 35◦N, AMOC and OHT anomalies propagate southward at the speed of

a coastal Kelvin wave as described in Zhang and Zhang (2015).

OHT anomalies at 50◦N (henceforth OHT50N ) and ocean heat convergence anomalies

between 55-40◦N several years later are highly correlated (fig. 3.2c). This effect results

from the slow southward propagation of the OHT anomaly North of 35◦N, and is in line

with the findings of Zhang and Zhang (2015). Because the OHT anomaly propagates

more slowly southward than it advects heat northward, an ocean heat convergence

anomaly arises just North of the OHT anomaly, and an ocean divergence anomaly

arises just South of the OHT anomaly. The heat convergence signal is particularly

strong and long-lasting between 45-55◦N, where I find a high positive correlation when

OHT50N leads ocean heat convergence by 0 to 8 years (fig. 3.2c,d). The time lags of

maximum correlation between OHT50N and ocean heat convergence anomalies decrease

with increasing latitude of the area affected by ocean heat convergence (fig. 3.2d).

Because of the faster propagation of the OHT anomalies South of 35◦N, I do not find

a ocean heat convergence signal South of 40◦N (fig. 3.2c). The strong and long-lasting

ocean heat convergence anomalies North of 40◦N accumulate heat and potentially lead
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Figure 3.3: Point-by-point correlation of OHT50N with upper ocean heat content of the upper 700m
in the North Atlantic in ASSIM at lag 0 (a) and when OHT50N leads by 3-5 years (b) and 7-9 years
(c), and with SSTs at lag 0 (d) and when OHT50N leads by 3-5 years (e) and 7-9 years (f). Stippling
indicates significant correlations at the 99% level.

to persistent UOHC (Dong et al., 2007; Zhang and Zhang, 2015).

In ASSIM, I find an area of UOHC in the North Atlantic to be significantly corre-

lated with OHT50N variability at lag 0, as well as when OHT50N leads by 3-5 and 7-9

years (fig. 3.3a-c). The highest correlations are located in the northeast North Atlantic

and form a crescent shape around a strong negative correlation in the Gulf Stream

region. The overall connection of UOHC to OHT50N increases with increasing years

that OHT50N leads, but the pattern stays the same. SST anomalies (fig. 3.3d-f) show

largely the same shape of correlation to OHT50N anomalies as UOHC anomalies at all

time lags (fig. 3.3a-c). Like with UOHC, the connection of SSTs to OHT50N increases

with increasing years that OHT50N leads. Most of this connection is found North of

40◦N.

Correlation patterns of sea surface height (SSH ) anomalies to OHT50N (fig. 3.4a-c) are

very similar to those of UOHC. SSH anomalies primarily originate from changes in the

ocean and are barely affected by atmospheric processes. Thus, UOHC anomalies can be

assumed to show the oceanic contribution to temperature changes in the surface ocean

in regions where they coincide with SSH anomalies. This is a connection that was also

shown by Zhang and Zhang (2015).

At the ocean surface, the influence of OHT50N variability on sea surface salinity is

closely connected to the OHT-influence on SSTs as shown by correlation maps in figure

3.4d-f. This supports that SSTs are a surface signal that arises from a combination of

oceanic and atmospheric forcing. In conjunction with the similar time lags I find in
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Figure 3.4: Point-by-point correlation of OHT50N with sea surface height in the North Atlantic in
ASSIM at lag 0 (a) and when OHT50N leads by 3-5 years (b) and 7-9 years (c), and with sea surface
salinity at lag 0 (d) and when OHT50N leads by 3-5 years (e) and 7-9 years (f). Stippling indicates
significant correlations at the 99% level.

this analysis and in the ocean heat convergence correlation (cf. fig. 3.2c,d), I conclude

that the mechanism described by Zhang and Zhang (2015) as leading to the AMOC

Fingerprint is responsible for the OHT-UOHC/SST correlation pattern.

The correlation patterns found for UOHC and SSTs correspond well with the first prin-

cipal component of their respective empirical orthogonal functions (EOFs, fig. 3.5). In

addition, the timeseries corresponding to these EOFs are highly correlated with OHT50N

when OHT leads by 8 years (UOHC: 0.76, SST: 0.68). This underlines that OHT50N

variability and the mechanism leading to the AMOC Fingerprint are responsible for

much of the UOHC and SST variability in the extratropical North Atlantic.

The UOHC and SST pattern I find differs from the pattern Zhang and Zhang (2015)

described. Specifically, I find the strongest positive anomaly in the northeast Atlantic,

while Zhang and Zhang (2015) find this positive anomaly in the central subpolar gyre

(cf. fig 1.2a). Because of the different UOHC and SST pattern in the MPI-ESM, I will

henceforth refrain from calling this pattern the AMOC Fingerprint to avoid confusion,

but will instead refer to the MPI-ESM-specific AMOC Fingerprint as the characteristic

SST pattern.
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Figure 3.5: The first three Empirical Orthogonal Functions (EOFs; arbitrary units) of UOHC (a-c)
and SSTs (g-i) in the North Atlantic between 20 and 80◦N in ASSIM. Corresponding normalized time
series are shown as thick solid lines in (d-f, in PW) and (j-l, in K), respectively. In the time series
graphs, the dashed line shows OHT variability at 50◦N [10−1 PW].

3.3 Subsampling Overturning States by Strong and Weak

Ocean Heat Transport

Going beyond Zhang and Zhang (2015), I examine the emergence of the characteristic

SST pattern and the role of UOHC in more detail with particular attention to strong

and weak phases of OHT50N . Composite mean OHT anomalies in the North Atlantic

before, during, and after strong, weak, and neutral anomalies of OHT50N in ASSIM

reveal the respective influences of these OHT phases on SST anomalies separately. For

that, overturning states are subsampled for years in which the OHT50N is at least half

a standard deviation above or below its mean of the preceding 30 years (fig. 3.1a). I

define years that are not indentified as strong or weak OHT phases as neutral to under-

stand climate variability that is not connected to particularly strong OHT anomalies for

comparison. No conclusions presented in this dissertation change substantially, though,

if other possible criteria are used to select strong, weak, and neutral phases of OHT50N
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Figure 3.6: Composite means before, during, and after strong (left column), weak (middle column),
and neutral (right column) OHT50N phases in ASSIM. I show mean OHT anomalies (a-c) and cu-
mulative ocean heat convergence relative to lag 0 (d-f) against latitude. (g-i) show composite mean
cumulative heat convergence between 40-50◦N, 45-55◦N, and 50-60◦N for strong (g), weak (h), and
neutral (i) OHT phases at 45, 50, and 55◦N, respectively. Positive lags indicate that OHT leads and
vice versa.

(e.g. a full standard deviation above or below the mean, or above or below the mean of

the previous 30 years).

Composite mean OHT anomalies associated with strong OHT50N phases show a very

pronounced and long-lived positive signal that propagates southward between 50 and

35◦N. This OHT propagation persists for up to 9 years after a strong OHT50N anomaly

(fig. 3.6a). For weak OHT50N phases, the negative southward propagating OHT anomaly

disappears almost completely 6 years after the OHT50N anomaly (fig. 3.6b). No distinct

OHT propagation signal is connected to neutral OHT50N phases (fig. 3.6c). This leads

to different ocean heat convergence signals between phases of strong, weak and neutral

OHT50N .

Cumulative heat convergence anomalies illustrate the influence of strong and weak

OHT50N on the heat that accumulates in the ocean: cumulative heat convergence is

calculated by integrating ocean heat convergence anomalies at every latitude between

the OHT50N anomaly and time lags between -4 and 10 (fig. 3.6d-f). Strong OHT50N

phases are followed by a strong and long-lived cumulative heat convergence anomaly

that extends approximately from 45-55◦N after 5 years (fig. 3.6d). This cumulative heat

convergence anomaly is strongest between 45-55◦N compared to other latitudinal bands
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(fig. 3.6g). Weak OHT50N phases are followed by a weak cumulative heat divergence

anomaly that emerges at longer lag of 6 or more years and extends from 50◦N northward

(fig. 3.6e). Here, a positive cumulative heat convergence anomaly South of 50◦N and a

negative cumulative heat convergence anomaly North of 50◦N are stronger than the heat

convergence anomaly between 45-55◦N (fig. 3.6h). The cumulative ocean heat conver-

gence signal following neutral phases is largely similar to that following weak OHT50N

phases (fig. 3.6f), which does not lead to a distinct ocean heat convergence signal North

of 45◦N (fig. 3.6i). The strongest ocean heat convergence signal that cannot be found

after all OHT50N phases is the strong ocean heat convergence anomaly between 45-55◦N

after strong OHT50N phases. This indicates that the effect of OHT50N anomalies on the

characteristic SST pattern is only strong between 45-55◦N after strong OHT50N phases,

which would indicate an asymmetric response of SSTs to subpolar OHT. Other heat

convergence signals are symmetric between all different OHT phases which indicates an

influence of OHT variability on surface temperatures in these latitudinal bands. How-

ever, no large differences of temperature signals between different OHT50N phases can

be expected there.

Composite mean upper ocean heat content anomalies during and after phases of strong

and weak OHT50N (fig. 3.7) show a similar shape as the UOHC correlation maps in fig-

ures 3.3a-c (keeping in mind that positive correlations correspond to positive composite

means for strong OHT phases and negative composite means for weak OHT phases).

Following strong OHT50N phases, a strong positive UOHC anomaly between 45-55◦N

appears in the northeast Atlantic and increases in strength over time (fig. 3.7a-c). By

contrast, the UOHC anomaly is only weakly negative in this area after weak OHT50N

phases at all time lags (fig. 3.7d-f). Neutral phases are, particularly North of 40◦N, not

obviously connected to the correlation patterns I previously found (fig. 3.7g-i). This

is in line with the findings based on the composite mean cumulative heat convergence

anomalies (cf. fig. 3.6d-i). The role of the ocean in the formation of this UOHC anomaly

is underpinned by the fact that I find a SSH anomaly of very similar shape at the same

time (fig. 3.8).

Another signal I find in the composite mean UOHC anomalies is a dipole between

the Gulf Stream region and its South-Eastern edge (fig. 3.7). This pattern can also

be attributed to composite mean cumulative ocean heat convergence anomalies (cf.

fig. 3.6d-i). However, it appears to be a symmetric response as this pattern arises

after neutral, weak and strong OHT50N phases at similar strengths. UOHC in that

area is therefore likely to arise from physical processes that are not connected to the

southward propagation of OHT phases in the North Atlantic region and associated

ocean heat convergence. I also find this response in SSH anomalies (fig. 3.8).

Composite mean SST anomalies compared to the composite mean UOHC anomalies

described above show a similar pattern North of 40◦N (fig. 3.9). I find a strong signal
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Figure 3.7: Composite mean upper ocean heat content anomalies [PW] in ASSIM, related to strong
(a-c), weak (d-f), and neutral (g-i) OHT50N phases. I show composites at lag 0 (a,d,g) and composite
mean UOHC 3-5 (b,e,h) and 7-9 (c,f,i) years after strong and weak OHT50N phases. Stippling indicates
significance at the 99% level. Contours show significant (at the 99% level) net ocean-atmosphere surface
heat fluxes into the ocean (solid contours) and out of the ocean (dashed contours).

in composite mean SST anomalies in the northeast Atlantic that propagates westward

over time after both strong and weak OHT50N phases. Again, neutral OHT50N phases

are not strongly connected to SST anomalies North of 40◦N. After strong OHT50N

phases, composite mean SST anomalies grow continuously stronger over time (fig. 3.9a-

c), whereas composite mean SST anomalies after weak OHT50N phases become very

weak in the northeast Atlantic after 7-9 years (fig. 3.9f). I therefore conclude that ocean

heat convergence influences SSTs most strongly in the northeast Atlantic several years

after phases of strong OHT50N . Moreover, the asymmetric response of SST anomalies in

the northeast subpolar North Atlantic that originates from asymmetric OHT dynamics

in the North Atlantic is one important finding from this chapter.

3.4 The Influence on Surface Air Temperatures

I now examine the influence of the mechanism leading to the characteristic SST pattern

on ocean-atmosphere surface heat fluxes and subsequently surface air temperatures

over Europe. This analysis will give an indication of the effect that changes in subpolar

North Atlantic ocean circulation can have on European temperatures up to a decade
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Figure 3.8: Composite mean sea surface height anomalies [m] in ASSIM, related to strong (a-c), weak
(d-f), and neutral (g-i) OHT50N phases. I show composites at lag 0 (a,d,g) and composite mean SSH
3-5 (b,e,h) and 7-9 (c,f,i) years after strong and weak OHT50N phases. Stippling indicates significance
at the 99% level.

in advance, which might indicate high decadal surface temperature prediction skill over

land.

SHFs are correlated with OHT50N in similar areas as SSTs: in the subpolar gyre region

and South of the gulf stream front (fig. 3.10a-c, cf. fig. 3.3). Unlike with SSTs, SHFs are

negatively correlated to OHT50N variability: positive phases of ocean heat transport

are associated with later upward surface heat fluxes. As positive SST anomalies largely

coincide with upward SHFs, it can be concluded that the ocean dominates surface

temperature changes in these areas on decadal time scales. Interestingly, I find very

little dependence of the correlations of SHFs with OHT50N on the amount of years

by which OHT leads. This indicates that the flux of heat from the ocean into the

atmosphere is relatively constant. However, I do find a slight increase in SHF anomalies

with lead time, particularly in the subpolar gyre region.

SAT anomalies in the North Atlantic region are also highly correlated to OHT50N

variability. With increasing lag (OHT50N anomalies lead), the area of significant positive

correlations increases strongly (fig. 3.10d-f). SAT variability is significantly correlated

to OHT50N phases over the northeast Atlantic, Scandinavia, the Iberian Peninsula, and

large parts of northern Africa at lag 0 (fig. 3.10d). With increasing years that OHT50N

anomalies lead, significant SAT correlations propagate inland, covering much of Europe
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Figure 3.9: Composite mean SST anomalies [K] in ASSIM, related to strong (a-c), weak (d-f), and
neutral (g-i) OHT50N phases. I show composites at lag 0 (a,d,g) and composite mean SSTs 3-5 (b,e,h)
and 7-9 (c,f,i) years after strong and weak OHT50N phases. Stippling indicates significance at the 99%
level. Contours show significant (at the 99% level) net ocean-atmosphere surface heat fluxes into the
ocean (solid contours) and out of the ocean (dashed contours).

and the Arabian Peninsula when OHT50N leads by 3-5 years, after which correlations

stay largely constant (fig. 3.10e,f). This shows a robust statistical relationship between

OHT50N variability and annual mean surface temperature variability over Europe on

the decadal time scale. To better understand the specific influence of OHT50N phases

on European SATs, I now examine the mean SHF and SAT state connected to strong

and weak phases of OHT50N .

Significant composite mean SHFs (contours in fig. 3.9; upward SHFs generally corre-

spond to positive SST anomalies and vice versa) show some asymmetries between strong

and weak OHT50N phases, which highlights the impact of OHT dynamics on surface

heat fluxes. Note that I use total values and not anomalies for SHFs. Specifically, a

zonal asymmetry appears after 7-9 years with upward SHFs across most of the North

Atlantic between 50-55◦N and 20-50◦W where SST composites are high after strong

OHT50N phases (fig. 3.9c). I find downward SHFs in the Labrador Sea and in the

northeast Atlantic between 50-55◦N and 10-20◦W where SST composites are weak after

weak OHT50N phases (fig. 3.9f). These areas can be regarded as areas where SHFs

contribute strongly to SST variability alongside OHT. This finding indicates that the

ocean influences the atmosphere more strongly after strong OHT50N phases than after
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Figure 3.10: Point-by-point correlation of OHT50N with ocean-atmosphere surface heat fluxes in
ASSIM at lag 0 (a) and when OHT50N leads by 3-5 years (b) and 7-9 years (c), and with surface
air temperatures at lag 0 (d) and when OHT50N leads by 3-5 years (e) and 7-9 years (f). Stippling
indicates significant correlations at the 99% level.

weak OHT50N phases, which might lead to different SAT signatures related to strong

and weak OHT50N phases.

I find distinct signals of strong and weak OHT50N phases in SATs over Europe. Specif-

ically, strong OHT50N phases are followed by positive temperature anomalies over

the subpolar gyre and western and northern Europe that increase with increasing lag

(fig. 3.11a-c), whereas weak OHT50N phases are followed by significant SAT anomalies

over the subpolar gyre and Europe in general with the strongest anomaly over east-

ern Europe (fig. 3.11d-f). This could indicate a northward shift of the jet stream with

stronger warming in the northeast Atlantic after strong OHT50N phases as indicated

by the composite mean SST analysis shown in figure 3.9. Interestingly, there is al-

most no significant signal in composite mean SATs following neutral OHT50N phases

(fig. 3.11g-i), which indicates that, on decadal time scales, the characteristic SST pat-

tern and the physical mechanism preconditioning its formation - for both strong and

weak OHT50N phases - play an important role in modulating European SAT anomalies.

However, SATs vary strongly on the seasonal time scale. I will therefore now examine

the connection of seasonal SATs to OHT50N variability in the subpolar North Atlantic

on the decadal time scale. Because of the limited influence of neutral OHT50N phases

on European SATs I find here, I will henceforth focus exclusively on strong and weak

OHT50N phases.
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Figure 3.11: Composite mean SAT anomalies [K] in ASSIM, related to strong (a-c), weak (d-f), and
neutral (g-i) OHT50N phases. I show composites at lag 0 (a,d,g) and composite mean SSTs 3-5 (b,e,h)
and 7-9 (c,f,i) years after strong and weak OHT50N phases. Stippling indicates significance at the 99%
level.

3.5 Seasonal Impact of Ocean Dynamics on the Atmosphere

The analysis of seasonal mean SHFs and SATs allows me to assess the oceanic influence

on SATs at the seasonal level as suggested by e.g. Arthun et al. (2017). Because of the

strong SST signal on the decadal time scale (cf. fig. 3.9), I focus on composite mean

SHFs and SATs in ASSIM 7-9 years after strong and weak OHT50N phases.

I generally find upward SHFs after strong OHT50N phases and downward SHFs after

weak OHT50N phases (fig. 3.12a-j). SHFs are strong in winter and fall after both strong

and weak OHT50N phases, and after strong OHT50N phases in spring (fig. 3.12b,c,e,g,j).

Winter and spring SHF, too, show the zonal asymmetry I found on annual mean

SHFs (cf. fig. 3.9) with strong SHFs towards the western North Atlantic after strong

OHT50N phases and towards the eastern North Atlantic after weak OHT50N phases

(fig. 3.12b,c,g,h). These findings indicate that low-frequency variability from the ocean

is transported into the atmosphere most strongly in winter, spring and fall, influencing

SATs. They further indicate an asymmetric influence of strong and weak phases of

subpolar OHT on seasonal SATs.

The response of seasonal SATs is generally symmetric between strong and weak OHT50N

phases over land (fig. 3.12l-o,q-t). There are some exceptions: in winter, SATs over Scan-
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Figure 3.12: Composite mean SHFs [W/m2] in ASSIM when strong (a-e) and weak (f-j) OHT50N

phases lead by 7-9 years, and composite mean SAT anomalies [K] in ASSIM when strong (k-o) and
weak (p-t) OHT50N phases lead by 7-9 years. I show composites for annual (first row), JFM (second
row), AMJ (third row), JAS (fourth row) and OND (fifth row) means. Stippling indicates significance
at the 90% level.
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dinavia show strong anomalies after both strong and weak OHT50N phases. However,

the anomalies only differ strongly from the mean variability after weak OHT50N phases.

The large areas of strong but insignificant wintertime SAT anomaly around Scandinavia

indicate a high overall temperature variability in that season and area - this is likely

related to the impact of the winter North Atlantic Oscillation (e.g. Visbeck et al., 2001).

In summer, SAT anomalies are significant over Scandinavia after weak OHT50N phases,

and significant over large parts of western Europe and the UK after strong phases of

OHT50N . As I find little connection of SHF and SAT anomalies of any same season,

there likely is a seasonal-scale lag in the influence of SHF anomalies on SAT variability

over Europe (as suggested by e.g. Czaja and Frankignoul, 2002). On the decadal time

scale time, any SAT signal is likely to be modulated by the ocean. Further, a connec-

tion of SAT anomalies over Scandinavia to subpolar OHT variability is in line with the

findings from Arthun et al. (2017), which indicates that the mechanism leading to the

characteristic SST pattern might play a role in modulating the decadal SAT prediction

skill they find over Scandinavia.

3.6 Discussion

In this chapter, I show in an initialized version of the MPI-ESM-LR that the sugges-

tion of Zhang and Zhang (2015) that the ocean heat transport in the North Atlantic

region modulates SST variability has merit. However, some of my findings require dis-

cussion, like the role of the AMV in my findings, the model specificity of my findings,

the contribution of strong and weak OHT50N phases to SST variability, and the role of

ocean-atmosphere surface heat fluxes.

The Atlantic Multidecadal Variability (AMV) is a major driver of North Atlantic tem-

perature variability (e.g. Clement et al., 2015; Zhang et al., 2016). The mechanism I

describe here, as well as the characteristic SST pattern, seem to be closely related to the

AMV in the MPI-ESM-LR (fig. 3.13). A connection of a similar SST shape to the AMV

was also shown in Delworth et al. (2017). In my study, OHT50N leads the AMV by 8

years (max. correlation: 0.9), which indicates that the ocean at least contributes to the

formation of the AMV. As a result, the physical mechanism invoked in this study can be

seen not only as a contributor to decadal SST variability in the northeast Atlantic, but

also as a contributor to AMV variability on the same time scale. Note that the AMV

time series in ASSIM is also closely connected with the AMV in HadISST (fig. 3.13),

which is an indication that ASSIM reflects real climate variability in the North Atlantic

reasonably well.

A major caveat of the results I present here using ASSIM is the use of three ensemble

members of one model. The small ensemble size was in the past shown to be appropriate
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Figure 3.13: Time series from ASSIM of OHT50N anomalies (solid line, [PW]), mean temperature
anomalies in the box indicated in figs. 4.5, 4.6 (stippled line, [K]), and AMV as defined as average
SST anomalies between 0 and 60◦N in the North Atlantic (dashed line, [K]). I also show the AMV
time series from HadISST observations [K] in narrow dashes. Time series are low-pass filtered with an
11-year running mean.

to study North Atlantic climate variability (Müller et al., 2014, 2015). To some degree,

my findings have to be interpreted as model-specific. In particular, I find an eastward

displacement of the characteristic SST pattern which connecteds to the OHT50N vari-

ability compared to Zhang and Zhang (2015), while finding a very similar dynamical

explanation for the origin of the characteristic SST pattern. This indicates that the

MPI-ESM-LR reacts similarly to OHT anomalies in the North Atlantic as the GFDL

CM2.1 used in Zhang and Zhang (2015), but these anomalies affect a different area

in the North Atlantic. The more eastward characteristic SST pattern could indicate a

more zonal Gulf Stream in the MPI-ESM compared to the GFDL model - in that case,

the use of a higher resolution model might alleviate this problem (see e.g. Drews and

Greatbatch, 2017). However, as the physical mechanism leading to the variability pat-

terns identified here is consistent with previous publications, the conclusion that OHT

in the subpolar North Atlantic influences SST variability as described above - probably

somewhat further to the west - is valid.

An important finding from this research is the asymmetric response of North Atlantic

SSTs to strong and weak phases of subpolar OHT. As a result, stronger and more per-

sistent temperature anomalies can be expected in the North Atlantic after strong than

after weak OHT50N phases. An implication of this finding is of methodological nature:

it suggests that simple correlation analyses are not enough to understand the dynamics

of a system. While this finding is not necessarily new, this study emphasizes again that

conclusions drawn from a correlation study should be taken with a pinch of salt, and

deeper analyses of different possible states of a system are needed to fully comprehend

its dynamics.

I find different lengths of strong and weak OHT50N phases in ASSIM (cf. fig. 3.1). Al-

though the numbers of years of strong and weak OHT50N as identified by the criterion I

define are similar (weak OHT50N : 36 years; strong OHT50N : 40 years), strong OHT50N
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phases appear more coherently than weak ones. This might affect the composite mean

analysis I conduct, as longer OHT phases might also have a more pronounced impact

on SSTs. I will take up this issue in chapter 5 of this dissertation, attempting to resolve

it.

This study generally supports the suggestion by earlier studies that temperatures in the

eastern North Atlantic are controlled by oceanic heat advection, while temperatures in

the western North Atlantic are controlled by surface heat fluxes (e.g. Robson et al.,

2017). This study suggests, however, that this notion depends on the strength of ocean

heat transport. When OHT50N is strong, I find in ASSIM that the northeast Atlantic

is strongly influenced by ocean heat advection. During and after weak OHT50N , SHFs

become more important in the modulation of surface temperatures in the northeast

Atlantic (fig. 3.9). This might be related to the weaker underlying UOHC anomaly

following a weak OHT50N phase.

I show that decadal variability of North Atlantic SSTs is strongly influenced by low-

frequency ocean heat transport variability in the MPI-ESM-LR. As ocean variability is

thought to modulate climate predictability on decadal time scales, I will analyze in the

upcoming chapter the influence of the dynamical mechanism presented above on the

skill of decadal surface temperature hindcasts in the North Atlantic region.
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4 | Decadal Hindcasts in the North At-

lantic Region

4.1 Introduction

In the previous chapter I show that the suggestion by Zhang and Zhang (2015) that

ocean overturning variability in the subpolar North Atlantic influences SST variability

in the North Atlantic region for up to a decade ahead has merit. Besides describing the

physical mechanism leading to the characteristic SST pattern, Zhang and Zhang (2015)

hypothesized that this physical mechanism influences surface temperature prediction

skill in the North Atlantic on the same time scale. I use this chapter to reconcile the

findings from chapter 3 with Zhang’s hypothesis.

In the past, case studies showed a connection of particularly strong and weak phases of

ocean overturning to high skill in SST hindcasts (e.g. Yeager et al., 2012; Robson et al.,

2013, 2014). The mechanism shown by Zhang and Zhang (2015) suggests that findings

from these case studies are generally applicable. However, the influence of the physical

mechanism leading to the characteristic SST pattern on decadal surface temperature

hindcast skill was not assessed so far.

This lack of systematic assessment of the influence of ocean overturning on decadal SST

hindcast skill is mainly due to methodological limitations. For such an assessment, a

long time series with many individual hindcast simulations is necessary to ensure sta-

tistically robust results. The HC hindcast experiments for the period 1901-2010 that I

introduced earlier represent such a set of hindcast simulations.

This chapter builds on the connection between OHT50N , UOHC, SSTs, SHFs and SATs

described in chapter 3. I investigate systematically whether and how predictability of

these parameters on the decadal time scale (3-5 years and 7-9 years ahead: at lead

years 3-5 and 7-9), depends on the strength of the OHT50N at the initialization of the

hindcast. I evaluate HC against ASSIM using anomaly correlation coefficients (ACCs),

for the entire time series, after strong, weak, and neutral OHT50N phases to connect

predictability to the physical mechanism leading to the characteristic SST pattern.

Comparing the influences of OHT variability and UOHC persistence on the skill of

decadal surface temperature hindcasts diagnoses the relative contributions of strong
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Figure 4.1: Anomaly Correlation Coefficients (ACCs) of UOHC (upper 700m) from the HC experi-
ments against ASSIM at lead years 1 (a), 3-5 (b) and 7-9 (c). I show ACCs for SSTs at lead years 1
(d), 3-5 (e) and 7-9 (f). Stippling indicates significant ACCs at the 99% level.

and weak phases of OHT50N and UOHC persistence to hindcast skill separately. I then

examine the influence of skillful SST hindcasts on the skill of decadal hindcasts of sea-

sonal surface air temperatures.

4.2 Skillful Hindcasts of North Atlantic Surface Tempera-

tures

For 1901-2010, I find upper ocean heat content to be significantly predictable in the

entire North Atlantic at lead year 1 with particularly high ACCs in the northeast

Atlantic (fig. 4.1a). At lead years 3-5 and 7-9, I find significant ACCs for UOHC in

the northeast Atlantic as well (figs. 4.1b,c). Similarly, SSTs show significant and high

ACCs in the northeast Atlantic at lead years 1, 3-5 and 7-9 (fig. 4.1d-f).

High ACCs for annual mean surface heat fluxes and surface air temperatures (fig. 4.2)

are mostly confined to regions of strong SST anomalies in the composite means (cf.

fig. 3.3). This indicates a strong influence of the ocean on the skill of atmospheric

hindcasts on decadal time scales. Like ACCs of SST hindcasts, ACCs of both SHF and

SAT hindcasts are highest at lead year 1 and decrease afterwards. However, for SHFs

and SATs, ACCs decrease much faster than for both UOHC and SSTs which is due to a

comparatively strong influence of predictable low-frequency ocean variability on UOHC

and SSTs. The shape of high decadal SHF ACCs appears more closely connected to
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Figure 4.2: Anomaly Correlation Coefficients (ACCs) of SHFs from the HC experiments against
ASSIM at lead years 1 (a), 3-5 (b) and 7-9 (c). I show ACCs for SATs at lead years 1 (d), 3-5 (e) and
7-9 (f). Stippling indicates significant ACCs at the 99% level.

SST variability than to SHF variability (cf. figs. 3.3, 3.10).

Unlike in the correlation analysis (cf. fig. 3.10), ACCs for annual mean SATs are

insignificant over Europe on the decadal time scale (fig. 4.2). This is an indication

that HC is not capable of capturing SAT variability accurately. However, the strong

seasonality of SHF and SAT variability (cf. fig. 3.12) prevents any final conclusions at

this point.

SHF ACCs show strong seasonality at all lead times (fig. 4.3). SHFs are mostly pre-

dictable in winter (JFM) and spring (AMJ) on all time scales, however, the spring

predictability is clearly the strongest among the seasons on decadal time scales. In-

cidentally, spring is the season that shows one of the strongest SHF anomalies at the

decadal time scale (cf. fig. 3.12). Further, this analysis indicates that SHFs are strongest

and most predictable in spring. This could lead to significant ACCs of spring SATs on

the decadal time scale.

ACCs for SATs show less seasonality than those of SHFs (fig. 4.4). However, some

features stand out: ACCs at lead year 1 are highest in winter and spring (fig. 4.4d,g),

SAT-ACCs at lead years 3-5 are almost independent of the season, and ACCs 7-9 years

into the future are highest in winter, spring and fall. These features are not obviously

connected to SHF predictability, but rather to the very little seasonal difference in

hindcast skill that SSTs exhibit (not shown). This indicates that surface heat flux

predictability does not have to be high to precondition good ACCs for SAT, but that

SAT predictability is more directly connected to SST predictability. I do not find
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Figure 4.3: Anomaly Correlation Coefficients (ACCs) of SHFs from the HC experiments against
ASSIM at lead years 1 (left column), 3-5 (middle column) and 7-9 (right column). Lines show ACCs
for annual means (a-c), JFM means (d-f), AMJ means (g-i), JAS means (j-l), and OND means (m-o).
Stippling indicates significant ACCs at the 99% level.
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Figure 4.4: Anomaly Correlation Coefficients (ACCs) of SATs from the HC experiments against
ASSIM at lead years 1 (left column), 3-5 (middle column) and 7-9 (right column). Lines show ACCs
for annual means (a-c), JFM means (d-f), AMJ means (g-i), JAS means (j-l), and OND means (m-o).
Stippling indicates significant ACCs at the 99% level.
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significant ACCs in decadal hindcasts for seasonal SATs over land, not even in spring:

significant ACCs are confined to the ocean areas.

The general structure of both UOHC and SST ACCs at lead years 3-5 and 7-9 resembles

the shape of the characteristic SST pattern (cf. fig. 3.3) and the composite mean UOHC

and SST patterns I discuss above (cf. figs. 3.7, 3.9). This indicates that OHT50N

anomalies play an important role in modulating UOHC and SST predictability. Because

I find that SAT predictability is closely connected to SST predictability, ACCs of SAT

hindcasts over land could also be connected to OHT50N variability. I will examine this

hypothesis in the upcoming section by looking at ACCs after strong and weak OHT50N

phases separately.

4.3 Hindcast Skill after Subsampling OHT Phases

4.3.1 Influence of Ocean Heat Transport on Decadal Predictability in

the Ocean

I analyze ACCs of UOHC in the North Atlantic for hindcasts started in years of strong

(fig. 4.5a-c), weak (fig. 4.5d-f) and neutral (fig. 4.5g-i) OHT50N phases separately to

identify the specific influence of the phase of OHT50N on hindcast skill in the North

Atlantic. I find significant UOHC ACCs at all lead years after both strong and weak

OHT50N anomalies. At lead year 1, ACCs are very similar after strong and weak

OHT50N phases, and for the entire time series (figs. 4.5a,d; 4.1a). At lead years 3-5 and

7-9, ACCs are generally higher after both strong and weak phases of OHT50N than for

the entire time series. Large areas of significant UOHC ACCs, like the area South of

the Gulf Stream front and the Tropical Atlantic, show almost no asymmetry between

strong and weak OHT50N phases. However, I find significant ACCs in large parts of the

northeast Atlantic after strong OHT50N phases (fig. 4.5b,c), while ACCs are significant

in the central North Atlantic after weak OHT50N phases (fig. 4.5e,f).

After neutral OHT50N phases, ACCs for UOHC in the North Atlantic are only high

at lead year 1 (fig. 4.5g). At lead years 3-5, the ACC pattern for UOHC after neutral

OHT50N phases resembles that following weak OHT50N phases, although it is slightly

weaker after neutral phases (fig. 4.5h). This indicates that, on this time scale, OHT50N

variability influences ACCs of UOHC hindcasts only weakly. A possible explanation

for the emergence of high UOHC ACCs on this time scale could be the persistence of

UOHC. At lead years 7-9, there is no considerable ACC pattern in UOHC hindcasts

following neutral OHT50N phases (fig. 4.5i), underscoring the high impact of OHT50N

variability on hindcast skill on this time scale.

ACCs of SSTs behave very similar to ACCs of UOHC. SST ACCs are significant at all

lead years after both strong and weak OHT50N phases (fig. 4.6). At lead year 1 they are

similar to ACCs diagnosed for the entire time series (figs. 4.6a,d; 4.1d). At lead years
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Figure 4.5: Anomaly Correlation Coefficients (ACCs) Upper ocean heat content (upper 700m) from
the HC experiments against ASSIM after strong (a-c), weak (d-f), and neutral (g-i) OHT50N phases. I
show ACCs at lead years 1 (a,d,g), 3-5 (b,e,h) and 7-9 (c,f,i). Stippled areas indicate significant ACCs
at the 99% level. The black box is the area that UOHC is averaged over for figure 4.7a.

3-5 and 7-9, I find significant ACCs of SSTs to be higher and to cover larger areas after

strong than after weak OHT50N phases (fig. 4.6b,c,e,f). The conclusions concerning

neutral OHT50N phases are the same for SST as they are for UOHC (fig. 4.6g-i).

Many areas of significant ACCs for SSTs South of 40◦N do not show much asymme-

try between strong and weak OHT50N phases. This agrees with my findings from the

UOHC predictability study and suggests that the influence of OHT50N on asymmetric

predictability of UOHC and SSTs in those areas is limited. However, I find a zonal dif-

ference in ACCs between strong and weak OHT50N phases with significant ACCs in the

northeast Atlantic after strong OHT50N phases, and more centrally located significant

ACCs after weak OHT50N phases.

I attribute the zonal asymmetry I find between the ACC patterns of both UOHC and

SSTs at lead years 7-9 after strong and weak OHT50N phases to the zonally asymmetric

significant composite mean SHFs I show in figures 3.7 and 3.9. After both strong and

weak OHT50N phases, I find predictable UOHC and SSTs in areas that are characterized

by little heat exchange with the atmosphere. This is an indication that significant ACCs

are indeed connected to low-frequency ocean dynamics and that ACCs decrease strongly

where the atmosphere contributes strongly to surface temperature variability.
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Figure 4.6: Anomaly Correlation Coefficients (ACCs) of SSTs from HC against ASSIM after strong
(a-c), weak (d-f), and neutral (g-i) OHT50N phases. I show ACCs at lead years 1 (a,d,g), 3-5 (b,e,h)
and 7-9 (c,f,i). Stippled areas indicate significant ACCs at the 99% level. The black box is the area
that SSTs are averaged over for figure 4.7b.

ACCs for average UOHC and SSTs in the northeast Atlantic (45-55◦N, 45-10◦W, cf.

black box in figs. 4.5 and 4.6) further illustrate the overall effect of strong and weak

OHT50N phases on decadal predictability of UOHC and SSTs (fig. 4.7). Note that the

chosen box covers the area where I find significant predictability of UOHC and SSTs

after both strong and weak OHT50N phases. ACCs evaluated over the entire time series

for both UOHC and SSTs are generally high in the northeast Atlantic for up to 9 lead

years and outperform persistence forecast at lead years > 1 (fig. 4.7).

After strong OHT50N phases, ACCs in the northeast Atlantic are significantly higher

than after weak OHT50N phases and for the entire time series at lead years 2-7 for

UOHC (fig. 4.7a). Similarly, I find ACCs for UOHC after weak OHT50N phases that

are significantly lower than ACCs after strong OHT50N phases and for the entire time

series for lead years 2-6. UOHC ACCs after weak OHT50N phases re-emerge after lead

year 7, which might be connected to trends in UOHC anomalies.

SSTs show significantly higher ACCs after strong than after weak OHT50N phases and

for the entire time series at lead years 2-9 (fig. 4.7b). After weak OHT50N phases,

ACCs for SSTs largely follow ACCs for the entire time series. This analysis provides

further indication that the mechanism leading to the characteristic SST pattern influ-
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Figure 4.7: Anomaly Correlation Coefficients (ACCs) for average UOHC (a), and SSTs (b) over the
box indicated in figs. 4.5,4.6 against lead time. I use ASSIM as a reference. The black line shows
ACCs over the entire time series, green shows persistence forecast, the blue line shows predictability
after weak, and the red line predictability after strong OHT50N phases. The dashed lines indicate the
interquartile ranges around the mean predictability for each color. Wherever these dashed lines do not
overlap, two lines can be considered statistically significantly different. Solid points represent ACCs
significant at the 99% level.

ences UOHC and SST predictability on the decadal time scale. Strong OHT50N phases

are particularly important in modulating ACCs for both UOHC and SSTs in the North

Atlantic, as they lead to higher predictability of SSTs on the decadal time scale. I ex-

plore next whether a similar conclusion can be drawn for dynamical hindcasts of annual

and seasonal mean SHFs and SATs.

SHF ACCs after strong, weak and neutral OHT50N phases (fig. 4.8a-f) largely resemble

the ACC pattern found for the entire time series for SHFs at all lags (cf. fig. 4.2).

Asymmetries between strong, weak and neutral OHT50N phases are similar to those

found for SSTs. This underpins that ACCs of SHF hindcasts are more closely connected

to SST-ACCs and SST variability than to SHF variability. As ACCs of SST hindcasts

are generally high where SHFs are low, this shows that SHFs can be predicted skillfully

in areas where they are low. This limits the impact on SAT predictability that can be

expected from predictable surface heat fluxes.

Subsampling for different phases of subpolar OHT does not improve ACCs of decadal

surface temperature hindcasts over Europe (fig. 4.9). In general, ACCs of decadal SAT

hindcasts are closely related to those of SSTs: there are high ACCs over the ocean,

particularly in the characteristic SST pattern region. Consequently, ACCs of SATs over

the ocean are on the decadal time scale highest after strong OHT50N phases, inter-

mediately high after weak OHT50N phases, and virtually absent after neutral OHT50N

phases (fig. 4.9c,f,i). This leads me to conclude that there is an influence of the OHT50N

phase on ACCs of SAT hindcasts, and that this influence is particularly strong on the
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Figure 4.8: Anomaly Correlation Coefficients (ACCs) for SHFs from HC against ASSIM after strong
(a-c), weak (d-f), and neutral (g-i) OHT50N phases. I show ACCs at lead years 1 (a,d,g), 3-5 (b,e,h)
and 7-9 (c,f,i). Stippled areas indicate significant ACCs at the 99% level.

decadal time scale. However, HC and ASSIM do not show an influence of OHT50N on

SAT-ACCs for hindcasts over land. This might change when evaluating SAT hindcasts

for different seasons instead of annual means.

4.3.2 Influence of Ocean Heat Transport on Hindcasts of Seasonal

SATs

ACCs are high for seasonal mean SHFs at lead year 7-9 in areas where ACCs are high

for SSTs at the same lead time after both strong and weak OHT50N phases (fig. 4.10a-j;

cf. fig. 4.6c,f). Specifically, SHF ACCs are high in the northeast Atlantic after strong,

and high in the central North Atlantic after weak OHT50N phases. ACCs for SHFs

are significant in the North Atlantic in spring after strong OHT50N (fig. 4.10c). In all

other seasons, ACCs for SHFs are largely insignificant following both strong and weak

OHT50N . Following the assumption that SAT ACCs of decadal hindcasts are modulated

by the ocean, this suggests that there could be limited ACCs for SAT hindcasts at

seasonal means in HC, because the predictable SST signal is only in spring transported

into the atmosphere.

ACCs are only marginally significant for seasonal mean SATs over land at lead year 7-9

after strong and weak OHT50N phases (fig. 4.10k-t). The shape of these ACCs also bears
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Figure 4.9: Anomaly Correlation Coefficients (ACCs) for SATs from HC against ASSIM after strong
(a-c), weak (d-f), and neutral (g-i) OHT50N phases. I show ACCs at lead years 1 (a,d,g), 3-5 (b,e,h)
and 7-9 (c,f,i). Stippled areas indicate significant ACCs at the 99% level.

little resemblence to the composite mean SAT patterns I have identified before (cf. fig

3.12). There is some seasonal variability in SAT ACCs, but this appears to not be linked

to SHF predictability. Specifically, I find high ACCs for SATs over the ocean across all

seasons, while ACCs are generally low over land. The shape of these ACCs generally

follows that of predictable SSTs. This illustrates that, in HC, the influence of North

Atlantic OHT variability on SAT hindcasts is limited to the areas that are immediately

influenced by the ocean. However, the predictability of SHFs doew not play a role

in the prediction of SATs. HC does apparently not properly represent teleconnection

mechanisms that could transport SST anomalies to Europe at both annual and seasonal

means.

4.4 Discussion

This chapter demonstrates that the mechanism suggested by Zhang and Zhang (2015)

and discussed in chapter 3 modulates SST predictability on decadal time scales. The

results presented here are generally in line with previous studies of decadal hindcasts of

North Atlantic surface temperatures (e.g. Matei et al., 2012; Robson et al., 2013, 2014;

Müller et al., 2014). Here, I discuss some of my findings, like the model specificity of
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Figure 4.10: Anomaly Correlation Coefficients (ACCs) at lead year 7-9 from HC against ASSIM for
SHFs after strong (a-e) and weak (f-j) OHT50N phases, and SAT ACCs after strong (k-o) and weak
(p-t) OHT50N phases. I use annual (first row), JFM (second row), AMJ (third row), JAS (fourth row)
and OND (fifth row) means. Stippling indicates significance at the 99% level.
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my findings, ACCs (or lack thereof) following neutral OHT50N phases, and the missing

ACCs of dynamical surface air temperature hindcasts. I will also discuss the hindcast

analyses on subsampled time series using OHT50N variability, and give an indication

of how the influence of OHT50N dynamics on ACCs for hindcasts compares to that of

UOHC persistence. I will then highlight some implications of this study that require

further analysis.

In this hindcast study, I use one model with three ensemble members, and evaluate

hindcasts against the assimilation experiment, which might well introduce some model-

specificity into my findings. This is underlined by the fact that I find only little signal

for SST hindcasts in an evaluation of ACCs against HadISST observations (not shown).

My findings from the previous chapter, however, show that the North Atlantic AMV

variability in HadISST is closely connected to the AMV in the model. This study there-

fore supports the notion brought forward frequently (e.g. Boer et al., 2016; Yeager and

Robson, 2017), that the AMV is a driver of North Atlantic temperature predictability.

Meanwhile, it is likely that a lack of ACCs of hindcasts evaluated against observations

originates from the zonal displacement of the characteristic SST pattern due to a too

zonal Gulf Stream in ASSIM and HC, and that both ASSIM and HC in fact get SST

variability generally right. In that case, the influence of different phases of subpolar

OHT on the skill of SST hindcasts would be expected further west than shown in this

study. The finding of Müller et al. (2014), showing that ASSIM and HC produce rea-

sonable climate variability, supports this statement.

I find that for both UOHC and SSTs, decadal predictability is connected to the physical

mechanism leading to the characteristic SST pattern. The general absence of high ACCs

in hindcasts started in neutral OHT50N phases supports this claim. The Labrador Sea

plays a peculiar role in this context, as it is covered by the characteristic SST pattern but

I do not find SST predictability there. This can be attributed to the incapability of the

non-initialized MPI-ESM-LR to represent temperature variability in the Labrador Sea

(e.g. Brune et al., 2017) and stronger surface heat fluxes in that area, which overwrite

the predictable temperature signal from the ocean (cf. fig. 3.9). Therefore, predictabil-

ity is lost faster in that area than elsewhere in the North Atlantic region.

The influence of the characteristic SST pattern on ACCs of dynamical surface air tem-

perature hindcasts on the decadal time scale is found to be limited in this dissertation.

Arthun et al. (2017) showed skill for decadal winter SATs over Scandinavia that is

connected to ocean heat transport using observations and a statistical model. I find no

predictability in dynamical hindcasts of that area, except for coastal zones (cf. fig. 4.10).

This lack of ACCs is likely an artifact of the limited resolution, non-stratosphere re-

solving nature (this would be necessary for the representation of teleconnections; e.g.

Hoskins and Karoly, 1981), or few ensemble members of the model setup I use (for a

recent discussion of dynamic multiyear hindcasts over land, see e.g. Sheen et al., 2017).
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However, my results support Arthun et al. (2017) in that there appears to be a connec-

tion of OHT50N to Scandinavian SATs (cf. fig. 3.12). This could be invoked to improve

decadal SAT predictability over Scandinavia in dynamical models using a larger en-

semble, more frequent hindcast initialization, or a higher resolution model that better

represents atmospheric variability at all levels.

I find a strong influence of phases of subpolar OHT on the skill of decadal hindcasts

for SSTs in the North Atlantic with a possibility for good ACCs of atmospheric surface

temperature hindcasts over land in future studies. The findings presented so far do not,

however, reconcile the debate in previous studies on the relative effects of UOHC per-

sistence and dynamical ocean processes (i.e. overturning or OHT) on hindcast skill on

these time scales yet (e.g. Müller et al., 2014; Yeager et al., 2012; Robson et al., 2013).

In figure 4.11, an analogue to figure 4.7 is shown, but instead of OHT50N strength, I use

UOHC in the box indicated in figures 4.5 and 4.6 for subsampling to exemplify the in-

fluence of UOHC persistence on ACCs of UOHC and SSTs in hindcasts. On short time

scales of up to 4 years, UOHC persistence influences the skill of temperature hindcasts

about as strongly as OHT dynamics. This is coincident with the time scale on which

I find high ACCs for UOHC and SSTs after all OHT50N strengths including neutral

phases, which underpins my hypothesis that those ACCs arise from UOHC persistence.

After lead year 5, hindcasts subsampled for strong OHT50N phases consistenly outper-

form those subsampled for any phase of UOHC persistence. This shows that, while both

UOHC persistence and OHT dynamics are equally important for temperature hindcasts

3-5 years into the future and on shorter time scales, subpolar OHT dynamics are more

important than UOHC persistence in shaping ACCs at lead years 7-9.

ASSIM produces more coherent strong OHT50N phases than weak ones. As in the pre-

vious chapter, this asymmetric coherence of OHT50N phases could impact the findings

of this chapter by making strong OHT50N phases appear more impactful than they are.

Unfortunately, this problem cannot be approached in this study directly, but will have

to be studied in more detail in a more conceptual model setup. I will take up this issue

in the next chapter.

Brune et al. (2017) show that the estimated skill of decadal surface temperature hind-

casts in the North Atlantic varies depending on the time that the skill is evaluated for.

This finding implies that the use of any decadal hindcast skill estimate - produced for

the past - is limited for the estimation of the credibility of an actual forecast. This study

suggests ocean heat transport in the subpolar North Atlantic as a possible indicator of

credibility of an actual forecast. As there is currently no long-term observational data

set of OHT in the subpolar North Atlantic, this suggestion can currently not be verified

against observations. The OSNAP project (Lozier et al., 2017) aims to construct such

an observational data set. As it could be used as an indicator for the credibility of an

actual forecast, the data set produced by the OSNAP campaign holds exciting oppor-
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Figure 4.11: Anomaly Correlation Coefficients (ACCs) for average UOHC (a), and SSTs (b) over
the box indicated in figs. 4.5,4.6 against lead time. I use ASSIM as a reference. The black line shows
ACCs over the entire time series, green shows persistence forecast, the blue line shows predictability
after weak, and the red line predictability after strong phases of upper ocean heat content in the black
box. This figure illustrates the influence of UOHC persistence on the skill of UOHC and SST hindcasts.
The dashed lines indicate the interquartile ranges around the mean predictability for each color. Solid
points represent ACCs significant at the 99% level.

tunities for the suggestions I bring forward in this study.

4.5 Implications of this Research

Chapters 3 and 4 of this dissertation suggest that the skill of decadal surface tempera-

ture predictions in the North Atlantic depends on the strength of subpolar ocean heat

transport in the Atlantic ocean at the start of the prediction. This finding could be used

to judge the credibility that would be expected from an actual temperature forecast.

These results provoke two thoughts in particular:

(i) Is the climate variability found in ASSIM representative of other modeled or ob-

served climate variability? Assimlation model experiments combine a model’s climate

dynamics with observed dynamics. It is therefore inherently unclear from the analysis

of ASSIM presented here - and in fact for the interpretation of all assimilation-based

hindcast studies - whether its dynamics should be interpreted as model or observed

dynamics. It is therefore important to place the climate variability produced in the

assimilation model experiment in the broader context of climate variability produced

by the climate model that is used, and of observed climate variability. Specifically, I

discuss in chapter 3 that ASSIM shows peculiarly coherent strong OHT50N phases. This

coherence needs closer examination concerning its origins.

(ii) As ACCs of SSTs in the North Atlantic are higher after phases of strong ocean heat
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transport than after weak phases, I conclude that hindcast skill changes over time. This

indicates that no study of decadal climate hindcast skill performed for a fixed period in

the past enables conclusions for the credibility of an actual forecast. Chapter 4 suggests

that the credibility of a decadal forecast of North Atlantic surface temperatures could

be judged using the phase of OHT50N at the start of the forecast. Before concrete solu-

tions to this problem can be evaluated, though, the non-stationarity of decadal surface

temperature hindcast skill has to be understood better. Moreover, the influence of the

phase of subpolar OHT at the beginning of an individual prediction on the quality of

the prediction has to be evaluated for individual forecasts, not a time-average, to make

the prediction quality found for the past transferable to the credibility of individual

forecasts.

In the next chapter, I will take up thought (i) and place climate variability found

in the ASSIM simulation in the context of the MPI-ESM-LR and observations, and

discuss how these findings help to interpret the results presented in the first two chap-

ters. Subsequently, addressing thought (ii), I will explore the time-dependence (or non-

stationarity) of decadal SST hindcast skill in the 20th century using HC and HadISST

observations. This will advance our understanding of the role that physical processes

play in the modulation of decadal climate predictability. Moreover, this chapter will

fundamentally question the way that decadal climate hindcast studies are interpreted,

and suggests improvements that should be made to enable a translation of hindcast skill

estimates to forecasts.
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5 | Understanding North Atlantic Climate

Variability in the MPI-ESM-LR

5.1 Introduction

A fundamental problem with modelling studies is that it is from the model itself unclear

how representative dynamical features found in models are with respect to observations.

In assimilation experiments, this problem gets an additional dimension as the mixture of

observed and model dynamics prevents a clear attribution of found dynamical processes

to either model or observed dynamics. This makes it difficult to judge the representa-

tiveness of assimilation model dynamics with respect to observations. In the previous

chapters, I find peculiar subpolar North Atlantic ocean heat transport dynamics in AS-

SIM: strong phases of OHT50N appear much more coherently than weak ones. Here, I

present an attempt to resolve the issue of placing dynamical variability found in assim-

ilation model experiments between model variability and observed variability using the

North Atlantic ocean heat transport variability found in ASSIM as a case study.

In chapter 3, I show that in ASSIM there is a large influence of subsurface ocean over-

turning variability, i.e. subpolar ocean heat transport, on SST variability in the North

Atlantic. This physical mechanism also shows a pronounced influence on the skill of

decadal surface temperature hindcasts in the North Atlantic region. In particular, I find

very coherent strong OHT50N phases with a strong influence on North Atlantic SSTs

and incoherent weak OHT50N phases with a weaker influence on North Atlantic SSTs.

However, from the presented analyses alone, it cannot be understood how realistic this

link between OHT, SSTs and surface temperature hindcast skill is, and where this find-

ing has to be placed in terms of model and observed variability.

I will in this chapter attempt to resolve the question of robustness of the previously

presented physical mechanism leading to the characteristic SST pattern in the face of

similarly coherent strong and weak OHT50N phases. This chapter further addresses

the question whether particularly coherent OHT50N phases are likely to be found in

non-initialized model simulations or observations. I approach this problem by com-

paring ASSIM to uninitialized simulations with the same version of the MPI-ESM-LR,

and to HadISST observations. The 1000-year-long piControl simulation of constant
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pre-industrial greenhouse gas concentrations (piControl) can be used to approximate

internal variability produced by the MPI-ESM-LR (e.g. Olonscheck and Notz, 2017).

A historical simulation forced with the historical greenhouse gas concentrations from

1896 to 2005 (HIST) enables a direct comparison of ASSIM to a non-initialized version

of the MPI-ESM-LR for the same time period. An assessment of two climate change

scenarios (RCP4.5 and RCP8.5) in the MPI-ESM-LR for the period 2191-2300 points

out possible changes of the physical mechanism leading to the characteristic SST pat-

tern with global warming.

This chapter will predominantly focus on the asymmetric influence of strong and weak

OHT50N phases on North Atlantic SSTs I find in the previous chapters. I will then

proceed and examine whether the model on its own is able to reproduce the coherent

strong OHT50N phases found in ASSIM, and assess the influence of the coherence of

OHT50N phases on SST variability. In the process, I will also look at HadISST obser-

vations of sea surface temperatures to estimate the representativeness of my findings

for observed climate variability. This will help to place the findings from the last two

chapters in the broader climatic context, and to judge their representativeness.

5.2 Ocean Overturning Dynamics in the Non-Initialized

MPI-ESM-LR

In the piControl model simulation, annual mean AMOC maximum and total OHT50N

are correlated 63% for the full 1000 year time series (fig. 5.1a). While this is much lower

than the correlation in ASSIM, it is still significant at the 99% confidence level. More-

over, AMOC maximum and total OHT variability in the North Atlantic appear very

similar in their meridional variabilities (fig. 5.1b,c). Therefore, the piControl simulation

produces ocean overturning variability that supports my finding that OHT and AMOC

dynamics are connected in the North Atlantic. However, the low correlation between

AMOC and OHT variability at 50◦N in piControl might indicate that the very high

correlation I find in ASSIM is somewhat peculiar. Unlike in ASSIM, strong and weak

OHT50N phases selected by the criterion of half a standard deviation above or below

the mean state, are in piControl both similarly long and appear similarly coherent (dots

in fig. 5.1a).

The piControl simulation alone is not sufficient to place findings from ASSIM in the

context of the MPI-ESM-LR variability as there is no greenhouse gas forcing in piControl

while there is such forcing in ASSIM. I therefore compare OHT and OHT-SST dynamics

from ASSIM not only to piControl, but also to a historical simulation without data

assimilation. To further understand the influence of greenhouse gas forcing, I also

compare ocean overturning dynamics found in ASSIM to a simulation with the MPI-
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Figure 5.1: (a) Detrended anomalies of AMOC maximum at 50◦N (dashed line, [Sv]) and total
OHT50N (solid line, [10−1 PW]) in the piControl-simulation. The grey area denotes a half standard
deviation above and below the mean of the previous 30 years. Strong and weak OHT50N phases, i.e.
years where the solid line lies outside the grey area, are marked with red and blue dots at the bottom,
respectively. Hovmöller Diagrams of OHT anomalies (b) and AMOC maximum anomalies (c) illustrates
the development of strong and weak anomalies of OHT and AMOC in space (y-axis, [◦latitude]) and
time (x-axis [yrs]). OHT and AMOC time series are detrended at each latitude.

ESM-LR forced by the RCP4.5 scenario. While I use the full 1000 years in piControl

to include all modes of variability that the model produces on its own, I use the 110

year period between 1896 and 2005 from HIST to make the results as comparable as

possible to the 1901 to 2010 period used in ASSIM. In the RCP4.5 experiment, I use the

last 110 years of the simulation, 2191 to 2300, to capture the maximum greenhouse gas

concentration influence on ocean dynamics. To better understand possible AMOC-OHT

variability the MPI-ESM-LR can produce, I will reproduce figures from the beginning

of this dissertation using piControl, HIST, and RCP4.5 model runs.

There is a tendency to a southward propagation of OHT anomalies that originate at

50◦N in all model simulations (fig. 5.2). However, in none of the simulations is this

southward propagation even closely as pronounced as in ASSIM. The HIST simulation

shows subdecadal OHT dynamics relatively similar to those found in ASSIM, while the

southward propagation of OHT phases in the North Atlantic is very weak in piControl

and virtually non-existent in RCP4.5. Following the hypothesis of Zhang and Zhang

(2015) that OHT dynamics influence ocean heat convergence and that the southward

propagation plays a crucial role in this, subpolar OHT phases should be followed by



54 Decadal Climate Predictions in the North Atlantic Region

Figure 5.2: Lead-lag correlations of OHT at different latitudes with OHT50N found in (a) ASSIM,
(b) piControl, (c) HIST, and (d) RCP4.5. Time series are detrended at every latitude individually.
Positive lags indicate that OHT leads and vice versa.

a weak ocean heat convergence signal in the North Atlantic in piControl, HIST and

RCP4.5.

Indeed, ocean heat convergence in the North Atlantic shows less connection to OHT50N

variability in piControl, HIST and RCP4.5 than in ASSIM (fig. 5.3). However, all sim-

ulations show a (predominantly weak) dipole ocean heat convergence anomaly signal

between a positive correlation to OHT50N North of roughly 40◦N when OHT50N leads

by 2-8 years, and an instant negative correlation South of 40◦N. This effect is most

pronounced in HIST and piControl, and less strong in RCP4.5. These findings support

the role of southward propagation of OHT phases in the formation of ocean heat con-

vergence in the subpolar North Atlantic ocean several years later. Do these OHT50N

phases influence North Atlantic SSTs, as shown in ASSIM, in piControl as well?

Both UOHC (fig. 5.4a-c) and SSTs (fig. 5.4d-f) in the subpolar North Atlantic appear to

be modulated by OHT50N up to 9 years earlier in piControl. The shape of these corre-

lations resembles that found in the same analysis in ASSIM (cf. fig. 3.3). This indicates

that a similar mechanism gives rise to surface temperature anomalies of this shape in

piControl and ASSIM, which is also in line with the ocean heat convergence analysis

presented above. Particularly at long lags, i.e. 7-9 years after OHT50N phases, the

UOHC and SST correlations to OHT50N are much lower in piControl than in ASSIM.

This relatively shortly-lived influence of OHT50N on SSTs, too, is in line with the diag-

nose of southward propagating OHT anomalies and associated ocean heat convergence

anomalies that are shorter live in piControl than in ASSIM. It therefore appears that
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Figure 5.3: Lead-lag correlations of ocean heat convergence at different latitudes with OHT50N found
in (a) ASSIM, (b) piControl, (c) HIST, and (d) RCP4.5. Time series are detrended at every latitude
individually. Positive lags indicate that OHT leads and vice versa.

Figure 5.4: Point-by-point correlation of OHT50N with upper ocean heat content of the upper 700m
in the North Atlantic in piControl at lag 0 (a) and when OHT50N leads by 3-5 years (b) and 7-9 years
(c), and with SSTs at lag 0 (d) and when OHT50N leads by 3-5 years (e) and 7-9 years (f). Stippling
indicates significant correlations at the 99% level.

the mechanism leading to the characteristic SST pattern in ASSIM works in piControl

as well. However, this finding does not address the ‘problem’ of differently coherent

OHT50N phases in ASSIM, as described above. To better understand OHT50N and
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SST dynamics in piControl, HIST and RCP4.5, I will therefore now examine strong

and weak phases of OHT50N separately.

5.3 Subsampled Overturning States in the MPI-ESM-LR

In each model simulation, I subsample ocean states in which OHT50N is above or below

the mean of the preceding 30 years. I then construct composite mean OHT anomalies

across latitudes after strong and weak OHT50N phases to examine strong and weak

OHT50N phases separately. This enables me to place the findings from the variability

analysis in ASSIM in the context of overall OHT variability in the MPI-ESM-LR.

In piControl, the southward propagation of OHT phases in the subpolar North At-

lantic is comparable to ASSIM (fig. 5.5a-c). However, the OHT dynamics show a more

shorter-lived signal in piControl than in ASSIM, and after 5 years, there is no difference

in the OHT anomaly North of 40◦N between strong and weak OHT50N phases in piCon-

trol. The HIST simulation shows a much stronger OHT propagation signal after weak

OHT50N phases than after strong OHT50N phases, while the overall OHT propagation

signal is clearly southward with time in both cases (fig. 5.5d,e). The strong anomaly

after weak OHT50N phases could indicate a stronger influence of OHT50N variability on

surface temperatures after weak OHT50N phases than after strong OHT50N phases in

HIST. In the RCP4.5 simulation, there is a very short-lived southward OHT50N propa-

gation signal after strong OHT50N phases for up to 4 years. However, I find almost no

southward propagation of OHT50N phases after weak OHT50N phases (fig. 5.5g,h). This

indicates a weak influence of weak OHT50N phases on SSTs, and a strong, but short-

lived, influence of strong OHT50N phases on SSTs for up to 4 years in RCP4.5. After

neutral OHT50N phases, composite mean OHT anomalies are negligible in all model

runs (fig. 5.5c,f,i). The weak influence of weak OHT50N phases and stronger influence

of strong OHT50N phases on ocean heat convergence can be assessed by comparing

composite mean cumulative ocean heat convergence signals in the three MPI-ESM-LR

simulations.

Cumulative ocean heat convergence signals after strong and weak OHT50N phases in the

subpolar North Atlantic are largely symmetric in piControl (fig. 5.6a,b). There appears,

however, to be a slight asymmetry in the ocean heat convergence signals North of 50◦N

with a stronger convergence signal after strong OHT50N phases, which is consistent with

my findings from the OHT propagation signals. Similarly, the ocean heat convergence

signal South of 40◦N is stronger after weak than after strong OHT50N phases, indicating

a seesaw-like mechanism connecting OHT anomalies to ocean heat convergence similar

to that found for seasonal AMOC dynamics in the subtropical Atlantic in Duchez et al.

(2016). By contrast, neutral phases show no distinctive ocean heat convergence signal

(fig. 5.6c).
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Figure 5.5: Composite mean OHT anomalies [10−1PW] before, during, and after strong (left column),
weak (middle column), and neutral (right column) OHT50N anomalies shown in latitude against lag.
(a-c) show piControl, (d-f) show HIST, and (g-i) show RCP4.5. Time series are detrended at every
latitude individually. Positive lags indicate that OHT leads and vice versa.

In HIST, there is a pronounced asymmetry in cumulative ocean heat convergence signal

in the subpolar North Atlantic between strong and weak OHT50N phases with a much

stronger heat convergence signal after strong OHT50N phases than after weak ones

(fig. 5.6d,e). This is counter-intuitive to the findings from the OHT propagation analysis

that suggested a strong influence from weak OHT50N phases. Additionally, neutral

OHT50N phases that are not connected to distinct composite mean OHT anomalies in

HIST, are connected to a quite strong ocean heat convergence anomaly (fig. 5.6f). This

indicates that other mechanisms than the mechanism leading to the characteristic SST

pattern are at work in the North Atlantic in HIST. On the other hand, this result is in

line with the findings from piControl and ASSIM, that both show a stronger influence

of strong than of weak OHT50N phases on ocean heat convergence. Therefore, an

alternative interpretation of this finding is that the strong influence of strong OHT50N

phases on subpolar ocean heat convergence in the North Atlantic is less sensitive to

the strength of the southward propagating OHT anomaly than it is to the sign of the

anomaly. Consistently with this hypothesis, strong OHT50N phases influence subpolar

North Atlantic ocean heat convergence more strongly than weak OHT50N phases in

RCP4.5 (fig. 5.6g,h).

Composite mean SSTs in piControl after strong and weak OHT50N phases show some
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Figure 5.6: Composite mean cumulative heat convergence anomalies [PW] before, during, and after
strong (left column), weak (middle column), and neutral (right column) OHT50N anomalies shown in
latitude against lag. Heat convergence anomalies are calculated cumulatively with respect to strong
and weak OHT50N phases. (a-c) show piControl, (d-f) show HIST, and (g-i) show RCP4.5. Time series
are detrended at every latitude individually. Positive lags indicate that OHT leads and vice versa.

asymmetry (fig. 5.7). While composites are similarly significant in their difference from

the mean variability across all lags and after both strong and weak OHT50N phases,

composite mean SST anomalies are stronger 3-5 years after strong OHT50N phases

than after weak OHT50N phases. At longer lags, i.e. 7-9 years, there are much weaker

composite mean SST anomalies in piControl than in ASSIM (cf. fig. 3.9), which is

related to the shorter-lived OHT and ocean heat convergence anomalies in piControl.

After neutral OHT50N phases, there is no distinct composite mean SST pattern at

all lags (fig. 5.7g-i). Remarkably, unlike in ASSIM, composite mean ocean-atmosphere

surface heat fluxes show almost no asymmetry between strong and weak OHT50N phases

in piControl. However, as heat fluxes are assimilated in ASSIM, they are directly related

to climate variability in the twentieth century reanalysis (Compo et al., 2011) - it is

therefore likely that the asymmetry of SHFs found in ASSIM is more realistic than

symmteric SHFs in piControl with respect to observations.

In the historical and the RCP4.5 simulation, a conclusive SST pattern is difficult to find

at any decadal lag after both strong and weak OHT50N phases (figs. 5.8, 5.9). While

a coherent SST pattern appears in both simulations at lag 0, SSTs in the subpolar

North Atlantic show largely insignificant anomalies at longer lags. An exception is

the northeast Atlantic 7-9 years after strong OHT50N phases in HIST, where I find a
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Figure 5.7: Composite mean SST anomalies [K] in piControl, related to strong (a-c), weak (d-f), and
neutral (g-i) OHT50N phases. I show composites at lag 0 (a,d,g) and composite mean SSH 3-5 (b,e,h)
and 7-9 (c,f,i) after strong and weak OHT50N phases. Stippling indicates significance at the 99% level.
Contours show significant (at the 99% level) net ocean-atmosphere surface heat fluxes into the ocean
(solid contours) and out of the ocean (dashed contours).

scattered area of barely significant SST anomalies without a strong signal after weak

OHT50N phases (fig. 5.8b,e). As there is no consistent signal in that area throughout

lead times shorter than 7-9 years, the physical consistency of this SST anomaly is

debatable. In both model simulations, no clear SST signal can be identified following

neutral OHT50N phases.

SHFs show largely inconclusive patterns in both simulations at long time lags, although

strong SHFs appear to be linked to places with relatively strong SST anomalies. These

findings show that ocean heat convergence anomalies that persist for only a few years

indeed have a weak influence on SST patterns, and if there is an influence on SSTs, I find

it on short lags of only a few years. This analysis therefore shows that the mechanism

leading to the characteristic SST pattern in ASSIM is robust in other simulations with

the MPI-ESM-LR, however, the uninitialized model seems to generally generate shorter

OHT50N phases than ASSIM that are characterized by an influence of OHT50N phases

on SST anomalies on time scales no longer than a few years. Besides ASSIM, only the

piControl simulation is characterized by an influence of subpolar OHT variability on

SST anomalies on the decadal time scale.
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Figure 5.8: Composite mean SST anomalies [K] in HIST, related to strong (a-c), weak (d-f), and
neutral (g-i) OHT50N phases. I show composites at lag 0 (a,d,g) and composite mean SSH 3-5 (b,e,h)
and 7-9 (c,f,i) after strong and weak OHT50N phases. Stippling indicates significance at the 99% level.
Contours show significant (at the 99% level) net ocean-atmosphere surface heat fluxes into the ocean
(solid contours) and out of the ocean (dashed contours).

5.4 Possible Reasons for Differently Coherent OHT Phases

Attempts to reproduce the characteristic SST pattern in other simulations with the

MPI-ESM-LR were relatively successful, which inspires confidence that the non-linear

influence of strong and weak OHT50N phases on North Atlantic SSTs found in ASSIM

is robust. The characteristic SST pattern is particularly strong in the piControl simula-

tion, which indicates that the model alone is able to produce this SST pattern without

external forcing. The characteristic SST pattern is therefore unlikely to originate ex-

clusively from global warming. The decadal OHT50N variability I find in ASSIM in the

subpolar North Atlantic appears, however, somewhat peculiar concerning the coherence

of OHT50N phases.

An important finding from this analysis is that the time scale on which OHT50N phases

influence SST variability in the North Atlantic depends on the coherence of OHT50N

phases. More coherent OHT50N phases lead to more long-lived SST anomalies in the
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Figure 5.9: Composite mean SST anomalies [K] in RCP4.5, related to strong (a-c), weak (d-f), and
neutral (g-i) OHT50N phases. I show composites at lag 0 (a,d,g) and composite mean SSH 3-5 (b,e,h)
and 7-9 (c,f,i) after strong and weak OHT50N phases. Stippling indicates significance at the 99% level.
Contours show significant (at the 99% level) net ocean-atmosphere surface heat fluxes into the ocean
(solid contours) and out of the ocean (dashed contours).

North Atlantic. However, none of the analyses performed above give an indication if

and by how much ASSIM over- or underrepresents the coherence of strong and weak

OHT50N phases in the subpolar North Atlantic.

The previous findings show that there is a difference in the length of subpolar OHT

phases between ASSIM and piControl: strong OHT50N phases are coherent in both

ASSIM and piControl, while weak OHT50N phases are similarly coherent in piCon-

trol, but relatively incoherent in ASSIM. There are three possible reasons for these

different coherences, and understanding which one is responsible for these differences

will help to place the findings from the analysis of ASSIM in a wider context. The

different coherences of strong and weak OHT50N phases in ASSIM could: reflect an

artifact of ‘subsampling’ in the sense that the piControl simulation encompasses 1000

years, whereas ASSIM is 110 years long and more coherent strong and more incoherent

weak OHT50N phases might occur naturally; be related to the data assimilation that

is applied in ASSIM which might perturb the model, leading to less coherent weak or

more coherent strong OHT50N phases; or be an effect of global warming, as there is

no change of mean greenhouse gas concentration in piControl whereas greenhouse gases
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Figure 5.10: The ratio of years of strong OHT50N that are framed by years of strong OHT50N with
respect to total years of strong OHT50N on the x-axis, shown against the ratio of years of weak OHT50N

that are framed by years of weak OHT50N with respect to total years of weak OHT50N on the y-axis.
The red dot shows this ratio in ASSIM (1901-2010), the yellow one in piControl (1000 years), the dark
blue one in HIST (1896-2005), and the light blue one in RCP4.5 (2191-2300). Black crosses denote
ratio combinations calculated from all 110 year long subperiods of piControl.

increase in ASSIM. I will in the following use the piControl, HIST, RCP4.5 simulations

alongside an RCP8.5 simulation and HadISST observations (Rayner et al., 2003) and

assess which of these processes produces which coherence of subpolar OHT phases.

Strong OHT50N phases in ASSIM are much more coherent than strong OHT50N phases

produced by the MPI-ESM-LR as internal variability (fig. 5.10). I compare the co-

herences of strong and weak OHT50N phases in ASSIM, HIST, and RCP4.5 to all

possible 110-year-long segments of the 1000-year-long piControl simulation to estimate

the coherences for subpolar OHT variability generated as internal variability by the

MPI-ESM-LR. Only the coherences of strong and weak OHT50N phases in HIST and

RCP4.5, and the coherence of weak OHT50N phases in ASSIM lie within the range of

variability that is produced by the MPI-ESM-LR. This indicates that the assimilation

applied to the MPI-ESM-LR to produce ASSIM generates overly coherent strong OHT

phases in the subpolar North Atlantic. An implication of this finding is that ASSIM

might over-estimate the influence of strong OHT50N phases on northeast Atlantic SST

anomalies.

To get a better indication of how to place the coherence of not only OHT50N phases,

but also SST variability in ASSIM in the wider context, I also show coherences of strong

and weak phases of the Atlantic Multidecadal Variability (AMV, fig. 5.11). The AMV

is an important mode of temperature and climate variability in the North Atlantic that

may be linked to AMOC and OHT variability (e.g. Delworth et al., 2017). I here define

the AMV as average SSTs in the North Atlantic between the equator and 60◦N; the
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Figure 5.11: The ratio of years of strong AMV that are framed by years of strong AMV with respect
to total years of strong AMV on the x-axis, shown against the ratio of years of weak AMV that are
framed by years of weak OHT50N at AMV with respect to total years of AMV on the y-axis. The red
dot shows this ratio in ASSIM (1901-2010), the yellow one in piControl (1000 years), the dark blue one
in HIST (1896-2005), the light blue one in RCP4.5 (2191-2300), the purple one in RCP8.5 (2191-2300),
and the orange one in HadISST observations (1901-2010). Black crosses denote ratio combinations
calculated from all 110 year long subperiods of piControl.

AMV index in ASSIM is highly correlated to the characteristic SST pattern index at

no lag (0.96, cf. fig. 3.13), and therefore also highly correlated to OHT50N . It is worth

noting that, unlike previous studies, I do not smooth SSTs with a low-pass filter in the

calculation of the AMV index for this chapter.

Coherences for the AMV index from the same model experiments as before, as well as

the RCP8.5 scenario and HadISST observations for 1901-2010, show that positive AMV

phases produced by ASSIM are more coherent than others (fig. 5.11). Similar to my

previous findings concerning subpolar OHT variability, both positive and negative AMV

indices in HIST, RCP4.5 and RCP8.5, and in HadISST, and negative AMV indices in

ASSIM show coherence that lies within the internal variability produced by piControl.

These findings appear to confirm my previous conclusion concerning the reliability of

the variability produced by ASSIM.

As mentioned before, I do not smooth SSTs in the calculation of the AMV index for

this analysis. However, for the correlation and composite mean analyses performed

throughout this dissertation, I use three-year average SSTs to filter out year-to-year

variability. I show coherences for the AMV index smoothed with a three-year running

mean in figure 5.12.

When a 3-year running mean is applied, the coherences of positive and negative AMV

phases of all model simulations (including ASSIM) and HadISST lie within the spread

of coherences generated by piControl (fig 5.12). This effect is robust for OHT50N phases
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Figure 5.12: The ratio of years of strong AMV that are framed by years of strong AMV with respect
to total years of strong AMV on the x-axis, shown against the ratio of years of weak AMV that are
framed by years of weak AMV with respect to total years of weak AMV on the y-axis. Time series were
smoothed with a three-year running mean prior to the definition of strong and weak phases. The red
dot shows this ratio in ASSIM (1901-2010), the yellow one in piControl (1000 years), the dark blue one
in HIST (1896-2005), the light blue one in RCP4.5 (2191-2300), the purple one in RCP8.5 (2191-2300),
and the orange one in HadISST observations (1901-2010). Black crosses denote ratio combinations
calculated from all 110 year long subperiods of piControl.

(not shown). These findings indicate that the coherence of phases of North Atlantic

climate variability in ASSIM is accurate in the realm of model variability of the MPI-

ESM-LR on a frequency lower than the year-to-year variability. Accordingly, ASSIM

can be used to study representative SST dynamics when at least a 3-year-smoothing

is applied. However, there is still a pronounced discrepancy between the coherence

ratios in the model simulations and in HadISST, which indicates that the year-to-year

AMV variability in the MPI-ESM-LR does not accurately reproduce observed AMV

variability. This discrepancy, however, diminishes when a low-pass filter of more than

10 years is applied (not shown).

The coherences of OHT50N and AMV phases are consistently lower for RCP4.5 and

RCP8.5 than for the other model simulations and observations. Moreover, RCP8.5

shows lower coherence than RCP4.5. This indicates that with progressing greenhouse

gas forcing, i.e. progressing global warming, the coherence of OHT50N and AMV phases

can be expected to decrease. This effect is particularly strong at the end of the 22nd

century.
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5.5 Discussion

Here I present some evidence that the physical mechanism leading to the characteristic

SST pattern in the North Atlantic is robust within the MPI-ESM-LR. Strong OHT50N

phases consistently lead to stronger SST anomalies up to a decade later than weak

OHT50N phases. The coherence of OHT50N and AMV phases found in ASSIM can be

produced by the MPI-ESM-LR if a running mean of three or more years is applied.

This illustrates that the mode of climate variability found in chapter 3 does likely not

exaggerate strongly the influence of OHT variability on SSTs. I will in this section

discuss the limitations of this finding.

I show that strong OHT phases in the subpolar North Atlantic consistently influence

SSTs stronger than weak OHT50N phases in simulations with the MPI-ESM-LR that

are characterized by similarly coherent strong and weak OHT50N phases. However, the

physical reason for the more pronounced influence of strong phases of subpolar OHT

on North Atlantic SSTs compared to weak cases remains unexplored in this research.

A deeper physical understanding of why this asymmetry exists - and in fact whether it

can also be found in other global climate models - would advance our understanding of

North Atlantic climate variability and should therefore be subject to future research.

While a more in-depth examination on this effect lies outside the scope of this disser-

tation, I recommend a timely study here.

A comparison to the piControl, HIST and RCP model simulations and HadISST ob-

servations shows that the coherence of annual mean OHT50N phases in the ASSIM

simulation is unlikely to stem from internal model variability or greenhouse gas forcing.

Therefore, the strong coherence of strong OHT50N phases in ASSIM likely originates

from the data assimilation that is applied. However, when using a three-year running

mean to smooth OHT and SST variability, the coherence of strong and weak phases

of OHT50N and North Atlantic SSTs in ASSIM lies well within the model variability

produced by piControl. The data assimilation might therefore act to smoothen year-

to-year ocean variability in ASSIM. In the smoothed case, differently coherent OHT50N

and SST phases in ASSIM and piControl, HIST and RCP can therefore be attributed

to internal variability; they occur naturally in the MPI-ESM-LR. This indicates that

the mechanism leading to the characteristic SST pattern that I present here does not

change strongly with greenhouse gas forcing by the 20th century. I do however find

a tendency for weaker coherence of both strong and weak OHT50N phases in the last

century of the RCP8.5 scenario. This indicates that the influence of strong and weak

OHT50N phases on North Atlantic surface temperatures might become shorter-lived

with climate change.

These findings have an important implication for the research presented in chapter 4 of

this dissertation: as the stronger influence of strong phases of subpolar OHT on North
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Atlantic surface temperatures compared to weak phases can be shown to be robust, the

higher ACCs for SSTs after strong than after weak OHT50N phases in the northeast

Atlantic up to a decade into the future are likely to be robust as well.

After showing that changes in decadal surface temperatures are robustly modulated

by subpolar OHT, and therefore the skill of decadal SST hindcasts likely depends on

OHT50N variability, I will now discuss an important implication of this finding: the

non-stationarity of hindcast skill. Because the findings presented up to now do leave

us with a problem: if decadal hindcast skill varied in the past, how can we know how

credible individual forecasts will be?
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6 | Non-Stationary North Atlantic Sur-

face Temperature Prediction Skill

6.1 Introduction

Conventional studies of decadal climate hindcasts result in one estimate of hindcast skill

for the period in the past that is analyzed (e.g. Boer et al., 2016; Yeager and Robson,

2017). This skill estimate is often assumed to reflect the credibility of any individual

forecast that would be conducted using the same prediction system, independent of the

climate state from which this forecast is started. However, for the 20th century the

skill of SST hindcasts in the North Atlantic region depends on the strength of subpolar

ocean heat transport at the start of the hindcast (see chapter 4). The skill of hind-

casts is therefore time-dependent - or non-stationary (as also suggested by Weisheimer

et al., 2017; Brune et al., 2017; O’Reilly et al., 2017). As a consequence, hindcast skill

estimates derived for one period in the past do not represent the skill of all individual

hindcasts within that period. Previous research suggested that this issue might be ad-

dressed by using longer and hence statistically more robust estimates of hindcast skill

(e.g. Müller et al., 2014). While the estimate of mean hindcast skill would indeed be

on better statistical grounds when a longer hindcast period is used, these hindcast skill

estimates are unlikely to be appropriate to judge the credibility of individual decadal

climate forecasts.

Here, I suggest the opposite: instead of using longer hindcast experiments to estimate

skill in a representative way, I suggest to focus on shorter periods of time, but to take

the climate state in which these hindcasts are started into account. This analysis, per-

formed for the 20th century, will indicate a way to estimate the credibility that can be

expected from an individual decadal climate forecast based on the climate state at the

start of that forecast.

ACCs of decadal North Atlantic SST hindcasts on average depend on the strength of

subpolar OHT at the beginning of the hindcast (see chapter 4). OHT50N variability is

therefore likely a good indicator of decadal SST hindcast skill. This finding, however, is

based on the average skill of approximately 40 individual decadal SST hindcasts after

each strong and weak OHT50N phases. The specific influence of the phase of subpolar
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North Atlantic OHT at the start of one individual hindcast on the skill of that hindcast

to predict North Atlantic SSTs on the decadal time scale is therefore still unclear. This

problem, however, cannot be solved using conventional metrics of hindcast skill, as all

conventional hindcast skill metrics are based on an assessment of multiple years. In

this chapter, I propose an approach based on ACCs that connects the skill of individual

hindcasts to the climatic state at the beginning of each hindcast.

Here, I test my approach to estimating the skill of individual hindcasts on hindcasts

of the AMV in the 20th century. I show in chapter 3 that the variability of the AMV

is closely connected to that of the characteristic SST pattern, i.e. its evolution can be

expected to be connected to the physical mechanism leading to the characteristic SST

pattern and therefore variability of OHT50N . Chapter 3 also suggests that AMV vari-

ability in ASSIM is similar to observed AMV variability. Hindcast skill for the AMV

can therefore be evaluated against observations, which enhances the conclusions that

can be drawn from this analysis.

I first show for the period 1901-2010 the non-stationarity of AMV hindcast skill in HC

against HadISST observations to illustrate the spread of hindcast skills that is averaged

over by estimating average hindcast skill for a long time series. I then propose a new

metric that connects the skill of individual AMV hindcasts with the strength of subpolar

North Atlantic OHT at the beginning of each individual hindcast. Findings from this

chapter enable a direct translation of hindcast skill to the credibility of an individual

decadal SST forecast in the North Atlantic region, using the strength of subpolar OHT

at the start of the forecast as an indicator.

6.2 Non-Stationary Decadal AMV Hindcast Skill

An analysis of the non-stationarity of AMV hindcast skill for the 20th century illustrates

the range of skill that conventional hindcast skill estimates average over. As an example,

AMV hindcast skill in the 20th century at lead years 3-5 ranges between ACCs of 0 and

0.8 for a running 40-year window (fig. 6.1). One assessment of AMV hindcast skill for 40

years in the 20th century is therefore not representative of the hindcast skill that would

be found in a different 40-year-period. Figure 6.1 therefore supports the findings by

Brune et al. (2017) and illustrates that SST hindcast skill in the North Atlantic is non-

stationary. A hindcast skill estimate derived for the entire 20th century thus averages

over many differently predictable climate states, and is therefore not representative of

the skill of every individual hindcast within that period.

AMV hindcast skill in the 20th century strongly depends on the number of years that it

is evaluated for (fig. 6.2). This dependence of AMV hindcast skill on the length of the

evaluation period illustrates the extent to which hindcast skill estimates over a certain
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Figure 6.1: ACCs for the AMV (integrated SSTs in the North Atlantic between 0 and 60◦N) evaluated
against HadISST at lead years 3-5. Black dots indicate ACCs for a 40-year-long window around every
dot. Green dots indicate significant ACCs at the 99% level. Red and blue dots at the bottom of the
plot indicate strong and weak OHT50N phases in ASSIM as identified in fig. 3.1.

period misrepresent the skill of individual hindcasts within that period. Figure 6.2 shows

that differently long windows can lead to substantially different hindcast skill estimates

for the same time period. Hindcast skill estimates derived for short time periods are

sometimes as high as skill estimates for a longer time period, and sometimes lower.

This illustrates that assessing hindcast skill for a long period likely results in a high

skill estimate (as was shown by e.g. Müller et al., 2014), but that skill estimate does

not reflect the hindcast skill of every shorter time period within that period. Thinking

one step further, this analysis suggests that a hindcast skill estimate derived for several

years, however many, is unlikely to reflect the hindcast skill of all individual hindcasts

within that period.

The analysis presented above highlights that conventional measures of hindcast skill

likely misrepresent the skill of individual hindcasts, because conventional skill measures

rely on an analysis of many years. Because conventional hindcast skill estimates are not

representative of the skill of individual hindcasts within the period they cover, these

skill estimates cannot be directly translated into the credibility of an individual forecast.

Estimating the credibility of an individual forecast therefore requires an estimate of skill

for individual hindcasts. Showing that individual hindcasts are systematically more or

less skillful when they are started in certain climate states would enable translating

hindcast skill into forecast credibility by using the state of the climate system a the

start of a forecast as an indicator.
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Figure 6.2: ACCs for the AMV evaluated against HadISST for lead years 3-5 as in figure 6.1, but
for different running evaluation window lengths on the y-axis. Crosses indicate significant ACCs at the
99% level.

6.3 Towards Expected Prediction Skill

In chapter 4, I demonstrate the average influence of strong, weak, and neutral OHT50N

phases on decadal SST hindcast skill in the North Atlantic region. Could the phase of

subpolar OHT at the start of a single hindcast therefore be used as an indicator of the

decadal AMV skill of individual hindcasts? Figure 6.1 reveals no obvious connection

between OHT50N phases and non-stationary AMV hindcast skill. I will thus approach

this issue by comparing predicted AMV anomalies to observed AMV anomalies for the

period 1901-2010 individually, taking the strength of OHT50N at the beginning of the

prediction into account.

Individual predicted AMV anomalies at lead years 3-5 match reasonably well to observed

AMV anomalies for 1901-2010 (fig 6.3): The majority of predicted AMV anomalies fall

within one standard deviation of the corresponding observed AMV anomalies. This

good overall match between individual hindcasts and the corresponding observations

explains the high hindcast skill I find for the AMV in HC (cf. fig 6.1).

In some cases, the predicted AMV anomaly does not match the observed AMV anomaly:

the predicted AMV anomaly lies more than one standard deviation away from the ob-

served value (fig. 6.3). When OHT50N is weak at the start of a hindcast, predicted

AMV anomalies do not match the observed AMV more often than when OHT50N

is strong or neutral at the start of a hindcast (33%/25%/23% hindcasts following

weak/neutral/strong OHT50N phases do not match the observations). Individual AMV

hindcasts are therefore more likely to match the observed AMV anomaly after strong

and neutral phases of subpolar OHT than after weak OHT phases.
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Figure 6.3: AMV anomalies calculated by integrating North Atlantic SSTs between the equator and
60◦N [K] produced by HC against those observed in HadISST for lead years 3-5. Red dots indicate a
strong OHT50N phase in ASSIM at the beginning of the hindcast according to the criterion of half a
standard deviation above or below the mean, while blue dots indicate weak, and yellow dots indicate
neutral OHT50N phases. The black line shows the 1:1 line, the grey lines a full sample standard
deviation from the 1:1 line.

Indicating on a time series of OHT50N individual hindcasts whose AMV hindcasts do

not match the observed anomaly reveals that these years predominantly show OHT50N

phases that fall within one standard deviation of the mean state (fig. 6.4). Only two

AMV hindcasts that were started when OHT50N is more than one full standard devi-

ation above the mean, and four AMV hindcasts started when OHT50N is more than

one standard deviation below the mean, do not match the observed AMV anomaly.

Therefore, a single predicted AMV anomaly can be expected to lie within one standard

deviation from the observed AMV anomaly when the prediction is initialized in a year

in which OHT50N is at least one standard deviation above or below the mean.

Analyses shown in chapter 4 indicate that the connection of strong OHT50N phases to

North Atlantic SST hindcast skill is stronger at lead years 7-9 than at lead years 3-5.

This finding appears to be robust when analyzing whether AMV hindcasts at lead years

7-9 lie within one standard deviation of the observed AMV anomaly: Only few AMV

hindcasts started in years of strong subpolar OHT do not match the observed AMV

anomaly (31%/48%/18% hindcasts following weak/neutral/strong OHT50N phases do

not match the observations; fig. 6.5). It is noteworthy that almost half of the hindcasts

following neutral OHT50N phases predict an AMV anomaly that is more than one

standard deviation off the observed value. This finding supports earlier results that

attributed individual predicted AMV anomalies matching observations to either strong

or weak phases of subpolar OHT at the initialization of the hindcast.

Predicted AMV anomalies, which do not match the observed value at lead year 7-9,
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Figure 6.4: OHT50N anomalies in ASSIM. The grey area denotes half a standard deviation of the
OHT50N of the preceding 30 years. Dashed lines show a full standard deviation of the preceding 30
years around the mean. Red crosses show years after which predicted AMV anomalies at lead years
3-5 lie more than one standard deviation away from the observed AMV anomaly (figure 6.3).

Figure 6.5: AMV anomalies calculated by integrating North Atlantic SSTs between the equator and
60◦N [K] produced by HC against those observed in HadISST for lead years 7-9. Red dots indicate a
strong OHT50N phase in ASSIM at the beginning of the hindcast according to the criterion of half a
standard deviation above or below the mean, while blue dots indicate weak, and yellow dots indicate
neutral OHT50N phases. The black line shows the 1:1 line, the grey lines a full sample standard
deviation from the 1:1 line.

predominantly correspond to OHT50N anomalies within one standard deviation from

the mean state (fig. 6.6). If the OHT50N anomaly is more than one standard deviation

from the mean at the beginning of an individual decadal AMV hindcast, the predicted

AMV anomaly can be expected to lie within one standard deviation of the observed

value. Exceptions are two cases where AMV hindcasts 7-9 years ahead do not match

observations after a strong OHT50N phase, and five cases where AMV hindcasts do not
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Figure 6.6: OHT50N anomalies in ASSIM. The grey area denotes half a standard deviation of the
OHT50N of the preceding 30 years. Dashed lines show a full standard deviation of the preceding 30
years around the mean. Red crosses show years after which predicted AMV anomalies at lead years
7-9 lie more than one standard deviation away from the observed AMV anomaly (figure 6.5).

match the observed AMV anomaly after a weak OHT50N phase. The connection of

strong and weak OHT50N anomalies to the skill of decadal SST hindcasts in the North

Atlantic, found in chapter 4, is therefore largely valid for individual hindcasts.

6.4 Ocean Heat Transport as an Indicator of Prediction

Skill: Limitations and Implications

Findings presented in this chapter show that it is possible to connect the strength of

OHT50N at the start of an individual decadal AMV-hindcast to the extent to which

the predicted AMV matches the observations. When subpolar OHT shows an anomaly

of more than one standard deviation above or below the mean at the beginning of

a hindcast, AMV hindcasts predominantly fall within one standard deviation of the

observed value. Strong phases of OHT50N consistently lead to AMV hindcasts that

fall within one standard deviation of the observed value. This effect likely arises from

the physical mechanism leading to the characteristic SST pattern. AMV hindcast skill

therefore depends on the climate state at the initialization of a hindcast. From this

knowledge it can be inferred that observing the strength of subpolar OHT at the start

of an individual SST forecast in the North Atlantic gives a good indication of the

credibility of that forecast.

The analysis presented here comes, like most analyses presented in this dissertation,

with the important caveat of the use of just one decadal prediction system. Although I

showed in chapter 5 that the variability produced by ASSIM and HC is representative

of model variability of the MPI-ESM-LR, the findings presented here are the product

of only one model and will have to be replicated with other prediction systems to assess
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Figure 6.7: ACCs for the AMV (integrated SSTs in the North Atlantic between 0 and 60◦N) evaluated
against ASSIM at lead years 3-5. Black dots indicate ACCs for a 40-year-long window around every
dot. Green dots indicate significant ACCs at the 99% level. Red and blue dots at the bottom of the
plot indicate strong and weak OHT50N phases in ASSIM as identified in fig. 3.1.

their robustness. In this chapter, there is one more issue of model specificity that needs

to be discussed.

The strong non-stationarity found in this section could well be a model-artifact: maybe

both ASSIM and HC produce unrealistic AMV variability around the 1940s that de-

creases hindcast skill around this time. An evaluation of AMV hindcasts in HC against

ASSIM analogue to figure 6.1 shows, however, that the strong decrease in ACCs around

the 1940s is robust (fig. 6.7). Moreover, the high hindcast skill found prior to 1930

suggests that the relative sparsity of observations in that time period does not sys-

tematically decrease the skill of hindcasts for that period. The non-stationary AMV

hindcast skill I find in this section is therefore likely to be connected to physical mech-

anisms rather than a model artifact or connected to sparse observations.

The many years of neutral OHT50N phases around 1920 and 1940 that are connected to

predicted AMV anomalies that do not match the observed AMV (cf. fig. 6.4) explain

the decrease in non-stationary AMV hindcast skill around the 1940s (cf. fig. 6.1). At

that time, the time windows used for evaluating hindcast skill include many individ-

ual AMV hindcasts that do not match observations. The persistent phases of neutral

OHT50N in the 1920s and 1940s are therefore likely the reason for the decreased AMV

hindcast skill estimates in the mid-1940s.

This chapter also addresses the common assumption in hindcast studies that the robust-

ness of the hindcast skill estimate increases with an increasing time window for which

hindcasts are evaluated. My findings show that this assumption generally holds for the

statistical robustness of hindcast skill. However, results presented here also illustrate

that a hindcast skill estimate calculated for a long period of time tends to over- or (in
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rare cases) underestimate the skill of individual hindcasts within that period. With

growing length of the evaluation window of hindcasts, this error increases. Long hind-

cast time series are thus, despite their strong statistical rigour, less useful to estimate

the credibility of an individual forecast, than short hindcast time series.

The analysis presented here suggests that the skill of individual hindcasts can be imme-

diately translated into the credibility of an individual forecast. An implicit assumption

of this is that the physical mechanism used as an indicator for prediction skill does

not change between the period that it is tested for (here: the 20th century), and the

forecasted period. As I show in chapter 5 of this thesis that the physical mechanism

leading to the characteristic SST pattern is likely to only change with climate change

by the end of the 22nd century, it is unlikely that this physical mechanism will change

on the short term.

I demonstrate in this chapter that conventional hindcast skill estimates are rarely suit-

able to estimate the credibility of a single forecast when that forecast is started. With-

out taking physical mechanisms into account, the skill derived by conventional hindcast

studies cannot be understood as representative for any individual forecast. If, how-

ever, physical mechanisms like OHT50N variability and the mechanism leading to the

characteristic SST pattern are considered, the difference between hindcast skill and

the credibility of a forecast can be estimated, and hindcast skill can be transferred to

forecast credibility. This analysis highlights that skill estimates derived from hindcast

analysis have to be based on individual years to be translateable to individual forecasts.

New skill measures going beyond the approach presented in this chapter, will there-

fore have to be developed in the future and combined with conventional hindcast skill

estimates to truly estimate the credibility of individual forecasts.
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7 | Conclusions

This dissertation explores the skill of decadal temperature predictions in the North At-

lantic region. In the introduction I ask four questions concerning the role of subpolar

AMOC and ocean heat transport for temperature variability and predictability in the

North Atlantic region. In this chapter I will first answer these questions one by one,

then draw final conclusions concerning the findings presented in this dissertation.

7.1 Ocean Overturning and North Atlantic Temperatures

A study by Zhang and Zhang (2015) showed that variability of ocean overturning in

the subpolar North Atlantic influences SSTs in the North Atlantic up to about a decade

ahead. The resulting SST pattern is characterized by a positive anomaly in the North

Atlantic subpolar gyre and a negative anomaly in the Gulf Stream region. The authors

hypothesized that the physical mechanism they proposed modulates the skill of decadal

SST predictions. Because Zhang and Zhang (2015) only show the AMOC Fingerprint

in the GFDL climate model, I examine the evolution of Zhang’s mechanism in the

MPI-ESM-LR in this chapter, and answer the guiding question:

⇒ Can the mechanism leading to the AMOC Fingerprint proposed by

Zhang and Zhang (2015) be found in the MPI-ESM-LR, and how is

this mechanism characterized?

Decadal North Atlantic climate variability in an initialized simulation with

the MPI-ESM-LR features the mechanism leading to the AMOC Finger-

print. Annual mean AMOC and OHT are highly correlated in this ASSIM model

experiment. ASSIM further shows southward propagating AMOC and OHT phases in

the North Atlantic on the time scale of up to a decade. This gives rise to the con-

vergence of heat in the North Atlantic subpolar gyre region, and is restricted to the

Atlantic North of 40◦N. These AMOC and OHT dynamics are very similar to those

found in Zhang and Zhang (2015).

Ocean heat content of the upper 700 m (UOHC) and SSTs in the North At-

lantic are influenced in ASSIM for up to a decade ahead by the mechanism
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described by Zhang and Zhang (2015). The most prominent SST anomaly con-

nected to OHT phases at 50◦N (OHT50N ) is found in the northeast Atlantic, whereas

Zhang and Zhang (2015) find it to be more centrally located. The mechanism leading to

the AMOC Fingerprint is therefore robust in at least two climate models, but its exact

location is model-dependent. In the MPI-ESM-LR, its eastward displacement is likely

due to an excessively zonal Gulf Stream path. The model-specific AMOC Fingerprint is

in this dissertation called the characteristic SST pattern. In ASSIM, the characteristic

SST pattern explains in ASSIM most UOHC and SST variability in the North Atlantic,

indicating it is the dominant mode of decadal temperature variability there.

Neutral OHT50N phases are only for half a decade connected to the charac-

teristic SST pattern. Going beyond the original study by Zhang and Zhang (2015),

I conduct a separate analysis of the influence of strong, weak and neutral phases of

OHT50N on North Atlantic SSTs. SSTs in the northeast Atlantic after neutral OHT50N

phases show a weak characteristic pattern up to 5 years into the future. This pattern

is likely connected to persistent UOHC phases, supporting Zhang and Zhang (2015) as

well as findings from this chapter that anomalous subpolar ocean overturning is partic-

ularly important in shaping North Atlantic SSTs on the decadal time scale.

OHT variability in the subpolar North Atlantic influences AMV variability

at least partially. AMV variability is in ASSIM closely related to the characteristic

SST pattern, and subpolar North Atlantic OHT consistently leads the AMV by 8 years.

Meanwhile, the physical mechanism leading to the characteristic SST pattern starts

from ocean surface density anomalies in the Labrador Sea. These could result from

atmospheric forcing. This could reconcile the disagreement by Clement et al. (2015)

and Zhang et al. (2016): this dissertation suggests the AMV as a signal of ocean-filtered

stochastic atmospheric variability with a crucial part for both elements of the climate

system.

The influence of strong and weak phases of OHT50N on North Atlantic SSTs

is asymmetric. Strong phases of OHT in the North Atlantic propagate southward

more consistently than weak ones. As a result, strong OHT50N phases lead to stronger

anomalies of ocean heat convergence North of 40◦N than weak ones. There is a strong

ocean-driven asymmetry between strong and weak overturning phases in the North At-

lantic. As a result, both UOHC and SSTs are strongly influenced by this asymmetry

between strong and weak OHT phases in the subpolar North Atlantic. North of 40◦N, a

strong characteristic SST pattern arises for several years after strong phases of OHT50N .

This pattern is much weaker after weak OHT50N phases and disappears by the seventh

year. The physical reason for this asymmetry cannot be fully explained in this disser-

tation.

Surface heat fluxes dampen asymmetric decadal SST variability in the North

Atlantic, which arises from strong and weak ocean overturning phases. Strong
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phases of OHT50N are connected to strong surface heat fluxes (SHFs) from the ocean

into the atmosphere in the northwest Atlantic. After weak OHT50N phases, a bipolar

pattern of heat fluxes into the ocean arises with peaks in the Labrador Sea and the

eastern North Atlantic.

The mechanism leading to the characteristic SST pattern influences seasonal

surface air temperatures over Europe on the decadal time scale. The surface

heat fluxes connected to OHT50N variability indicate that subpolar SST variability in-

fluences atmospheric temperatures (SATs). OHT50N variability is connected to annual

and seasonal mean SAT variability up to 10 years ahead. This influence is particularly

strong in western, northern, and eastern Europe.

The asymmetric connection of strong and weak phases of OHT50N to North

Atlantic SSTs can also be found in SATs. Strong OHT50N phases lead to strong

positive annual mean SAT anomalies in northern Europe around the UK and Scandi-

navia. After weak OHT50N phases, a strong negative SAT anomaly arises in southern

Scandinavia, the Baltics, and eastern Europe. This connection is particularly strong in

winter and spring. While strong OHT50N phases are connected to SAT anomalies in all

seasons, weak OHT50N phases show a distinct pattern in winter and spring, and almost

no SAT pattern in the other seasons. This analysis illustrates the strong influence of

the phase of subpolar OHT on European SAT variability.

7.2 Decadal Hindcasts in the North Atlantic Region

Studies showed a connection of strong AMOC anomalies to the skill of decadal North

Atlantic SST hindcasts, based on case studies (Yeager et al., 2012; Robson et al., 2013,

2014). Here, I examine the speculation by Zhang and Zhang (2015) that the physical

mechanism leading to the characteristic SST pattern modulates decadal SST hindcast

skill. I evaluate systematically the specific influence of the variability of subpolar OHT

on decadal North Atlantic SST prediction skill. Findings from this chapter are very

indicative of the credibility of actual decadal SST predictions in the North Atlantic

region. I draw on the findings from the previous chapter and answer my guiding research

question:

⇒ How strongly do ocean overturning dynamics influence the skill of SST

hindcasts in the North Atlantic region?

The physical mechanism leading to the characteristic SST pattern, i.e. ocean

overturning dynamics, play an important role in modulating the skill of

decadal SST predictions. SST hindcasts show high anomaly correlation coefficients

(ACCs), a measure for the skill of hindcasts, in the area that is dominated by the char-

acteristic SST pattern on the decadal time scale. When OHT50N is in a neutral phase
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at the beginning of a hindcast, ACCs for UOHC and SSTs are much lower at lead years

3-5 and 7-9 than when OHT50N is either particularly strong or weak at the beginning of

a hindcast. Low ACCs can be found at lead years 3-5 for UOHC and SSTs after neutral

OHT50N phases, which is connected to UOHC persistence. At lead years 7-9, there

are no significant ACCs for UOHC and SST hindcasts on the decadal time scale in the

North Atlantic after neutral OHT50N phases, underscoring that overturning dynamics

are essential in modulating the skill of surface temperature predictions on the decadal

time scale.

The influence of OHT50N variability on ACCs of North Atlantic SST hind-

casts shows an asymmetry similar to the OHT50N influence on decadal SST

variability. UOHC and SST hindcasts show consistently higher ACCs after strong

OHT50N phases than after weak OHT50N phases. This difference is likely to be signifi-

cant in the area of the characteristic SST pattern.

Predictable SST anomalies arising from ocean heat convergence are at all

examined lead times balanced by dampening SHFs. The asymmetry of ACCs

after strong and weak OHT50N phases is governed by two factors: the asymmetric ocean

heat convergence signal after strong and weak OHT50N phases (which leads to differ-

ently strong UOHC and SST anomalies), and the asymmetric surface heat flux patterns

following the strong and weak OHT50N phases.

ACCs are high in the northeast Atlantic after strong OHT50N phases, and

high in the central North Atlantic after weak OHT50N phases. On the decadal

time scale, the effect of SHFs dampening SST anomalies and consequently ACCs is

particularly pronounced. After weak OHT50N phases, strong SHFs in the eastern part

of the characteristic SST pattern mask much of the SST anomaly arising from ocean

variability, while strong SHFs in the western North Atlantic mask some SST anomaly

arising there after strong OHT50N phases. This leads to a zonal asymmetry in ACCs

after strong and weak OHT50N phases on the decadal time scale.

The model simulations analyzed here show very little significant ACCs in

decadal SAT hindcasts over Europe. However, ACCs for SATs on the decadal time

scale are high in the region of the characteristic SST pattern. This illustrates that OHT

dynamics modulate the skill of SAT hindcasts at least in that region. While SAT-ACCs

are generally limited over land in this study, some significant ACCs are found over the

UK and western Scandinavia in spring after strong OHT50N phases, and over eastern

Scandinavia in summer after weak OHT50N phases. These are areas in which SATs

are affected at the same time by the characteristic SST pattern, which illustrates that

there is potential for improvement of the skill of decadal predictions of seasonal SATs

by using subpolar North Atlantic OHT as an indicator in a model of higher resolution,

more ensemble members, or a more frequent initialization.
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7.3 Understanding North Atlantic Climate Variability in

the MPI-ESM-LR

Assimilation model experiments are a combination of a climate model and observational

data. It is therefore from an assimilation model experiment alone unclear whether the

detected climate variability has to be interpreted as model variability, observed climate

variability, or something else entirely. To better understand the physical mechanism

derived in chapter 3 and its influence on decadal SST prediction skill shown in chapter

4, I compare in chapter 5 the climate variability found in ASSIM to that produced by

the non-initialized MPI-ESM-LR, and to the SST observations data set HadISST. I thus

answer the guiding reserach question of this chapter:

⇒ Is the previously discussed climate variability reasonable with respect

to both model variability produced by the MPI-ESM-LR and observa-

tions?

The physical mechanism leading to the characteristic SST pattern is robust

within the MPI-ESM-LR. piControl, HIST and RCP4.5 show a similar mechanism

leading to the characteristic SST pattern as ASSIM. The physical mechanism I find

in ASSIM that modulates decadal SST variability and predictability is therefore not

exclusively an artifact of model initialization.

Climate variability in ASSIM has to be smoothed with a 3-year running

mean to reflect climate variability in the MPI-ESM-LR. The coherence of an-

nual mean strong OHT50N phases lies well outside the spread produced by piControl,

HIST, HadISST, and both examined RCP scenarios. ASSIM is therefore unlikely to

produce reasonably asymmetric influences of strong and weak phases of OHT50N on

annual mean SST variability in the North Atlantic. However, smoothing the OHT50N

and/or SST time series with a running mean ≥ 3 years places the OHT50N and SST vari-

ability produced by ASSIM within reasonable coherence of OHT50N and SST phases.

This indicates that the findings presented in this dissertation are within the variabil-

ity produced by the MPI-ESM-LR, as I use SST filtered with a 3-year running mean

throughout this dissertation.

The time scale at which subpolar OHT variability influences SSTs will likely

decrease with global warming. HadISST shows lower coherence of SST phases in

the North Atlantic than the MPI-ESM-LR. The mechanism leading to the characteris-

tic SST pattern is therefore likely to have a slightly shorter-lived influence on SSTs in

reality than in the MPI-ESM-LR. Both RCP4.5 and RCP8.5 show shorter coherence of

OHT50N and SST phases than piControl, HIST and ASSIM. In a changing climate, the

characteristic SST pattern will therefore likely vary at a higher frequency. This might

also be true for overall climate variability in the North Atlantic.

Strong phases of subpolar OHT robustly influence ACCs for SSTs in the
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North Atlantic more strongly than weak OHT phases. According to findings

presented in this chapter, the overall conclusions concerning the influence of OHT50N

variability on the skill of SST hindcast hold. However, the asymmetry between strong

and weak OHT50N phases is likely to be exaggerated in this study. Nonetheless, the

conclusion that strong OHT50N phases influence ACCs for SSTs in the North Atlantic

more favorably than weak OHT50N phases is likely robust.

7.4 Non-Stationary North Atlantic Surface Temperature

Prediction Skill

Conventional decadal climate prediction studies produce one skill estimate for the past

(e.g. Boer et al., 2016). This skill estimate is then understood to reflect the credibility

of any forecast with the examined prediction system. In chapter 4, however, I show that

SST hindcast skill changes with changing OHT50N in the North Atlantic. These findings

support previous studies (e.g. Brune et al., 2017) in that decadal SST prediction skill

in the North Atlantic can be assumed to be time-dependent, or non-stationary. This,

in turn, limits the applicability of hindcast estimates produced for a fixed period in the

past for the credibility of individual forecasts. In chapter 6, I propose a new approach

to the estimation of the skill of hindcasts that is more applicable to forecasts, answering

the guiding question:

⇒ Are mean hindcast skill estimates appropriate to estimate the credibil-

ity of a single temperature forecast in the North Atlantic region?

The applicability of hindcast skill estimates for individual forecasts is lim-

ited. AMV hindcast skill varies between ACCs of 0 and 0.8, depending on the time-

horizon that it is evaluated for, the length of the evaluation time window, and lead

time. Hindcast skill is generally high for long evaluation time windows and decreases

with shorter evaluation time windows. I find high skill in the early 20th century, around

the 1950s, and towards the end of the century. Hindcast skill is low around the 1940s.

The estimates of hindcast skill depend therefore on the point in time at which they are

issued - this presents a substantial limitation to all climate prediction studies that do

not account for this issue.

Extending the length of the period over which hindcast skill is evaluated

does not facilitate the translation of hindcast skill into the credibility of in-

dividual forecasts. The changing skill estimate with length of the evaluation time

window show that longer periods of observational records are needed to produce robust

estimates of hindcast skill. This finding highlights, however, that skill estimates ob-

tained for a long period of time do not reflect the skill of individual hindcasts within
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this time period, but rather an overall estimate. Shorter evaluation periods have to be

considered to produce a conclusive estimate of hindcast skill that is representative for

all predictions issued in this period.

Individual decadal forecasts of North Atlantic SSTs are likely credible when-

ever OHT50N is more than one standard deviation higher than the mean state

at the beginning of the forecast. Strong phases of subpolar OHT in the North At-

lantic consistently lead to skillful individual hindcasts of the AMV anomaly. This is not

the case for neutral or weak phases of OHT50N , which sometimes lead to skillful AMV

hindcasts and sometimes not.

Other physical mechanisms can likely be used to judge the credibility of fore-

casts of other variables in other regions and on different time scales. Findings

presented in this chapter indicate that the mechanism leading to the characteristic SST

pattern can be used to judge the credibility of individual decadal SST forecasts in the

North Atlantic. This implies that other physical mechanisms can be used to judge the

credibility of forecasts of other variables in other regions and on different time scales.

This implication needs further investigation in the future, highlighting other physical

mechanisms, and developing measures of hindcast skill that allow for the evaluation of

skill for individual years.

7.5 Hindcast Skill versus Forecast Skill: A Shift of Paradigm?

I opened this thesis by quoting Klaus Schulze, one of the pioneers of electronic music:

Everything changes, permanently. How boring if it wouldn’t. I would like to end this

dissertation by looking back and reconciling this quote with the findings I presented in

this dissertation: What is changing?

In recent years, an increasing number of studies showed events of strong climate vari-

ability to be well predictable on the decadal time scale (Yeager et al., 2012; Robson

et al., 2013; Müller et al., 2014; Robson et al., 2014). While these case studies implied a

change in hindcast skill over time, the actual time dependence of the skill of hindcasts

more than a year ahead was first shown by Brune et al. (2017) for North Atlantic SSTs.

However, the study by Brune et al. (2017) lacked a specific physical explanation for the

non-stationarity of hindcast skill.

By systematically combining both - the time-dependence of prediction skill with a phys-

ical mechanism that explains how this time-dependence arises - this dissertation shows

for the first time that there are times at which prediction systems that indicate a high

overall hindcast skill show no skill whatsoever. This is an important finding for the

interpretation of existing hindcast studies: any hindcast skill that is found for a long

time period should not be expected from an individual climate forecast in the absence
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of an indication that that prediction skill is actually constant over time - which, as this

work indicates, is unlikely.

Finally, this work presents an important step towards the estimation of the credibility

of a single decadal climate forecast. When it cannot be known whether hindcast skill

estimates produced for a long time period are representative of the skill of any hindcast

within this period, these hindcasts skill estimates cannot be used to judge the credi-

bility of a single climate forecast. Physical mechanisms can help judging whether the

credibility of a forecast is high or low. For North Atlantic SSTs, subpolar ocean heat

transport at the start of the forecast is likely a good indicator of the credibility of a

decadal temperature forecast. More research needs to be done on other regions and

other time scales to verify these results, identifying other physical mechanisms for other

regions.

Klaus Schulze’s quote is therefore applicable to this dissertation in many ways. It does

here not only reference changing climate and climate variability, but also changes in

hindcast and forecast skill, and the interplay between variability and predictability. I

also present evidence that the connection between variability and predictability should

be expected to change over time. Finally, findings from this dissertation suggest that

the research on hindcasts itself will have to change in the future to produce hindcast skill

estimates that are translateable into the credibility of forecasts. Change is therefore the

central topic of this work. The physical mechanisms that connect climate variability

to decadal prediction skill are not trivial to identify, though, and this dissertation only

represents the first attempt to systematically connect the two. There is a lot of work

left to be done, and our understanding of the connection of climate variability and its

prediction is almost certainly going to change in the future. Which is a good thing -

after all, it would be boring if it wouldn’t.
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