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1 | General introduction

Knowing the words of a language is an essential aspect of an individual’s command of

their language. The number of words that speakers of a language know is quite impressive.

An average 20-year-old native speaker of American English is estimated to know 42,000

lemmas, i.e. uninflected word forms from which all inflections are derived (Brysbaert,

Stevens, Mandera, & Keuleers, 2016b). However, word learning does not stop at some

point in early adulthood. On the contrary, vocabulary size tends to improve with ageing

and across the entire lifespan (e.g. Brysbaert et al., 2016b; Keuleers, Stevens, Mandera, &

Brysbaert, 2015; Schroeder & Salthouse, 2004). Thus, over the years, humans are exposed

to, continue to learn, and importantly also remember, an impressive number of words. It

has been estimated that an average adult learns approximately 6,000 new lemmas between

the ages of 20 and 60 years. That means in these 40 years, on average one new lemma is

learned every two days (Brysbaert et al., 2016b; Keuleers et al., 2015).

Hence, a speaker’s vocabulary is an ever-growing inventory of words to describe the

world around her. Assuming that vocabulary is a collection of expressions to describe all

kinds of experiences and information that are relevant to a specific speaker and her

community, it might be expected that there is variation in which and how many words

people know. Specialist vocabulary is a very intuitive example for the strong effects of

experience on the types of words known by different individuals. The words syncopation

or lunge are, for instance, known by individuals with certain occupations, interests, or

hobbies, and completely opaque to others.1 Another aspect of what we might very

broadly refer to as experience or perhaps skills is education. It has been shown that

educational level significantly affects vocabulary size across the entire age range, with

higher educational levels being associated with considerably greater vocabulary

knowledge.2 This likely reflects effects of extensive reading and studying, which are

1In this case, syncopation is a word known by musicians or perhaps also dancers and it refers to a
change to the rhythm of a piece of music where the stressed beats become unstressed and the unstressed
ones become stressed. Lunge is a dance movement where one leg is in a bent position and the other leg
is extended.

2I acknowledge that the terms vocabulary size, vocabulary knowledge, and vocabulary refer to different
but closely related and conflated constructs. While vocabulary size refers to the number of different
words in a vocabulary, with the latter referring to the set of words an individual knows, vocabulary
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associated with formal education, on vocabulary growth (Brysbaert et al., 2016b;

Keuleers et al., 2015).

Vocabulary size affects language processing

Hence, there are considerable individual differences in vocabulary size, important

predictors of which are age and educational level. As the knowledge of words is assumed

to be an essential aspect of an individual’s language capacity, it is plausible to expect

that individual differences therein affect language processing.

Previous research has indeed indicated that larger vocabularies are associated with

more accurate and importantly also with faster language processing in both

comprehension and production. In healthy older adults, for instance, accuracy of spoken

word recognition (Janse & Jesse, 2014) and the use of predictive information in spoken

contexts (Federmeier, McLennan, Ochoa, & Kutas, 2002) have been shown to benefit

from greater vocabulary knowledge. Furthermore, large vocabulary size was associated

with better listening comprehension in young adults (Andringa, Olsthoorn, van

Beuningen, Schoonen, & Hulstijn, 2012). Speech recognition in suboptimal conditions

was also found to be better for individuals with larger vocabularies (Bent, Baese-Berk,

Borrie, & McKee, 2016). Furthermore, Yap, Balota, Sibley, and Ratcliff (2012) found

higher vocabulary scores to be associated with more accurate and faster word

recognition in lexical decision and speeded pronunciation tasks.

In addition, increased vocabulary knowledge was found to be associated with faster

language production. In a study on healthy older adults, reaction times in various

linguistic tasks, including verbal fluency and picture naming, were predicted by

vocabulary knowledge. Individuals with larger vocabularies were overall faster at

processing language (Rodriguez-Aranda & Jakobsen, 2011). In verbal fluency tasks

participants are asked to produce as many words as possible from a given semantic

category (category fluency) or starting with a given letter (letter fluency) within one

minute. Unsworth, Spillers, and Brewer (2011) found better vocabulary knowledge to be

related to more items generated in verbal fluency tasks. Similarly, Shao, Janse, Visser,

and Meyer (2014) found that in letter as well as category fluency tasks, individuals with

greater vocabularies were faster to initiate their response to the cue than individuals

with weaker word knowledge.

To sum up, larger vocabularies have been associated with more accurate and faster

language processing in various production and comprehension tasks. An open question is

what the reason is for this vocabulary benefit. It might be somewhat counterintuitive that

knowledge refers to what is known about the words in a vocabulary. In the following I will use these
terms interchangeably referring to what can be measured using vocabulary tests and what is assumed to
be a combination of the underlying components size and knowledge.
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retrieving lexical items from a larger vocabulary is faster than from a smaller vocabulary.

As the lexicon becomes larger, more words might compete for selection, which would

render lexical selection more difficult, hence slower and maybe less accurate (Diependaele,

Lemhöfer, & Brysbaert, 2013).

Aside from faster reaction times in language processing tasks, previous research has

found smaller word frequency effects for speakers and readers with larger vocabularies

(Diependaele et al., 2013; Yap, Tse, & Balota, 2009) or more reading experience

(Chateau & Jared, 2000; Kuperman & Van Dyke, 2013). Reaction times (RTs) typically

decrease with increasing word frequency and this effect has been found to be smaller for

individuals with larger vocabularies, meaning that the reaction time difference between

low- and high-frequency words decreases with increasing vocabulary size. Brysbaert,

Lagrou, and Stevens (2016a), for example, observed that individuals with greater

vocabulary knowledge were not only faster to make lexical decisions but also showed

smaller word frequency effects on their language processing speed (see also Diependaele

et al., 2013). This frequency by skill interaction has been taken to indicate differences in

the entrenchment of lexical representations in smaller as compared to larger

vocabularies. Thus, the representations in individuals with greater vocabularies have

been suggested to be more robust or distinct, enabling faster processing, as compared to

individuals with smaller vocabularies (Diependaele et al., 2013). This interaction

between word frequency and skill has been argued to result from differences in exposure

to language (Brysbaert et al., 2016a; Monaghan, Chang, Welbourne, & Brysbaert,

2017). Increased exposure has been associated with an increase in efficiency of accessing

lexical representations across the entire frequency range (Monaghan et al., 2017). As a

result, the lexicon of individuals with limited language exposure and therefore weaker

word knowledge is hypothesised to show a stronger difference in processing efficiency

between low- and high-frequency words due to less entrenched representations (see also

Yap et al., 2009).

These findings on the relationship between individual differences in vocabulary size

and language processing raise a few questions. First of all, one might ask what the

origin for such considerable variation in vocabulary size between the native speakers of a

language is. Are there factors other than age, educational level, and exposure, which can

be identified as being related to variation in vocabulary learning and size? Related to that,

it is unclear whether individual differences in factors beyond exposure, such as cognitive

skills, affect the interaction observed between vocabulary size and word frequency. Both

of these questions and potential answers to them based on previous research are described

later.
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Measuring vocabulary size

Another issue central to any research on variation in vocabulary size concerns the

measurement of knowledge of words. Importantly, the majority of studies that have

indicated beneficial effects of greater vocabulary knowledge on language processing have

not focused on the examination of vocabulary size specifically. This may be the reason

why often only single vocabulary tests were employed to assess word knowledge.

However, is a single test sufficient to assess vocabulary, especially if the focus is on

individual differences in word knowledge?

Hence, the question arising is how to best assess a skill as complex and potentially

multiply-determined as vocabulary size or knowledge. Bowles and Salthouse (2008), for

example, argued that it is necessary to use a variety of measures of vocabulary size,

especially in studies where vocabulary knowledge is in the focus of interest. The reason is

that no vocabulary test is a pure measure of word knowledge but involves other cognitive

abilities as well as world knowledge (Bowles & Salthouse, 2008). Consequently, the advice

is to use a battery of tests of different types (antonym vs. synonym) and formats (multiple-

choice vs. open) and calculate a composite score of performance on all tests, which is

suggested to likely reflect vocabulary size.

Furthermore, a lot of the established and often-used vocabulary tests are multiple-

choice tests and it has been claimed that this is not the ideal way of assessing word

knowledge (Gyllstad, Vilkaite, & Schmitt, 2015). In multiple-choice tests, individuals can

rely on elimination strategies or guessing to arrive at the correct response whereas open

tests require knowledge of the target word. Following Gylstad and colleagues (2015) this

might lead to an overestimation of participants’ vocabulary size when using multiple-

choice instead of open or interview-based measures of vocabulary. This in turn might be

problematic in individual differences studies, where it is essential that the measures used

to assess participants’ cognitive abilities are able to elicit variation in test performance

(Kidd, Donnelly, & Christiansen, 2018). Especially when testing highly able groups of

participants, which often happens in psychological and psycholinguistic research where

mainly university undergraduates are tested, the use of measures that are too easy due

to the possibility of relying on strategies such as elimination or guessing might be highly

problematic.

Furthermore, Henriksen (1999) proposed three dimensions along which lexical

competence may develop and vary. These three dimensions are (a) partial to precise

knowledge, (b) depth of knowledge, and (c) receptive to productive use ability.

Assuming vocabulary development and knowledge to show variation along these

different dimensions supports the assumption that different measures of vocabulary are

needed. The ’partial to precise knowledge’ dimension refers to a continuum from mere
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recognition of a lexical item to precise comprehension, describing the acquisition of

form-meaning mappings. Multiple-choice tests might be seen as addressing this first

dimension, requiring the recognition and knowledge of single words and their meanings.

Secondly, development along the ’depth of knowledge’ dimension is related to the

creation of links or associations between words. Thus, while the first dimension is

concerned with the process of acquiring single lexical items, this second dimension refers

to the development of an internal structure of the lexicon acknowledging the

relationships between words. Performance on different types of tests, namely antonym

and synonym tests, might be thought to reflect knowledge on the depth continuum,

more precisely knowledge of the complex antonymous or synonymous relationships

between different words. The third and final ’receptive to productive ability’ dimension

reflects the observation that words are typically first available for reception and slowly

become part of the productive vocabulary, which is a continuous process. Hence, only a

combination of open and multiple-choice tests will be capable of accounting for the

receptive to productive continuum (Henriksen, 1999).

Individual differences in vocabulary learning

While vocabulary appears to be difficult to assess and different ideas have been put

forward as to how the knowledge of words is best measured, previous studies have

demonstrated large variability in vocabulary size across native speakers of a language

(Brysbaert et al., 2016b). One might ask what the origins are for such considerable

variation in vocabulary size among native speakers of a language. Why do some people

learn more words than others, thus end up having a larger vocabulary than others? It

has been shown that differences in age as well as educational level are related to

considerable individual variation in vocabulary size. Closely related to these effects is, as

mentioned above, the impact of amount of exposure or input on word learning. Earlier

experimental and modelling work has shown that greater amounts of exposure result in

more words being learned, thus, in larger vocabularies (Hurtado, Marchman, & Fernald,

2008; Monaghan et al., 2017). Variation in the type and amount of exposure has, in

particular, been shown to result in considerable individual differences in the number of

words children acquire. Early in development the quantity of the input appears to be

more beneficial for vocabulary learning, whereas later in development the diversity of

the input, i.e. the number of different words, has been shown to have stronger

advantageous effects on learning (Jones & Rowland, 2017).

In addition to being affected by the environmental factor exposure, vocabulary

learning and size have been suggested to be influenced by individual differences in

various cognitive abilities. Better phonological short-term memory has been associated
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with improved word learning and greater vocabulary size in children (Gathercole, 2006).

Furthermore, individual differences in processing speed as well as in vocabulary size

have been found to predict variation in vocabulary learning and size. Children with

faster online processing speed at 25 months showed more accelerated word learning over

the first two years of life (Fernald, Perfors, & Marchman, 2006), and children with

better vocabulary knowledge at 2 years of age also showed greater word knowledge at 8

years of age (Marchman & Fernald, 2008). A question arising is what the origin is of the

relationship between online processing speed and vocabulary learning. One possibility

might be that greater amounts of exposure early in development result in some children

having larger vocabularies, and this larger amount of training on linguistic input also

leads to the emergence of advantages in language processing (Fernald et al., 2006).

Alternatively, variation in general cognitive abilities might underlie differences in word

learning and also differences in processing abilities, with the latter being present from

the beginning of language development (Fernald et al., 2006). Related to this is the

question of which factors give rise to variation in vocabulary size in the first place,

which in turn has effects on subsequent vocabulary learning. Again, environmental

factors, such as exposure, but also cognitive factors potentially cause variation in word

learning and knowledge.

Summary and thesis outline

To sum up, earlier research has suggested that there are considerable individual

differences in vocabulary size among the native speakers of a language, which impact

language processing performance (Brysbaert et al., 2016a, 2016b; Kidd et al., 2018; Yap

et al., 2012). However, not much research has focused on variation in vocabulary and its

effects on lexical processing, which is why most studies have used only single tests to

measure participants’ vocabulary. It has been argued, though, that vocabulary can only

be assessed using a battery of different measures varying in format and test type

(Bowles & Salthouse, 2008). Furthermore, the majority of what we know about the

relationship between individual differences in vocabulary and language processing is

based on studies where a very small and homogeneous group of participants was tested,

namely mostly undergraduate university students. This is the case for psychological and

psycholinguistic research more generally but raises the question of whether our findings

and theories are generalisable to individuals from more diverse backgrounds (Kidd et al.,

2018).

These questions and gaps in the literature were addressed in Chapters 2 and 3 of this

dissertation. Two groups of participants, namely university students (Chapter 2) and

vocational college students (Chapter 3), were tested on a battery of different vocabulary
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measures. Two of the vocabulary measures were established tests of word knowledge,

while five additional tests of different types (antonym, synonym, definition) and formats

(multiple-choice, open) were newly developed. In addition, participants performed a

lexical decision task to measure language processing performance. The aims were (a) to

examine whether a battery of vocabulary tests is indeed necessary to assess vocabulary size

or whether single measures are sufficiently representative of vocabulary test performance,

and (b) to study the relationship between individual differences in language processing and

variation in vocabulary knowledge in our typical and a more diverse group of participants.

In Chapter 4, I present data from a picture-word interference task, which was

completed by the university students group in addition to the lexical decision task. In

this vein, I was able to examine whether lexical production is influenced by variation in

vocabulary size to a similar extent as word recognition. This also allowed us to examine

the relationship between comprehension and production in the same individuals. The

production task was not administered to the vocational college students due to

constraints on the test setting and the length of the experiment.

The observation of considerable variation in vocabulary among the native speakers

of a language raised the question of what causes these individual differences in the

knowledge of words (e.g. Brysbaert et al., 2016b). Previous research has demonstrated

that an important factor leading to variation in vocabulary learning and size is exposure

(Hurtado et al., 2008; Jones & Rowland, 2017; Monaghan et al., 2017). Greater

exposure has been associated with better word learning. Jones and Rowland (2017) have

shown that early in development, input quantity is more important for vocabulary

growth whereas later in development the diversity of the input is decisive. Furthermore,

different cognitive skills have been suggested to influence lexical learning. Greater

phonological short-term memory, higher processing speed, and larger vocabulary size

have been associated with more successful word learning (Fernald et al., 2006;

Gathercole, 2006; Marchman & Fernald, 2008; McMurray, Horst, & Samuelson, 2012).

However, most of what is known about individual differences in word learning is based

on developmental research. Hence, one open question in this context concerns the degree

to which these factors continue to play a role in word learning in adulthood. Aside from

that, not much is known about the relationships between individual differences in

various cognitive abilities and their effects on language learning, especially in adult

native speakers (Kidd et al., 2018). Instead of focusing on single cognitive abilities and

examining the roles of, for instance, phonological short-term memory, processing speed,

and vocabulary separately, it is considered necessary to look at different cognitive skills

and their relationships between each other and with lexical learning. Finally, not much

research has focused on the relationships between individual differences in internal
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sources for variation, i.e. cognitive skills, and differences in environmental factors, such

as exposure (Kidd et al., 2018). What is the relationship, for instance, between variation

in processing speed or vocabulary size and the amount of exposure an individual needs

to learn a new word?

These open questions were addressed in Chapters 5 and 6 of the present

dissertation. In the experiment detailed in Chapter 5 I examined novel word learning

performance in adult native speakers and how individual differences therein relate to

variation in different cognitive abilities, namely general processing speed, nonverbal

intelligence, phonological short-term memory, and vocabulary. In addition, I was

interested in the relationship between these cognitive factors and the factors amount of

exposure and overnight consolidation, which have previously been found to affect word

learning. This study was conducted with university students only due to limited

availability of non-university students as participants. Additionally, constraints on the

length of test sessions possible in a test setting at vocational colleges did not allow us to

run this study with a more diverse group of participants. In the future, research on word

learning should also be extended to include participants from more diverse educational

backgrounds.

In Chapter 6 I present a computational modelling study that aimed at bringing

together the research topics and questions from all previous chapters. A distributed

connectionist model was used to examine causes and consequences of variation in

vocabulary size. More precisely, I investigated the potential causal roles of variation in

cognitive skills, namely processing speed and intelligence, and the environmental factors

quantity and diversity of the input in determining variation in vocabulary size. In

addition, I examined the effects of differences in vocabulary size as well as in these

potential causes of variation in vocabulary size on language processing and novel word

learning. Thus, the findings from Chapter 6 complement the observations from my

behavioural work by providing insights into causal relationships between variation in

cognitive as well as environmental factors and lexical learning and processing, and by

shedding light on underlying mechanisms of the observed behavioural effects.



2 | Vocabulary knowledge predicts lexical

processing: Evidence from lexical decision1

Abstract

With this study we pursued two goals; firstly the development and assessment of
measures of vocabulary size in Dutch native speakers, and secondly the investigation of
the relationship between individual differences in word knowledge and language
processing. Five vocabulary tests were developed, including multiple-choice and open
antonym and synonym tests and a definition test, and administered together with
Andringa and colleagues’ (2012) receptive multiple-choice test and the PPVT-III NL
(Schlichting, 2005). Language processing performance was measured using a lexical
decision task. We found the typical lexicality and word frequency effects in the lexical
decision task. Importantly, RTs were predicted by vocabulary size, indicating that
individuals with better vocabulary knowledge are better in language processing. Scores
from six out of seven vocabulary tests were significantly related with speed of language
processing. Implications of our findings concerning the assessment of vocabulary size in
individual differences studies and concerning future research on the role of vocabulary in
language processing are discussed.

1This and the following chapter are based on Mainz, N., Shao, Z., Brysbaert, M., & Meyer, A.S.
(2017). Vocabulary knowledge predicts lexical processing: Evidence from a group of participants with
diverse educational backgrounds. Frontiers in Psychology, 8, 1164. doi: 10.3389/fpsyg.2017.01164
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Introduction

Knowing the words of the language is undeniably an important part of a speaker’s

command of their language. Due to differences in life-experience, interests, and skills,

adults are likely to differ considerably in the structure and size of their native language

vocabularies (Brysbaert et al., 2016b). Individual differences in vocabulary size are

likely to affect language processing in adult native speakers, just as it has been shown

for individual differences in general cognitive abilities, such as inhibitory control (Banks,

Gowen, Munro, & Adank, 2015; Shao, Roelofs, Acheson, & Meyer, 2014; Shao, Roelofs,

& Meyer, 2012), sustained attention (Jongman, Roelofs, & Meyer, 2015), or working

memory (Hartsuiker & Barkhuysen, 2006). However, the role of adult speakers’

vocabulary knowledge in language processing has not been investigated comprehensively.

The present study aimed at investigating the relationship between individual differences

in vocabulary size and language processing performance more closely. For this purpose

we employed a battery of seven vocabulary tests and a lexical decision task.

Most studies that have considered the relationship between vocabulary size and

language processing performance found beneficial effects of increased vocabulary size on

language processing performance. Studies on healthy older adults showed, for instance,

that better vocabulary knowledge is beneficial for accuracy of spoken word recognition

(Janse & Jesse, 2014) and the use of predictive information in spoken contexts

(Federmeier et al., 2002). In young adults, an increase in vocabulary size was associated

with better listening comprehension (Andringa et al., 2012). Large vocabulary size was

also found to be linked to better speech recognition in suboptimal conditions (Bent et

al., 2016). Furthermore, Yap, Balota, Sibley, and Ratcliff (2012) found higher

vocabulary scores to be associated with more accurate and faster word recognition in

lexical decision and speeded pronunciation tasks. In addition, increased vocabulary

knowledge was found to be associated with faster language production. In a study on

healthy older adults, reaction times (RTs) in various linguistic tasks, including verbal

fluency and picture naming, were predicted by vocabulary knowledge. Larger

vocabularies were related to overall faster language processing (Rodriguez-Aranda &

Jakobsen, 2011). Verbal fluency tasks require participants to produce as many words as

possible within a semantic category (category fluency) or starting with a given letter

(letter fluency) within one minute. Unsworth, Spillers, and Brewer (2011) found better

vocabulary knowledge to be related to more items generated in verbal fluency tasks.

Similarly, Shao, Janse, Visser, and Meyer (2014) studied the component processes that

determine older adults’ performance on verbal fluency tasks. In letter as well as
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category fluency tasks, individuals with greater word knowledge were faster to initiate

their response to the cue than individuals with weaker vocabularies.

In a nutshell, better vocabulary knowledge has been associated with advantages in

various language comprehension and production tasks. This is somewhat counterintuitive

as one might expect that retrieving lexical items from a larger vocabulary would be

slower than retrieval from a smaller lexicon, because more lexical items might compete

for selection as the lexicon becomes larger or denser (Diependaele et al., 2013). Contrary

to this expectation, individuals with better word knowledge appear to be able to access

their knowledge fast and efficiently, perhaps even faster than individuals with smaller

vocabularies.

In addition to faster RTs in language processing tasks, previous research has found

smaller word frequency effects for speakers and readers with larger vocabularies

(Diependaele et al., 2013; Yap et al., 2009) or more reading experience (Chateau &

Jared, 2000; Kuperman & Van Dyke, 2013). Typically, RTs decrease with increasing

word frequency. This word frequency effect has been reported to be smaller for

individuals with better vocabulary knowledge, meaning that the RT difference between

low- and high-frequency words decreases with increasing vocabulary size. Diependaele

and colleagues (2013), for instance, reanalysed data from an earlier visual word

recognition study (Lemhöfer et al., 2008) and found larger vocabularies to be associated

with smaller effects of word frequency. Furthermore, Brysbaert, Lagrou, and Stevens

(2016a) observed that individuals with higher vocabulary scores were not only faster to

make lexical decisions but also showed smaller effects of word frequency on their RTs. In

both studies, this frequency by skill interaction was taken to be indicative of differences

in entrenchment between smaller and larger vocabularies. Thus, the representations in

individuals with greater vocabularies are assumed to be more robust or distinct,

enabling faster processing, as compared to individuals with smaller vocabularies.

According to this lexical entrenchment hypothesis, the frequency by skill interaction is

due to differences in exposure to language, especially to written language, which has a

lower type-token ratio than spoken language (Brysbaert et al., 2016a). It is assumed

that amount of exposure has a particularly strong impact on the representations of low

frequency words (Kuperman & Van Dyke, 2013). As a result, the lexicon of individuals

with limited language exposure and therefore weaker word knowledge is hypothesised to

show a stronger frequency difference between low- and high-frequency words. Hence, the

vocabulary of individuals with limited exposure to language has a steeper frequency

curve than what would be observed in individuals with larger vocabularies (Brysbaert et

al., 2016a). Consequently, lexical representations in low-vocabulary individuals are
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hypothesised to be weaker, less robust or distinct, especially for low-frequency words,

and therefore slower to be processed.

A similar argument has been put forward by Yap, Tse, and Balota (2009). They

also hypothesised that greater vocabulary knowledge led to overall increased precision

and stability of lexical representations. This was based on their observation that

vocabulary knowledge affects the joint effects of word frequency and associative priming.

In a lexical decision task, participants with poorer vocabulary knowledge showed

stronger associative priming effects for low-frequency than for high-frequency words,

whereas individuals with better vocabulary scores exhibited equally strong priming

effects for both types of words. This suggests that the lexical representations in readers

with greater vocabulary knowledge do not differ much in quality or strength depending

on word frequency, contrary to the representations in low-vocabulary individuals, which

appear to show considerable differences in strength or robustness depending on word

frequency (Yap et al., 2009).

To sum up, based on the observation that word frequency effects on word recognition

are smaller in high-vocabulary than in low-vocabulary individuals, structural differences

between the representations in vocabularies of varying sizes have been suggested. Different

researchers have used different terms to refer to this idea; representations in individuals

with better word knowledge or more experience with language have been proposed to be

more robust, entrenched, precise, or higher in lexical quality making lexical access faster

and less prone to effects of word frequency (Diependaele et al., 2013; Perfetti & Hart,

2001; Van Dyke, Johns, & Kukona, 2014; Yap et al., 2009).

While the aforementioned studies implicate a role of vocabulary size in

comprehension and production tasks, most of them did not focus on vocabulary

specifically. This may be the reason why usually only single vocabulary tests were

employed to assess word knowledge. It has been argued, though, that a complex skill

such as vocabulary cannot be measured using individual tests. Bowles and Salthouse

(2008) claimed that it is necessary to use a variety of measures of vocabulary size,

especially in studies where vocabulary knowledge is in the focus of interest. No

vocabulary test is a pure measure of word knowledge but they involve other cognitive

abilities (Bowles & Salthouse, 2008). Thus, using a battery of vocabulary tests is

necessary in order to make sure that what is represented by a composite score of a

participant’s performance on all tests is in fact vocabulary size.

Additionally, the majority of established vocabulary tests are multiple- choice tests,

but it is unclear whether this is the ideal way of assessing individuals’ word knowledge.

Gyllstad, Vilkaite, and Schmitt (2015) compared second language learners’ performance

on a multiple-choice vocabulary test with an open interview-based test of vocabulary
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knowledge. They found a mismatch between the multiple-choice and the open test

scores with the former overestimating participants’ vocabulary size as compared to the

latter. This pattern was argued to arise because participants could use guessing or

elimination strategies in the multiple-choice task (Gyllstad et al., 2015). Although that

study concerned second language learners, the argument can be extended to the

assessment of native speakers. This supports the idea that multiple tests and test

formats are required to obtain a reliable indicator of vocabulary size. Such a

comprehensive investigation of individual differences in vocabulary, assessed using

various different types of vocabulary tests, and their relationship with language

processing performance in healthy adult native speakers, is lacking so far.

With the present study we investigated the relationship between individual

differences in vocabulary and word recognition more comprehensively. For the

above-described reasons, it was considered necessary to employ not only one single

measure of vocabulary size but a battery of different tests. Thus, the Dutch participants

in the present study completed a set of seven vocabulary tests, two of which were the

established Peabody Picture Vocabulary Test (PPVT-III NL; Schlichting, 2005) and

Andringa and colleagues’ (2012) receptive multiple-choice test. In addition to these

multiple-choice tests, five tests of different types and formats were developed. These

measures were a definition test, multiple-choice antonym and synonym tests, and open

antonym and synonym tests. In this vein, we took into account that various test formats

(i.e. multiple-choice and open tests), asking the participants to perform different tasks

(such as the antonym or synonym of the target), are needed to reliably assess

vocabulary size. The choice of the test types and formats was based on Henriksen’s

(1999) proposal that there are three dimensions of vocabulary development. The

knowledge of words, which varies along a continuum from partial to precise, was

addressed using the definition test and the various multiple-choice measures. Secondly, a

deeper knowledge of the meaning of words and their relations to other words was

assessed using the antonym and synonym tests. Finally, the distinction between

receptive and productive vocabulary knowledge was taken into account by using open

tests in addition to multiple-choice tests. Furthermore, we were inspired by the way

vocabulary was assessed in earlier studies. The format of the multiple-choice synonym

test was identical to widely used measures of vocabulary tests, such as the Shipley

Vocabulary test (Shipley, 1946). The antonym test only differed from the synonym test

in that participants were asked to select a word that had the opposite meaning to the

target instead of the same meaning. The test items used in these measures covered a

large range of word frequencies to make sure that they were able to measure sufficient

variability in vocabulary.
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In addition, participants completed a visual lexical decision task to assess their

language processing performance. This task is a widely used measure of speed of word

recognition (e.g., Balota et al., 2007; Brysbaert et al., 2016a; Keuleers, Lacey, Rastle, &

Brysbaert, 2012). On each trial of the lexical decision task, participants are presented

with a string of letters and are asked to decide whether or not it is an existing word in a

given language. Two classic findings are the effects of lexicality and frequency.

Responses for words are usually faster than responses for nonwords, and more frequent

words elicit faster responses than less frequent words (e.g., Keuleers et al., 2015;

Kuperman & Van Dyke, 2013; Whaley, 1978; Yap et al., 2012). Frequency

manipulations were implemented in the present study such that the stimuli covered a

large range of word frequencies.

We expected to find beneficial effects of increased vocabulary knowledge on language

processing performance, with faster RTs and lower error rates for individuals with greater

vocabulary knowledge. In addition, the lexical entrenchment account, which predicts

an interaction between a participant’s vocabulary score and the word frequency effect,

was tested. Larger effects of word frequency were predicted for individuals with poorer

vocabulary knowledge (e.g., Diependaele et al., 2013).

In addition, the nature of a potential effect of vocabulary on language processing was

examined more closely, aiming at replicating earlier findings concerning the relationship

between vocabulary size and diffusion model parameters (Brysbaert et al., 2016a; Yap

et al., 2012). For this purpose, we used Ratcliff’s (1978) diffusion model approach to

analyse the lexical decision task data (see also Yap et al., 2012, for discussion). The

model takes a participant’s RTs for both correct and incorrect responses into account and

decomposes them into a number of parameters representing the cognitive mechanisms

underlying binary forced-choice tasks. In the context of a lexical decision task, the model

assumes that the information necessary for a response, i.e. word versus nonword decision,

is accumulated over time in a noisy process (Ratcliff, Gomez, & McKoon, 2004). It begins

at a starting point until it reaches one of two response criteria, i.e. a word or nonword

boundary (see Figure 2.1).

The standard version of the diffusion model estimates seven parameters by fitting

the diffusion model to participants’ lexical decision task data. An important parameter is

the mean drift rate. It reflects the speed of information accumulation, which is dependent

on task or stimulus difficulty. In addition, drift rate is hypothesised to fluctuate from one

trial to the next. This is reflected in a parameter called the variability in drift rate across

trials. As indicated above, the accumulation of information is not only characterised

by its speed, i.e. the drift rate, but also by a particular starting point, which reflects

a participant’s bias towards word or nonword responses (see Figure 2.1). Just as for
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the drift rate, the diffusion model assumes across-trial variability in starting point. The

information extracted from the stimulus accumulates with a certain drift rate beginning

from a starting point towards one of two boundaries or response criteria. The parameter

boundary separation reflects how far these boundaries are separated from each other and

is typically considered to model the speed-accuracy tradeoff. If the boundaries are close

together either of the response criteria is met quickly but chances of making a mistake

are higher. When the boundaries are farther apart, decision making is slower but less

error-prone. In addition to the decision process, the diffusion model assumes two other

component processes, stimulus encoding and response execution (see Figure 2.1). The

latter two are combined into the parameter nondecisional components of processing when

the model is fit to data. Finally, the time needed for nondecision processes is assumed to

fluctuate which is reflected in the parameter across-trial variability in the nondecisional

component of processing (Brysbaert et al., 2016a; Ratcliff et al., 2004; Ratcliff & McKoon,

2008). We asked whether differences in vocabulary knowledge would be associated with

specific parameters of the diffusion model.

We expected the drift rate to increase with increasing vocabulary size because

individuals with greater vocabulary knowledge were assumed to build up lexical

information more quickly as one of the reasons for their faster lexical decision RTs. The

variability in drift rate was presumed to decrease with increasing vocabulary size. This

would indicate more stable, smoother processing across different trials for individuals

with larger vocabularies, for instance due to smaller effects of stimulus difficulty on drift

rate. In addition, and based on previous findings, the starting point was assumed to be

less word biased for high- than for low-vocabulary individuals (Brysbaert et al., 2016a).

Furthermore, it was presumed that the time needed for nondecision components of

processing may decrease with increasing vocabulary scores. This would indicate that

individuals with improved word knowledge also exhibit advantages in their general speed

of processing, for instance, reflected in faster response execution (Brysbaert et al.,

2016a; Yap et al., 2012).
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Word 

Nonword 

Figure 2.1: Ratcliff’s (1978) diffusion model applied to the lexical decision task. Upon
stimulus presentation, noisy information accumulates either towards a word or
a nonword threshold. The figure shows the information accumulation for two
distinct stimuli, one resulting in a word and the other in a nonword decision
(Figure adapted from Dutilh et al., 2012).

Hence the present study aimed at investigating individual differences in vocabulary

in young adult native speakers more closely by using a battery of measures to assess

vocabulary size. Additionally, the origin of a potential vocabulary effect on language

processing was examined using diffusion model analyses, accounting for the possibility

that an overall effect of vocabulary on lexical decision task performance might originate

in different component processes of lexical decision making.

Method

Participants

A total of 75 young adults (57 females) aged between 18 and 34 years (M = 21.9; SD =

3.7) gave informed consent to participate in this study.2 All participants were completing

their studies at the Radboud University Nijmegen or the Hogeschool van Arnhem en

Nijmegen at the time of testing or had recently graduated. They were recruited using

2Five participants were 30 years or older. Inspection of their data did not suggest that they were to
be treated as outliers.
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the participant database of the Max Planck Institute for Psycholinguistics and were paid

12 Euros for their participation. Ethical approval was granted by the Faculty of Social

Sciences of the Radboud University Nijmegen.

Materials and design

All participants completed a battery of seven vocabulary tests and a lexical decision

task. Two of the vocabulary tests were established measures of vocabulary knowledge,

namely Andringa et al.’s (2012) receptive multiple-choice test and the Peabody Picture

Vocabulary Test (PPVT-III NL; Schlichting, 2005). The other five tests were newly

developed.

Receptive multiple-choice test

This multiple-choice test was developed by Andringa and colleagues (2012). Participants

were presented with target words, such as mentaliteit (mentality) or tentatief (tentative),

embedded in different neutral carrier sentences. Each sentence was presented along with

five answer options, one of which was a description of the target word and one being Ik weet

het echt niet (I really don’t know). For example, the target word mentaliteit (mentality)

was presented with the answer options tafel (table), persoon (person), manier van denken

(way of thinking), and sfeer (atmosphere; see Appendix A for all vocabulary tests). The

target words covered a large range of word frequencies between 0 and 31.28 counts per

million in the SUBTLEX corpus (M = 1.87; SD = 5.07; Keuleers, Brysbaert, & New,

2010).

The test consists of 60 target sentences. In the present study the first sentence was

used as a practice item so that the test comprised a total of 59 questions. Both the

original sequence of items and the positions of the correct responses were the same as in

Andringa et al.’s (2012) test.

Peabody Picture Vocabulary Test (PPVT)

Every trial in the Dutch version of the PPVT-III (Schlichting, 2005) consists of a spoken

target word and a set of four pictures. Participants were instructed to choose the picture

that corresponded to the word they heard. The target word frequency ranged from 0 to

29.13 counts per million in the SUBTLEX corpus (M = 1.86; SD = 4.60; Keuleers et al.,

2010).

The stimuli in the PPVT are organised in blocks of twelve words but the number

and order of blocks varied depending on the participant’s performance. Each participant

started with the same first block of twelve items. Depending on the number of mistakes
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made, the following block was comprised of either easier or more difficult words. The

same held true for all subsequent blocks of stimuli. Thus, individuals with poor word

knowledge might complete five blocks of twelve words each, while others might complete

the maximum of eight blocks of stimuli. All target words had been spoken by a female

native speaker of Dutch and recorded.

Definition test

In this test, participants were presented with 20 definitions of words from four different

semantic categories (animal, profession, body part, instrument/object; see Appendix A).

The task was to name the word that corresponded to the definition. All definitions were

taken from a definition naming experiment by La Heij and colleagues (1993). The

frequencies of the correct responses ranged between 0.02 and 244.07 occurrences per

million (M = 39.01, SD = 63.63) in the subtitle corpus SUBTLEX-NL (Keuleers,

Brysbaert, & New, 2010). Furthermore, the correct responses displayed z -transformed

prevalence values between 1.99 and 3.41 (M = 2.93, SD = 0.44). Prevalence is a

measurement of how many people in a group of speakers of a language, in this case

Dutch, know a given word (Keuleers et al., 2015). Following Keuleers and colleagues,

words with a prevalence value of 1 or above are known by at least 85% of Dutch native

speakers in the Netherlands. The order of items within this and the following tests was

pseudo-randomised such that low- and high-frequency test items were well distributed

and the order was fixed across participant.

Multiple-choice antonym test

The multiple-choice antonym test included 25 test items, which were presented without

carrier sentences and along with five single-word answer alternatives (see Appendix A).

Some of the target words were taken from the Toets Gesproken Nederlands (TGN), a

Dutch language test used to assess language for immigration requirements (Kerkhoff,

Poelmans, de Jong, & Lennig, 2005).

The test items in the multiple-choice antonym test represented a large frequency

range with between 0 and 3838.54 counts per million (M = 200.16, SD = 764.93) in

the subtitle corpus SUBTLEX-NL (Keuleers et al., 2010) and z -transformed prevalence

values of between -1.73 and 3.37 (M = 2.37, SD = 1.22).

Open antonym test

Just as in the multiple-choice test, the open antonym test included 25 test items, which

were presented individually (see Appendix A). Participants were instructed to write down
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an antonym for each word. Some of the target words were also taken from the TGN

(Kerkhoff et al., 2005). The test items in the open antonym test represented a frequency

range between 0 and 60.69 counts per million in the SUBTLEX-NL corpus (M = 9.09,

SD = 13.14). The prevalence values of the target words ranged from 1.03 to 3.32 (M =

2.49, SD = 0.68).

Multiple-choice synonym test

The multiple-choice synonym test was structurally identical to the multiple-choice

antonym test, the only difference being that participants were asked to select a word

that has the same meaning as or is interchangeable with the given target. Hence, it

consisted of 25 test items, which were presented along with five single-word answer

alternatives (see Appendix A). The multiple-choice synonym test was based on a part of

the Groningen Intelligence Test (Luteijn & van der Ploeg, 1983). This measurement

consists of 20 test items, which are presented along with five answer options each. The

majority of these words have very low frequencies in the SUBTLEX-NL corpus. In order

to adapt the test for the present purposes and make the final test scores comparable to

the 25-item antonym test, five new medium to high-frequency test words were added.

The word frequencies of the test items in the multiple-choice test ranged from 0 to

48.05 per million (M = 4.85, SD = 11.02) in the SUBTLEX-NL corpus. The words’

prevalence values ranged between -0.64 to 3.35 (M = 1.77, SD = 1.11).

Open synonym test

The open synonym test was structurally identical to its antonym counterpart. It

comprised 25 test items which were presented individually and without carrier sentences

(see Appendix A). The construction of this open synonym test was inspired by the

English version of the Mill Hill Vocabulary Scale (Raven, Court, & Raven, 1994). The

target words had frequency values between 0 and 36.25 per million (M = 4.62, SD =

9.33). Furthermore, the test items in the open synonym test had prevalence values

between -0.59 and 3.32 (M = 1.88, SD = 1.06). Importantly, each word appeared only

once as target item in one of the vocabulary tests.

Lexical decision task

Ninety word and 90 nonword stimuli were included in the lexical decision task. The

words covered a broad word frequency range from 0.02 to 89.92 (M = 9.69, SD = 16.38)

occurrences per million in the SUBTLEX corpus (Keuleers et al., 2010). All words were

uninflected and were not homophonous with other Dutch words. Furthermore, the words’
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prevalence values were not lower than 2.89, indicating that all words were known by at

least 98% of Dutch speakers in the Netherlands (Keuleers et al., 2015).

The nonwords were created using the program Wuggy (Keuleers & Brysbaert, 2010),

which generates nonwords based on real words. Each of the nonwords corresponded to

one real word on the list. All nonwords differed from their real word counterparts by a

letter, a sound, or an entire syllable, while being pronounceable but not homophonous or

homonymous with an existing Dutch word. Using this set of stimuli, four lists including

all 180 items were created. The order of stimuli within each of the lists was fixed. Not

more than three consecutive trials belonged to the same experimental condition. The four

stimuli lists were counterbalanced across participants.

Apparatus

All tasks were presented on a 17-inch screen (Iiyama LM704UT) using either

Presentation software (version 16.5, www.neurobs.com), or the online questionnaire

software LimeSurvey (www.limesurvey.org). The auditory stimuli in the PPVT were

presented using HD 280 Sennheiser headphones.

Procedure

All participants were tested individually in experiment rooms at the Max Planck Institute

for Psycholinguistics. Everyone completed the vocabulary tests in the same order, namely:

Definition test, Andringa et al.’s (2012) test, multiple-choice antonym test, open antonym

test, multiple-choice synonym test, and PPVT. The vocabulary tests were self-paced and

participants were instructed to answer as accurately as possible without thinking about

single test items for too long. Before each of the tests started, instructions were presented

on the screen, along with example questions. In total, the vocabulary test battery took

between 35 and 45 minutes. The lexical decision task was completed in a separate test

session.

Receptive multiple-choice test

The target words were presented in neutral carrier sentences and were marked with two

asterisks. The question and answer options were written in 25-point Arial font and stayed

on the screen until the participant had selected an answer by pressing one of the number

buttons 1 to 5 on the keyboard. Answering a question initiated the presentation of the

following test item.
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Peabody Picture Vocabulary Test

Participants were presented with a spoken stimulus and four pictures on the screen and

were instructed to select one of the four pictures that corresponded to the word they

heard by pressing one of the number buttons 1 to 4 on the keyboard. The target word

was repeated until one of the four response buttons was pressed, which initiated the

presentation of the next stimulus.

New vocabulary tests

In the definition and open antonym and synonym tests, participants were asked to type

in the correct answer using the keyboard. For the definition test, it would be the animal,

profession, body part, or object corresponding to the definition. In the open antonym

and synonym tests, participants were required to type in a word that was an antonym

or synonym of the test word. Participants could proceed to the next question without

answering the previous one, if they did not know the answer.

In the multiple-choice antonym and synonym tests, participants were given five

answer alternatives and instructed to select the word that had the opposite (antonym)

or same (synonym) meaning as the target. Answering a question initiated the

presentation of the following test item. Everything was written in 25-point Arial font.

Lexical decision task

The experiment was divided into two parts, consisting of 90 stimuli each. Between the

two blocks, participants could take a short break. Each trial started with a fixation cross,

which was shown in the center of the screen. After 500 ms, it was replaced by a word or

nonword written in 24-point Arial font. The stimuli stayed on the screen for 3 seconds

or until a response button was pressed. Half of the participants were instructed to press

the ”Z”-button on the keyboard if the string of letters on the screen was a word and

”M” if it was a nonword; the other half did it the other way around. Participants were

instructed to respond as quickly and accurately as possible. Before the test phase began,

participants were familiarised with the task in four practice trials.

Analyses

Vocabulary tests

Peabody scores were calculated based on the total number of items participants

responded to and the number of errors they made. These raw scores were then

transformed into standardised scores, called woordbegripquotiënt (word comprehension
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score, WBQ), which was used for all further analyses (Schlichting, 2005). PPVT scores

are adjusted for age. For our group of participants the maximum possible score varied

between 139 for younger participants and 136 for the oldest participants.

One point was given for each correct answer in all other multiple-choice and open

tests. Some exceptions applied to the definition as well as the open antonym and

synonym tests. If a participant demonstrated knowledge of the word or concept without

producing an actual antonym or synonym (e.g. writing stil (silent) instead of stilte

(silence) as antonym for lawaai (noise)) or if the answer was misspelled, they received

0.5 points for that answer. Three native speakers of Dutch with backgrounds in

linguistics or psycholinguistics independently categorised all answers. Some cases, which

they did not agree on initially, were then discussed in the group. That always resulted in

a judgment supported by all of them. It was possible that for one target several different

responses were correct. For example, in the case of the definition test item Iemand die

werkt met patiënten (Someone who works with patients), the responses dokter and arts

(both doctor) as well as verpleegster (nurse) were considered correct. In the open

antonym test, for instance, both falen and mislukking (both failure) were considered

correct responses given the target succes (success).

The relationships between the vocabulary tests were analysed using bivariate

Pearson correlation analyses in SPSS (version 20). In addition we conducted a Principal

Component Analysis (PCA) in SPSS, which can be used to identify a small number of

components that account for the variability in a larger number of original measures, in

this case seven vocabulary tests. The goal of a PCA is data reduction in cases where the

measures originally included in the study are to be reduced to a subset without losing

information (DeCoster, 1998). We ran a PCA assuming two components for that exact

reason, namely reduction of the number of vocabulary scores as predictors in the

individual differences analyses to one measure or two measures (reflecting a distinction

between multiple-choice and open tests).

Lexical decision task

In the lexical decision task, we measured RTs and accuracy. Responses were excluded

from the analyses if they exceeded a participant’s mean RT by more than three standard

deviations or were shorter than 250ms.

Accuracy was investigated using mixed logit models employing the glmer function

from the package lme4 (version 1.1.12; Bates, Mächler, Bolker, & Walker, 2015) in R (R

Core Team, 2016). The first model on words and nonwords included a fixed intercept, a

fixed effect for lexicality (word vs. nonword) as well as random intercepts for both item

and participant. Additionally, we modelled per-participant random slope adjustments to
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the lexicality effect. Secondly, a model on words alone was run including a fixed intercept,

a fixed effect for frequency, and random intercepts for both items and participants. Per-

participant random slope adjustments to the frequency effect were also included.

RTs were log-transformed and analysed in linear mixed-effects models using the lmer

function of the lme4 package (version 1.1.12; Bates et al., 2015) in R (R Core Team,

2016). RTs for correct responses to words vs. nonwords and to words alone were analysed.

The first mixed model on RTs for correct responses to words and nonwords included a

fixed intercept, a fixed effect for lexicality, and by-participant and by-item adjustments

to the fixed intercept (random intercepts). Additionally, by-participant random slope

adjustments to the lexicality effect were included. The predictor lexicality was sum-to-

zero contrast coded (nonword = 1; word = -1). The second model on correct responses to

words only included a fixed intercept, and a fixed effect for the log-transformed continuous

variable word frequency. Furthermore, by-participant and by-trial random adjustments

to the fixed intercept (random intercepts) and by-participant random adjustments to the

frequency slope were modelled (random slope). All possible correlations between the

random effects were included. Hence, we followed Barr, Levy, Scheepers, and Tily (2013)

using a maximal random effects structure. P-values were determined using the normal

approximation, i.e. using the t-value as z-value.

In order to examine the effects of individual differences in vocabulary knowledge on

lexical decision task performance, the models of RTs and accuracy for words were run with

frequency and vocabulary score (see below for the definition) as an additional predictors.

Both models included a fixed intercept, a fixed effect for the continuous variable word

frequency, and by-participant and by-trial random adjustments to the fixed intercept

(random intercepts). In addition, by-participant random adjustments to the frequency

slope were modelled (random slope). The model for accuracy did not converge with this

maximum random effects structure. We therefore had to remove the random slopes from

the model.

In order to explore how well the scores from each of the vocabulary tests predicted

speed and accuracy in the lexical decision tasks, we ran separate models for each score,

yielding seven models predicting accuracy and seven models predicting speed. In addition,

we used a composite measure of vocabulary described below. Based on the PCA on

all vocabulary tests, which did not show a clear pattern distinguishing different types

of tests from one another (see Results section below), we decided to use a component

score of vocabulary reflecting each participant’s performance on all seven measures of

word knowledge. For that purpose, regression-based factor scores were calculated for

each participant using the PCA method in SPSS (DiStefano, Zhu, & Mindrila, 2009).

Assuming only one underlying factor, each individual’s loading or score on that factor
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based on their seven vocabulary test scores was calculated and thus, the measurements

of word knowledge were collapsed into one number with a mean of zero. This allowed

us to compare the individual vocabulary measures with a composite measure reflecting

performance on the entire battery of tests.

In addition, we ran a diffusion model analysis on the lexical decision task in order

to investigate the origin of a potential vocabulary size effect. By fitting the model to

each participant’s RTs for both correct and incorrect responses, we obtained seven

parameter estimates for each individual: (1) mean drift rate, i.e. the speed of

information accumulation, (2) variability in drift rate across trials, (3) boundary

separation, (4) mean starting point, i.e. participants’ bias towards words or nonwords,

(5) variability in starting point across trials, (6) non-decision component of processing,

i.e. time needed for stimulus encoding and response execution, and (7) across-trial

variability in time needed for non-decision component. We employed the fast-dm

algorithm written by Voss and Voss (2007) to estimate the parameters of the diffusion

model. These parameter estimates were then entered into regression analyses in R, with

vocabulary score as predictor.

Results

Table 2.1: The distribution of test scores in all seven vocabulary tests. The maximum
possible scores for each of the tests are provided in brackets in the column
displaying participants’ maximum scores.

Test N Minimum Maximum Mean SD

Andringa 75 25.0 58.0 (59.0) 40.01 6.47

PPVT 75 56.0 125.0 (*) 102.61 12.5

Definition test 75 12.0 20.0 (20.0) 16.41 2.04

Antonym MC 75 14.0 25.0 (25.0) 23.0 1.60

Antonym open 75 14.0 24.0 (25.0) 19.29 2.37

Synonym MC 75 11.0 24.0 (25.0) 17.68 2.87

Synonym open 75 5.5 22.0 (25.0) 10.70 2.86

* Maximum possible score varied between 136 and 139.

Vocabulary test

Table 2.1 shows the vocabulary test scores averaged across participants and Table 2.2

displays the correlations between the test scores. There were moderate to strong
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correlations between all test scores, indicating that the vocabulary measures assessed, to

some extent, a shared underlying ability. The multiple-choice antonym test, which was

easier than the other tests, was least strongly correlated with the other measures.

The reliability measure Cronbach’s α indicated that the test battery as a whole was

highly reliable (α = .88). Dropping the multiple-choice antonym test would increase α

(.89) while leaving out one of the other tests would lead to a lower α.

A PCA assuming two components was run on z -transformed vocabulary scores. This

was based on the assumption that two components might distinguish between multiple-

choice and open tests. The first component had an eigenvalue of 4.35, the other component

had an eigenvalue below 1. This first component explained 62.13% of the total variance.

As shown in Table 2.3, Factor 1 loaded on all tests with only a slightly smaller loading

for the multiple-choice antonym test. No distinction between productive and receptive

vocabulary tests was found.

Table 2.3: Results of the PCA assuming two components.

Vocabulary Component

measure 1 2

Andringa .81 -.13

PPVT .80 -.14

Definition .86 .04

Antonym MC .56 .82

Antonym open .84 -.07

Synonym MC .78 -.22

Synonym open .82 -.06

Eigenvalue 4.35 .76

% Variance 62.13 10.89

Lexical decision task

Accuracy rates were overall high with 2.7% of all trials being false alarms and 1.6%

misses. RTs were trimmed per participant according to the above-mentioned criteria.

1.7% of trials were excluded as outliers. As typically found in lexical decision tasks,

accuracy was higher for words than for nonwords (z = -4.56; p < .001) and participants

made fewer errors with increasing word frequency (z = 7.36; p < .001). In addition, RTs

for words were significantly faster than for nonwords (t = 10.74; p < .001; see Appendix

B for a table showing averaged lexical decision RTs for all conditions and a plot of the RT

distribution). Finally, RTs for correct responses to words were significantly predicted by
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word frequency (t = -15.17; p < .001), with faster RTs for high- than for low-frequency

words.

Individual differences

The main interest of the present study was the relation between individual differences in

vocabulary and language processing. Results of mixed-effects models on both accuracy

and speed in the lexical decision task are reported below. For this individual differences

investigation, we focused on responses to word trials.

Accuracy

Response accuracy for words was significantly predicted by word frequency (z = 7.33; p <

.001) but not by the composite vocabulary score, which was based on all seven measures of

vocabulary knowledge (z = 1.50; p = .13). Hence, error rates were lower for high-frequency

words. The interaction between word frequency and the composite vocabulary score was

not significant (z = .08; p = .93). The models using participants’ vocabulary scores from

the individual measures as predictors of accuracy showed overall the same results (see

Table 2.4). Word frequency was a highly significant predictor of lexical decision accuracy

in all seven models whereas vocabulary was insignificant in five of the models. Only the

scores from Andringa et al.’s (2012) measure and the open antonym test turned out to be

significant predictors of lexical decision accuracy.
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Table 2.4: P- and t-values for the main effects in each of the models where scores of
individual vocabulary measures were used as a predictor of lexical decision
accuracy.

Model Variable t p

Andringa Vocabulary score 2.29 .02

Word frequency 7.24 <.001

Frequency x vocabulary -.35 .73

PPVT Vocabulary score 1.21 .23

Word frequency 7.40 <.001

Frequency x vocabulary .83 .41

Definition test Vocabulary score .91 .36

Word frequency 7.34 <.001

Frequency x vocabulary .38 .70

Multiple-choice antonym Vocabulary score .02 .99

Word frequency 7.37 <.001

Frequency x vocabulary 1.66 .1

Open antonym Vocabulary score 2.43 .02

Word frequency 7.10 <.001

Frequency x vocabulary -.39 .70

Multiple-choice synonym Vocabulary score .22 .83

Word frequency 7.36 <.001

Frequency x vocabulary -1.13 .26

Open synonym Vocabulary score .64 .52

Word frequency 7.36 <.001

Frequency x vocabulary -.25 .80

Reaction times

Lexical decision RTs on word trials were significantly predicted by log-transformed word

frequency (t = -15.21; p < .001) and the composite vocabulary score (t = -3.12; p = .001).

However, the interaction between the two main effects, word frequency and vocabulary

score, was not significant (t = 1.23; p = .22). The seven distinct mixed-effects models

each including the vocabulary score from one of the individual tests and word frequency

as predictors confirmed this (see Table 2.5). Word frequency was a significant predictor

of lexical decision RTs in all models. Only the multiple-choice antonym test did not
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significantly predict participants’ RTs. All other models showed a significant main effect

of vocabulary score (see Table 2.5). The interaction between vocabulary score and word

frequency was significant for only one of the measures, namely the definition test (t =

2.02, p = .04). Participants with higher definition vocabulary test scores showed smaller

effects of word frequency.

Table 2.5: P- and t-values for the main effects in each of the models where scores of
individual vocabulary measures were used as a predictor of lexical decision
RTs.

Model Variable t p

Andringa Vocabulary score -2.30 .02

Word frequency -15.30 <.001

Frequency x vocabulary 1.5 .14

PPVT Vocabulary score 2.08 .038

Word frequency -15.08 <.001

Frequency x vocabulary .01 .99

Definition test Vocabulary score -2.75 <.01

Word frequency -15.26 <.001

Frequency x vocabulary 2.0 .04

Multiple-choice antonym Vocabulary score -1.61 .12

Word frequency -15.12 <.001

Frequency x vocabulary .46 .64

Open antonym Vocabulary score -2.69 <.01

Word frequency -15.09 <.001

Frequency x vocabulary .98 .32

Multiple-choice synonym Vocabulary score -2.30 .02

Word frequency -15.14 <.001

Frequency x vocabulary .79 .43

Open synonym Vocabulary score -2.99 .004

Word frequency 15.18 <.001

Frequency x vocabulary .97 .33

Thus, RTs decreased with increasing word frequency, as typically found in lexical

decision tasks, and individuals with higher vocabulary scores responded faster than those

with smaller vocabulary scores (see Appendix C).
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Diffusion model analysis

The means and SDs of the seven parameter estimates are reported in Table 2.6. The

mixed-effects models on all seven diffusion model parameters were only run with the

composite measure of vocabulary as a predictor. Based on the above-reported results it

was assumed that the composite score is representative of all individual vocabulary tests.

Table 2.6: Parameter estimates of the diffusion model.

Parameter Mean SD

Drift rate for words 3.74 0.99

Variability in drift rate 0.69 0.29

Boundary separation 1.40 0.44

Starting point 0.55 0.08

Variability in starting point 0.23 0.12

Non-decision components 0.46 0.05

Variability in non-decision

components

0.12 0.06

Drift rate for words was predicted by vocabulary score (β = .47, SE = .10, t = 4.61,

p < .001). As expected, higher vocabulary scores were associated with faster drift rates,

i.e. faster information accumulation. The starting point was significantly closer to zero (β

= -.02, SE = .01, t = -2.49, p =.02) or neutral between the word and nonword boundaries

with increasing vocabulary knowledge, thus the word-bias was smaller. Individuals with

higher vocabulary scores spent less time on stimulus encoding and response execution as

indicated by the negative effect of vocabulary on the non-decision component of processing

(β = -.01, SE = .01, t = -2.76, p = .007).

Discussion

A battery of seven vocabulary tests and a lexical decision task were used to examine the

relationship between vocabulary size and word recognition speed in young adults. There

was variation in vocabulary test performance although the group was quite homogeneous

being comprised of university students only. The bivariate correlations were similarly

strong for all vocabulary tests and indicate that all the tests measure largely the same

ability. Performance on only one test, namely the multiple-choice antonym test, was less

strongly correlated with all other tests. Furthermore, the reliability measure Cronbach’s

α was high for the test battery as a whole. This, together with a relatively high average
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score and low standard deviation on the multiple-choice antonym test, suggests that this

specific test was easier for our participants than the other measures. We acknowledge

this difference in difficulty. It is probably related to the higher word frequencies of the

test items in this test as compared to the other tests.3 If the entire battery of vocabulary

tests were to be used again, one might want to adjust the frequency ranges so that they

are more similar across all tests. In addition, the antonym tests seemed to be generally

easier than their synonym test counterparts.4

To sum up, although the test battery was comprised of different types of vocabulary

measures, i.e. open and multiple-choice tests, the correlational and reliability analyses

indicated that all tests measured largely the same capacity. Only the multiple-choice

antonym test did not match the other tests in difficulty. Finally, no distinction between

multiple-choice and open tests was found. A PCA confirmed these conclusions. First, no

distinction between multiple-choice and open tests in terms of two distinct components

was found. Secondly, only the multiple-choice antonym test did not show a loading as

high as the other tests on the first component and instead loaded highly on the second

component. This is in line with the conclusions drawn from the descriptive, correlational,

and reliability analyses indicating that the multiple-choice antonym test does not relate

well to the other measures, presumably as it was much easier than the remaining tests.

It has to be noted, however, that the open tests were not interview-based measures; they

were not fully open as they still provided the participants with stimuli, i.e. single words,

and specific tasks to perform on them (writing down the antonym or synonym of the given

word). This might be the reason for not finding a distinction between multiple-choice and

open tests as has been observed previously (Gyllstad et al., 2015).

The fact that the vocabulary tests did not correlate perfectly, though, supports

Bowles and Salthouse’s (2008) hypothesis that each of them uniquely involves other

cognitive abilities in addition to word knowledge. Hence, in individual differences

studies focusing on vocabulary, the use of a composite measure based on participants’

performance on different tests provides a more valid estimate of their vocabulary size

than given by a single measure. Therefore, the mixed-effects model analyses on both

lexical decision accuracy and RTs were run with i) participants’ scores from all

individual vocabulary tests, and ii) a composite score of vocabulary test performance as

predictors. Thus, we tested whether using estimates of individuals’ vocabulary size that

3There are a few items with extremely high frequency values, such as aan (on; 3838.54 counts per
million), achter (behind; 473.8 counts per million), and hetzelfde (the same; 193.69 counts per million).
Excluding these words leads to a drop in mean word frequency from 200.16 to 22.64 counts per million,
which is still higher than in some of the other tests.

4Participants scored higher on the multiple-choice antonym (M = 23.0, SD = 1.60) than on the
multiple-choice synonym test (M = 17.68, SD = 2.87), and higher on the open antonym (M = 19.29,
SD = 2.37) than on the open synonym test (M = 10.70, SD = 2.86).
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were based on individual measures of word knowledge or on a battery of tests provide a

different picture of the relationship between individual differences in vocabulary and

word recognition performance.

In the lexical decision task, the typical effects of lexicality and word frequency on

accuracy and RTs were found, with more accurate and faster responses for words compared

to nonwords, and for higher compared to lower frequency words. The focus of the present

investigation, however, was the relationship between individual differences in vocabulary

and language processing. Weaker vocabulary scores were associated with slower RTs in

the lexical decision task. This finding is consistent with findings of several earlier studies

(Brysbaert et al., 2016a; Diependaele et al., 2013; Unsworth et al., 2011; Yap et al., 2012).

This was true not only for the composite measure of vocabulary knowledge but also for

all of the individual vocabulary tests as predictors of lexical decision RTs, except for the

multiple-choice antonym test.

Furthermore, the analyses suggest that the individual vocabulary tests (besides the

multiple-choice antonym test) represent participants’ vocabulary size as well as the

composite score; all analyses showed the same pattern of the relationship between

vocabulary and lexical decision accuracy and speed. Hence, the present study does not

provide evidence for the assumption (Bowles & Salthouse, 2008) that a battery of

different types of test has to be used to assess vocabulary knowledge reliably. Thus, a

practical recommendation from this study is that for a broad assessment of Dutch

university students’ vocabulary, the use of one of the standard tests, e.g. Andringa’s test

or the PPVT, is adequate. Based on the current results no specific measure of

vocabulary can be recommended as being superior over another. It should, of course, be

kept in mind that we only used a single processing task. Thus, we cannot exclude that

performance in other linguistic tasks may best be predicted by a composite score based

on the results of several vocabulary tests.

Deviating from previous studies (Chateau & Jared, 2000; Diependaele et al., 2013;

Kuperman & Van Dyke, 2013; Yap et al., 2009), the word frequency effect in our lexical

decision experiment was independent of vocabulary size. A moderately significant

interaction between word frequency and vocabulary was found solely for the definition

test; none of the other individual test scores or the composite score showed an

interaction with word frequency. Thus, it was concluded that overall the frequency x

skill interaction can be considered absent in the present data. The fact that we obtained

strong effects of word frequency on accuracy and RTs makes it rather unlikely that the

frequency range covered by our materials was too small to elicit the interaction between

word frequency and skill. However, it has to be noticed that the word frequency range

in the materials used by Brysbaert and colleagues (2016a) was larger with a minimum
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SUBTLEX frequency of 0.12 and a maximum of 501.33 (M = 18.73), as compared to our

range of word frequencies (see Adelman et al., 2014, for the materials used in Brysbaert

et al., 2016a). Hence, even though we found a main effect of word frequency on RTs, the

word frequency range might still have been too small to obtain the frequency x skill

interaction. In addition, it is possible that the group of participants we tested was too

homogeneous and the variation in vocabulary size too small to elicit the frequency x

skill interaction, which has previously been taken as evidence for the lexical

entrenchment account.

The lexical entrenchment hypothesis assumes that the frequency x skill interaction

reflects individual variation in language exposure, with more exposure leading to more

distinct or robust lexical representations that are faster to be accessed (Brysbaert et al.,

2016a; Diependaele et al., 2013). An increased amount of exposure has been argued to

have particularly strong effects on the exposure to low-frequency words (Kuperman &

Van Dyke, 2013). As a result, the frequency difference between low- and high-frequency

words gets smaller and the frequency curve is less steep (Brysbaert et al., 2016a). Thus,

individuals with increased exposure (and larger vocabularies) show a smaller

word-frequency effect in tasks such as the lexical decision task (Brysbaert et al., 2016a;

Diependaele et al., 2013). One might argue that the group of university students is

probably rather homogeneous as to how much and which type of exposure they get to

their native language by reading, attending lectures, and so forth. Hence, all

participants were presumably highly proficient users of their native language. Although

there was variation in vocabulary scores as well as in lexical decision RTs, maybe this

was not strong enough to produce a frequency by skill interaction.

Alternatively, the present results might be taken to indicate that some individuals

are simply fast processors whereas others are generally slower. Claiming that it is just

processing speed that differs in relation to vocabulary size would be an argument against

the lexical entrenchment account and the idea that there are representational differences

between vocabularies of varying sizes. More research on language processing, the

sensitivity to lexical characteristics, and vocabulary size is needed to get more insights

into the applicability of the lexical entrenchment account. For this purpose it is crucial

to not only test university students but a more varied participant group and, thus, get a

more representative picture of individual differences in vocabulary and their relationship

with language processing performance. If the frequency x skill interaction were found in

a more heterogeneous participant sample using the same task as in the present study,

this would support the idea that the group of university students exhibited too little

variation in vocabulary and/or lexical decision performance to elicit the effect.
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A diffusion model analysis was run to gain insights into the origin of the vocabulary

effect on lexical decision times. We did not observe exactly the same but overlapping

patterns with Brysbaert et al. (2016a) who found all parameters but boundary separation

and the non-decision component of processing to be affected by vocabulary, and Yap et

al. (2012) who found vocabulary to significantly predict all parameters but across-trial

variability in starting point. The most interesting parameter is the drift rate for words,

thus the speed of information accumulation. In line with previous studies, we found

vocabulary score to predict drift rate for words, indicating that lexical information of

word stimuli builds up faster in individuals with greater vocabulary knowledge (Brysbaert

et al., 2016a; Yap et al., 2012). Hence, the high-vocabulary advantage has its origin at

least to a certain extent in the fact that the information build-up is faster; perhaps

because individuals with stronger word knowledge are faster in accessing their lexicon

than individuals with weaker vocabulary knowledge.

Additionally, and in line with Brysbaert et al.’s (2016) observations, we found a

significant effect of vocabulary score on starting point, showing that the word bias was

less strong for individuals with higher vocabulary scores. Due to the fact that half of the

lexical decision stimuli were words and the other half were nonwords, an ideal starting

point for the lexical decision process would be right in the middle between the word

vs. nonword response boundaries. This would then allow fast word as well as nonword

decisions. Maybe participants with better vocabulary knowledge were more sensitive to

the distribution of words vs. nonwords among the stimuli, resulting in a starting point

that is neither strongly word nor strongly nonword biased, enabling efficient decision

making in both directions.

Finally, we found non-decision processes to be significantly predicted by vocabulary

score. Consistent with Yap et al. (2012), participants with higher vocabulary scores

needed less time for non-decision processes. Hence, not only the build-up of lexical

information (drift rate), i.e. word processing, was faster for individuals with greater

word knowledge, but also stimulus encoding and response execution happened faster. It

can be speculated that better vocabulary knowledge may be associated with an increase

in general speed of processing, in addition to an increase in speed of language

processing. Maybe greater vocabulary knowledge is associated with advantages in

general cognitive ability and speed of processing so that individuals’ vocabulary scores

predict not only the time needed for language-related processing in the lexical decision

task but also for non-decision processes. However, further research including measures of

general cognitive abilities, such as general processing speed, is needed to make stronger

claims about the relationship between language-specific and general cognitive abilities.
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Conclusions

In this study, it was shown that greater vocabulary knowledge, as measured by a battery

of vocabulary tests, is associated with faster word processing in a lexical decision task.

Although the vocabulary tests differed in their degree of openness and in the task to

be performed, the analyses showed the same patterns for all individual vocabulary tests

and for the composite score, which reflects participants’ performance on the test battery

as a whole. Thus, our findings suggest that it is not necessary to use various measures

to assess vocabulary. Furthermore, diffusion model analyses indicated that the high-

vocabulary advantage in lexical decision speed originates in various component processes

of lexical decision-making, namely drift rate, starting point, and time needed for non-

decision processes.

The present study set out to provide a more comprehensive investigation of the

relationship between individual differences in vocabulary and language processing. More

research is needed examining potential consequences of individual differences in

vocabulary size, such as structural or representation differences between vocabularies of

varying sizes. Finally, despite considerable evidence for a relationship between individual

differences in vocabulary size and language processing performance, to our knowledge no

current model of language processing accounts for effects of variation in vocabulary size.

This is, hence, an important issue for further experimental and computational studies.
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Appendix A: Vocabulary tests

Andringa et al.’s (2012) receptive multiple-choice test

1. Deze schoenen *glanzen*.

a) zijn heel erg nat

b) glimmen

c) zijn verschillend

d) zijn kapot

e) Ik weet het echt niet.

2. Hij *spaart* voor een auto.

a) Hij stopt voor een auto langs de weg.

b) Hij is onder een auto gekomen.

c) Hij verzamelt geld om een auto te kopen.

d) Hij verzamelt foto’s van auto’s.

e) Ik weet het echt niet.

3. De leraar *prijst* de leerling.

a) De leraar geeft de leerling een cadeau.

b) De leraar zegt dat de leerling niet goed zijn best doet.

c) De leraar geeft de leerling een klap.

d) De leraar zegt dat de leerling goed werk levert.

e) Ik weet het echt niet.

4. Ik vind honden *eng*.

a) Ik vind honden vies.

b) Ik ben bang voor honden.

c) Ik vind honden leuk.

d) Honden maken mij ziek.

e) Ik weet het echt niet.

5. Hiermee *beëindigen* we de vergadering.

a) beginnen
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b) besluiten

c) vergeten

d) verrassen

e) Ik weet het echt niet.

6. Hij heeft pijn in zijn *hiel*.

a) onderste deel van de rug

b) achterkant van de voet

c) bovenste deel van het hoofd

d) zijkant van de knie

e) Ik weet het echt niet.

7. Wat een vreemde *mentaliteit*!

a) tafel

b) persoon

c) manier van denken

d) sfeer

e) Ik weet het echt niet.

8. Hij werkt bij een *uitgeverij*.

a) bedrijf dat boeken laat drukken

b) kantoor waar je geldzaken doet

c) instelling die arme mensen helpt

d) gebouw waar je dingen kunt kopen

e) Ik weet het echt niet.

9. Die mensen hebben een *bok* in hun tuin.

a) soort dier

b) soort feest

c) soort boom

d) soort brievenbus

e) Ik weet het echt niet.

10. Mag ik jouw *kam* even lenen?
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a) ding waarmee je schrijft

b) ding waarmee je rekent

c) ding waarmee je het eten snijdt

d) ding waarmee je je haren netjes maakt

e) Ik weet het echt niet.

11. Hij kocht *onroerend goed*.

a) stukken grond en gebouwen

b) prachtige kleren

c) mooie boeken

d) beelden en schilderijen

e) Ik weet het echt niet.

12. Het gaat *allengs* beter met haar.

a) sinds lange tijd

b) helemaal niet

c) natuurlijk

d) langzamerhand

e) Ik weet het echt niet.

13. Hij is een *ordelijke* man.

a) Hij is stil en eerlijk.

b) Hij is regelmatig en netjes.

c) Hij is rijk en gelukkig.

d) Hij is gezellig en vrolijk.

e) Ik weet het echt niet.

14. Ze gaan dat gebied *afbakenen*.

a) Ze gaan de grenzen van dat gebied aangeven.

b) Ze gaan dat gebied mooier maken.

c) Ze gaan de bomen die op dat gebied staan weghalen.

d) Ze gaan dat gebied veiliger maken.

e) Ik weet het echt niet.
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15. Heb jij geen last van *wroeging*?

a) rugpijn

b) een schuldgevoel

c) nieuwsgierigheid

d) boosheid

e) Ik weet het echt niet.

16. Het *traject* is erg lang.

a) de weg

b) de trein

c) de wachttijd

d) de brug

e) Ik weet het echt niet.

17. Ik heb in het museum een *harnas* gezien.

a) postzegel van grote waarde die men vroeger verzamelde

b) hoge koffer die men vroeger mee op reis nam

c) ijzeren jas die vroeger tegen wapens beschermde

d) groot mes dat men vroeger in de strijd gebruikte

e) Ik weet het echt niet.

18. Die man heeft een *weerbarstig* karakter.

a) Die man is meestal in een gezellige stemming.

b) Die man begint snel te huilen.

c) Die man voelt zich vaak onzeker.

d) Die man is niet makkelijk te overtuigen.

e) Ik weet het echt niet.

19. Ik durfde het in een moment van *overmoed*.

a) Ik durfde het omdat ik ineens grote spanning voelde.

b) Ik durfde het omdat ik me ineens heel sterk voelde.

c) Ik durfde het omdat ik ineens een groot verlangen voelde.

d) Ik durfde het omdat ik dacht dat het moest.
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e) Ik weet het echt niet.

20. Zij bracht haar horloge naar de *lommerd*.

a) iemand die klokken maakt

b) iemand die de waarde van dure dingen beoordeelt

c) plaats waar je geld kunt lenen als je een ding van jezelf achterlaat

d) plaats waar je dure dingen kunt kopen

e) Ik weet het echt niet.

21. Krijg jij ook een *toelage*?

a) brief waarin staat dat je iets mag doen

b) een goed cijfer voor de test

c) woorden waarmee je iets duidelijk maakt

d) geld om van te leven dat je regelmatig krijgt

e) Ik weet het echt niet.

22. Er is aldoor *geharrewar* op mijn werk tegenwoordig.

a) ruzie

b) herhaling

c) plezier

d) drukte

e) Ik weet het echt niet.

23. Hij zag *asgrauw*.

a) Hij had grijs haar.

b) Zijn gezicht had geen kleur.

c) Hij kon niet goed zien.

d) Hij zag het vuur uitgaan.

e) Ik weet het echt niet.

24. Een *knoestige* boom.

a) Een boom met een bepaald soort vruchten.

b) Een boom van een bepaalde leeftijd.

c) Een boom met een bepaalde vorm.
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d) Een boom met een bepaald soort bladeren.

e) Ik weet het echt niet.

25. Dat zou ik anders *inschatten*.

a) beoordelen

b) aankondigen

c) opschrijven

d) doen

e) Ik weet het echt niet.

26. In dat land heerst *cholera*.

a) Het gaat in dat land slecht met de economie.

b) Het heeft in dat land allang niet geregend.

c) Veel mensen in dat land hebben een bepaalde ziekte.

d) Men voert al jaren oorlog in dat land.

e) Ik weet het echt niet.

27. Dat kunnen we niet langer *verhelen*.

a) mooier maken dan het is

b) verbergen, verzwijgen

c) stiekum verkopen

d) repareren

e) Ik weet het echt niet.

28. Zij voerden een *franke* discussie.

a) eerlijke

b) beleefde

c) felle

d) rustige

e) Ik weet het echt niet.

29. Zij kreeg *wanten* voor haar verjaardag.

a) dingen die zorgen dat je handen niet koud worden

b) dingen die zorgen dat je voeten niet koud worden
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c) dingen die zorgen dat je oren niet koud worden

d) dingen die zorgen dat je knieën niet koud worden

e) Ik weet het echt niet.

30. Dat *frappeert* me.

a) Dat maakt me aan het schrikken.

b) Dat vind ik opvalllend.

c) Dat doet me pijn.

d) Dat verveelt me.

e) Ik weet het echt niet.

31. Onze *primus* ging al na een paar dagen kapot.

a) terras-verwarmer

b) gaskachel

c) gasbrander om op te koken

d) olielamp

e) Ik weet het echt niet.

32. Zij is een *bolleboos*.

a) Zij drinkt erg veel.

b) Zij doet erg veel aan sport.

c) Zij kan erg goed leren.

d) Zij vindt zichzelf erg mooi.

e) Ik weet het echt niet.

33. Veel mensen vinden deze voetballer nogal *flegmatiek*.

a) wisselvallig, onzeker

b) agressief

c) kalm, traag

d) gevoelig

e) Ik weet het echt niet.

34. We werden ermee *overvoerd*.

a) We kregen er te veel van.
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b) We konden onze gevoelens niet de baas blijven.

c) We werden tegen onze zin in meegenomen.

d) We kregen een ongeluk.

e) Ik weet het echt niet.

35. *Dat zit wel snor*.

a) Dat is goedkoop.

b) Dat staat je goed.

c) Dat is niet gelukt.

d) Dat is in orde.

e) Ik weet het echt niet.

36. Zij heeft iets moois *gewrocht*.

a) beleefd

b) gehoord

c) gemaakt

d) kapot gemaakt

e) Ik weet het echt niet.

37. De wereld van het internet is heel *libertijns*.

a) flexibel

b) zonder regels

c) vrij, vrijzinnig

d) makkelijk

e) Ik weet het echt niet.

38. Hij is lid van de *schutterij*.

a) vereniging die dieren beschermt

b) vereniging die de natuur beschermt

c) muziekvereniging

d) schietvereniging

e) Ik weet het echt niet.

39. Ik heb de *smoor* in.
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a) Ik ben in een slechte stemming.

b) Ik kan geen lucht krijgen.

c) Ik voel me gelukkig.

d) Ik slaap slecht.

e) Ik weet het echt niet.

40. De zaak wordt *geseponeerd*.

a) niet verder behandeld

b) ergens anders voortgezet

c) op een later tijdstip behandeld

d) in tweeën gedeeld

e) Ik weet het echt niet.

41. Die vraag wordt veel door *exegeten* onderzocht.

a) iemand die de natuur bestudeert

b) iemand die heilige teksten bestudeert

c) iemand die geinteresseerd is in zwarte magie

d) iemand die geinteresseerd is in het leven na de dood

e) Ik weet het echt niet.

42. Er was een *oploop* op straat.

a) Er was een voorstelling.

b) De mensen liepen naar één punt.

c) Er gebeurde een ongeluk.

d) Er werd aan de straat gewerkt.

e) Ik weet het echt niet.

43. Hij ligt onder de *hoogtezon*.

a) de zon op het heetst van de dag

b) ding waar je bruin van wordt

c) ding om je tegen de zon te beschermen

d) ding om je tegen de regen te beschermen

e) Ik weet het echt niet.
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44. Hij bracht een *jobstijding*.

a) bericht over een nieuwe baan

b) erg slecht bericht

c) bericht over geld

d) slecht weerbericht

e) Ik weet het echt niet.

45. Ze zei het met een *aanminnig* lachje.

a) mooi

b) geheimzinnig

c) gemeen, vals

d) charmant

e) Ik weet het echt niet.

46. Ik ga die boeken *kaften*.

a) terug naar de bibliotheek brengen

b) beschermend papier eromheen doen

c) in een bepaalde orde in de boekenkast zetten

d) bij de bibliotheek lenen

e) Ik weet het echt niet.

47. Zijn familie vindt hem al weken lang *lethargisch*.

a) afwezig

b) vervelend

c) slaperig, moe

d) suf, inactief

e) Ik weet het echt niet.

48. Voor een kind is zoiets *nefast*.

a) slecht, schadelijk

b) gezond, goed voor de groei

c) onmisbaar

d) fataal
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e) Ik weet het echt niet.

49. Misschien moeten we de tafel laten *politoeren*.

a) professioneel reinigen

b) oppoetsen, glanzend maken

c) restaureren, repareren

d) taxeren

e) Ik weet het echt niet.

50. Het is daar erg *gehorig*.

a) Je hoort daar geluiden van de buren erg goed.

b) Men luistert daar veel naar muziek.

c) Er is erg veel lawaai daar.

d) Er wordt veel daarover gepraat.

e) Ik weet het echt niet.

51. De *vendutie* is waarschijnlijk volgende week.

a) openbare verkoop, veiling

b) uitspraak van de rechter

c) opening

d) rechtzaak

e) Ik weet het echt niet.

52. Hij is een *slokop*.

a) iemand die veel bier drinkt

b) iemand die snel en veel eet

c) iemand die nogal langzaam is

d) iemand die te dik is

e) Ik weet het echt niet.

53. De datum staat onder het *epitaaf*.

a) tekst op een grafsteen

b) versiering

c) stempel
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d) tekst voorin een boek

e) Ik weet het echt niet.

54. De *ondertiteling* valt weg.

a) goede naam

b) steun met geld

c) tekst onder televisiebeelden

d) uitbreiding van een titel

e) Ik weet het echt niet.

55. Je moet je geld tegen *ontwaarding* beschermen.

a) waardevermindering

b) diefstal

c) het niet onvangen van rente

d) rente-aftrek

e) Ik weet het echt niet.

56. Een *tentatieve* lijst is te vinden op internet.

a) verkeerde, foute

b) uitgebreide, volledige

c) voorlopige, tijdelijke

d) realistische

e) Ik weet het echt niet.

57. In deze *hagiografie* kun je daarover meer lezen.

a) beschrijving van de geschiedenis van een stad

b) beschrijving van de geschiedenis van een familie

c) beschrijving van een bepaalde periode

d) beschrijving van het leven van heiligen

e) Ik weet het echt niet.

58. Het taalgebruik op deze website is *affreus*.

a) informeel, niet zakelijk

b) slordig, niet netjes
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c) walgelijk, schandelijk

d) onjuist, fout

e) Ik weet het echt niet.

59. Volgens mij is *chicaneren* haar hobby.

a) je overal mee bemoeien

b) kaarten, een speciaal kaartspel

c) klagen, zeuren

d) handwerken, een speciale haaktechniek

e) Ik weet het echt niet.

60. Ik draag het liefst een *duffel*.

a) lange regenjas

b) grote, zware jas

c) dikke trui

d) pyjama

e) Ik weet het echt niet.

Definition test

1. Een dier dat blaat. – Schaap.

2. Iemand die werkt met meel. – Bakker.

3. Vrouwtje van een kater. – Poes.

4. Iemand die werkt met eten. – Kok.

5. Vrouwtje van een reu. – Teef.

6. Lichaamsdeel om te ruiken. – Neus.

7. Iemand die werkt met patienten. – Arts.

8. Een dier dat blaft. – Hond.

9. Iemand die werkt met vlees. – Slager.

10. Vrouwtje van een hengst. – Merrie.
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11. Voorwerp om mee te roeren. – Lepel.

12. Iemand die werkt met klokken. – Horlogemaker.

13. Lichaamsdeel om mee te proeven. – Tong.

14. Iemand die werkt met verf. – Schilderer.

15. Vrouwtje van een bok. – Geit.

16. Iemand die werkt met kip. – Poelier.

17. Lichaamsdeel om mee te zien. – Oog.

18. Iemand die werkt met eetgewoonten. – Dietist.

19. Een dier dat knort. – Varken.

20. Een dier dat hinnikt. – Paard.

Multiple-choice antonym test

1. kritiek

a) ordening

b) lof

c) antwoord

d) bejaarde

e) theorie

2. aan

a) terug

b) mild

c) door

d) uit

e) op

3. stijf

a) lang

b) vast

c) gezellig

d) flexibel

e) selfzuchtig

4. gierig

a) gul

b) vrolijk

c) handig

d) grof

e) koppig

5. bars

a) groot

b) vriendelijk

c) roemorig

d) aanwezig

e) intelligent
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6. vallen

a) opstaan

b) halen

c) verdelen

d) melden

e) stappen

7. nauw

a) kapot

b) laag

c) wijd

d) tegen

e) donker

8. hetzelfde

a) zwaar

b) verschillende

c) blij

d) iemand

e) dergelijk

9. dwerg

a) kleinkind

b) kinky

c) reus

d) eender

e) verdrietig

10. aanbod

a) offer

b) toekomst

c) ongeluk

d) bieding

e) vraag

11. studiosus

a) flat

b) gesprek

c) luiaard

d) luisteraar

e) leraar

12. minst

a) nietig

b) afwezig

c) dezelfde

d) licht

e) meest

13. dapper

a) helder

b) nieuw

c) krachtig

d) bang

e) permantig

14. mals

a) hard

b) straks

c) soms

d) netjes

e) donzig

15. contra

a) achter

b) snel

c) echt

d) pro
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e) alleen

16. bucolisch

a) klein

b) rustig

c) urbaan

d) duidelijk

e) uitvoerig

17. prullerig

a) altijd

b) aardig

c) slank

d) kostbaar

e) minuscuul

18. bedorven

a) gekookt

b) antiek

c) anzienlijk

d) voluit

e) vers

19. interessant

a) saai

b) prettig

c) zichtbaar

d) juist

e) ruim

20. moe

a) soortgelijk

b) samen

c) raak

d) zuur

e) uitgerust

21. pessimisme

a) humeur

b) aankomst

c) optimisme

d) mogelijkheid

e) plezier

22. aankomen

a) stijgen

b) vertrekken

c) vergeten

d) slapen

e) rijden

23. ontwaken

a) sluipen

b) inslapen

c) aankleden

d) instappen

e) brengen

24. achter

a) onder

b) hel

c) slap

d) beneden

e) voor

25. winst

a) verlies

b) bol
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c) dorst

d) hoop

e) moed

Open antonym test

1. Zaaien

Antonym: Oogsten

2. Leugen

Antonym: Waarheid

3. Nadeel

Antonym: waarheid

4. Minimaal

Antonym: Maximaal

5. Unanimiteit

Antonym: onenigheid

6. Geforceerd

Antonym: vrijwillig

7. Mager

Antonym: Dik

8. Officieus

Antonym: Officieel

9. Lawaai

Antonym: Stilte

10. Traag

Antonym: Sneel

11. Success

Antonym: Mislukking

12. Bevestiging

Antonym: Ontkenning

13. Negatief

Antonym: Positief

14. Absent

Antonym: Present

15. Goedkoop

Antonym: Duur

16. Fluisteren

Antonym: Schreeuwen

17. Passief

Antonym: Actief

18. Vijand

Antonym: Vriend

19. Overwinning

Antonym: Nederlaag

20. Theoretisch

Antonym: Praktisch

21. Ouderwets

Antonym: Modern

22. Deficientie

Antonym: Overdaad

23. Legaal

Antonym: Illegaal

24. Tanen

Antonym: Toenemen

25. Monochroom

Antonym: Bont
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Multiple-choice synonym test

1. vlug

a) water

b) snel

c) hoekig

d) aal

e) hast

2. vlijt

a) arm

b) sterk

c) ijver

d) rijk

e) vermoeid

3. staven

a) lopen

b) wanen

c) bekrachtigen

d) verrijken

e) verwaalozen

4. amper

a) stroom

b) geneesmiddel

c) groente

d) nauwelijks

e) netjes

5. schamel

a) warboel

b) kameel

c) verbinding

d) armoedig

e) kleding

6. observeren

a) luisteren

b) bekijken

c) optellen

d) vermaken

e) trouwen

7. karig

a) smal

b) kaal

c) koud

d) dun

e) zuinig

8. ruiterlijk

a) verzorgend

b) openhartig

c) snel

d) branie

e) durf

9. verleiding

a) voorstel

b) toeval

c) achtergrond

d) tegenvaller

e) bekoring

10. vermetel
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a) liniaal

b) gemeten

c) gewaagd

d) zwak

e) precies

11. blaam

a) smet

b) struik

c) blaasje

d) roddel

e) vrucht

12. vermoeiend

a) eerlijk

b) muf

c) hooghartig

d) inspannend

e) dramatisch

13. cursief

a) nauwsluitend

b) schuingedrukt

c) gauw

d) middel

e) leesbaar

14. miniem

a) aftrekken

b) verlies

c) verschil

d) mimiek

e) onbeduidend

15. abrupt

a) zwaar

b) apart

c) plotseling

d) vergeefs

e) onvoldoende

16. fameus

a) beroemd

b) waardig

c) bekend

d) aardig

e) beleefd

17. fragiel

a) vaartuig

b) lelie

c) waterloop

d) broos

e) licht

18. bolster

a) rond

b) planeet

c) buitenkant

d) goedheid

e) sloof

19. nestor

a) meester

b) eerwaarde

c) insect

d) heer

e) oudste
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20. bombast

a) vermomming

b) schil

c) granaat

d) gezwollenheid

e) boomsoort

21. frenetiek

a) krachtig

b) verlegen

c) lichamelijk

d) spiritueel

e) verwoed

22. geschikt

a) lastig

b) samen

c) passend

d) soms

e) duister

23. pendant

a) tegenhanger

b) klok

c) verwaand

d) groots

e) ijdel

24. concies

a) bondig

b) beheer

c) vasthoudend

d) samenvatting

e) aandacht

25. frugaal

a) dubbelzinnig

b) belemmerd

c) sober

d) breekbaar

e) helder

Open synonym test

1. Woeden

Synonym: Razen

2. Gekibbel

Synonym: Ruzie

3. Verbinden

Synonym: Schakelen

4. Overstijgen

Synonym: Verwinnen

5. Koppig

Synonym: Stug

6. Attitude

Synonym: Houding

7. Latent

Synonym: Onderliggend

8. Floreren

Synonym: Bloeien, gedijen
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9. Frequent

Synonym: Vaak

10. Gewaand

Synonym: vermeend

11. Permanent

Synonym: Altijd

12. Mordicus

Synonym: Hardnekkig

13. Morsig

Synonym: Smerig

14. Tillen

Synonym: Heffen

15. Obsederen

Synonym: Bekijken

16. Beleefd

Synonym: Hoofs

17. Vrolijk

Synonym: Jolig

18. Emaneren

Synonym: Uitstralen

19. Palliatief

Synonym: Pijnstillend

20. Toezicht

Synonym: Controle

21. Opulent

Synonym: Copieus

22. Loyaal

Synonym: Trouw

23. Caprice

Synonym: Humeur

24. Wijs

Synonym: Slim

25. Naarstig

Synonym: Ijverig
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Appendix B

Table 2.7: Reaction times (ms) for correct responses in the lexical decision task per
condition. For illustration purposes, frequency is shown as a categorical
variable although all models were run on frequency as a continuous variable.

Lexicality Frequency Mean SD

low 661 192

Words medium 611 180

high 591 174

total 621 185

Nonwords - 718 244

Note: Low-frequency words had frequency values of less than 1 count per million in the
SUBTLEX corpus (M = 0.36; SD = 0.27), medium-frequency items between 1 and 10
counts per million (M = 3.47; SD = 2.34), and high-frequency words between 10 and 90
counts per million (M = 25.24; SD = 20.92).
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Figure 2.2: Distribution of the lexical decision RTs.
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Appendix C
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Figure 2.3: RT as a function of log-transformed word frequency for low- vs. high-
vocabulary individuals. 95% confidence intervals are displayed in grey.
Note that for illustration purposes, vocabulary score was transformed into
a categorical variable with two levels performing a median split. The above-
described model is run with vocabulary score as a continuous variable.





3 | Beyond the ”typical” participants:

Vocabulary and lexical processing in

non-university students1

Abstract

Previous research has indicated an effect of individual differences in vocabulary on
language processing. Greater word knowledge has been associated with faster and more
accurate language production and comprehension. These findings are, however, mainly
based on studies testing university students. It is questionable whether that is really
representative of the population, hence, whether these studies provide a comprehensive
picture of the relationship between vocabulary and language processing performance.
The present study aimed at filling this gap. For this purpose, we administered a battery
of six vocabulary tests and a visual lexical decision task to a group of young adult
non-university students. Deviating from previous findings, the results show no main
effect of word knowledge on lexical decision RTs; only a significant vocabulary effect on
accuracy. Furthermore, in line with previous studies, individuals with greater
vocabularies showed a smaller word frequency effect in the lexical decision task.
Implications for measuring vocabulary size in native speakers and for future individual
differences studies are discussed.

1This and the previous chapter are based on Mainz, N., Shao, Z., Brysbaert, M., & Meyer, A.S.
(2017). Vocabulary knowledge predicts lexical processing: Evidence from a group of participants with
diverse educational backgrounds. Frontiers in Psychology, 8, 1164. doi: 10.3389/fpsyg.2017.01164
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Introduction

A growing body of research focuses on the effects of individual differences in various

cognitive abilities on language processing performance (Banks et al., 2015; Hartsuiker &

Barkhuysen, 2006; Jongman et al., 2015; Shao, Meyer, & Roelofs, 2013; Shao, Roelofs,

et al., 2014; Shao et al., 2012). Vocabulary size is one of the variables that has been

suggested to predict native speakers’ language processing. As replicated in Chapter 2 of

this dissertation, increased vocabulary size has been associated with better, i.e. faster

and more accurate, performance on different linguistic tasks (see also, Brysbaert et al.,

2016a; Janse & Jesse, 2014; Rodriguez-Aranda & Jakobsen, 2011).

However, just as in the vast majority of psychological investigations, these individual

differences studies have examined undergraduate students. Hence, conclusions about the

relationship between language processing performance and, for instance, vocabulary size

are based on a rather small and presumably quite homogeneous group of people. It is

questionable whether this provides a representative picture of i) the range of abilities

present in the population, and ii) the role of vocabulary in language processing. This

study aimed at filling this gap in previous research by investigating the effects of individual

differences in vocabulary size on word recognition in non-university students.

In previous investigations, better vocabulary knowledge has, for instance, been

found to have beneficial effects on older adults’ use of predictive information in spoken

contexts (Federmeier et al., 2002). Furthermore, an increase in vocabulary size has been

related to more accurate spoken word recognition in older adults (Janse & Jesse, 2014)

and better listening comprehension in young adults (Andringa et al., 2012).

Additionally, higher vocabulary scores were found to be correlated with more accurate

and faster word recognition in lexical decision and speeded pronunciation tasks (Yap et

al., 2012). Better vocabulary knowledge has not only been associated with improved

language comprehension but also with faster language production in various tasks, such

as picture naming and verbal fluency (Rodriguez-Aranda & Jakobsen, 2011). In verbal

fluency tasks participants are asked to produce as many words as possible within a

semantic category (category fluency) or starting with a given letter (letter fluency)

within one minute. Greater word knowledge was found to be related to more items

generated in verbal fluency tasks (Unsworth et al., 2011). In addition, Shao, Janse,

Visser, and Meyer (2014) report that in letter as well as category fluency tasks,

individuals with larger vocabularies were faster to initiate their response to the cue than

individuals with weaker vocabularies. In a nutshell, better vocabulary knowledge has

been associated with advantages in various measures assessing language comprehension

and production performance.
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Besides faster RTs in language processing tasks, previous research has found

smaller word frequency effects for speakers and readers with more print exposure

(Chateau & Jared, 2000; Kuperman & Van Dyke, 2013) or larger vocabularies

(Diependaele et al., 2013; Yap et al., 2009). With increasing word frequency, RTs

typically decrease. This RT difference between low- and high-frequency words has been

shown to decrease with increasing vocabulary size; hence, the word frequency effect

appears to be smaller for individuals with better vocabulary knowledge. Diependaele

and colleagues (2013), for instance, reanalysed data from an earlier visual word

recognition study (Lemhöfer et al., 2008) and found that individuals with higher

vocabulary scores showed smaller effects of word frequency. Furthermore, Brysbaert,

Lagrou, and Stevens (2016a) observed that larger vocabularies were associated not only

with faster lexical decision RTs but also with smaller effects of word frequency on the

RTs. In both studies, this frequency by skill interaction was argued to support the

lexical entrenchment hypothesis, which postulates differences in entrenchment between

smaller and larger vocabularies. This means that the representations in individuals with

greater word knowledge are hypothesised to be more robust or distinct, enabling faster

processing, as compared to individuals with smaller vocabularies. According to the

lexical entrenchment hypothesis, the frequency x skill interaction is a result of

differences in language exposure. The amount of exposure is presumed to have a

particularly strong impact on the exposure to, and therefore representations of,

low-frequency words (Kuperman & Van Dyke, 2013). Thus, the lexicon of individuals

with limited exposure to language and therefore weaker vocabulary knowledge is

hypothesised to have a steeper frequency curve than individuals with larger vocabularies

(Brysbaert et al., 2016a). As a result, the vocabularies of individuals with poorer word

knowledge (due to limited language exposure) are assumed to show a stronger frequency

difference between low- and high-frequency words. The lexical representations in

low-vocabulary individuals are hypothesised to be weaker, less robust, entrenched, or

distinct, especially for low-frequency words, and therefore slower to be processed.

Yap, Tse, and Balota (2009) put forward a similar argument, claiming that overall

increased precision and stability of lexical representations is a result of greater

vocabulary knowledge. This was based on their observation that vocabulary knowledge

affects the joint effects of word frequency and associative priming. In a lexical decision

task, participants with poorer vocabulary knowledge exhibited stronger associative

priming effects for low-frequency than for high-frequency words, while individuals with

better vocabulary scores showed equally strong priming effects for all words. Yap et al.

(2009) have taken this to indicate that the lexical representations in readers with higher

vocabulary scores do not differ much in quality or strength depending on word
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frequency. The representations in low-vocabulary individuals, by contrast, appear to

show considerable differences in strength or robustness depending on word frequency.

To sum up, representational differences between vocabularies of varying sizes have

been proposed based on the fact that low-vocabulary individuals showed stronger word

frequency effects on word recognition than high-vocabulary individuals. This idea has

been named with different terms: Representations in larger vocabularies have been

hypothesised to be more distinct, precise, robust, entrenched, or higher in lexical quality,

leading to increased lexical access speed and smaller word frequency effects (Diependaele

et al., 2013; Van Dyke et al., 2014; Perfetti & Hart, 2001; Yap et al., 2009).

All of the aforementioned studies suggest a role of vocabulary size in comprehension

and production. However, most of them did not focus on vocabulary in particular and

therefore only used single vocabulary tests to assess word knowledge. Bowles and

Salthouse (2008) have claimed, though, that it is necessary to use a variety of measures

to assess a skill as complex as vocabulary knowledge. This was considered to be

particularly important in studies focusing on individual differences in vocabulary size.

The reason for this, as argued by Bowles and Salthouse (2008), is that vocabulary tests

are never a pure measure of word knowledge but involve other cognitive abilities. Using

a composite score of vocabulary reflecting participants’ performance on a battery of

different types of tests is a way to obtain a relatively reliable measure of vocabulary size.

Therefore, the same vocabulary test battery that was used in the experiment presented

in Chapter 2 of this dissertation was employed in this study.

Additionally, as indicated before, most of the insights into the role of vocabulary

size reported on above are based on studies examining undergraduate university students.

Hence, conclusions and theories about language processing and the lexicon are grounded

in findings from a small, homogeneous, and in some sense special group of people. They

are special to the extent that the amount and type of language exposure they get is very

likely to be notably different from that of non-university students. In addition, most

participants that are tested in psychological studies are very experienced participants,

meaning that they have had quite a lot of practice with completing different kinds of

experimental tasks. This may affect their performance, at least to a certain extent and

in certain tasks. Investigations testing participants from a broader range of educational

backgrounds is essential and long overdue. This is the case not only for reasons of societal

impact but also to ensure that assumptions and theories about language capacities and

processing are grounded in observations that are representative for the entire population,

not just a very specific group of young adults.

With the present study we set out to address these issues by investigating the

relationship between individual differences in vocabulary and word recognition in a
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group of young adults who are not university students but vocational college students.

Vocational education in the Netherlands is subdivided into four different levels. Level

four can be assumed to be closest to university education. The groups in levels one, two,

and three are comprised of people who will continue their education by entering the next

level while others finish after completing their current level of education. Thus, this

group of participants is rather varied and should display a considerably broader range of

vocabulary knowledge than university students.

The use of a battery of different vocabulary tests was considered particularly

important in this study as the group of participants was assumed to be more

heterogeneous and less experienced with psycholinguistic testing; hence, it was expected

that they might display more variation in vocabulary test performance both across and

possibly also within participants.

Thus, the participants in the present study completed almost the same set of

vocabulary tests as had been used in the experiment reported on in Chapter 2. The test

battery was comprised of six vocabulary tests, two of which were the established

Peabody Picture Vocabulary Test (PPVT-III NL; Schlichting, 2005) and Andringa and

colleagues’ (2012) receptive multiple-choice test. In addition to these multiple-choice

tests, four additional newly developed measures were administered: A definition test,

multiple-choice antonym and synonym tests, and an open antonym test. The open

synonym test was excluded from this study as it turned out to be extremely challenging

for the university student population. We did not want to overtax and as a result

demoralise the participants with an overly difficult test, and therefore decided to exclude

it from the test battery.

In addition, participants’ language processing performance was assessed using a visual

lexical decision task, which is a widely used measure of speed of word recognition (e.g.

Balota et al., 2007; Brysbaert et al., 2016a; Keuleers et al., 2012). On each trial of a

lexical decision task, participants are presented with a string of letters and are asked to

decide whether or not it is an existing word in a given language. Typical findings in the

lexical decision task are effects of lexicality and frequency. Reaction times (RTs) for words

are usually faster than RTs for nonwords, and more frequent words elicit faster responses

than less frequent words (e.g. Keuleers et al., 2015; Kuperman & Van Dyke, 2013; Yap

et al., 2012). In the present task, frequency manipulations were implemented such that

the stimuli covered a large range of word frequencies. We used the same lexical decision

task as in the experiment reported in Chapter 2.

We expected to find increased vocabulary knowledge to predict improved language

processing performance, with faster RTs and lower error rates for participants with

greater vocabulary knowledge. Furthermore, we tested the lexical entrenchment
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hypothesis, which predicts an interaction between a participant’s vocabulary score and

the word frequency effect. Larger effects of word frequency were predicted for

individuals with poorer vocabulary scores (e.g. Diependaele et al., 2013).

In addition, the nature of a potential effect of vocabulary on language processing

was examined more closely. For this purpose, we used Ratcliff’s (1978) diffusion model

approach to analyse the lexical decision task data (Ratcliff, 1978; Ratcliff et al., 2004;

Yap et al., 2012, for a discussion). We looked at the same diffusion model parameters as

described in Chapter 2 of this dissertation. A detailed description of the diffusion model

approach and its application to lexical decision task data can be found in Chapter 2.

We expected the drift rate to increase with increasing vocabulary size, indicating

faster build-up of lexical information in individuals with greater vocabulary knowledge.

Furthermore, based on previous studies it was predicted that increased vocabulary

knowledge would be associated with a reduced word bias in the starting point parameter

(Brysbaert et al., 2016a; Yap et al., 2012, see also Chapter 2).

Hence the present study aimed at filling a gap in the research on vocabulary size

and language processing by examining participants that are not usually tested in

psychological studies, namely young adult vocational college students. For this purpose

we employed a battery of vocabulary size measures and a visual lexical decision task to

assess word recognition performance. Additionally, the potential vocabulary effect on

language processing was examined more closely by using diffusion model analyses. In

this vein we hoped to get insights into where, i.e. in which component processes of

lexical decision making, an overall effect of vocabulary on lexical decision task

performance might originate.

Method

Participants

A total of 231 young adults gave informed consent to participate in this study. The results

obtained from fifty-seven individuals were excluded due to failure to perform one or several

of the tasks correctly. Performance on the PPVT or the lexical decision task was in most

cases the reason for excluding a participant. Hence, data of 174 participants (92 females)

aged between 18 and 32 years (M = 20.3; SD = 2.7) were left for further analyses. All

of them were students at vocational colleges in the Netherlands (ROC Nijmegen, ROC

Tilburg, ROC Midden Nederland). The vocational training in the Netherlands is divided

into four different levels, with level one being the lowest. Table 3.1 shows the distribution

of participants across the different levels of vocational education. A more even spread
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across the levels would certainly have been desirable, but could not be attained due to

timetabling constraints in the colleges.

All participants were recruited through the teachers at their vocational colleges.

Participation was voluntary and not part of compulsory classes. In some of the cases, the

schools were paid an expense allowance of 10 Euros per participant to spent on teaching

materials; in other schools, participants were paid 10 Euros each for their participation.

Ethical approval was granted by the Faculty of Social Sciences of the Radboud University

Nijmegen.

Table 3.1: Numbers of female and male participants per level of vocational education.

Level Female Male Total

1 3 - 3

2 14 - 14

3 24 27 51

4 50 56 106

total 92 83 174

Materials and design

The materials of the lexical decision task were the same as in the Experiment reported

on in Chapter 2 of this dissertation, whereas the vocabulary test materials were slightly

different. As mentioned before, the open synonym test was not administered because

the scores achieved by the university students indicated that it would probably be very

challenging and potentially frustrating for the vocational college students without

providing valuable additional insights.2 Furthermore, five additional high-frequency filler

words were added to the multiple-choice antonym and synonym tests as well as the open

antonym test, respectively. This was done in order to increase the number of relatively

easy items and keep participants motivated throughout the test. These filler items were

excluded from the final test score.

Apparatus

All tasks were administered using 14-inch HP laptops (Probook 640 G1) and Panasonic

RP-HT030 headphones. All tests were implemented using Presentation software (version

16.5, www.neurobs.com).

2Participants in Experiment 1 obtained a relatively low mean score of 10.70 (SD = 2.86) as compared
to the open antonym test (M = 19.29, SD = 2.37).
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Procedure

Participants were tested in groups of between 9 and 30 students in their classrooms. They

completed the tasks in the following fixed order: 1) Definition test, 2) Andringa et al.’s

(2012) receptive multiple-choice test, 3) Multiple-choice antonym test, 4) Open antonym

test, 5) Multiple-choice synonym test, 6) PPVT, 7) Lexical decision task. The procedure

for the vocabulary tests was the same as explained in Chapter 2 of this dissertation.

In contrast to this, the procedure for the lexical decision task was slightly altered.

First, a pilot study with twenty vocational college students showed that presenting the

stimuli for 3 seconds was too short. Therefore, the presentation time was increased to

5 seconds. Secondly, the response buttons were kept constant, with ”M” to be pressed

for words and ”Z” for nonwords. This was done to facilitate administering the task in a

group setting.

Analyses

The vocabulary tests were scored and analysed in exactly the same way as in the study

reported on in Chapter 2 of this dissertation. The only difference was that the five items

added to the multiple-choice antonym and synonym tests and the open antonym test were

excluded from the test scores, as mentioned before.

Furthermore, the same analyses were run on the vocabulary and lexical decision

data from this study as in the experiment presented in Chapter 2. Hence, participants’

vocabulary test scores were analysed using bivariate correlations and a Principal

Component Analysis (PCA) in SPSS (version 20). Lexical decision accuracy for words as

well as RTs on correct word trials were analysed in different mixed-effects models with

either lexicality or word frequency as predictors. All models included random intercepts

for both item and participant, and per-participant random slope adjustments to the

lexicality or word frequency effect. All analyses were run in R (R Core Team, 2016)

using the glmer function from the package lme4 (version 1.1.12, Bates et al., 2015).

The individual difference analyses were also the same as in Chapter 2. Thus,

vocabulary score was added as a predictor to the above-described models. Different

mixed models were run, each including participants’ scores from one of the individual

tests as a predictor. In addition, a composite score of vocabulary knowledge based on

each participant’s performance on the battery as a whole was calculated and entered as

a predictor of lexical decision accuracy and RTs in a separate model.

The composite vocabulary score was obtained by calculating regression-based factor

scores for each participant using the PCA method in SPSS (DiStefano et al., 2009).

Assuming only one underlying factor, each individual’s loading or score on that factor
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based on their six vocabulary test scores was calculated. By doing this, the measurements

of word knowledge were collapsed into one number with a mean of zero. Hence, we were

able to compare the individual vocabulary measures with a composite measure reflecting

performance on the entire battery of tests.

Finally, we used the fast-dm algorithm written by Voss and Voss (2007) to estimate

the diffusion model parameters. For each participant we obtained seven parameter

estimates by fitting the model to each individual’s RTs for both correct and incorrect

responses: (1) mean drift rate, i.e. the speed of information accumulation, (2) variability

in drift rate across trials, (3) boundary separation, (4) mean starting point, i.e.

participants’ bias towards words or nonwords, (5) variability in starting point across

trials, (6) non-decision component of processing, i.e. time needed for stimulus encoding

and response execution, (7) across-trial variability in time needed for non-decision

component. These parameter estimates were then entered into regression analyses in R,

with vocabulary score as a predictor.

Results

Vocabulary tests

The responses in the vocabulary tests were scored and analysed as described above. The

mean vocabulary test scores per test are shown in Table 3.2.

Table 3.2: The distribution of test scores in all seven vocabulary tests. The maximum
possible scores for each of the tests are provided in brackets in the column
displaying participants’ maximum scores.

Test N Minimum Maximum Mean SD

Andringa 174 15.0 50.0 (59.0) 33.4 6.0

PPVT 174 55.0 115.0 (*) 87.9 10.0

Definition test 174 6.0 20.0 (20.0) 14.7 2.1

Antonym MC 174 8.0 25.0 (25.0) 20.8 2.6

Antonym open 174 7.0 21.5 (25.0) 14.9 2.4

Synonym MC 174 3.0 21.0 (25.0) 12.8 3.1

* Maximum possible score varied between 136 and 139.

Bivariate correlation coefficients between the vocabulary tests are displayed in Table

3.3. All measures are significantly moderately correlated with one another. All tests

are correlated and, thus, appear to capture a shared underlying variable. The reliability
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measure Cronbach’s α indicated that the test battery as a whole is highly reliable (α =

.80). Dropping one of the tests would lead to a lower α, hence lower reliability of the

vocabulary test battery.

A PCA assuming two components was run on z-transformed vocabulary scores. Only

the first component had an eigenvalue greater than 1 and it explained 50.39% of the total

variance. Factor 1 loaded on all vocabulary tests (see Table 3.4). Again, no clear picture

of a distinction between productive and receptive vocabulary tests was obtained.

Table 3.4: Results of the PCA assuming two components.

Vocabulary Component

measure 1 2

Andringa .80 -.17

PPVT .65 .17

Definition .63 -.64

Antonym MC .77 .05

Antonym open .64 .59

Synonym MC .75 .01

Eigenvalue 3.02 .81

% Variance 50.39 13.56

Lexical decision task

Accuracy rates were lower than usually observed in lexical decision tasks and as in Chapter

2 of this dissertation, with 11.6% of all trials being false alarms and 2.3% misses. RTs

were trimmed by excluding all responses that exceeded each participant’s mean by 3 SD

or were lower than 250 ms. Following these criteria, 3% of data were excluded as outliers.

Accuracy was higher for words than for nonwords (z = -20.61; p < .001), and participants

made fewer errors with increasing word frequency (z = 10.98; p < .001). RTs for words

were slower than for nonwords (t = 19.18; p < .001; see Appendix A for a table showing

averaged lexical decision RTs for all conditions and a plot of the RT distribution). Finally,

RTs for correct responses to words increased with decreasing word frequency (t = -14.29;

p < .001).

Individual differences

The relationship between individual differences in vocabulary size and word recognition

performance was the focus of this study. Both lexical decision accuracy and speed were
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analysed using mixed-effects models. For this individual differences investigation, we

focused on responses to word trials.

Accuracy

Response accuracy in the lexical decision task was predicted by word frequency (z =

8.41, p < .001) and composite vocabulary score (z = 4.45; p < .001), whereas the

interaction between these main effects was not significant (z = -.55; p = .58). Similar

results were obtained from the mixed models including participants’ scores from the

individual vocabulary tests as a predictor (see Table 3.5). Only the model using the

PPVT scores as one of the predictors, along with word frequency, did not show a

significant main effect of vocabulary score (z = 1.32; p = .19), but only of word

frequency (z = 8.0; p < .001). The interaction was not significant (z = -.97; p =.33),

just as in the model including the composite vocabulary score. Furthermore, the model

including the multiple-choice synonym test scores as a predictor of lexical decision

accuracy on word trials did not converge, even after excluding random slopes and the

random intercept for item. All other vocabulary tests or models showed the same

patterns of relationship between vocabulary score, word frequency, and lexical decision

accuracy.
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Table 3.5: P- and t-values for the main effects in each of the models where scores of
individual vocabulary measures were used as predictors of lexical decision
accuracy.3

Model Variable t p

Definition test Vocabulary score 2.35 .01

Word frequency 8.13 <.001

Frequency x vocabulary -1.49 .14

Andringa Vocabulary score 3.81 < .001

Word frequency 7.42 <.001

Frequency x vocabulary -1.64 .10

Multiple-choice antonym Vocabulary score 4.39 <.001

Word frequency 8.79 <.001

Frequency x vocabulary .79 .03

Open antonym Vocabulary score 2.23 .02

Word frequency 7.77 <.001

Frequency x vocabulary -.09 .93

PPVT Vocabulary score 1.32 .19

Word frequency 8.0 <.001

Frequency x vocabulary -.97 .33

Reaction times

There was a significant main effect of word frequency (t = -14.99; p < .001) but not of

the composite measure of vocabulary (t = .90; p = .37) on log-transformed RTs.

Importantly, the interaction between word frequency and composite vocabulary score

was significant (t = 4.10; p <.001), with a stronger word frequency effect for individuals

with poorer word knowledge (see Appendix B). Most of the models including each of the

individual vocabulary scores as predictors of lexical decision RTs yielded similar results

(see Table 3.6). Only the open antonym and the multiple-choice synonym tests showed

slightly different patterns. In the model with open antonym score and word frequency as

predictors, the latter was highly significant (t = -12.22; p < .001); however, neither

vocabulary (t = -1.40; p = .16) nor the interaction between word frequency and

3The model using the multiple-choice synonym test as a predictor of lexical decision accuracy did not
converge, even when leaving out all random slopes and the random intercept for trial. Therefore, it is
not reported on in the table.
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vocabulary (t = 1.33; p = .18) were significant predictors of RT. The model with

participants’ multiple-choice synonym test scores as an independent variable showed

significant main effects of word frequency (t = -12.69; p < .001) and vocabulary score (t

= 2.48; p = .01), as well as a significant interaction between the two (t = 2.58; p = .01).

Hence, individuals with higher synonym multiple-choice test scores were slower in

making lexical decisions while the frequency effect was smaller for individuals, who

scored highly in this test.

Table 3.6: P- and t-values for the main effects in each of the models where scores of
individual vocabulary measures were used as predictors of lexical decision RTs.

Model Variable t p

Definition test Vocabulary score .58 .56

Word frequency -13.60 <.001

Frequency x vocabulary 3.56 <.001

Andringa Vocabulary score .93 .35

Word frequency -13.32 <.001

Frequency x vocabulary 4.34 <.001

Multiple-choice antonym Vocabulary score -.26 .79

Word frequency -13.77 <.001

Frequency x vocabulary 1.93 .05

Open antonym Vocabulary score -1.40 .16

Word frequency -12.22 <.001

Frequency x vocabulary 1.33 .18

Multiple-choice synonym Vocabulary score 2.48 .01

Word frequency -12.69 <.001

Frequency x vocabulary 2.58 .01

PPVT Vocabulary score 1.36 .17

Word frequency -12.49 <.001

Frequency x vocabulary 3.42 <.001

Diffusion model analysis

The mean values and SDs of the seven parameter estimates as well as the t-values for the

effect of vocabulary score are reported in Table 3.7. The drift rate for words, i.e. the speed

with which information accumulates, was higher for individuals with higher vocabulary

scores (β = .22, SE = .06, t = 3.50, p < .001). Furthermore, vocabulary score predicted



3 Word knowledge in more diverse participants 81

the starting point (β = -.02, SE = .01, t = -2.50, p = .02), with increased vocabulary

knowledge being associated with a starting point closer to zero, thus, a smaller word bias.

The remaining parameters did not show effects of vocabulary size.

Table 3.7: Parameter estimates of the diffusion model.

Parameter Mean SD

Drift rate for words 2.27 0.83

Variability in drift rate 0.78 0.27

Boundary separation 1.96 0.45

Starting point 0.58 0.11

Variability in starting point 0.22 0.17

Non-decision components 0.42 0.09

Variability in non-decision

components

0.16 0.12

Discussion

We used a battery of six vocabulary tests and a lexical decision task to investigate the

relationship between individual differences in vocabulary and lexical processing

performance. An important aspect of this study, distinguishing it crucially from earlier

research, is the participant sample that was tested. Instead of undergraduate university

students, the usual participants in psychological research, we recruited a large group of

vocational college students as participants. This was done for the following reasons. The

typical participants, i.e. university students, are assumed to form a rather homogeneous

group presumably exhibiting less variation than can be found in the general population.

With regards to language, this is due to the fact that they are presumed to get a similar

and very specific amount and type of exposure to language (e.g. lectures, scientific

reading). In addition, university students are trained to communicate thoughts and

ideas in a certain way using a nuanced vocabulary. Overall, this rather specific group of

young adults is assumed to not be representative of the general population with regards

to their cognitive abilities; in this particular context, their vocabulary and linguistic

abilities. Therefore, it was deemed necessary to extend the research on individual

differences in vocabulary knowledge and their role in language processing to participants

from a broader range of educational backgrounds. It has been argued before that

examining university students only might, for instance, underestimate the strength of
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the relationship between vocabulary knowledge and word recognition performance (Yap

et al., 2012).

Participants’ scores on all vocabulary tests showed a high degree of variability. This

was expected based on the fact that individuals from all levels of vocational education were

tested, presumably covering a relatively large range of abilities. Scores from all vocabulary

measures correlated similarly strongly with each other, but overall just moderately and

not as strongly as has been shown in a group of university students tested previously

with the same vocabulary measures (see Chapter 2). In other words, in the group of

vocational college students the vocabulary tests captured less shared variance than in the

group of university students. In line with this, the PCA showed a smaller percentage of

variance explained by the first component as well as weaker loadings of all vocabulary

measures on the first component. The reason might be that the vocational college students

experienced some of the tests, such as the PPVT or the open antonym test, as much more

difficult than others, leading to weaker correlations between participants’ scores in the

different tests. This illustrates the difficulty one faces when applying measures developed

for testing a certain group (here university students) to a different population (here young

adults from a different educational background). Finally, again no distinction between

open and multiple-choice tests was found in the PCA. Cronbach’s α (α = 0.80) indicated

that the test battery as a whole was reliable and similarly reliable to that observed in the

experiment presented in Chapter 2 of this dissertation (α = .88).

It has to be noted that all participants responded correctly to almost all of the easy

items that had been added to the multiple-choice antonym and synonym and the open

antonym tests to increase the number of targets which participants could presumably

respond to. Thus, the fact that they gave a high proportion of correct responses to these

items, shows that they made an effort to complete the tests and respond to as many items

as possible.

Notably, just as in the experiment in Chapter 2, the mean vocabulary scores indicated

that the multiple-choice antonym test was easier than the multiple-choice synonym and

open antonym tests. We acknowledge this difference in difficulty, which was observed in

both experiments. As noted, in future research one might want to adjust the frequency

ranges so that they are more similar across all tests.

Finally, the fact that this group displays a considerably larger range of performance

than has been observed in university students (see Chapter 2) supports the idea that it

is necessary to extend psycholinguistic investigations to participants from more varied

educational backgrounds; only in this way it is possible to cover a wider range of

variability and potentially different relationships between various cognitive abilities.

When comparing the findings from the experiments in Chapters 2 and 3, we note that
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the samples differed in size. Importantly, the more variable group in Chapter 3 is also

the larger group. This supports the idea that the greater variability observed in this

group (despite the larger sample size) is in fact characteristic of the population.

Analyses of the lexical decision task data showed the lexicality and word frequency

effects that are typically found: Error rates and RTs were lower for words as opposed to

nonwords and for high- as compared to low-frequency words (e.g., Keuleers et al., 2015;

Kuperman & Van Dyke, 2013; Yap et al., 2012).

Our main interest was the relationship between individual differences in vocabulary

size and word recognition performance. We found that both word frequency and

vocabulary score had significant effects on response accuracy in the lexical decision task

but did not interact. Hence, in line with Yap et al.’s (2012) findings, participants’

accuracy rates increased with growing vocabulary. The effect was independent of word

frequency. This was the case for the composite measure of vocabulary and almost all of

the individual vocabulary test scores; only the model including the PPVT scores did not

show a significant main effect of vocabulary. Thus, overall the vocabulary tests all

exhibited a similar pattern of relationship with lexical decision accuracy.

Furthermore, there was overall no significant main effect of vocabulary on RTs in

the lexical decision task; there was only a consistently significant main effect of word

frequency with faster RTs with increasing word frequency, as was expected. However,

participants’ scores on the open antonym test did not interact with the frequency effect.

In addition, the only test which we found to predict lexical decision speed was the synonym

multiple-choice test and here the effect was in the opposite direction of what had been

previously observed. Individuals with higher synonym multiple-choice test scores were

slower in making lexical decisions. The lack of a vocabulary effect or an effect in the

opposite direction is surprising because based on previous research, it was assumed that an

advantage in lexical decision RTs for individuals with greater vocabulary knowledge would

be a rather robust finding (Brysbaert et al., 2016a; Yap et al., 2012). The conclusions

about the relationship between vocabulary and language processing might, hence, be

slightly different depending on which measure of vocabulary size is used. Thus, for testing

broader samples using several vocabulary tests and combining their scores is advisable.

Some of the aforementioned differences between the various vocabulary tests might of

course be random fluctuations and more research, especially in such varied groups of

participants, is needed.

It seems that the participants in this group were overall rather slow in making lexical

decisions. They had RTs to words around 170ms longer, RTs to nonwords around 300ms

longer, and SDs twice as large as the participants in the experiment presented in Chapter

2. Maybe these longer RTs reflect strategic behaviour on the part of the participants,
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independent of their vocabulary size; if anything, high-vocabulary individuals show a

stronger tendency towards longer RTs and potentially strategic behaviour. It might be

possible that the participants in this experiment spent a rather long time thinking about

the target words, delaying their button press until they were sure about what the correct

response was. A reason for applying such a strategy may be that these participants

are less confident about their knowledge of words and trust their intuition less than

university students do. Hence, to prevent too many errors they may have re-read the

targets several times or thought about their responses for a longer time. This might be

the case especially for participants who were determined to do well on all tests, which

may explain the relationship between higher vocabulary scores and slower RTs.

Another possibility would be that many of the participants in this experiment were

overall rather poor readers. Thus, it might be that reading the strings of letters simply

took them a longer time. Both explanations would be in line with the observation that

participants’ RTs in the lexical decision task are overall considerably slower than what

would be expected based on previous word recognition studies. It is unlikely that the

reason for this lies in the materials as all words had very high prevalence values, indicating

that at least 98% of Dutch speakers in the Netherlands know all of them. Thus, each

participant could be assumed to at least know the majority of words. The assumption that

the participants might have been poor readers could be examined by replacing the visual

lexical decision task by an auditory version. This would show whether the vocational

college students are slower processors in general, thus, also slow in an auditory version of

the task, or just poorer readers than university students.

The facts that testing a group of participants other than the usual undergraduate

university students required changing the lexical decision task (displaying stimuli for 5

seconds instead of only 3 seconds) and yielded considerably different lexical decision RTs

demonstrate the necessity of extending psycholinguistic research to participant groups

from more varied backgrounds. The data collected from the group of university students

is apparently not representative of the general population. Hence, grounding ideas and

theories on language processing and cognitive abilities in research on university students

only does not do justice to the variability in cognitive abilities that is present in the

population.

Although there was only a significant main effect of word frequency but not of

vocabulary, the interaction between word frequency and vocabulary was significant. RTs

were generally faster for high-frequency words while this word frequency effect was

stronger for individuals with poorer vocabulary knowledge. This is in line with previous

studies using the lexical decision task, which found an interaction between word

frequency and participants’ vocabulary skills (e.g., Diependaele et al., 2013).
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Additionally, our finding fits with the lexical entrenchment hypothesis (Brysbaert et al.,

2016a; Diependaele et al., 2013) stating that the lexical representations in

low-vocabulary individuals are not as robust or strong as the representations in

high-vocabulary individuals (see also, Perfetti & Hart, 2001, 2002; Yap et al., 2009). As

argued by Diependaele and colleagues (2013), this reduced representational strength in

low-vocabulary individuals is mainly due to less exposure. Limited exposure does not

affect the entire lexicon to the same extent. It is argued that a decrease in exposure has

particularly strong effects on low-frequency words. Thus, the frequency curve is

supposed to be steeper in individuals with smaller vocabularies than in those with larger

vocabularies (Brysbaert et al., 2016a). As a result, word frequency has a smaller effect

on language processing speed in high-vocabulary participants than it has in

low-vocabulary participants. This hypothesis was confirmed because we found a

frequency x skill interaction, as has been reported previously (e.g., Diependaele et al.,

2013; Kuperman & Van Dyke, 2013). Participants with weaker vocabulary scores

showed stronger effects of word frequency on lexical decision RTs than those with higher

vocabulary scores.

In addition, the results support the assumption made in Chapter 2 that the lack of a

frequency x skill interaction might be due to characteristics of the participant group tested

there, namely a rather homogeneous group of university students. This is due to the fact

that the same materials that failed to elicit the interaction between word frequency and

vocabulary knowledge in that group, showed the interaction in the present experiment

where we tested a more diverse group of young adults.

Moreover, the observation of a frequency x skill interaction is compatible with the

explanations for the lack of a main effect of vocabulary. Even if participants apply the

strategy of delaying their responses or re-read the target words several times, these

processes might be faster for high- than for low-frequency words. Additionally,

individuals with larger vocabularies might show a smaller effect of word frequency due

to having more exposure to words from the entire range of frequencies, including

low-frequency items, than individuals with weaker vocabulary knowledge.

Additionally, we ran diffusion model analyses and entered the resulting parameters

in regression models to further examine the origin of the vocabulary effect on lexical

decision times. As in Chapter 2 of this dissertation, we did not observe exactly the same

patterns but overlapping results with Brysbaert et al. (2016a) and Yap et al. (2012).

Two parameters of the diffusion model were predicted by vocabulary score, namely drift

rate for words and starting point. As has been found previously, individuals with higher

vocabulary scores showed faster build-up of lexical information for words than individuals

who scored lower on the vocabulary tests (Yap et al., 2012, see also Chapter 2). Hence, the
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high-vocabulary advantage has at least to a certain extent its origin in the fact that the

information build-up is faster; perhaps because individuals with stronger word knowledge

are faster in accessing their lexicon as compared to individuals with weaker vocabulary

knowledge. In addition, and just as in Chapter 2, higher vocabulary scores were associated

with a smaller word bias. Hence, individuals with better vocabulary knowledge showed

a starting point closer to neutral between the word vs. nonword boundaries. This is

probably an efficient starting point given that the task included 50% words and 50%

nonwords, and high-vocabulary individuals are apparently more likely to show a starting

point that is neither strongly word nor strongly nonword biased. It has to be noted that

in principle these observations and explanations are compatible with the observation that

the participants in this experiment were considerably slower in making lexical decisions

than the participants in the experiment presented in Chapter 2. However, if it is assumed

that their slowness is due to strategically postponing their responses, it is questionable

whether the diffusion model analysis provides valuable insights. The reason is that in this

case the RTs would not really reflect participants’ stimulus encoding, decision making,

and button press speed but potentially also some other additional components. Testing

these participants’ general processing speed or using an auditory instead of a visual version

of the lexical decision task might provide some insights into whether they were generally

slow or whether their speed was affected by the specific task demands and corresponding

strategic behaviour.

Conclusions

In this study, we demonstrated that greater vocabulary knowledge as measured by a

battery of vocabulary tests was associated with more accurate but not faster word

processing in a lexical decision task. Despite the absence of a main effect of word

frequency on lexical decision RTs, we observed an interaction between frequency and

vocabulary. In line with earlier research, the word frequency effect on lexical decision

RTs decreased with increasing vocabulary knowledge. This was found in an experiment

where, unlike in earlier research, non-university students were tested. Besides the

theoretical insights on the relationship between individual differences in vocabulary and

language processing, the findings demonstrate the importance of extending

psycholinguistic research to include participants from a broader range of educational

backgrounds. More research is needed to examine potential consequences of individual

difference in vocabulary size, such as structural or representational differences between

vocabularies of varying sizes, in a varied group of speakers.
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Appendix A

Table 3.8: Reaction times (ms) for correct responses in the lexical decision task per
condition. For illustration purposes, frequency is shown as a categorical
variable although all models were run with frequency as a continuous variable.

Lexicality Frequency Mean SD

low 855 414

Words medium 781 416

high 743 388

total 793 409

Nonwords - 1035 476

Note: Low-frequency words had frequency values of less than 1 count per million in the
SUBTLEX corpus (M = 0.36; SD = 0.27), medium-frequency words between 1 and 10
counts per million (M = 3.47; SD = 2.34), and high-frequency words between 10 and 90
counts per million (M = 25.24; SD = 20.92).



3 Word knowledge in more diverse participants 89

0.0000

0.0005

0.0010

0.0015

1000 2000 3000 4000

Reaction time

D
en

si
ty

Figure 3.1: Distribution of the lexical decision RTs.
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Appendix B
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Note that for illustration purposes, vocabulary score was transformed into a
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4 | Vocabulary knowledge affects lexical production:

Evidence from picture-word interference

Abstract

In this study we examined the relationship between vocabulary knowledge and language
production in a picture-word interference task. Word knowledge was measured using the
same battery of seven vocabulary tests, which was administered in the studies presented
in Chapters 2 and 3. Hence, we used two established measures of word knowledge,
namely the Peabody Picture Vocabulary Test (Schlichting, 2005) and Andringa et al.’s
(2012) receptive multiple-choice test, and five newly developed ones. Language
production was assessed in a picture-word interference (PWI) task. We found significant
effects of semantic interference and distractor frequency. Slower RTs were obtained for
semantically related than for unrelated distractors, and high-frequency distractor words
induced less interference than low-frequency distractors. In addition, ex-Gaussian
analyses showed a selective effect of semantic relatedness on the τ parameter and of
distractor frequency on the µ parameter of the RT distribution. Importantly, RT in the
PWI task were predicted by vocabulary size: Individuals with better word knowledge
responded faster than those with smaller vocabularies.
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Introduction

An average 20-year-old student has recently been estimated to know 42,000 lemmas and

4,200 multiword expressions, derived from 11,100 word families (Brysbaert et al.,

2016b). While these numbers are impressive, the study also showed that there is

considerable individual variation as a function of educational level. Likely underlying or

related factors resulting in individual differences in vocabulary knowledge are, for

instance, skills, interests, and life-experiences, including reading exposure (see Chapters

2 and 3; Brysbaert et al., 2016b). The knowledge of words is certainly an important

aspect of a speaker’s command of their language and it has been shown to affect

language processing performance in various linguistic tasks (Banks et al., 2015;

Rodriguez-Aranda & Jakobsen, 2011; Yap et al., 2009). Especially performance on

comprehension tasks, such as lexical decision, spoken word recognition or speeded

pronunciation, has been reported to vary as a function of individual differences in

vocabulary size (e.g., Brysbaert et al., 2016a; Chateau & Jared, 2000; Yap et al., 2009).

However, far less research has focused on language production. The present study

therefore examined the relationship between individual differences in vocabulary size

and spoken language production. We employed a battery of seven vocabulary tests and

a picture-word interference (PWI) task.

As indicated before, previous studies of the role of vocabulary knowledge in

language processing have often looked at word recognition and found beneficial effects of

increased word knowledge on processing performance. Older adults’ accuracy of spoken

word recognition was found to be predicted by vocabulary knowledge with higher

accuracy rates with increasing vocabulary size (Janse & Jesse, 2014). Better vocabulary

knowledge was also found to be associated with improved speech recognition in

suboptimal conditions (Bent et al., 2016). Furthermore, Yap and colleagues (2009)

reported higher vocabulary scores to be linked to faster RTs and higher accuracy rates

in both lexical decision and speeded pronunciation. In addition, smaller word frequency

effects in the speeded pronunciation task were found for individuals with higher

vocabulary scores. Similarly, Brysbaert, Lagrou, and Stevens (2016a) showed that

higher vocabulary scores were associated with higher accuracy rates and faster RTs in a

lexical decision task as well as reduced effects of word frequency on RTs. Hence, not

only faster RTs were associated with higher vocabulary scores, but individuals with

larger vocabularies (Diependaele et al., 2013; Yap et al., 2009) or increased reading

experience (Chateau & Jared, 2000; Kuperman & Van Dyke, 2013) have also been

observed to show smaller word frequency effects. The typical word frequency effect,
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namely faster RTs with increasing frequency, has been reported to be smaller for

individuals with better vocabulary knowledge.

Representational differences between vocabularies of varying sizes have been

suggested to be the origin of this frequency x skill interaction. High-vocabulary

individuals are assumed to have more robust, defined, or entrenched representations as

compared to low-vocabulary individuals leading to faster lexical access, which is less

sensitive to effects of word frequency (Van Dyke et al., 2014; Perfetti & Hart, 2001; Yap

et al., 2009). Diependaele and colleagues (2013) formulated the lexical entrenchment

hypothesis to account for this pattern. Accordingly, the frequency x skill interaction is a

result of differences in language exposure. Especially low-frequency words are assumed

to be affected by variation in exposure, which leads to a stronger frequency difference

between low- and high-frequency words in individuals with limited exposure to

language, hence, smaller vocabularies (Kuperman & Van Dyke, 2013). Thus, the

frequency curve in these individuals’ vocabularies is steeper than in individuals with

larger word knowledge (Brysbaert et al., 2016a). The lexical representations are

assumed to be weaker or less robust in low- than in high-vocabulary individuals, in

particular for low-frequency words, therefore slower to be processed.

Additional insights into the relationship between vocabulary knowledge and

language production performance were gained from studies using verbal fluency tasks,

where participants are required to produce as many words as possible starting with a

given letter (letter fluency) or from a given semantic category (category fluency) within

one minute. Unsworth and colleagues (2011) examined which component processes are

involved in verbal fluency task performance. They found that individuals with greater

vocabulary knowledge generated a higher number of items in total. Additionally, Shao

et al. (2014) investigated the contributions of verbal ability and executive control to

verbal fluency performance in older adults. In this study, participants with higher

vocabulary scores were faster at giving the first response in different verbal fluency tasks

than individuals with smaller vocabulary knowledge. Finally, Rodriguez-Aranda and

Jakobsen (2011) found that vocabulary predicted RTs in letter as well as category

fluency and a short picture naming task.

Hence, the insights on the relationship between individual differences in vocabulary

and language processing are mainly based on studies using word recognition or other

comprehension tasks (Brysbaert et al., 2016a; Diependaele et al., 2013; Yap et al., 2009,

2012), whereas there are considerably fewer studies focusing on language production.

In addition, the latter mainly used verbal fluency tasks, which do not solely measure

language processing performance but also executive control functions (Rodriguez-Aranda
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& Jakobsen, 2011; Shao, Roelofs, et al., 2014; Unsworth et al., 2011), or a rather short

picture naming task with only ten pictures (Rodriguez-Aranda & Jakobsen, 2011).

The present study filled this gap by relating language production performance to

individual variation in vocabulary. A PWI task was administered to test for speed of

lexical selection in spoken language production. In the classical PWI paradigm

participants are instructed to name pictures in the presence of semantically related or

unrelated distractor words. Additionally, we manipulated word frequency by pairing

each stimulus with both low- and high-frequency distractor words. This was done to

take into account the possibility that the effects of word frequency and vocabulary

knowledge might interact with each other, just as was the case in the above-mentioned

lexical decision experiments (e.g. Brysbaert et al., 2016a; Diependaele et al., 2013). It

has to be noted that in addition to lexical selection for production, the PWI task

involves word recognition processes (of the written distractor word), which the frequency

manipulation in the present study is related to.

In general, mean naming RTs are longer for stimuli with semantically related than

with unrelated distractor words (e.g., Damian & Martin, 1999; Miozzo & Caramazza,

2003; Schriefers, Meyer, & Levelt, 1990). Previous studies using PWI tasks including the

distractor frequency manipulation have indicated that more interference was induced by

low- as opposed to high-frequency distractor words (Dhooge & Hartsuiker, 2010, 2011;

Hutson, Damian, & Spalek, 2013; Miozzo & Caramazza, 2003; Roelofs, Piai, & Schriefers,

2011; Scaltritti, Navarrete, & Peressotti, 2015).

The origins of the semantic interference and the distractor frequency effect are

controversial. One explanation is based on the assumption of spreading activation from

the target concept to related concepts. Hence, semantically related distractors receive

bottom-up activation from the written word, and in addition top-down activation from

the conceptually related target picture. This leads to stronger interference or

competition for selection induced by semantically related as opposed to less strongly

activated unrelated distractors. The effect is, hence, argued to be located early in the

speech planning process (Roelofs, 1992, 2003). Within this framework the distractor

frequency effect is hypothesised to be due to a reactive blocking of the distractor word,

in order to give priority to the processing of the picture name. High-frequency words

can be processed faster than low-frequency words, which leads to high-frequency

distractors being blocked out more quickly as compared to their low-frequency

counterparts. Picture naming latencies are, consequently, shorter for high-frequency

distractors (Roelofs et al., 2011).

Others have located the semantic interference effect in an articulatory buffering stage,

after lexical access has occurred. It is assumed that the distractor word activates an
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articulatory program, which is entered into an output buffer and has to be removed from

it to allow articulation of the response to the target picture. This is hypothesised to take

longer for semantically related than for unrelated distractor words (Dhooge & Hartsuiker,

2010, 2011; Scaltritti et al., 2015). Word frequency is presumed to affect the speed with

which the distractor accesses the response buffer. High-frequency distractors enter the

buffer earlier than low-frequency words and can thus be removed earlier; picture naming

times for stimuli with high-frequency distractor words are consequently shorter than for

those with low-frequency distractors (Dhooge & Hartsuiker, 2010; Scaltritti et al., 2015).

For the present purpose it is important to note that although there are differences

between the two frameworks’ explanations of the semantic interference and distractor

frequency effects, they agree on important aspects. Both assume attentional control to

be underlying the semantic interference effect, whereas the distractor frequency effect is

driven by the speed of processing of the distractor word (Scaltritti et al., 2015).

A number of recent studies have investigated RT distributions using ex-Gaussian

analyses besides looking at mean RTs (e.g., Jongman et al., 2015; Piai, Roelofs, &

Schriefers, 2011, 2012; Shao et al., 2012). In contrast to analyses based on mean RTs,

which assume a symmetric distribution around the mean, Ex-Gaussian analyses allow us

to account for the typical positive skewness of RT distributions. This is due to the fact

that the ex-Gaussian function is a convolution of a Gaussian, i.e. normal, and an

exponential function, which fits RT distributions very well (Balota & Yap, 2011; Balota,

Yap, Cortese, & Watson, 2008; Heathcote, Popiel, & Mewhort, 1991). An ex-Gaussian

analysis provides two parameters describing RT distributions: µ which reflects the mean

of the Gaussian part of the underlying RT distribution, and τ which describes the mean

and standard deviation of the exponential part. Hence, using ex-Gaussian analyses RTs

can be decomposed into two components, which characterise the normally distributed

part (µ) and the slower tail (τ) of the underlying RT distribution (Roelofs, 2012).

Piai and colleagues (2011, 2012) offered pioneering insights into the semantic

interference effect in the PWI paradigm by analysing not only mean RTs but the

distributional features of the effect. Piai et al. (2011) report the semantic interference

effect to be reflected solely in the µ parameter, thus, assuming the shape of a

distributional shift. By contrast, Piai et al. (2012) found the semantic interference effect

for clearly visible distractor words to be reflected on the τ part of the RT distribution.

Thus, mixed results have been reported.

Scaltritti and colleagues (2015) went one step further by examining the

hypothesised different underlying dynamics of the semantic interference and distractor

frequency effects by analysing the distributional features of both effects. They found the

semantic interference effect to selectively affect the slower tail (τ), whereas the
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distractor frequency effect was reflected in the normal part (µ) of the RT distribution.

Hence, the latter effect was shown to result in a distributional shift such that RTs for

stimuli with low-frequency distractors are overall slower than for those in the

high-frequency condition. The semantic interference effect, by contrast, was particularly

pronounced in the slow responses when individuals’ attention efficiency is assumed to be

reduced (Piai et al., 2012; Scaltritti et al., 2015, but see Roelofs & Piai; 2017).

In the present study, we intended to examine whether potential effects of

vocabulary are mainly represented in the µ or τ part of the RT distribution. Earlier, it

has been studied whether different cognitive abilities relate to different parameters of

the RT distribution in various tasks. Shao et al. (2012), for instance, used ex-Gaussian

analyses to examine the relationship between different aspects of executive control and

participants’ RTs in object and action naming. They found that updating ability was

correlated with the exponential tail of both the action and object naming RT

distributions. Hence, this suggests updating ability to be involved in only the slow trials

in both tasks. By contrast, inhibition ability was correlated with the normal part (µ) of

the RT distribution for action naming (which was the harder task), and with the slower

tail (τ) for object naming. These observations indicate that in action naming, inhibiting

ability is engage on most of the trials whereas in object naming inhibitory control is

only involved in the very slow trials (Shao et al., 2012).

If increased vocabulary knowledge is associated with overall faster processing, the

effect should selectively be reflected in the normal part of the RT distribution of the PWI

task. In this case, the vocabulary effect would have the shape of a distributional shift with

RTs being overall slower for individuals with smaller vocabulary scores. However, an effect

of vocabulary knowledge only being exhibited in the slower tail of the RT distribution

would indicate that the effect is mainly mediated by individuals’ slow responses. Based

on previous research on the RT distribution in PWI tasks, vocabulary effects on the slow

tail of the RT distribution in this task would suggest some involvement of attentional

capacity (Scaltritti et al., 2015).

Vocabulary knowledge was assessed using a battery of measures. Most earlier

studies have used individual measures of vocabulary. However, it has been argued that

the assessment of a skill as complex as word knowledge requires battery of vocabulary

tests of different types and formats including multiple-choice and open tests (Bowles &

Salthouse, 2008). The reason is that vocabulary test performance does not only depend

on an individual’s word knowledge but also on their world knowledge, attention, and

guessing strategies. Especially for studies where vocabulary is the main interest, Bowles

and Salthouse (2008) recommended the use of a battery of different vocabulary tests.

We therefore employed two established measures of vocabulary size, namely the Peabody
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Picture Vocabulary Test (PPVT; Schlichting, 2005) and Andringa et al.’s (2012)

receptive multiple-choice test, in addition to five newly developed tests. These five tests

were comprised of multiple-choice antonym and synonym tests, open antonym and

synonym tests and a definition test, which all covered a large range of word frequencies.

Additionally, the various measures addressed the three dimensions of lexical

competence proposed by Henriksen (1999). Partial to precise knowledge of word

meanings was assessed in the multiple-choice tests as well as in the definition test. The

depth of word knowledge dimension was addressed using the antonym and synonym tests

as for those tests more complex relationships between words and their meanings was

required. Finally, the distinction between productive and receptive vocabulary knowledge

was taken into account by including open antonym and synonym tests in addition to the

multiple-choice versions. Hence, this battery including various test types and formats

was assumed to measure vocabulary knowledge comprehensively by addressing various

aspects of it.

To sum up, we tested three hypotheses: (1) that better vocabulary knowledge is

associated with faster naming latencies in a PWI task, (2) that individuals with larger

vocabularies show weaker effects of distractor frequency than those with weaker

vocabulary knowledge, and (3) that the semantic interference effect is smaller for

participants with higher vocabulary scores. The reasoning behind the latter is that

larger vocabularies have been associated with increased entrenchment or specificity of

lexical representations, as indicated by smaller frequency effects in high- as compared to

low-vocabulary individuals (Diependaele et al., 2013). As a result of these hypothesised

differences in robustness or specificity of representations, the speed with which

competition for selection between strongly activated lexical items can be resolved might

vary between vocabularies of varying sizes.

For the purpose of analysing the relationship between RTs in the PWI task and

vocabulary, we did not only analyse mean RTs but also conducted ex-Gaussian analyses.

It was hypothesised that the distractor frequency effect would be reflected in the normal

part of the RT distribution whereas the semantic interference effect was expected to

affect the slower tail. We also examined whether vocabulary affected both parts of the

distribution or one of them selectively.
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Method

Participants

The PWI experiment was completed by the same 75 individuals who also participated in

the lexical decision experiment presented in Chapter 2 of this dissertation. Data of eight

participants had to be discarded prior to further data processing due to technical failure

or failure to perform one of the tasks correctly.

Thus, data of 67 participants was left (51 females, 16 males) aged between 18 and

32 (M = 21.81 years; SD = 3.41 years). Most of them were students at the Radboud

University Nijmegen or the Hogeschool van Arnhem en Nijmegen (N = 62), four

participants were working, and one was unemployed. Most participants’ highest level of

education was a bachelor’s degree (N = 25) or the gymnasium (N = 20), which is the

highest variant of secondary education in the Netherlands. Others had completed a

master’s degree (N = 5), or other higher education certificates (N = 17).

All participants were recruited using the participant database of the Max Planck

Institute for Psycholinguistics and gave informed consent to participate in this experiment.

They were paid 12 Euros for their participation. Ethical approval was granted by the

Faculty of Social Sciences of the Radboud University Nijmegen.

Materials and design

All participants completed seven vocabulary tests, five of which were newly developed

and two were established measures of word knowledge, namely the Dutch version of the

Peabody Picture Vocabulary Test (PPVT-III NL; Schlichting, 2005) and Andringa et al.’s

(2012) receptive multiple-choice test. The test materials are described in Chapter 2 of

this dissertation. Language production was assessed in a PWI task.

Picture-word interference task

The materials consisted of thirty line drawings with medium to high frequency names

in the SUBTLEX-NL corpus (min = 1.72; max = 435.7; M = 65.94, SD = 88.88)

were selected (Keuleers et al., 2010). The prevalence values of the stimuli (Keuleers

et al., 2015) ranged from 2.27 to 3.38 (M = 2.89, SD = 0.33). According to Keuleers

and colleagues, the values for the picture names included in the present picture-word

interference experiment indicate that they are known by at least 98% of the native speakers

of Dutch living in the Netherlands.

Two semantically related distractor words were assigned to each picture, one

low-frequency (LF) and one high-frequency (HF) item, resulting in 60 distractor words
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in total. In addition, each picture was paired with two semantically unrelated

distractors from the same list of 60 words, again a LF and a HF word. Hence, each

picture appeared in four different distractor conditions: LF related, HF related, LF

unrelated, HF unrelated. The picture deur (door) was, for instance, paired with the

distractor words raam (window; HF related), erker (oriel; LF related), huid (skin; HF

unrelated), and penseel (paintbrush; LF unrelated) (see Appendix A for all materials).

Table 4.1 shows the frequency and prevalence values for LF and HF distractor words.

The LF distractor words had significantly fewer counts per million in the SUBTLEX-NL

corpus than the HF distractors (t(29) = 3.78, p < .001).

Word length of LF (M = 6.47, SD = 1.48) as compared to HF distractors (M =

5.2, SD = 1.97) was controlled for. LF words were on average 1.3 letters longer than

the respective HF distractors of the same target picture (SD = 2.1). Word length and

SUBTLEX frequency (r = .45, p < .001) were significantly correlated.

Table 4.1: Frequency and prevalence information for the low-frequency (LF) as compared
to the high-frequency (HF) distractor words.

Distractor

condition

Measurement N Min Max M SD

LF words SUBTLEX-NL* 30 0 9.67 1.03 1.97

Prevalence 30 0 3.33 1.98 0.67

HF words SUBTLEX-NL* 30 2.17 458 59.36 84.4

Prevalence 30 2.46 2.97 2.97 0.27

* Frequency per million in the SUBTLEX-NL corpus.

Four pseudo-randomised stimuli lists including all 120 items each were created.

Hence, each picture appeared in four experimental conditions in all four lists. The order

of stimuli within each of the lists was fixed and pseudorandomised according to the

following criteria. Two presentations of the same picture were separated by at least five

trials with other pictures and not more than three consecutive trials belonged to the

same experimental condition. Target pictures or distractor words from the same

semantic category were always separated by items from another category. Finally,

consecutive items, both picture names and distractor words, never had the same first

phoneme.

To sum up, a total of 120 pictures were named by each participant. These included

four instances of each picture, one from each experimental condition (LF related, HF

related, LF unrelated, HF unrelated). Each distractor word occurred twice, once as a

semantically related and once as an unrelated distractor word.
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Procedure

All participants were tested individually in experiment rooms at the Max Planck Institute

for Psycholinguistics. All tasks were presented on a 17-inch screen (Iiyama LM704UT)

using either the Presentation software (version 16.5, www.neurobs.com) or as an online

questionnaire using LimeSurvey (www.limesurvey.org). Headphones (HD 280 Sennheiser)

were used to present the auditory stimuli in the PPVT.

The PWI task was completed on the same day as the lexical decision task, which is

reported on in Chapter 2 of this dissertation. The PWI task was always followed by the

lexical decision task, and the entire vocabulary test battery was completed on a different

day, either before or after the experimental session. The vocabulary tests were self-paced

and participants were instructed to respond as accurately as possible and without spending

too much time thinking about single test items. Prior to the actual tests, participants

saw instructions as well as example test items on the screen. The vocabulary test battery

took in total about 35 to 45 minutes. As with the materials, a detailed description of the

procedure of the vocabulary tests is provided in Chapter 2.

Picture-word interference task

Stimuli in the PWI task were presented using the Presentation software (version 16.5,

www.neurobs.com). The experiment consisted of two parts. In the first part, participants

were familiarised with the names of the pictures that were used in the experiment. During

this familiarisation phase, all target pictures were shown one by one in the center of the

screen together with the corresponding names written below them in Arial 47-point font.

All drawings fitted into a virtual frame of approximately 12 cm by 12 cm and were shown

on a white background. The presentation of the pictures and their names was self-paced.

Pressing the enter key initiated the following picture. Participants were instructed to

memorise the names assigned to the pictures so that they would be able to correctly

name the pictures in the experiment.

After this familiarisation phase participants could take a short break. In the test

phase, each trial started with a fixation cross for 500 ms, which appeared in the center

of the screen and was replaced by a picture-distractor pair. The distractor was written

in Arial 47-point font and was placed in the center, superimposed on the picture. The

stimuli stayed on the screen for 3000 ms and were followed by the fixation cross and the

next stimulus. Participants were instructed to respond as quickly and accurately as

possible. Before the actual test phase started, the participants were shown four practice

trials. The four pictures used to familiarise participants with the stimuli presentation

were line drawings similar to the test items but not identical with any of them. Two
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practice pictures were paired with semantically related distractor words, two came with

semantically unrelated distractors. The presentation of the four stimuli lists was

counterbalanced across participants.

Analyses

Vocabulary tests

The vocabulary tests were scored and analysed in the same way as described in Chapter 2

of this dissertation. The only difference is that we did not repeat the Principal Component

Analysis (PCA) and the reliability analysis for this is a subset of the data presented in

Chapter 2.

Picture-word interference task

Responses were excluded from the analyses in cases of (a) incorrect naming, (b) verbal

disfluencies (such as repairs, stuttering, or coughing), or (c) recording failures.

Moreover, responses exceeding each participant’s mean RT by three standard deviations

were excluded from the analyses.

The picture naming RTs were log-transformed and analysed in R (R Core Team,

2016) employing a linear mixed-effects model approach using the lmer function of the

lme4 package (version 1.1.12; Bates et al., 2015). The model on log-transformed RTs as

dependent variable included an intercept as well as fixed effects for the factor semantic

relatedness (related vs. unrelated) and the continuous variable distractor frequency. In

addition, a fixed effect for the interaction between relatedness and distractor frequency was

included. Furthermore, by-participant and by-item adjustments to the intercept (random

intercepts) and to the relatedness and frequency slopes (random slopes) were modelled.

All possible correlations between the random effects were included. Hence, we followed

Barr, Levy, Scheepers, and Tily (2013) using a maximal random effects structure. P-values

were determined using the normal approximation, i.e. using the t-value as z-value.

Ex-Gaussian analyses to estimate the parameters µ and τ of the RT distribution

were run on raw RTs, i.e. untrimmed and not log-transformed RTs, from the PWI task.

This was done using the program QMPE (Heathcote, Brown, & Cousineau, 2004). Ex-

Gaussian parameters µ and τ were computed for all four conditions and then analysed

in linear models using the lm function of the stats package (version 3.3.1; R Core Team,

2016) in R (R Core Team, 2016) with distractor frequency (LF vs. HF) and semantic

relatedness (related vs. unrelated) as categorical predictors.

The main interest was the relationship between individual differences in vocabulary

knowledge and PWI task performance. For this purpose, the above-described
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mixed-effects model on log-transformed RTs was run with vocabulary (see below for the

definition) as additional predictor. Thus, the model included an intercept and fixed

effects for semantic relatedness (related vs. unrelated) and the continuous predictors

word frequency and vocabulary score. Fixed effects for the interactions between these

effects were modelled. Finally, by-participant and by-item adjustments to the fixed

intercept (random intercept) and random adjustments to the relatedness, frequency, and

vocabulary score slopes (random slopes) were modelled.

We used a composite measure of vocabulary, which reflects each participant’s

performance on all seven vocabulary measures. We calculated regression-based factor

scores for each participant using the PCA method in SPSS (DiStefano et al., 2009). As

PCA analyses in a previous investigation have shown that the seven vocabulary tests

can be reduced to only one component (see Chapter 2; Mainz, Shao, Brysbaert, &

Meyer, 2017), we decided to calculate the factor scores assuming only one underlying

factor. Thus we obtained each participant’s score on that one factor based on their

seven vocabulary scores, and in this vein the various measurements of vocabulary were

collapsed into one number with a mean of zero and a standard deviation (SD) of 1.

Finally, the ex-Gaussian parameters µ and τ were correlated with each participant’s

composite measure of vocabulary and analysed using linear regression analyses with the

composite measure of vocabulary as predictor.

Results

Vocabulary test

Table 4.2 shows the vocabulary test scores in all tests averaged across all participants, and

Table 4.3 displays the bivariate correlations between all tests. The data are very similar

to those presented in Chapter 2 because the 67 participants whose data are presented

here are a subset of the 75 individuals who participated in the lexical decision experiment

in Chapter 2. The tests correlated moderately to strongly with one another indicating

that they assessed a shared underlying ability. Additionally, again the multiple-choice

antonym test appears to be easier than the other measures and correlated least strongly

with the other tests (see Chapters 2 and 3).
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Table 4.2: Descriptive statistics of test scores in all seven vocabulary tests.The maximum
possible scores for each test are provided in brackets in the column displaying
participants’ maximum scores.

Test N Minimum Maximum Mean SD

Andringa 67 25.0 54.0 (59.0) 39.93 6.10

PPVT 67 56.0 125.0 (*) 103.34 11.80

Definition test 67 12.0 20.0 (20.0) 16.49 2.0

Antonym MC 67 14.0 25.0 (25.0) 23.06 1.60

Antonym open 67 14.0 24.0 (25.0) 19.37 2.35

Synonym MC 67 11.0 24.0 (25.0) 17.67 2.81

Synonym open 67 5.5 22.0 (25.0) 10.70 2.87

* Maximum possible score varied between 136 and 139.

Picture-word interference task

Following the above-mentioned criteria, 2.5% of the data were categorised as errors or

misses and were excluded from further analyses. One stimulus, namely the picture kwast

(paintbrush), was excluded as noticeably many naming errors were committed on this

target picture (error rate = 17.8%). Finally, 2.2% of the remaining data were excluded as

outliers. Table 4.4 presents the RTs for all four conditions averaged across 67 participants.1

1A bivariate correlation analysis of the PWI and lexical decision RTs (see Chapter 2) showed that
participants’ RTs in both tasks were positively correlated (r = .66, p < .001).
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Table 4.4: Average reaction times (ms) and error rates and their standard deviations
(SD) for pictures with related and unrelated distractor words in both frequency
conditions.

Conditions Reaction times (ms) Error rate (%)

Mean SD Mean SD

Related low 804 167 3.5 4.1

high 774 171 2.5 3.1

total 789 170 3.2 3.5

Unrelated low 791 166 2.8 3.1

high 757 157 2.2 2.8

total 774 152 2.4 2.6

Semantic low 14 34

interference high 17 38

effect total 15 29

Frequency related 32 44

effect unrelated 35 34

total 33 33

RTs in the PWI task were predicted by both semantic relatedness (t = 2.06, p =

.04) and distractor frequency (t = -6.39, p < .001). The interaction between semantic

relatedness and frequency was not significant (t = -0.28, p = .78). Thus, semantically

related distractors induced interference effects leading to longer RTs as compared to

unrelated distractors. RTs for targets with LF distractor words were slower than for

targets with HF distractors (see Table 4.4).

Analyses of the ex-Gaussian parameters µ and τ using linear models showed

significant effects of distractor frequency on µ (t = -2.84, p = .005), only, and of

semantic relatedness on τ (t = 2.37, p = .02), only (see Table 4.5 for the raw values).
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Table 4.5: Mean values of the ex-Gaussian parameters µ and τ per condition in the picture-
word interference task.

Conditions Reaction times (ms)

µ τ

Related low 674 151

high 649 138

total 661 145

Unrelated low 673 132

high 650 115

total 662 123

Individual differences

Participants’ RTs in the PWI task correlated negatively with their vocabulary scores (r

= -.40, p = .001; see Figure 4.1). Higher vocabulary scores were related to faster RTs in

the PWI task.
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Figure 4.1: Correlation between participants’ vocabulary test scores (factor scores) and
their mean picture naming reaction times (in ms) for both conditions.
Confidence intervals are displayed in shaded grey.

The mixed-effects analyses on the PWI task showed that distractor frequency (t =

-6.4, p > .001), semantic relatedness (t = 2.1, p = .004), and vocabulary (factor) score

(t = -3.3, p = .001) predicted individuals’ RTs. Responses in the semantically related

condition were slower than in the unrelated condition, and RTs were slower for stimuli

in the low-frequency distractor condition than in the high-frequency distractor condition.

In addition, poorer vocabulary scores were associated with slower RTs in the PWI task.

These results confirm the findings of the correlational analyses.

The interaction between frequency and vocabulary score was significant (t = -2.2, p

= .03), indicating that the distractor frequency effect was stronger for individuals with

higher vocabulary scores.

Additionally, a significant three-way interaction between semantic relatedness,

frequency, and vocabulary score was found (t = -2.0, p = .05). This interaction is

plotted in Appendix B. As can be seen, higher distractor frequency was generally

associated with faster responses. For unrelated distractors, the strength of the distractor

frequency effect was independent of vocabulary size. For related distractors, the
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Figure 4.2: The relation between µ and τ of the reaction times in the picture-word
interference task and individuals’ vocabulary scores.

distractor frequency was weaker for participants with low vocabulary scores than for the

high-vocabulary individuals.

Regression analyses on the ex-Gaussian parameters µ and τ showed that the

composite measure of vocabulary predicted both µ (t = -3.41, p = .001) and τ (t =

-2.15, p = .04). The correlations between vocabulary and µ (r = -.35, p = .004) as well

as τ (r = -.29, p = .02) are illustrated in Figure 4.2.

Discussion

In this study, we used a battery of seven vocabulary tests and a PWI task to examine

the relationship between individual differences in vocabulary size and word production.

Although the group of participants was rather homogeneous, being comprised of university

students only, we observed some variation in vocabulary test performance. The fact that

all vocabulary tests correlated similarly strongly with one another indicates that they

measure largely the same capacity, as was expected based on previous studies using the

same vocabulary tests (Mainz et al., 2017, see also Chapters 2 & 3 in this dissertation). In

line with these earlier observations, only one test appeared to be considerably easier than

the others and thus correlated less strongly with the other measures of word knowledge,

namely the multiple-choice antonym test.

In the PWI task, we replicated the classic semantic interference effect, with RTs

in the semantically related condition being significantly longer than in the semantically

unrelated condition. In addition, high-frequency distractor words induced less interference

than low-frequency distractors, as was expected based on previous studies (e.g. Dhooge &

Hartsuiker, 2010, 2011; Hutson et al., 2013). The results of the distributional analyses of

the RTs in the PWI task are also congruent with previously reported findings (Scaltritti
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et al., 2015). The interference effect was mainly mediated by the slower tail of the RT

distribution, i.e. the ex-Gaussian parameter τ , whereas the distractor frequency effect

assumed the shape of a distributional shift, being reflected in the normal part of the

RT distribution, i.e. µ. As stated before (e.g. Scaltritti et al., 2015), this indicates

that different cognitive dynamics underlie the frequency as compared to the semantic

interference effect. The latter effect is hypothesised to be at least partly due to fluctuating

attentional efficiency. When the attentional system is highly efficient (fast responses),

semantic interference is considerably reduced while it shows its full magnitude in slow

responses when attention is considered to be less efficient (Roelofs, 2012; Scaltritti et al.,

2015). In line with this, it has also been reported that selective inhibition ability affects

the strength of the semantic interference effect (Shao, Roelofs, Martin, & Meyer, 2015).

Distractor frequency, by contrast, is assumed to affect the point in time when the

distractor can be discarded and all subsequent operations leading to the articulation of

the target word can be performed. The distractor frequency effect is, thus, reflected in

an overall shift of the RT distribution (Scaltritti et al., 2015).

The main interest of the present study was the relationship between individual

differences in vocabulary size and language processing speed. We showed that increased

word knowledge was associated with faster RTs in the PWI task. Importantly,

vocabulary was assessed in non-speeded tasks testing only for knowledge, whereas the

experimental task was speeded. Hence, the observed relationships are not due to the

tasks all testing for processing speed. These findings are in line with previous research

indicating an advantage of high vocabulary individuals in language processing as

assessed by various tasks (e.g. Andringa et al., 2012; Engelhardt, Nigg, & Ferreira, 2013;

Janse & Adank, 2012; Salthouse, 1993). Having more words in one’s mental lexicon does

not seem to slow down or hinder language processing due to an increase in competition

between a larger number of lexical items, as one might expect. Instead individuals with

increased word knowledge are faster in accessing their vocabulary, not only in word

recognition but also in production tasks, such as the PWI task in this study.

In the PWI task, a significant three-way interaction involving vocabulary size was

obtained. For unrelated distractors the size of the distractor frequency effect did not

depend on vocabulary size; but for related distractors, the distractor frequency effect

was weaker for individuals with poorer word knowledge than for those with higher

vocabulary scores. How this unexpected pattern arose is unclear and might warrant

further investigation. At present we can only note that the picture naming data indicate

that the strength of word frequency effects is not substantially moderated by vocabulary

size. Hence, we only found weak evidence for a moderating effect of vocabulary size on

the strength of the distractor frequency effect in the PWI task.
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Previous studies using lexical decision tasks report this interaction, with high

vocabulary individuals exhibiting smaller frequency effects than low vocabulary

individuals (Chateau & Jared, 2000; Kuperman & Van Dyke, 2013; Yap et al., 2009).

This has been taken as evidence for representational differences between vocabularies of

varying sizes. Lexical representations in individuals with better word knowledge have,

for example, been hypothesised to be more entrenched or robust, i.e. different in quality,

from lexical representations in less skilled individuals (e.g. Diependaele et al., 2013; Yap

et al., 2009).

The lack of a consistent interaction between word frequency and vocabulary is in line

with findings from a lexical decision task completed by the same individuals (see Chapter

2). There, we also did not observe the frequency x skill interaction. We speculated

that the group of participants might have been too homogeneous with regards to their

knowledge of the words used in the experiment and potentially also with regard to their

vocabulary test performance. This view was supported by the findings that the frequency

x skill interaction could be elicited when administering the same lexical decision task and

vocabulary tests to a group of participants from more diverse educational backgrounds

(see Chapter 3).

Hence, further research, involving groups of participants with a wider range of

linguistic abilities, is needed to determine how speakers with large or smaller

vocabularies process distractors differing in frequency. In addition, future research into

the structural characteristics of vocabularies of varying sizes might draw upon other

techniques, in particular computational modelling.

In addition to analysing mean RTs, we conducted ex-Gaussian analyses and examined

the relationship between the parameters µ and τ and individual differences on vocabulary

knowledge. Participants’ vocabulary scores correlated negatively with the parameters µ

and τ of the RT distribution. Hence, the vocabulary effect on PWI task performance

assumed the shape of a distributional shift with increased vocabulary resulting in overall

shorter naming RTs, and was also reflected in the slower tail of the RT distribution. This

indicates that individuals with poorer word knowledge gave more slow responses than

those with higher vocabulary scores. Consequently, the vocabulary effect appears to be

present both when attentional efficiency is assumed to be high, i.e. in the normal part of

the RT distribution, and when individuals’ attentional efficiency is argued to be reduced,

i.e. in the slower tail of the RT distribution.

Previous studies on the role of selective inhibition ability in PWI task performance

argued that this aspect of executive control is mainly reflected in the slower responses (e.g.

Shao et al., 2015). Selective inhibition ability was correlated with the magnitude of the

mean semantic interference effect. Thus, the RT distributions of individuals with better
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selective inhibition had smaller tails (Shao et al., 2015). In addition, Jongman et al. (2014)

found that sustained attention ability correlated with the τ parameter of participants’ RTs

in picture description and picture naming tasks. Poorer sustained attention ability was

associated with an increased number of slow responses in the language production tasks.

By contrast, the vocabulary effect is reflected in the entire RT distribution instead

of being selectively mediated by the slower tail. Consequently, the effects of vocabulary

and general cognitive abilities, such as selective inhibition and sustained attention, on

language processing are different in nature.

Altogether, these results of the individual differences analyses suggest that

enhanced speed of language processing – irrespective of the specific task to be performed

– is associated with higher vocabulary scores. It is thus conceivable that individuals

with larger vocabularies are faster processors or conversely, faster processors might be

better word learners and therefore capable of accumulating greater vocabulary

knowledge. Previous research on child language acquisition indicates that processing

speed indeed plays a central role in word learning (Fernald et al., 2006; Marchman &

Fernald, 2008; McMurray et al., 2012). Fernald and colleagues (2006), for instance,

report that speed and accuracy in word recognition at 25 months predicted the learning

rate for vocabulary across the 2nd year of age. Furthermore, Marchman and Fernald

(2008) found that speed of word recognition and word knowledge in infancy predicted

children’s cognitive and linguistic performance at 8 years.

Conclusions

In this study we examined the relationship between vocabulary size and speed of lexical

processing in production, measured using a PWI task. To sum up, we found strong

evidence for an effect of vocabulary on lexical processing in production. An increase in

vocabulary size was associated with overall faster RTs. This is in line with previous

findings indicating that having a larger lexicon does not slow down lexical access but

leads to faster word recognition (see Chapters 2 & 3) and production. Further

investigations into the complex relationship between domain-general cognitive abilities

(e.g. processing speed) and domain-specific ones (e.g. word knowledge), and their joint

effects on both language learning and processing are necessary, ideally combining

behavioural and computational techniques.
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Appendix A: Materials used in the PWI task.

Table 4.6

Pictures Related Unrelated

HF LF HF LF

1) deur raam erker huid penseel

(door) (door) (oriel) (skin) (paintbrush)

2) jongen baby zuigeling plant zenuwarts

(boy) (baby) (baby) (plant) (neurologist)

3) boot schip punter verf hoen

(boat) (ship) (ship) (paint) (hen)

4) boom plant heester auto schrift

(tree) (plant) (bush) (car) (notebook)

5) dokter tandarts zenuwarts mes skeelers

(doctor) (dentist) (neurologist) (knife) (skates)

6) bot huid ligament ketting gilet

(bone) (skin) (ligament) (necklace) (waistcoat)

7) envelop brief telegram broek heester

(envelope) (letter) (telegram) (trousers) (bush)

8) fiets auto skeelers baby coltrui

(bike) (car) (skates) (baby) (turtleneck)

9) gitaar piano hobo beker bokaal

(guitar) (piano) (oboe) (mug) (cup)
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Pictures Related Unrelated

HF LF HF LF

10) regen sneeuw windhoos bus pont

(rain) (snow) (vortex ) (bus) (ferry)

11) hek poort raster tandarts knokkel

(hedge) (gate) (fence) (dentist) (knuckle)

12) hond paard fret appel kompres

(dog) (horse) (ferret) (apple) (compress)

13) jurk broek gilet raam zuigeling

(dress) (trousers) (waistcoat) (window) (baby)

14) koe haas hoen schip buidel

(cow) (rabbit) (hen) (ship) (bag)

15) jas schoen coltrui haas raster

(jacket) (show) (turtleneck) (rabbit) (fence)

16) kwast verf penseel poort punter

(paintbrush) (paint) (paintbrush) (gate) (ship)

17) maan aarde pluto tas karaf

(moon) (earth) (pluto) (bag) (carafe)

18) druiven appel vlierbes verband raadhuis

(grapes) (apple) (elderberry) (bandage) (townhall)

19) neus oog knokkel paard windhoos

(nose) (eye) (knuckle) (horse) (vortex )

20) boek tijdschrift schrift knie commode

(book) (magazine) (notebook) (knee) (chest of drawers)
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Pictures Related Unrelated

HF LF HF LF

21) ring ketting collier piano vlierbes

(ring) (necklace) (necklace) (piano) (elderberry)

22) rugzak tas buidel oog fret

(backpack) (bag) (bag) (eye) (ferret)

23) medaille prijs bokaal bibliotheek telegram

(medal) (prize) (cup) (library) (telegram)

24) trein bus pont aarde collier

(train) (bus) (ferry) (earth) (necklace)

25) voet knie scheen tafel pluto

(foot) (knee) (shin) (table) (pluto)

26) kerk bibliotheek raadhuis tijdschrift ligament

(church) (library) (townhall) (magazine) (ligament)

27) bijl mes houweel sneeuw hobo

(axe) (knife) (axe) (snow) (oboe)

28) bank tafel commode prijs scheen

(sofa) (table) (chest of drawers) (prize) (shin)

29) pleister verband kompres brief erker

(plaster) (bandage) (compress) (letter) (oriel)

30) fles karaf beker schoen houweel

(bottle) (carafe) (mug) (show) (axe)
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Appendix B
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Figure 4.3: Interaction between the effects of distractor frequency and vocabulary (low
vs. medium vs. high) on PWI reaction times (ms) in the unrelated vs. related
condition. Confidence intervals are displayed in grey. Note that vocabulary
was transformed into a categorical variable for illustrative purposes while all
analyses were run on vocabulary as a continuous variable.





5 | Origins of individual differences in word

learning: An exploration of cognitive and

environmental effects in adult native speakers1

Abstract

In this study, we examined the relationship between individual differences in word
learning and various cognitive abilities, as well as environmental effects in adult native
speakers. We administered vocabulary measures, general processing speed tests, the
Raven’s Matrices (Raven, Raven, & Court, 1998), and a digit span test (Wechsler,
1997). In a word learning experiment, 111 participants learned 39 very low-frequency
Dutch words and were tested on these words both right after training and after a delay
of one week. In addition, we manipulated the number of exposures to the novel words so
that each participant saw 13 low-, 13 medium-, and 13 high-exposure words.

Participants’ test performance was better on Day 8 than on Day 1, indicating
beneficial effects of overnight consolidation. Furthermore an increased number of
exposures had positive effects on the retention of newly learned words. In addition,
participants with greater vocabularies, higher processing speed, and higher Raven’s
scores showed advantages in the word learning task. Implications of our findings for
future word learning studies are discussed.

1An adapted version of this has been submitted for publication as Mainz, N., Smith, A.C., & Meyer,
A.S. (submitted). An exploratory study of individual differences in adult novel word learning.
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Introduction

Previous research has shown that vocabulary knowledge varies considerably across native

speakers of a language (Brysbaert et al., 2016b; Kidd et al., 2018). Individual differences

in vocabulary have been associated with variation in language processing, with larger

vocabularies being associated with more accurate and faster language comprehension

(Brysbaert et al., 2016a; Yap et al., 2012, see also Chapters 2 and 3) and production

(Rodriguez-Aranda & Jakobsen, 2011, see also Chapter 4). In addition, the effect of word

frequency on lexical decision speed has been reported to be smaller for individuals with

larger vocabularies. This has been claimed to indicate that the strength, robustness,

or entrenchment of representations increases with the number of words in a vocabulary

(Brysbaert et al., 2016a; Diependaele et al., 2013, see Chapter 2 for a more detailed

description of this observation).

Thus, vocabulary size varies between individuals and this variation has an effect on

individuals’ language processing performance, which goes beyond simply knowing more

words. A question which arises is what the origin is of this variation in vocabulary

knowledge? Why do some people learn more words than others, thus ending up having a

larger vocabulary? The origin of variation in vocabulary size is likely to be manifold and

a number of factors, such as exposure and general intelligence, with presumably complex

relationships between each other, are likely to be involved (Kidd et al., 2018). With

the present study, we examined the relationship between individual differences in various

verbal and nonverbal cognitive abilities and performance on a novel word learning task in

adult native speakers.

Environmental factors and sleep

Previous studies on word learning have suggested a number of environmental as well as

cognitive factors that might cause variation in word learning and vocabulary size (Kidd

et al., 2018). Characteristics of the linguistic input that have been shown to affect word

learning include the quantity and quality of the input (Hurtado et al., 2008; Jones &

Rowland, 2017). Hurtado et al. (2008) observed that children who received more

maternal input at 18 months of age showed better speech processing abilities and

greater vocabularies at 24 months than children who had received less input early in

development. In addition, the study demonstrated that children’s real-time lexical

processing abilities and vocabulary knowledge, both influenced by maternal input, are

closely related and dependent on each other, and their relationship might be looked at

in two different ways. Children who are exposed to more input are probably more

practised at processing incoming speech, which makes their speech processing and
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therefore novel word learning more efficient and in turn leads to them acquiring a larger

vocabulary. Alternatively, being exposed to more input, hence larger numbers of words,

likely results in the child acquiring more words. This greater size and density of the

child’s lexicon might improve their language processing skills, simply due to a need for

more fine-grained processing abilities (Hurtado et al., 2008).

Jones and Rowland (2017) examined the roles of amount of exposure to linguistic

input (quantity) and diversity of linguistic input (quality) in children’s language learning

using both behavioural experiments and computational modelling. Input quantity was

shown to be more important very early in the learning process, while lexical diversity

turned out to have stronger positive effects on learning later in development. Furthermore,

a model trained on lexically diverse input outperformed a model trained on quantitatively

larger input on nonword repetition, sentence recall, and novel word learning. It is argued

that the amount of a child’s sublexical and lexical knowledge, which is dependent on

the diversity of the linguistic input the child receives, affects novel word learning and

consequently vocabulary size. Children with more sublexical and lexical knowledge are

suggested to be able to use their existing knowledge to aid the processing of new incoming

words. Consequently, they are faster and more efficient at processing novel input, which

enables them to learn more and more quickly from their input, which eventually leads to

greater vocabulary knowledge (Jones & Rowland, 2017).

Another characteristic of the learning situation that has been shown to influence word

learning performance is whether or not novel phonological forms are presented along with

meanings. Providing meaning, either in the format of a picture or a definition, had

beneficial effects on the acquisition of new word forms (Hawkins, Astle, & Rastle, 2015;

Savill, Ellis, & Jefferies, 2017; Takashima, Bakker, Van Hell, Janzen, & McQueen, 2014,

2017). This has been hypothesised to be due to the stronger involvement of both the

semantic and episodic memory systems when learning meaningful words as compared to

novel words without associated meaning (Takashima et al., 2017).

Furthermore, sleep has been reported to be an important factor affecting word

learning. Lexical competition effects between novel and known words have, for example,

often not been observed right after training on novel words but only in delayed tests,

hence after intervening periods of sleep. It has been suggested that overnight

consolidation is necessary for the integration of newly learned words or their

representations within existing lexical knowledge (Bakker, Takashima, van Hell, Janzen,

& McQueen, 2015; Brown & Gaskell, 2014; Weighall, Henderson, Barr, Cairney, &

Gaskell, 2017).2 Additionally, in an experiment by Kurdziel and Spencer (2016)

2But see Lindsay & Gaskell (2013) for a study showing that lexical integration of novel words might
be possible without sleep.
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participants learned novel words and were tested on these words right after training and

after a delay either involving a period of sleep or not. Performance on the later test was

significantly better for the individuals in the sleep group as compared to the awake

group, indicating a beneficial effect of sleep on the retention of novel words. Similar

observations have been made in other word learning studies, with generally better test

performance after a delay involving sleep than right after training, i.e. without an

intervening period of sleep (Takashima et al., 2014; Weighall et al., 2017).

Cognitive abilities

Besides these environmental effects and sleep, factors related to a learner’s cognitive

abilities have been shown to have an impact on word learning. There is a large body of

research on the relationship between phonological short-term memory (PSTM) and

vocabulary learning or size, with better PSTM being associated with greater vocabulary

knowledge (Adams & Gathercole, 2000; Baddeley, Gathercole, & Papagno, 1998;

Gathercole, 2006; Gupta & Tisdale, 2009a, 2009b). Children with relatively good PSTM

abilities were, for instance, found to produce spontaneous speech comprising longer

utterances, more diverse syntactic constructions, and a larger number of different words

(Adams & Gathercole, 1995; Adams, 1996; Adams & Gathercole, 2000; Baddeley, 2003).

Additionally, in a computational model Gupta and Tisdale (2009a) demonstrated that

PSTM predicts vocabulary size and learning. More precisely, greater PSTM was found

to be both cause and consequence of improved word learning. The fact that

phonological word forms are serially ordered and extend over time has been argued to be

the reason why some phonological storage ability is needed to process, reproduce and

eventually learn novel words, which in turn trains and leads to improvement in PSTM

(Gathercole, 2006; Gupta & Tisdale, 2009b).

Additionally, processing speed has been found to influence word learning. Fernald

et al. (2006) and Marchman and Fernald (2008) have observed beneficial effects of faster

processing speed on vocabulary learning in children. First of all, increased speed and

accuracy of spoken word recognition at 25 months of age was related to faster and more

accelerated growth in expressive vocabulary between 12 and 25 months (Fernald et al.,

2006). Secondly, vocabulary size and speed of online word recognition at 25 months

were shown to predict the same children’s linguistic and cognitive skills, i.e. vocabulary,

working memory, and intelligence, at eight years of age (Marchman & Fernald, 2008).3 In

addition, McMurray, Horst, and Samuelson (2012) demonstrated the beneficial effect of

increased processing speed on word learning in a computational model. Faster processing

3See also Cristia, Seidl, Junge, Soderstrom, and Hagoort (2014), Ellis, Gonzales, and Deak (2014),
and Weisleder and Fernald (2013).
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networks showed higher accuracy rates on a multiple-choice test on novel words, which

suggests processing speed to be one of the causes for more successful novel word learning

(McMurray et al., 2012). Different proposals have been made as to which mechanisms

or processes might underlie the word learning advantage that has been associated with

increased processing speed. It has, for instance, been proposed that children who are

faster at identifying words might have more time or resources that can be allocated to

the processing of subsequent speech, which presents further opportunities for learning

(Fernald et al., 2006). Furthermore, Marchman and Fernald (2008) suggested that as

a consequence of being faster at processing a word form, these children might “have

more resources available to process secondary aspects of the referential context that could

support more richly instantiated lexical representations” (Marchman & Fernald, 2008, p.

14). Similarly, it may be that a word learner who is faster at processing the incoming

auditory stimulus (word form) and its referent has more resources available to form not

only a more detailed but also a more robust lexical representation on the first exposure

to that stimulus, which can be strengthened and enriched during subsequent exposures

to that word.

Finally, vocabulary size has been shown to predict word learning. In addition to

observing a relationship between processing speed and word learning, Marchman and

Fernald (2008) found that vocabulary at 25 months predicted children’s vocabulary at 8

years. Hence, children with a larger vocabulary at first testing also learned more words

in the following years (see also Feldman et al., 2005; Henderson & James, 2018). The

question is why some children have a larger vocabulary than others in the first place.

Measures of vocabulary perhaps capture a number of factors or skills involved in the

acquisition of word knowledge. First of all, vocabulary size is likely an indicator of

exposure to linguistic input. Maybe the high-vocabulary children had more exposure

very early in development, and the vocabulary advantage they had thus gained was

beneficial for further word learning. This increased exposure might be beneficial for

further word learning because more exposure to language means more practice with

linguistic input, and has been suggested to lead to an increase in sublexical and lexical

knowledge and to benefit language processing speed, which in turn aid word learning

(Fernald et al., 2006; Hurtado et al., 2008; Jones & Rowland, 2017; Weisleder & Fernald,

2013). Additionally, children who had more exposure to language in their first 25

months might also get more exposure in the following 6 years of life as they are

presumably surrounded by the same speakers as in infancy. Hence, different effects

related to the amount of exposure might underlie the vocabulary effect on word learning

and thus might be capture by measuring vocabulary size. Another factor that might be

captured in a measure of vocabulary is PSTM. As described above, a large number of
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studies have shown better PSTM to be associated with greater vocabulary knowledge.

Hence, it could be that the underlying factor for some children having a larger

vocabulary at 25 months and for their more successful vocabulary learning over the first

8 years of life is better PSTM.

Summary

Previous research has indicated that input quantity and quality, overnight consolidation,

and the presence or absence of meaning affect novel word learning. Greater amounts of

maternal speech input have been associated with greater vocabulary learning and faster

language processing in children (Hurtado et al., 2008), and a computational model of word

learning has built on and expanded these findings by demonstrating that input quantity is

important for word learning very early in development, whereas the diversity of the input

is more central to novel word learning at later stages in development (Jones & Rowland,

2017). What is unclear is whether and how individual differences in cognitive abilities are

related to the effects of input quantity, especially in adult learners (Kidd et al., 2018).

Does, for example, a learner who is a faster processor or has a larger vocabulary maybe

need less input for learning? In addition, a considerable body of research has shown that

overnight consolidation is beneficial for the retention of newly learned words (Kurdziel &

Spencer, 2016; Takashima et al., 2014; Weighall et al., 2017). Hence, individual variation

in consolidation might affect word learning performance, but again it is not known whether

consolidation is related to or interacts with individual differences in verbal or non-verbal

cognitive abilities. Individuals with larger vocabularies might, for instance, be better

at consolidating lexical representations overnight, which would in turn aid novel word

learning.

Aside from these factors, learners’ cognitive abilities have been indicated to

influence novel word learning. Better PSTM abilities and increased processing speed

have been related to improved novel word learning and greater vocabulary size

(Gathercole, 2006; Gupta & Tisdale, 2009b; Fernald et al., 2006; Marchman & Fernald,

2008). Both factors have mostly been studied in relation to word learning and

vocabulary knowledge in childhood. In particular, PSTM has been argued to be

especially important in early stages of word learning but supports novel word learning

across the life span (Gathercole, 2006). It is unclear, though, how PSTM – just as

general processing speed – is related to environmental factors and other cognitive factors

in the context of word learning in adulthood (Kidd et al., 2018).

Finally, vocabulary size has been shown to predict word learning, with larger

vocabularies being beneficial for learning (Henderson & James, 2018; Marchman &

Fernald, 2008). Again, this has mostly been studied in children but might continue to
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affect word learning in adulthood. In addition to this, variation in vocabulary has been

associated with variation in PSTM and processing speed, as indicated earlier, and is

potentially also related to differences in nonverbal intelligence. Hence, it is not known

how much variance in word learning is left for vocabulary to explain if factors that are

arguably associated with variation in word knowledge, such as PSTM and processing

speed, are taken into account.

Current study

The present study set out to address these various open questions on word learning.

First of all, we studied word learning in adult native speakers. Most of what is known

about individual differences in word learning is based on developmental studies, and little

research has looked at variation in word learning in adults (Kidd et al., 2018). It is known,

though, that word learning continues across the life span and extensive word learning takes

place in adulthood (Hartshorne & Germine, 2015). Additionally, the acquisition of novel

lexical items in adulthood presumably continues to be affected by the amount and type

of input an adult receives, by the learning conditions, such as the possibility for overnight

consolidation, and by individual variation in cognitive abilities. However, as stated by

Kidd et al. (2018), little research has looked at role of individual differences in language

learning across the life span.

Secondly, we examined the relationship between novel word learning performance,

individual differences in various cognitive abilities, and environmental properties of the

word learning process. As indicated in a recent review by Kidd and colleagues (2018),

the question of how internal sources of variation interact with the environment is an

important but open issue. We investigated the effects of variation in vocabulary, PSTM,

general processing speed, and nonverbal intelligence on word learning, and looked at

whether these factors interact with effects of input quantity and overnight consolidation.

We assessed nonverbal intelligence in addition to the other cognitive abilities because it

may be argued that nonverbal intelligence is the underlying factor driving variation in

vocabulary and word learning as well as in processing speed and possibly also PSTM.

Due to the fact that not much is known about individual differences in word learning

in adult native speakers and the relationships with the various cognitive abilities, this

study was exploratory in nature. We aimed at providing first insights into potentially

very complex relationships between adults’ cognitive abilities and their word learning

performance.
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As stimuli in the word learning task, we used existing but very low-frequency and

low-prevalence4 Dutch words which could be depicted in photographs. Hence,

participants learned the phonological forms of new words in their native language, which

were associated with meaning in the format of one coloured photograph each. By using

existing Dutch words we ensured that the task actually reflected first language learning

in adulthood and not second language learning (Kurdziel & Spencer, 2016). We decided

to use form-meaning pairings instead of novel phonological word forms only because it

has been shown that meaning matters, with the presence of meaning being beneficial for

word learning (Savill et al., 2017; Takashima et al., 2017). In addition, using not only

word forms but also the associated meanings as stimuli was assumed to be more

ecologically valid in the context of word learning in adult native speakers. Adults are

presumably most of the time presented with not only novel word forms but with an

associated meaning.

Participants were trained on these words in two tasks, similar to Takashima et al.

(2017). First, they heard each word while seeing the corresponding picture on the screen

and were asked to repeat the word aloud. Secondly, participants completed a

four-alternative forced-choice (4AFC) picture-matching task where they were presented

with the auditory form of a word and were asked to select one of four pictures on the

screen that corresponded to the word. Feedback was provided after each trial to enable

learning the correct form-picture pairings. In the second training task, the number of

exposures of the novel words was varied. Words in the low-exposure condition were

presented only twice, while words in the medium-exposure condition were presented

eight times and those in the high-exposure condition 15 times. This manipulation was

assumed to reflect effects of frequency or quantity of exposure in natural language use

and learning (Brysbaert, Mandera, & Keuleers, 2018). Thus, the number of exposures

was expected to affect word learning, with high numbers of exposure leading to more

successful learning as indicated by higher accuracy rates at test than medium or low

numbers of exposure during training. This manipulation enabled us to examine the

relationship between individual differences, for example in vocabulary size or processing

speed, and the effect of quantity of exposure. If individuals with larger vocabularies or

those who are faster processors are indeed more efficient and faster at processing novel

words allowing them to more quickly, i.e. after fewer exposures, form representations of

the association between form and meaning (Hurtado et al., 2008; Marchman & Fernald,

2008), we might see an interaction between vocabulary score or processing speed and

exposure condition in our experiment.

4Prevalence is a measure of how many speakers of Dutch in the Netherlands know a given word
(Keuleers et al., 2015).
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Participants’ word learning performance was assessed using two different tasks, an

associative and an explicit memory task. The first was a 4AFC picture-matching task,

which was largely the same as the multiple-choice training task, the only difference

being that no feedback was provided. The second task was a picture naming task, where

participants were presented with the novel pictures one-by-one and were asked to

produce the corresponding word. Both tests were administered right after training on

the novel words and one week later. This allowed us to examine potential interactions

between variation in cognitive abilities and the consolidation of novel words, as

indicated before. Individual differences in the cognitive abilities of interest were

measured in a battery of seven tasks. Three different tasks were administered to assess

participants’ general processing speed, namely a visual and an auditory simple reaction

time (RT) task as well as a letter comparison task. In the simpler psychomotor speed

tasks, participants had to press a button as quickly as possible upon presentation of a

visual or auditory stimulus. Thus, no decision processes were involved. By contrast, in

the letter comparison task, participants were asked to make a decision about whether

two visually presented letter strings were the same or different and press a button to

indicate their decision as quickly as possible upon presentation of the stimulus

(Salthouse, 1996). Hence, the tasks differed in modality, i.e. visual vs. auditory, and in

task complexity, i.e. psychomotor vs. perceptual speed (Albinet, Boucard, Bouquet, &

Audiffren, 2012; Cepeda, Blackwell, & Munakata, 2013; Salthouse, 2000). It has been

shown that more complex processing speed tasks are strongly related to executive

control functions, thus, measuring not only processing speed but also executive

functions. Simpler perceptual speed tasks, by contrast, have been found to be correlated

with executive functions in children and older adults but not in young adults, indicating

that these measures are purer measures of general processing speed in young adults than

the perceptual speed tasks (Cepeda et al., 2013). We administered these different types

of tasks and calculated composite scores representing participants’ performance on all

three tasks in order to yield a comprehensive measure of processing speed representing

different aspects of speed of processing.

Vocabulary was assessed in two different tasks that have been used in previous studies,

namely Andringa et al.’s (2012) receptive multiple-choice test and an open antonym test

(Mainz et al., 2017). The measures of word knowledge, thus, included an open and

a multiple-choice test both addressing participants’ deeper knowledge of the semantic

relationships of words by asking to select or generate words that are synonymous or

antonymous to the targets (Henriksen, 1999). Previous studies have demonstrated that

using a large battery of vocabulary tests might not be necessary, especially given time

constraints in a study with several individual differences measures (Mainz et al., 2017).



126 5 Word learning

Therefore, we decided to use two rather short tests which differed in test type and format

(Bowles & Salthouse, 2008), and calculated a composite score of vocabulary based on

both tests to be used in all analyses.

Non-verbal intelligence was assessed in a 20-minute version of the Raven’s Advanced

Progressive Matrices (Huettig & Janse, 2016; Raven et al., 1998). Finally, we used the

forward digit span task taken from the Dutch version of the Wechsler Adult Intelligence

Scale III (WAIS-III-NL Wechsler, 1997), which is a task typically employed to assess

individuals’ PSTM (Gathercole, 2006; Gupta & Tisdale, 2009a).

To sum up, the aim of the present study was the investigation of the relationship

between individual differences in various cognitive abilities and word learning. The

study’s design involving a manipulation of the quantity of exposure per word and tests

right after training and after a period allowing for overnight consolidation enabled us to

explore potential relationships between sleep, environmental and cognitive factors

affecting word learning in adults. The following hypotheses guided our study. (1) We

expected the number of exposures to affect performance in the test phase. Specifically,

we predicted that high-exposure words would elicit higher accuracy rates and faster RTs

in the 4AFC test and higher accuracy rates and less severe naming errors in the naming

task. (2) Participants were expected to perform better on Day 8 than on Day 1. (3)

Faster general processing speed, higher vocabulary and intelligence scores, and better

PSTM were hypothesised to be beneficial for word learning. (4) It was predicted that

effects of number of exposures may interact with individual differences in these cognitive

abilities. Hence, individuals with, for instance, higher nonverbal intelligence scores,

better general processing speed abilities, or higher vocabulary scores might potentially

show smaller effects of number of exposures on word learning performance. (5) Finally,

we expected that we may observe interactions between the effect of Day of testing and

any of the individual differences measures. This was based on the idea that variation in

the cognitive abilities assessed in this study might affect the process of lexical

consolidation and integration while not being predictive of the storage and retrieval of

episodic representations of newly learned words. These expectations are speculative and

we did not have strong predictions as to which cognitive abilities might affect short-term

rather than long-term storage or the other way around.
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Method

Participants

In total, 124 individuals gave informed written consent to participate in this study.

Thirteen participants had to be excluded due to technical failure or failure to complete

all experimental tasks. Hence, data of 111 individuals (89 females, 22 males) aged

between 18 and 35 years (M = 22.81, SD = 2.81) was left for analyses. Most

participants were students at Radboud University, Nijmegen (N = 83) or studied at

other universities in the Netherlands (N = 3). A smaller group of participants were

students at vocational universities, either at the Hogeschool van Arnhem en Nijmegen

(N = 22) or other vocational universities (N = 3).

All participants were recruited using the participant database of the Max Planck

Institute for Psycholinguistics and were paid 20 Euros for their participation. Ethical

approval was granted by the Faculty of Social Sciences of the Radboud University

Nijmegen.

Materials and design

Word learning experiment

Thirty-nine disyllabic and trisyllabic Dutch words, which were low in prevalence (min =

-2.13; max = -1.32; M = -1.62; SD = 0.20) served as stimuli in the word learning

experiment (see Appendix A for a list of all words). Following Keuleers and colleagues’

(2015) prevalence norms, the words were known by less than 10% of the native speakers

of Dutch in the Netherlands. In addition, none of the words appeared in the SUBTLEX

corpus (Keuleers et al., 2010) and five native speakers of Dutch, with academic

backgrounds in psycholinguistics and cognitive neuroscience indicated that they did not

know any of the words. Furthermore, after the word learning experiment participants

were asked to indicate whether they had come across any of the novel words before

participating (see below).

The word form materials consisted of recordings of all 39 words, spoken by a female

native speaker of Dutch. Each of the words was paired with one colour photograph

depicting the referent. Each photograph appearing on the screen was at least 10 cm

by 10 cm large but the exact size varied between pictures as some were vertical and

some horizontal photographs. In some cases, red arrows and/or shading were added

using Photoshop in order to clearly indicate the referent of the respective word. All
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photographs were downloaded from freely available images on the Internet (see Appendix

A for examples).

Three sets of stimuli were created, each including all 39 words with equal numbers

of words being assigned to the low-, medium-, and high-exposure conditions. Every word

appeared in a different exposure condition in each of the sets. The word wimberg, for

instance, was a low-exposure word in set 1, a medium-exposure word in set 2, and a high-

exposure word in set 3. Thus, in the training phase, each participant was trained on 13

low-exposure words (3 exposures), 13 medium- exposure words (9 exposures), and 13 high-

exposure words (16 exposures). Every participant completed two tasks in the training

phase (task 1: Exposure, task 2: Four alternative forced-choice task). The manipulation

of frequency of exposure was implemented in Training 2 (see below). The test phase

also consisted of two tasks (task 1: Four alternative forced-choice task, task 2: Picture

naming) used to assess associative as well as explicit memory of the novel words.

In the lists for the four alternative forced-choice tasks (4AFC) in Training 2 and

Test 1, each target word was paired with three foil words. The foils also came from the

respective set of trained novel words and the three foils in each display always consisted of

one word from each exposure condition. Hence, every target picture was displayed along

with one low-, one medium-, and one high-exposure foil. Each instance of a novel word

was combined with a different combination of foils. In addition, the positions in which

the target and foil images appeared on the display were counterbalanced within each list.

Hence, the targets and the fillers appeared equally often in each of the four positions in

the display.

The lists for all training and test phases were pseudorandomised. Two instances of

the same target word were separated by at least five trials, and in the 4AFC tasks two

consecutive trials differed in at least two images on the display. The order within the lists

was fixed so that every participant assigned to the same set of novel words saw the same

stimulus lists. Finally, assignment to one of the three stimulus sets was counterbalanced

across participants.

Procedure

Participants carried out all tasks in a sound attenuated experiment room at the Max

Planck Institute for Psycholinguistics. They were seated in front of a 17-inch screen

(Iiyama LM704UT) and all tests were administered employing the software Presentation

(version 16.5, www.neurobs.com). Auditory stimuli were presented using HD 280

Sennheiser headphones.

On Day 1, participants completed both training tasks of the word learning

experiment. They were first exposed to the spoken form and corresponding pictures of
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all novel words (Training 1), followed by a 4AFC picture matching task including all

novel words (Training 2; see Figure 5.1). Participants were instructed to memorise the

novel word-picture pairs and they were informed that they would be tested on them

later. Immediately after training, they performed the recognition test (Test 1), which

was again a 4AFC picture matching task, and a picture naming test of explicit memory

(Test 2). In addition, they filled in a questionnaire where they were asked to indicate

their occupation, highest level of education, and information on whether they were

fluent in a language other than their native language Dutch. One week later (Day 8), all

participants returned to the lab and again performed both Tests 1 and 2 of the word

learning experiment. In addition, participants completed a familiarity test where they

were presented with the spoken form of all novel words and were asked to indicate

whether they had known the word before participating in the experiment. If the answer

was yes, they were asked to write down whether they knew the meaning and where they

had come across that word, if they remembered. Finally, they were asked to complete

the individual differences measures described above.

・ Training 1: Exposure and novel word repetition 

・ Training 2: Picture matching (4AFC) 

・ Test 1: Associative memory test (picture matching, 4AFC) 

・ Test 2: Explicit memory (picture naming) 

・ Questionnaire 

 

・ Test 1: Associative memory test (picture matching, 4AFC) 

・ Test 2: Explicit memory (picture naming) 

・ Familiarity test 

・ General processing speed  

・ Vocabulary tests 

・ Raven’s 

・ Digit span 

 

 

Day 1 

Day 8 

Sleep 

Figure 5.1: Schematic representation of the overall procedure.

Training 1: Exposure

Each trial of the exposure phase began with a fixation cross, which stayed on the screen

for 500 ms. After that participants were simultaneously presented with the spoken form of

one of the novel words and the corresponding picture on the screen. They were instructed
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to repeat the word upon hearing it. Training 1 was self-paced and the following stimulus

was initiated by pressing the space bar. Each picture-word pair was presented once.

Training 2: Picture matching

On each trial in the picture matching task, participants first saw a fixation cross on

the screen (500 ms) before they were presented with four pictures on the screen and a

concurrent auditory stimulus. The task was to select the picture that corresponded to

the word they heard by pressing one of the buttons on a button box. The four pictures

were displayed until a response button was pressed. Each trial was followed by feedback.

Thus, upon button press the auditory stimulus was repeated and only the correct picture

was again presented in the centre of the screen until one of the buttons on the button

box was pressed. Hence, the task was fully self-paced and participants were instructed to

memorise the picture-word pairs.

As indicated before, each participant saw equal numbers of low-, medium-, and

high-exposure words, while low-repetition words were presented twice,

medium-repetition words 8 times, and high-repetition words 15 times throughout the

entire Training 2 phase. Each participant was assigned to one of the three sets of words

(see Materials section above); hence, which word appeared in which condition was

counterbalanced across participants.

Training 2 was divided into three blocks. In the first block, participants were

presented with the 13 high-frequency words only and saw each of them seven times (91

trials). Block 2 was comprised of 13 medium- and 13 high-frequency items, each of

which was presented six times (156 trials). Block 3, finally, included all 39 novel words

from all three frequency conditions and each picture-word pair was presented twice. In

this way, we were able to control for the number of times that each novel word had been

repeated before acting as foil for a low- vs. medium- vs. high-exposure target word. The

blocks were ordered so that the number of items increased with each block because that

appeared closer to a natural learning situation than decreasing the number of items

within each block. Within each of the blocks, the order of the stimuli was

pseudorandomised so that the same combination of visual stimuli was never repeated in

two consecutive trials. Participants were instructed that they could take a short break

between the blocks.

Test 1: Associative memory (picture matching)

The associative memory test was a 4AFC picture matching task, just as in Training 2.

Each trial again started with a fixation cross (500 ms) followed by the display of four

pictures on the screen and a concurrent auditory presentation of a trained novel word.
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Participants were asked to select the picture that corresponded to the novel word they

heard by again pressing one of the number buttons 1 to 4 on the keyboard. The pictures

stayed on the screen until a button was pressed. No feedback was provided in this task

and pressing one of the response buttons initiated the following trial. The test consisted

of two blocks with each block containing each novel word once. Within each of the blocks,

presentation of the stimuli was pseudorandomised so that words of the same repetition

condition did not appear in more than three consecutive trials and two consecutive trials

differed in at least two of the pictures on the display. All participants who had been

trained on the same set of words, i.e. the words in the same exposure conditions, saw

the same list, the order of which was fixed. Participants were instructed to respond as

quickly and accurately as possible.

Test 2: Explicit memory (picture naming)

This explicit memory test of novel word learning was a picture naming task. Each trial

started with a fixation cross, which stayed on the screen for 500 ms, followed by a picture

corresponding to one of the trained novel words. Participants’ task was to name the

picture as quickly and accurately as possible and press the space bar to proceed to the

following trial. The task was divided into two blocks each of which included all 39 novel

words. Participants could take a short break between the blocks if they wished.

Individual differences measures

Visual processing speed

On each trial of the simple visual processing speed task, a fixation cross was presented

in the centre of the screen followed by a black and white line drawing of a triangle.

The stimulus onset varied randomly between 1 and 2 seconds. The triangle fitted into a

virtual frame of 5 by 5 cm and was also presented in the centre of the screen. Participants

were instructed to press a button on a response button box as quickly as possible upon

presentation of the triangle. A button press initiated an intertrial interval of 1 second

before the next trial started with the presentation of the fixation cross. Participants

completed eight training trials before the actual experiment, which consisted of 20 trials.

In this task, RTs were measured and participants’ mean speed across all trials was

taken to indicate their processing speed performance.

Auditory processing speed

The auditory processing speed task was structurally identical with the visual task, the

only difference being that the stimulus was a 550-Hz tone, which was 400ms long, instead
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of a triangle on the screen. Again, each trial started with a fixation cross, which was

presented in the centre of the screen for a jittered time interval of between 1 and 2 seconds

and was followed by a tone. The auditory stimulus was presented via headphones and

participants were instructed to press a button on the button box as quickly as possible

upon presentation of the tone. The experiment consisted of 20 trials in total and was

preceded by eight practice trials.

Processing speed performance was operationalized as the mean RT across all trials

in this task.

Letter comparison task (processing speed)

The materials of this test were based on a paper-and-pencil task assumed to measure

processing speed as described in Earles and Salthouse (1995) and Salthouse (1996). Each

trial started with a fixation cross, which was presented in the centre of the screen for

500 ms. After another 100 ms participants were presented with pairs of letter strings (all

consonants) on a computer screen, one centered in the upper half of the screen and one

in the lower half. These pairs were comprised of either the same letter string twice (same

condition) or letter strings that differed by one letter (different condition). Participants

were instructed to decide as quickly and accurately as possible whether the two strings

of letters were the same or different by pressing response buttons on a button box. The

button-press initiated a 1000 ms intertrial interval, followed by the next trial. All letters

were presented in point 60 Arial font.

The task was divided into two blocks with a short break in between. The first block

consisted of 24 three-letter strings and the second block of 24 six-letter strings. In both

blocks, half of the letter strings belonged to the same condition while the other half came

from the different condition.

RTs were measured and processing speed in this letter comparison task was

operationalized as the mean RT across all correct trials.

Vocabulary: Receptive multiple-choice test

This test was developed by Andringa and colleagues (2012). Participants were presented

with target words, such as mentaliteit (mentality) or tentatief (tentative), embedded in

different neutral carrier sentences with the target word being marked with two asterisks.

Each of the sentences was presented along with five answer options, one of which was a

description of the target word and one being Ik weet het echt niet (I really don’t know).

For example, the target word mentaliteit (mentality) was presented with the answer

options tafel (table), persoon (person), manier van denken (way of thinking), and sfeer

(atmosphere; see Appendix A of Chapter 2 for the test materials).
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Participants were asked to select the word that was synonymous with or explained the

meaning of the target word, or indicate that they did not know the answer, by pressing one

of the number buttons 1 to 5 on the keyboard. The questions stayed on the screen until

the participant had selected an answer, which initiated the presentation of the following

test item.

The original test consists of 60 target sentences. In the present study the first sentence

was used as example question so that the test comprised a total of 59 questions. Both

the original sequence of items and the positions of the correct responses were kept from

Andringa et al’s (2012) test. The vocabulary score on this test was calculated by counting

the number of correct responses.

Vocabulary: Open antonym test

The open antonym test included 25 test items, which were presented individually and

without carrier sentences. Some of the target words were taken from the Toets

Gesproken Nederlands (TGN), a Dutch language test used to assess language for

immigration requirements (Kerkhoff et al., 2005).

Participants were instructed to type in an antonym for each word using the keyboard

(see Appendix A of Chapter 2 for the test materials). They were allowed to proceed to

the next question without answering the previous one, if they did not know the answer.

Pressing the enter key initiated the following trial. Prior to the test, instructions were

presented on the screen including two examples.

The test items in the open antonym test represented a frequency range between 0

and 60.69 counts per million in the SUBTLEX-NL corpus (M = 9.09, SD = 13.14). The

prevalence values of the target words ranged from 1.03 to 3.32 (M = 2.49, SD = 0.68).

One point was given for each correct response and 0.5 points were given for answers

that demonstrated a participant’s knowledge of the word or concept without being

completely correct. This was true for misspelled responses or cases similar to the

following one: when rustig (calm) as opposed to rust (calmness) was given as antonym

for lawaai (noise).

Short-term memory: Forward digit span

The materials for the forward digit span task used to assess phonological short-term

memory were taken from the Dutch version of the Wechsler Adult Intelligence Scale III

(WAIS-III-NL Wechsler, 1997). We used a computerized version of the task where on

each trial participants were presented with a string of digits in spoken form. All stimuli

were recordings spoken by a native speaker of Dutch. During the auditory presentation of

the strings of digits, a fixation cross was presented on the screen and was replaced by the
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words Typ nu (Type now) after the end of the recording. Participants were instructed to

type in the series of digits they heard using the computer keyboard.

Participants were tested on strings of two to nine digits, with two trials for each

sequence length and starting with the two-digit strings followed by three-digit strings and

so forth. When participants made errors on two trials of the same length, the task stopped

automatically. The number of digits of the longest sequence they recalled correctly was

participants’ short-term memory score.

Non-verbal intelligence: Raven’s matrices

The Ravens Advanced Progressive Matrices were administered to assess non-verbal

intelligence. We used a computerised version where on each trial participants were

presented with a matrix of 9 geometrical patterns with one pattern in the bottom right

corner absent. Participants were instructed to select one out of eight additional patterns

that would complete the matrix by clicking on it using a computer mouse. The target

matrices were presented as large pictures in the centre of the screen and the eight

answer alternatives were presented in two rows of four pictures each below that.

Participants could skip trials, which would be presented again at the end.

The materials consisted of 36 matrices in total and participants were given 20

minutes to complete the task. The remaining time was indicated in the top right corner

of the screen. Participants’ intelligence score was operationalized as the number of

correct responses within the given 20 minutes.

Analyses and results

Individual differences measures

Prior to all analyses, the RTs from the three processing speed tasks were trimmed by

excluding all RTs that were 2.5 SDs above or below each participant’s mean. For each of

the three speed tasks, less than 3.5% of all data was excluded from all further analyses.

For the purpose of the individual differences analyses, composite measures of

general processing speed and vocabulary were calculated. Regression-based factor scores

for both the vocabulary tests and processing speed tasks were calculated for each

participant using the PCA method in SPSS (DiStefano et al., 2009). For both composite

measures, only one underlying factor was assumed and each individual’s loading on that

factor based on their performance on the three processing speed tasks or two vocabulary

test scores was calculated. Hence, the processing speed score reflects participant’s
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performance on all three processing speed tasks and the vocabulary score reflects each

participant’s performance on the two vocabulary tests.

Table 5.1 displays participants’ RTs in the processing speed task as well as their

vocabulary, digit span, and Raven’s scores. The scores in the two vocabulary tests, i.e.

Andringa et al.’s (2012) receptive multiple choice test and the open antonym test, were

similar to Experiment 1 reported in Mainz et al. (2017), where a similar population was

tested on the same vocabulary tests (see Chapter 2).

Table 5.1: RTs or raw test scores for all individual differences measures.

Test Minimum Maximum Mean SD

Visual speed (ms) 178 340 225 26

Auditory speed (ms) 181 374 230 31

Letter comparison (ms) 492 1602 980 205

Antonym test 14.0 23.0 19.37 2.0

Andringa 27.0 56.0 39.72 5.74

Digit span 2.9 9.0 6.77 1.46

Raven’s 7.0 36.0 22.38 5.97

Bivariate correlations between all individual differences measures as used in all

subsequent analyses are displayed in Table 5.2. We did not find any significant

correlations between the individual differences measures. 5

5See Appendix B for a table with the bivariate correlations between all seven individual differences
tasks. As expected, the two vocabulary measures significantly positively correlated with one another (r
= .37, p < .01), as did the simple auditory and visual processing speed measures (r = .61, p < .01). The
third more complex measure of processing speed (letter comparison) did not correlate significantly with
the two others. Finally, we found a significant (mild) correlation between participants’ performance on
the digit span and the letter comparison tasks (r = -.22, p = .02). Individuals with higher digit span
scores were faster on the letter comparison task.
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Table 5.2: Correlation coefficients for the bivariate correlations between the individual
differences measures. P -values are given in brackets.

Vocabulary Speed Digit

span

Speed -.15

(.13)

Digit span .17 -.01

(.08) (.90)

Raven’s .14 .16 .007

(.13) (.09) (.94)

Word learning experiment

As indicated above, following the experiment on Day 8, participants were asked whether

they had known any of the words from the experiment prior to their participation. Forty-

one participants indicated that they had known at least one word before participating in

the experiment; ten participants were familiar with three words, three participants with

four words, and two participants indicated that they had been familiar with five or seven

words. All other participants (N = 26) had been familiar with one or two words prior

to coming to the lab for the word learning experiment. Note that several of the words

that participants indicated to be familiar with were specialised vocabulary that they had

known due to having specific interests or hobbies.6 For each participant, we excluded the

words that they had known before coming to the lab from all further analyses.

To establish participant’s performance on the word learning task we first analysed

performance on Training 2 (picture matching), Test 1 (picture matching), and Test 2

(picture naming) using models without individual differences measures as predictors. In

this way, we could first get an impression of whether our task manipulations (Exposure

Condition, Day of testing) affected word learning performance using simpler models with

fewer predictors, before adding all four individual differences measures and respective

interactions to the mixed-effects models.

All performance measures of interest were analysed in mixed-effects models using

the lme4 package (version 1.1.15, Bates et al., 2015) in R (R Core Team, 2017). For the

purpose of analysing the binary dependent variable accuracy, we used the glmer function,

and for analysing all other continuous dependent variables we used the lmer function. All

models included an intercept and fixed effects for the task manipulations. These were

6The word firn, for example, refers to a specific layer of ice; one participant knew that because of
extensive experience with hiking.
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Repetition in the model on accuracy in Training 2 (picture matching), and Day (Day 1

vs. Day 8), Block (1 vs. 2), and Exposure Condition (low vs. medium vs. high) as well as

the interactions between these fixed effects in the models on the data from Test 1 (picture

matching) and Test 2 (picture naming). In addition, all models included by-participant

and by-item adjustments to the intercept (random intercepts). The categorical variables

Day, Block, and Exposure condition were dummy coded. Day 1 and Block 1 were the

reference levels for the binary variables. In the case of the Exposure Condition factor,

which had three levels (low vs. medium vs. high), medium was the reference level.

Training 2: Picture matching

We found a significant effect of Repetition on accuracy (β = 0.28, z = 15.26, p < .001).

Response accuracy became higher as the number of repetitions increased. It is important

to note that accuracy rates in this task were close to ceiling with on average 95.3% correct

(SD = 3.03).

Test 1: Associative memory (picture matching)

Two performance measures were taken in Test 1, namely accuracy and reaction time

(RT). The accuracy model failed to converge with the above-mentioned structure. After

excluding interactions between the fixed-effects the accuracy model converged. Accuracy

in the picture matching test was found to be predicted by the medium vs. high contrast of

Exposure Condition (medium vs. high: β = 0.50, z = 2.41, p = .02), Block (β = 0.37, z =

4.17, p < .001), and Day of testing (β = -0.70, z = -4.32, p < .001). Participants’ accuracy

rates were higher for high vs. medium exposure words. In addition, their accuracy rates

were higher on Day 1 than on Day 8, and in Block 2 as compared to Block 1. However,

it has to be noted that accuracy rates were overall close to ceiling with mean accuracy

rates of 97.5% on Day 1 and 95.9% on Day 8 (see Table 5.3).
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Table 5.3: Mean accuracy rates (%) in Test 1 (picture matching) for both days and all
conditions. Standard deviations are given in brackets.

Exposure condition Accuracy rates (%)

Day 1 Day 8 Total

Low 97.64 94.69 96.16

(4.18) (6.0) (5.37)

Medium 97.97 96.02 96.99

(3.05) (4.97) (4.23)

High 98.73 96.80 97.76

(2.55) (4.19) (3.59)

The model on RTs in Test 1 showed significant effects of one of the Exposure

Condition contrasts, namely low vs. medium (low vs. medium: β = 0.04, t = 7.22, p <

.001), with faster RTs for medium vs. low exposure words (see Table 5.4). In addition,

the effect of Day was significant (β = 0.14, t = 25.05, p < .001), with faster RTs on Day

1 than on Day 8. Furthermore, the two-way interaction between the medium vs. high

exposure contrast and Day was significant (medium vs. high: β = -0.03, t = -3.52, p <

.001), indicating that the RT difference between medium and high exposure words was

stronger on Day 8 than on Day 1. Furthermore, the interaction between Block and Day

was significant (β = -0.10, t = -12.71, p < .001). The RT difference between the two

blocks was larger on Day 8 than on Day 1. Finally, the interactions between Block and

the two Exposure Condition contrasts were significant (medium vs. low: β = -0.02, t =

-2.54, p = .01; medium vs. high: β = -0.02, t = -2.37, p = .02). The medium vs. low

contrast was stronger in Block 2, whereas the medium vs. high contrast was weaker in

Block 2.
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Table 5.4: Mean reaction times (ms) in Test 1 (picture matching) for both days and all
conditions. Standard deviations are given in brackets.

Exposure condition Reaction times (ms)

Day 1 Day 8 Total

Low 1884.92 2468.50 2176.71

(430.74) (763.98) (684.39)

Medium 1738.19 2225.81 1982.0

(350.50) (588.97) (541.77)

High 1683.97 2121.32 1902.64

(330.77) (620.71) (542.46)

Test 2: Explicit memory (picture naming)

In Test 2, we also analysed two measures of word learning performance, namely the

binary measure accuracy and the Levenshtein Distances (LD) between target and

response. Participants’ responses in the naming task were coded independently by two

native speakers of Dutch. They transcribed each participant’s actual responses and

judged whether they were correct or incorrect. In most cases, the native speakers agreed

on their judgements. The unclear cases were solved by a third person, who listened to

the recordings again and selected one of the transcriptions. The vast majority of

disagreements were merely based on different spellings and could easily be solved. In

addition to the binary measure of response accuracy, we calculated the LDs between

participants’ responses and the targets. This was assumed to be a more fine-grained

measure of performance on this task indicating participants’ novel word knowledge.

The mixed-effects model analyses on picture naming accuracy showed significant

effects of the medium vs. low Exposure Condition contrast (medium vs. low: β = -0.49, z

= -7.14, p < .001) and Day (β = 0.80, z = 12.21, p < .001). Accuracy rates were higher

for medium vs. low exposure words and participants responded more accurately on Day

8 than on Day 1 (see Table 5.5).
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Table 5.5: Mean accuracy rates in Test 2 (picture naming) for both days and all conditions.
Standard deviations are given in brackets.

Exposure condition Accuracy rates (%)

Day 1 Day 8 Total

Low 25.33 36.31 30.79

(18.24) (21.24) (20.52)

Medium 33.51 47.08 40.27

(21.06) (22.81) (22.95)

High 33.76 49.64 41.66

(23.79) (24.10) (25.21)

The LDs between participants’ responses and the target words were significantly

predicted by the medium vs. low contrast of the Exposure Condition factor (medium vs.

low: β = 0.16, z = 4.14, p < .001) and by Day (β = -0.20, z = -5.75, p < .001) (see

Table 5.6). LDs were greater for low- as compared to medium-exposure words, and LDs

were smaller on Day 8 than on Day 1. Hence, participants’ responses were closer to the

target words in the medium vs. low exposure condition, and on Day 8 than on Day 1.

Table 5.6: Mean Levenshtein Distances in Test 2 (picture naming) for both days and all
conditions. Standard deviations are given in brackets.

Exposure condition Levenshtein Distances

Day 1 Day 8 Total

Low 3.41 3.01 3.21

(2.70) (2.81) (2.76)

Medium 2.91 2.38 2.65

(2.72) (2.75) (2.75)

High 3.06 2.32 2.69

(2.79) (2.81) (2.83)

Individual differences in word learning

The main interest of the present study was the relationship between individual

differences in general processing speed, vocabulary, PSTM (digit span), non-verbal

intelligence (Raven’s), and performance in the word learning task. All performance
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measures of interest were analysed in mixed-effects models using the same functions

from the lme4 package (version 1.1.15, Bates et al., 2015) in R (R Core Team, 2017) as

indicated before. Composite scores representing performance on the three processing

speed tasks and the two vocabulary tests, respectively, were calculated and used in all

analyses. Digit span and Raven’s scores were z-transformed using the scale function in

R prior to all analyses.

All analyses were exploratory in nature. We started with maximal models (Barr et

al., 2013), which in all cases did not converge. We, therefore, reduced model complexity

as much as it was deemed acceptable and reasonable in order to enable the models to

converge. Unless otherwise stated, all models included an intercept and fixed effects for

all individual differences measures (processing speed, vocabulary, digit span, Raven’s) as

well as per-participant and per-item adjustments to the intercept (random intercepts). In

addition and just as described above, task-relevant manipulations were included as fixed

effects. This was Repetition in the model on Training 2 (picture matching), and Day of

testing (Day 1 vs. 8), Block (block 1 vs. 2) and Exposure Condition (low vs. medium vs.

high) for both Test 1 (picture matching) and Test 2 (picture naming). Importantly, all

models were limited to two-way interactions between the fixed effects and, unless stated

otherwise, they did not include random slopes.

Training 2: Picture matching

Likely due to participants rapidly performing at ceiling on this task, mixed-effects

models that included individual differences measures as predictors applied to

participants’ performance (accuracy) in Training 2 did not converge. We therefore ran a

linear regression using the lm function in R. The linear regressions on accuracy in this

task showed significant effects of Repetition (β= 0.22, z = 22.87, p < .001) and

vocabulary (β = 0.10, z = 2.17, p = .03). Accuracy rates increased with an increasing

number of repetitions, and individuals with higher vocabulary scores had higher

accuracy rates. In addition, the interactions between digit span and Raven’s score was

significant (β= -0.11, z = -2.43, p = .02), with stronger effects of digit span score for

individuals with weaker Raven’s performance. Finally, we observed a significant

interaction between Raven’s and vocabulary scores (β= 0.15, z = 2.91, p = .004).

Individuals with higher Raven’s scores showed stronger beneficial effects of high

vocabulary scores than individuals with lower Raven’s scores (see Appendix C for plots).

Test 1: Associative memory (picture matching)

None of the mixed-effects models on accuracy including the individual differences measures

as predictors converged. This is likely due to mean accuracy rates close to ceiling on both
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days, with 97.5% on Day 1 and 95.9% on Day 8. We therefore decided to focus on RTs

as the measure of performance on this task.

RTs were log-transformed and in addition to the above-described structure, we

modelled by-participant random slope adjustments to the effects of Block, Day, and

Exposure Condition.

Participants’ RTs in Test 1 were significantly predicted by Exposure Condition

(medium vs. low: β = 0.03, t = 7.40, p < .001; medium vs. high: β = -0.009, t = -1.99,

p = .05), Block (β = -0.01, t = -2.36, p = .02), and Day (β = 0.13, t = 29.10, p < .001).

Hence, faster RTs were elicited by medium vs. low and by high vs. medium exposure

words, and RTs were faster in Block 2 than in Block 1, and faster on Day 1 than on Day

8. In addition, digit span (β = -0.02, t = -2.82, p = .005) predicted participants’ RTs in

the picture matching task. Individuals with higher digit span scores showed faster RTs.

Furthermore, the interaction between Day of testing and the medium vs. high exposure

contrast was significant (medium vs. high: β = -0.01, t = -2.50, p = .01), indicating the

effect of this Exposure Condition contrast on RTs was stronger on Day 8 than on Day 1.

Additionally, we found a significant interaction between Day and Block (β = -0.08, t =

-18.72, p < .001), with the effect of block being stronger on Day 8 than on Day 1. The

significant interaction between the medium vs. high exposure contrast and Raven’s

scores (β = 0.006, t = 2.13, p = .03) indicates that for individuals with high Raven’s

scores, the medium vs. high exposure contrast has a stronger effect than for individuals

with lower Raven’s scores. Finally, the interactions between Day and Raven’s (β =

0.009, t = 3.77, p < .001) and between Day and vocabulary were significant (β = 0.006,

t = 2.54, p = .01), showing that the effects of both Raven’s and vocabulary scores were

weaker on Day 8 than on Day 1 (see Appendix D for a plot of all coefficients).

Test 2: Explicit memory (picture naming)

The mixed-effects model on accuracy in the naming task included Block as a predictor, but

we did not model any two-way interactions between Block and the individual differences

measures due to convergence issues. All other two-way interactions between the fixed

effects for Exposure, Block, and Day, and the four individual differences measures were

included.

The accuracy analysis showed significant effects of the medium vs. low exposure

contrast (medium vs. low: β = -0.49, z = -7.08, p < .001), Day (β = 0.79, z = 12.11,

p < .001), and vocabulary (β = 0.23, z = 2.22, p = .03). Accuracy rates were higher

for medium vs. low exposure words and participants gave a larger number of correct

responses on Day 8 than on Day 1. In addition, individuals with higher vocabulary

scores had higher accuracy rates than those with lower scores on the vocabulary tests.
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The interaction between Day and Raven’s scores (β = 0.12, z = 2.89, p =.004) was a

significant predictor of naming accuracy (see Appendix E for a plot). Hence, Raven’s

scores had a stronger relationship with naming accuracy on Day 8 than on Day 1. The

interaction between Raven’s score and the exposure contrast medium vs. high was also

significant (β = -0.15, z = -3.15, p = .002), showing that for high-exposure words the

effect of Raven’s scores was weaker than for medium-exposure words. In addition, the

interaction between the medium vs. high exposure contrast and processing speed was

marginally significant (β = 0.08, z = 1.78, p = .07), suggesting that for fast processors

the exposure difference between medium and high-exposure words was weaker than for

individuals with reduced processing speed. Finally, the interaction between Raven’s and

vocabulary scores (β = 0.21, z = 2.0, p = .05) was significant, indicating that the effect

of vocabulary on naming accuracy increased with increasing Raven’s scores. Participants

with higher Raven’s scores showed stronger vocabulary effects on naming accuracy than

individuals with weaker Raven’s scores (see Appendix E for plots of the interactions and

a plot of all coefficients from the model).

In addition to the model structure stated above, the model on LDs included

by-participant random slope adjustments to the effects of Day, Block, and Exposure

Condition. One Exposure Condition contrast predicted LDs in the naming task

(medium vs. low: (β = 0.15, t = 4.38, p < .001), with larger LDs for low as compared

to medium exposure words. In addition, participants showed smaller LDs on Day 8 than

on Day 1 (β = -0.19, t = -6.65, p < .001). No individual differences were found to

predict LDs, although the coefficient plot suggests that there might be some trends

towards beneficial effects of Raven’s scores and processing speed on LDs in the naming

task (see Appendix E).7

Discussion

This study was the first to explore individual differences in novel word learning in adult

native speakers, and the relationship between word learning and variation in various

cognitive abilities, namely vocabulary, processing speed, PSTM, and nonverbal

intelligence. In the following, our findings concerning the relationships between the

7For one set of analyses, we excluded participants’ responses where the LD value was equal to the
number of letters in the target word, hence, the responses where in many cases participants did not
say anything or where they responded with a completely different word from the target. This excluded
34.15% of the data. The results from this analysis showed no Exposure Condition effects, potentially
because many of the low-exposure words were excluded, and only Day (β = -0.20, t = -3.51, p < .001)
and vocabulary (β = -0.11, t = -2.30, p =.02) were significant main effects. Hence, the analysis was very
similar to the accuracy analysis and was therefore considered to provide no insights beyond what the
above-described accuracy and LD analysis did (see Appendix E for a coefficient plot for this analysis).
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various cognitive abilities tested in the present study are discussed. This is followed by a

discussion of the insights gained into the relationship between individual differences in

word learning and variation in cognitive as well as environmental factors.

First of all, correlation analyses between participants’ Raven’s scores, digit span

scores, and the factor scores for vocabulary and processing speed showed no significant

correlations between any of the individual differences measures. There were only trends

towards weak correlations between digit span performance and vocabulary, and between

Raven’s score and processing speed. It might be surprising and somewhat

counterintuitive that we did not observe any correlations between, for instance, Raven’s

scores and vocabulary or Raven’s scores and general processing speed (Kail & Salthouse,

1994). It is important to note that the tests we used to assess each of the cognitive

abilities were standard measures and the sample was relatively large with more than 100

participants. In addition, we tested participants from a population that is frequently

used as a representative sample within our field. It is thus interesting that the cognitive

factors do not correlate with each other, indicating that little variation in vocabulary

size is explained by variation in non-verbal intelligence, general processing speed, or

PSTM. This indicates that the skills assessed in these individual differences measures

are distinct and independent constructs, at least in the group of participants tested in

this study, namely young adult university students.

It has to be noted that in the present study we used the abbreviated version of the

Raven’s Matrices due to time constraints on the test sessions. In future research it

might be worth further investigating the relationship between various cognitive abilities

(and word learning) by using more than just one, or more comprehensive measure, to

assess the presumably complex skill of nonverbal intelligence. In addition, testing

participants with more varied educational backgrounds might also have an effect on the

relationships observed between the various measures of cognitive ability. Increasing the

diversity of participants’ educational backgrounds would presumably lead to a larger

range of vocabulary, digit span, and Raven’s scores and result in more diverse general

processing speed abilities being observed. If there are correlations between the various

skills they might only show when the range of test performances is increased. In

addition, the results would be more representative of the wider population if a more

heterogeneous group was examined. As indicated above, this is a prevalent issue in

psychological and psycholinguistic research and does not only apply to the present study

(Kidd et al., 2018; see Chapter 3).

The main interest of the present study was the relationship between variation in

word learning performance and individual differences in cognitive abilities (vocabulary,

processing speed, digit span, and nonverbal intelligence). We analysed participants’
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performance on three different tasks from a word learning experiment, namely the 4AFC

task in Training 2 (picture matching with feedback), the 4AFC task in Test 1 (picture

matching), and the picture naming task in Test 2.

The analyses of participants’ performance on 4AFC training task (Training 2)

showed that accuracy rates during training increased with increasing numbers of

repetition, as would be expected. In addition, our analyses showed that individuals with

higher vocabulary scores showed overall higher accuracy rates in Training 2. This is in

line with previous research showing that having greater vocabulary knowledge is

beneficial for learning novel words (Henderson & James, 2018; Marchman & Fernald,

2008). Furthermore, participants with higher Raven’s scores showed stronger benefits

from having greater vocabulary knowledge, and weaker Raven’s scores were associated

with stronger digit span effects. However, it has to be noted that these findings are

based on linear regression analyses only, thus not accounting for random variation

between participants and items, because performance close to ceiling led to convergence

issues with the mixed-effects models. Therefore, the relationship between task

performance and individual differences measures is difficult to interpret and the

discussion of the results focuses on the analyses of the two test tasks.

For Test 1, the 4AFC picture matching test, we analysed participants’ accuracy rates

as well as their RTs. Accuracy was close to ceiling on both days of testing, with around

97% on Day 1 and 95% on Day 8, indicating that this multiple-choice test with four

answer alternatives was very easy for our participants to perform. Due to the overall very

high accuracy and therefore rather limited variation, we considered RTs to be a more

appropriate and more informative measure of performance on this task.

The RT analyses indicated that participants performed better in Block 2 than in

Block 1, which is probably a practice effect. Both blocks comprised all 39 words so

that participants responded to all words for the second time when completing Block 2.

Similarly, the fact that participants showed faster RTs on Day 1 than on Day 8 is very

likely a practice effect. On Day 1, participants completed a very extensive training task

(Training 2) before doing this test, which was almost identical with Test 1 in that both

were 4AFC picture matching tasks. On the contrary, on Day 8 participants came to the

lab and started with the 4AFC test, without any preceding training on a similar task or

the items. This has probably resulted in participants’ RTs being considerably faster on

Day 1 than on Day 8. Furthermore, the difference between blocks was stronger on Day 8

than on Day 1, suggesting that the practice effect of Block was stronger on Day 8. This is

due to the fact that, as indicated before, the only practice that participants had was the

completion of Block 1 prior to Block 2. Finally, our manipulation of number of exposures

was reflected in how fast participants were at responding to the picture-matching task,
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both immediately after training and after a period allowing for overnight consolidation.

Participants responded faster to words that they had seen more often during training;

hence, responses to high-exposure words were significantly faster than to medium- and

low-exposure words. For the medium- vs. high-exposure contrast, this effect was even

stronger on Day 8 than on Day 1, despite the fact that RTs on Day 8 were overall longer.

This suggests that overnight consolidation of the novel words strengthened the differences

in speed of lexical access between words from the three exposure conditions, which were

already observed right after training. Although on a very small scale, the repetition effect

observed in lexical access to newly learned form-meaning pairings reflects word frequency

effects observed in lexical access to known words (Brysbaert et al., 2018), and suggests a

role of exposure frequency in producing word frequency effects during language processing.

Furthermore, we observed a significant interaction between Exposure Condition and

Raven’s scores, showing that individuals with higher Raven’s scores were more sensitive

to the medium vs. high exposure contrast. Their RTs were particularly enhanced by

additional exposures. In addition, the interactions between Day and Raven’s as well as

between Day and vocabulary were significant, indicating that the beneficial effects of

Raven’s and vocabulary on picture matching RTs were stronger on Day 1 than on Day 8.

This means that better vocabulary knowledge and higher Raven’s scores were particularly

beneficial for the formation of and access to short-term memories for the newly learned

lexical items in this specific task and were not so beneficial for the consolidation of these

representations.

The only individual differences measure that had a main effect on participants’ RTs

on the 4AFC picture-matching test was digit span score. Individuals with higher digit

span scores, taken to indicate better PSTM abilities, showed significantly faster RTs on

both days and in all conditions. Having better PSTM abilities might enable individuals

to form stronger phonological representations or stronger associations between phonology

and semantics, which might be faster to be accessed during the picture matching test.

Thus, our findings may indicate a role of PSTM in novel word learning as has been

reported in previous research (Gathercole, 2006; Gupta & Tisdale, 2009b). Alternatively,

the relationship between PSTM and performance on the 4AFC picture matching task

might be due to similarities between the two tasks. Both require the processing of an

auditory stimulus and keeping this stimulus in short-term memory in order to perform

a specific task on it. The fact that PSTM was only related to participants’ RTs on

the 4AFC test, and not to any measure of performance on the naming task, is taken to

support this alternative idea. If PSTM is assumed to influence native language novel word

learning in adults, the naming task especially would be expected to require PSTM and

show effects of individual differences in PSTM. The reason is that the ability to store and
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reproduce the phonological form of a word, for which PSTM is presumably essential, is

assumed to be central to performance on the naming task (Gathercole, 2006). In addition,

it has to be noted that the RTs in this multiple-choice task might reflect word learning

success as has been supported by the existence of exposure condition effects, but they

may also influenced by task-specific behaviour. Due to the fact that it was a multiple-

choice test, strategic behaviour such as answering by process of elimination might have

influenced participants’ RTs. In addition and as mentioned before, the interpretability

of the relationship between the individual differences measures and performance on the

4AFC picture matching task is limited due to participants’ high abilities, as indicated by

their accuracy being close to ceiling. That is why the findings from this task should be

interpreted more cautiously.

Performance on the picture naming test might be less biased by strategic effects,

which is why we believe that naming performance is probably the most appropriate test

measure of word learning performance. What is more, for the present population, which

is characterised by overall high abilities, the more difficult naming task is more suitable

for the elicitation of individual differences (see Kidd et al., 2018) and therefore seems to

be a more appropriate measure to examine the questions of interest. Thus, relatively high

abilities in the group of participants can be compensated for by using or focusing on a

more difficult task, in this case the picture naming task.

In the picture naming task (Test 2) we measured and analysed naming accuracy

and Levenshtein Distances (LDs) between participants’ responses and the target words.

We did not find any significant relationships between individual differences measures and

LDs, although the coefficient plot (see Appendix E) suggests that there might be trends

towards beneficial effects of Raven’s scores and processing speed. This might be due to a

lack of variation in the LDs as dependent measure, or due to LDs not being an appropriate

measure for word knowledge in this task. Therefore, we focus on the findings from the

accuracy analyses. We found significant effects of day of testing on naming accuracy, with

improved performance on Day 8 as compared to Day 1. This is the typical effect of testing

the knowledge of newly learned words after a delay allowing for overnight consolidation

and this replicates studies that have shown beneficial effects of overnight consolidation on

memory for newly learned words (Bakker et al., 2015; Brown & Gaskell, 2014; Weighall

et al., 2017). It has been suggested that sleep aids the lexicalisation of newly learned

words, thus consolidating the representations of these words and integrating them within

existing lexical knowledge, which leads to increased accuracy when tested on novel words

after a delay (Takashima et al., 2014; Weighall et al., 2017). The present study shows

the effects, confirming that the participants in our study in fact learned the form-picture

pairings as was expected. The fact that this typical effect of sleep was observed on naming
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accuracy (as opposed to the picture matching test) supports the impression that this was

an appropriate and reliable measure of word learning success, which is – as indicated

above – presumably less influenced by the effects of practice and strategic behaviour that

have been argued to potentially play a role in the 4AFC picture matching (Test 1) task.

In addition, we observed a significant effect of the medium vs. low contrast of

Exposure Condition. As was expected, higher numbers of exposure, hence increased

training on the novel form-meaning pairings, resulted in improved test performance.

Thus, just as in the analyses of individuals’ performance on the 4AFC picture matching

test, the manipulation of number of exposures had an effect on word learning

performance. As indicated before, this might reflect word frequency effects observed in

language processing of known words, albeit on a smaller scale (Brysbaert et al., 2018).

The fact that here only the medium vs. low contrast was significant indicates that the

difference in amount of exposure between the medium (9 exposures) and high condition

(16 exposures) was not big enough to elicit an effect of Exposure Condition on picture

naming performance.

Furthermore, we observed some relationships between the individual differences

measures and performance on the naming task. We found a significant effect of

participants’ Raven’s scores on naming performance on Day 8, but not on Day 1. After

a period allowing for overnight consolidation, higher scores on the Raven’s Advanced

Progressive Matrices were associated with higher accuracy scores in the naming task.

Thus, immediately after training, i.e. on the formation of episodic memory

representations for the novel words, nonverbal intelligence as measured by this test did

not show any effect, but it is indicated to be beneficial for the consolidation of novel

word representations. Higher nonverbal intelligence is suggested to benefit the

consolidation of novel word representations and potentially their integration into the

lexicon. The relationship between a cognitive ability and consolidation warrants further

investigation to determine the underlying mechanisms.

Additionally, the significant interaction between the medium vs. high exposure

contrast and Raven’s scores indicated that for high-exposure words the effect of Raven’s

score was weaker than for medium-exposure words. This suggests that higher nonverbal

intelligence, as measured by the Raven’s, is less beneficial for easy words that are

presented very often than for slightly more difficult items.

Additionally, our findings suggest smaller effects of quantity of exposure (medium vs.

high contrast) for individuals with higher general processing abilities than for those who

were slower on the general processing speed tasks. It has to be noted that this effect was

only marginally significant. Nevertheless, it appears that there is a tendency that high

processing speed individuals are less sensitive to constraints on the number of exposures to
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novel words during learning. Hence, higher processing speed might be beneficial in that it

might enable individuals to form relatively strong memory representations of novel words

already after only one or two exposures to that word, and these representations may be

accessed equally well as representations of words with higher frequencies of exposure. A

similar relationship between online processing speed and vocabulary has been observed

in children where processing speed at 25 months has been shown to predict language

and cognitive skills at 8 years old (Fernald et al., 2006; Marchman & Fernald, 2008;

McMurray et al., 2012). It has been suggested that children who are faster processors

might have more time or resources to process subsequent speech input allowing for more

opportunities for learning. Alternatively, children with increased processing speed may

have more resources or time to process secondary aspects of the input which may help

them to build richer or more robust representations at first exposure. From our data, we

cannot conclude what the mechanism behind a potential processing speed advantage in

word learning might be. It is conceivable though that having more resources or time for

detailed processing of the visual input (i.e. the meaning) in relation to the auditory forms

of the novel words, thus being able to form richer representations at first exposure, may

have been the origin of the speed advantage in the present experiment. However, more

research on this relationship is clearly needed, potentially testing individuals from more

diverse educational backgrounds to further examine the relationship between processing

speed and quantity of exposure in word learning, which in our study is suggested by a

marginally significant interaction between Exposure Condition and processing speed.

Aside from this, vocabulary was the only individual differences measure that had a

main effect on naming accuracy on both days of testing and in all conditions. Individuals

with greater vocabulary knowledge showed higher accuracy rates in the naming test.

Hence, having more word knowledge appears to be beneficial overall for word learning,

i.e. for the formation of and access to episodic representations of novel words immediately

after training and also for the consolidation and retrieval of lexical items at a later point in

time. This suggests that individuals with larger vocabularies are better word learners due

to mechanisms that are distinct from processing speed, PSTM, and nonverbal intelligence.

Our finding is in line with previous findings on the role of vocabulary knowledge in word

learning in children (Fernald et al., 2006; Henderson & James, 2018; Marchman & Fernald,

2008; Weisleder & Fernald, 2013). Hence, having greater word knowledge appears to be

beneficial for word learning, not only in children but also in adults. What is more, this

vocabulary benefit was even stronger for individuals with higher Raven’s scores. This

indicates that those whose performance on the Raven’s Matrices was better were able

to use their existing knowledge more efficiently to aid novel word learning compared to

individuals with lower Raven’s scores.



150 5 Word learning

Therefore, next to nonverbal intelligence as measured by the Raven’s Matrices,

vocabulary appears to be a good predictor of word learning performance as measured by

the picture naming task. Thus, despite the fact that PSTM, general processing speed,

and performance on the Raven’s Matrices were taken into account as perhaps affecting

word learning performance and potentially being captured by measures of vocabulary

size, vocabulary turned out to be an important and stronger predictor of word learning.

One may argue that it is not very surprising that individuals with larger vocabularies

show advantages in this word learning task. These individuals are probably better word

learners, which enabled them to acquire more word knowledge and outperform others on

the vocabulary tests. The question arising is what the mechanism is through which

greater knowledge of words benefits novel word learning. As indicated before, something

must have led to some individuals having a larger vocabulary in the first place, which is

then beneficial for all subsequent word learning. It might be argued that those children

who get quantitatively and qualitatively more exposure early in development learn more

words, thus getting more practice with speech input allowing them to gain more

sublexical and lexical knowledge (Jones & Rowland, 2017). This advantage for novel

word learning may remain across the lifespan. However, this explanation leaves the

question about the underlying mechanism open.

One possibility may be that individuals with greater vocabularies are generally

better learners. If this was the case, the vocabulary benefit should also apply to

non-linguistic learning tasks. Alternatively, the participants with higher vocabulary

scores may be better language learners due to mechanisms other than processing speed,

PSTM, or nonverbal intelligence, which were assessed in the present study. As indicated

above, a measure of vocabulary size likely captures differences in the amount of

exposure, hence prior experience with language, which in turn might be beneficial for

word learning for various reasons. One might be that greater input or experience with

language improves certain language learning mechanisms. It is, however, unclear what

those might be. Individuals with more experience (and therefore greater vocabularies)

may be better at encoding novel word forms or the mappings between form and

meaning, possibly due to more lexical and sublexical knowledge. Alternatively, there

might be structural or representational differences between vocabularies of varying sizes

leading to greater vocabulary knowledge being beneficial for novel word learning.

Previous research has indicated that characteristics of a learner’s vocabulary, for

instance phonological or semantic knowledge, affect the ease with which novel words are

learned. Words from denser phonological neighbourhoods have been shown to be easier

to learn than words from less dense neighbourhoods (Storkel, Bontempo, & Pak, 2014).

In addition, it has been demonstrated that it is easier to integrate novel semantic
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representations within denser semantic networks than within less dense networks (Sailor,

2013). Learning new words that possess similar semantic concepts as known words is

easier. Hence, differences in the density of the phonological or semantic networks that

potentially result from differences in vocabulary size might be a cause of the word

learning advantage associated with greater vocabulary knowledge.

Future research might use computational modelling to examine the underlying

mechanisms associated with the vocabulary benefit in novel word learning. In such a

model, it would be possible to investigate the contributions of factors such as the

quantity and quality of exposure, general intelligence, or processing speed while keeping

vocabulary size constant. In this way, the effects of vocabulary size on word learning

and closely related factors such as variation in exposure, processing speed, or capacity

could be disentangled. In addition, computational modelling would allow us to study

both developing and mature systems and examine whether different factors are

important at different points during development and learning.

Furthermore, future studies should examine the relationship between word learning

and individual differences in various cognitive abilities in more diverse groups of

participants. As mentioned before, in a sample of undergraduate university students the

range of test scores on the measures of cognitive ability is presumably limited as

compared to the general population (see Chapter 3). A change in the range of abilities

in the sample tested might result in different conclusions about both the relationships

between the cognitive abilities and between these abilities and word learning.

Conclusions

This exploratory study of novel word learning was the first to examine the role of

individual differences in various cognitive abilities and word learning in adult native

speakers. The results indicate that nonverbal intelligence as measured by the Raven’s

Advanced Progressive Matrices is beneficial for the consolidation of novel words.

Furthermore, it is suggested that participants with higher Raven’s scores were able to

use their existing vocabulary knowledge more efficiently to aid novel word learning than

individuals with weaker Raven’s scores. Finally, vocabulary knowledge has been shown

to be an important predictor of novel word learning ability. Knowing larger numbers of

words provided a significant advantage when being faced with the task of learning new

words. Our study provides first insights into the complex relationships between quantity

of exposure, delay of testing (here confounded with presence/absence of sleep), and

internal sources for variation in adults. Future research using, for instance,

computational modelling techniques should further examine what the underlying
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mechanisms are that lead to the beneficial effects of larger vocabularies on novel word

learning.

In addition, some methodological implications can be derived from the current

study. The high accuracy rates on the picture matching test as compared to the picture

naming test and the differences in the relationship between the respective task

performance measures and participants’ cognitive abilities demonstrate that for the

presumably highly skilled population tested in this study more difficult tests eliciting

greater variation in performance are more suitable. Furthermore, the fact that both

word learning and cognitive skills are probably rather high in these young adults

supports the assumption that future research should strive for testing individuals from

more diverse educational backgrounds.
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Appendix A

Words used in the novel word learning experiment

1. Spalier

2. Oribi

3. Wimberg

4. Firn

5. Ojief

6. Amsoi

7. Gerenoek

8. Gnomon

9. Napi

10. Blaffetuur

11. Golok

12. Pinang

13. Knippa

14. Liaspen

15. Deuvik

16. Margay

17. Gamander

18. Tsuba

19. Alikas

20. Tussor

21. Amict

22. Bendir

23. Genoffel

24. Fijfel

25. Paletot

26. Putto

27. Vair

28. Winket

29. Blimbing

30. Averuit

31. Euzie

32. Twatwa

33. Sifaka

34. Zurkel

35. Dolik

36. Kossem

37. Zaathout

38. Zwad

39. Angisa
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Figure 5.2: Kossem

Figure 5.3: Winket

Figure 5.4: Oribi
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Appendix C

Training 2 (picture matching)
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Figure 5.5: Correlation between accuracy rates in Training 2 (4AFC) and digit span scores
for individuals with low Raven’s scores vs. individuals with high Raven’s
scores. Raven’s scores were z-transformed and scores below 0 were grouped
together as low scores, scores above 0 as high Raven’s scores.
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Figure 5.6: Correlation between accuracy rates in Training 2 (4AFC) and vocabulary
scores for individuals with low Raven’s scores vs. individuals with high
Raven’s scores. Again, z-transformed Raven’s scores below 0 are low scores
and those above 0 are high scores.
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Appendix D

Associative memory Test 1 (picture matching)
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Figure 5.7: Coefficient plot for the mixed-effects model analysing reaction times in
the associative memory Test 1 (picture matching). The estimate for the
intercept in this model was 3.29. The coefficient plot does not include
the intercept because including this large estimate (much larger than the
remaining estimates) would have resulted in the differences between all other
estimates being invisible.
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Appendix E

Explicit memory Test 2 (picture naming)
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Figure 5.8: Correlation between accuracy rates the naming task and z-transformed
Raven’s scores for the test on Day 1 vs. Day 8.
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Figure 5.9: Correlation between accuracy rates in the naming test (both Day 1 and Day
8) and the factor score for vocabulary, for individuals with low Raven’s scores
vs. individuals with high Raven’s scores. Raven’s scores were z-transformed
and scores below 0 were grouped together as low scores, scores above 0 as high
scores.
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Figure 5.10: Coefficient plot for the mixed-effects model analysing response accuracy in
the explicit memory Test 2 (picture naming).
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Figure 5.11: Coefficient plot for the mixed-effects model analysing Levenshtein Distances
in the explicit memory Test 2 (picture naming).
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Figure 5.12: Coefficient plot for the mixed-effects model analysing Levenshtein Distances
only for the words where the distance was smaller than the number of letters
in the target.





6 | The causes and consequences of variation in

vocabulary size: A computational model

Abstract

Individuals vary considerably in their vocabulary size. These individual differences have
been shown to predict performance on a broad range of language related tasks, with
larger vocabularies being associated with beneficial effects on language processing.
Furthermore, previous research has suggested a number of potential environmental and
cognitive causes for observed differences in vocabulary learning and resulting vocabulary
size, which in turn likely have additional consequences for language processing. The
present study used a connectionist computational model that learned phonological and
semantic representations of English words and the mappings between these
representations (Harm & Seidenberg, 2004) in order to simulate the learning and
processing of spoken English words. We manipulated both internal properties of the
model’s processing (processing speed, processing resources) as well as external properties
of the model’s linguistic environment (quality and quantity of language exposure) in
order to establish first their effects on vocabulary development, and secondly their
consequences for language processing. Our simulations demonstrate that a complex
interaction of cognitive and environmental factors is likely to cause variation in
vocabulary size. In addition, these causes for variation in vocabulary size, i.e. processing
speed and resources as well as differences in the quantity and quality of exposure, all
had similar positive consequences for the model’s language processing and novel word
learning performance. Our analyses do not provide strong evidence for added beneficial
effects of greater vocabulary size which go beyond those that can be attributed to
underlying cognitive and environmental factors. Furthermore, we use the model to
describe explicitly the mechanisms that likely underlie the observed beneficial effects.
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Introduction

Previous research has shown that the speakers of a language vary considerably in their

vocabularies. Age as well as educational background have been found to be important

predictors of the number of words an individual knows (Brysbaert et al., 2016b, see

Chapters 2 and 3). Furthermore, individual differences in vocabulary size have been

associated with variation in language processing performance. Individuals with larger

vocabularies have been reported to show more accurate and faster language comprehension

(Brysbaert et al., 2016a; Diependaele et al., 2013; Yap et al., 2012, see Chapters 2 and

3) and production (Rodriguez-Aranda & Jakobsen, 2011, see Chapter 4). In addition,

speakers with better vocabulary knowledge show reduced effects of word frequency as

compared to individuals with smaller vocabularies (Brysbaert et al., 2016a; Diependaele

et al., 2013; Monaghan et al., 2017).1 High-vocabulary individuals’ word recognition speed

is less influenced by the frequency of the target words, thus, lexical processing is similarly

fast for low- and high-frequency words. This has been taken to indicate that the lexical

representations in individuals with greater vocabulary knowledge are more entrenched or

more robust, and therefore faster to be accessed and less sensitive to effects of lexical

characteristics (lexical entrenchment hypothesis; Diependaele et al., 2013). Monaghan et

al. (2017) have examined the effect of variation in the amount of exposure on the size

of the word frequency effect and on vocabulary size in a computational model. Greater

exposure has been demonstrated to cause a reduction in frequency effects on processing

as well as to cause greater vocabulary size. The model was also trained to learn a second

language, which replicated effects of second language proficiency on frequency effects in

first and second languages. Increased second language proficiency was associated with

reduced frequency effects in the second language, whereas the frequency effects in the

first language increased. It has been argued that variation in exposure alone therefore

can explain differences in vocabulary size and in the sensitivity to word frequency effects,

in both first and second languages (Monaghan et al., 2017).

However, is variation in the amount of exposure the only cause for variation in

vocabulary size? Previous research has provided some insights into other factors that

might play a role in determining an individual’s word learning performance and,

consequently, vocabulary size. Mostly developmental studies have indicated that

individual differences in both environmental and cognitive factors drive variation in

word learning.2 Behavioural and modelling investigations have demonstrated that input

quantity, i.e. the number of words in the input, benefits word learning very early in

1See Chapters 2 and 3 for a more detailed literature review.
2See Chapter 5 for a more detailed review and discussion of the literature.
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development, while the quality, i.e. diversity or number of different words, within the

input plays a role in word learning later in development (Jones & Rowland, 2017, see

also Hurtado et al., 2008). In addition, a considerable body of research has focused on

the relationship between phonological short-term memory (PSTM) and vocabulary

learning and size, indicating that better PSTM abilities are associated with improved

word learning and greater word knowledge (Gathercole, 2006; Gupta & Tisdale, 2009b).

Another cognitive ability that has been associated with variation in word learning is

processing speed. Both behavioural and computational studies have demonstrated that

higher (language) processing speed in children predicts better word learning and greater

vocabulary size (Fernald et al., 2006; Marchman & Fernald, 2008). Two potential

reasons for this close relationship between vocabulary size and (language) processing

speed have been suggested. Firstly, richer language input in early development might

benefit word learning and vocabulary size in some children. As a result, their practice

with linguistic input is greater as compared to children with quantitatively and

qualitatively less input, which in turn might lead to more efficient and thus faster speech

processing (Fernald et al., 2006). Alternatively, Fernald and colleagues (2006) proposed

that initial individual differences in general cognitive skills, more precisely general

processing skills, might be the origin of variation in language processing and word

learning performance. Both suggestions are compatible with the findings from Fernald

et al. (2006) and importantly, they are not mutually exclusive. It is conceivable that

rather complex interactions between cognitive abilities and external factors lead to

variation in word learning and processing.

Finally, another factor that has been indicated to predict word learning is vocabulary

size. Children with larger vocabularies at 2 years of age showed a greater learning rate

over the following 6 years of life, thus had larger vocabularies at 8 years of age, than

children with less word knowledge earlier in development (Marchman & Fernald, 2008).

It is possible that such a relationship between vocabulary size and learning rate is driven

by shared underlying causes; it is also possible however that possessing a larger vocabulary

offers distinct advantages that generate the observed increase in rate of word learning.

Evidence supporting such a mechanism can be found in Steyvers and Tenenbaum (2005)

whose preferential attachment theory proposes that the probability of a new item being

acquired is positively related to the number of connections already within the network.

Thus, a network that already has many densely connected nodes is more likely to acquire

new nodes. Network properties generated by such a mechanism have been shown to

mirror the properties observed within the natural emergent structure of human semantic

networks (Sailor, 2013).
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The study presented in Chapter 5 of this dissertation built upon this earlier work

and extended it by examining young adult native speakers of Dutch instead of children.

In addition, we were interested in the relationship between different cognitive abilities

and the relationship between cognitive and environmental factors in affecting word

learning performance. Knowing of the existence of considerable individual variation in

cognitive skills and their effects on language processing, we assumed that there are not

only external, exposure-related sources of variation, i.e. environmental factors, but also

internal sources for variation in word learning and knowledge (Kidd et al., 2018). Most

importantly, the experiment showed that vocabulary size predicts novel word learning

performance in addition to the factors amount of exposure and sleep and associated

overnight consolidation (see Chapter 5). Furthermore, nonverbal intelligence and general

processing speed were suggested to potentially also influence word learning ability,

though not as strongly as vocabulary.

To sum up, larger vocabularies have been associated with more accurate and faster

language processing. Furthermore, it has been shown that individuals with larger

vocabularies are less sensitive to word frequency effects, which has been taken to

indicate that their representations are more entrenched or robust than those of

individuals with less word knowledge. Monaghan et al. (2017) have demonstrated that

variation in exposure alone offers an explanation for differences in the sensitivity to

frequency effects as well as differences in vocabulary size, without taking individual

variation in cognitive skills into account (Monaghan et al., 2017). However, we know

that there are considerable individual differences in cognitive skills and that they affect

not only language processing but also learning (Kidd et al., 2018). Aside from

differences in the quantity and quality of input (Jones & Rowland, 2017), variation in

PSTM, processing speed, general intelligence and vocabulary size have been associated

with individual differences in word learning (Fernald et al., 2006; Gupta & Tisdale,

2009b; Kidd et al., 2018; Marchman & Fernald, 2008; McMurray et al., 2012). In

addition, the experiment presented in Chapter 5 was in line with these findings from

earlier research, indicating beneficial effects of increased vocabulary size on novel word

learning. Furthermore, nonverbal intelligence was suggested to potentially also play a

role in word learning.

A model that describes variation in lexical processing and learning, therefore, needs

to account for such individual differences. The present computational modelling study

aims to do so by simulating variation in cognitive abilities, namely processing speed

and intelligence, as well as quality and quantity of exposure to linguistic input. We

examined the potentially interactive effects of these factors on vocabulary size as well

as processing. Underlying this is the assumption that learners who received the same
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amount of exposure might show differences in vocabulary size, lexical processing, and the

sensitivity to word frequency effects due to internal or cognitive sources of variation in

learning and processing.

Another important and related question that we addressed with the present study is

why vocabulary size is such a good predictor of word learning (see e.g. Fernald et al., 2006,

Chapter 5). Individuals with large vocabularies are probably very proficient word learners

and this is likely to be reflected in a novel word learning study or across development. This

might seem trivial at first but the interesting question is what mechanisms underlie such

variation in performance, what makes some individuals good word learners in the first

place. Is it just early exposure and variation therein that leads to differences in vocabulary

size, which in turn affect all subsequent word learning? Alternatively, and more likely,

more complex interactions between cognitive skills and environmental factors are at play,

causing variation in word learning and vocabulary size, which persists beyond childhood

and thus also affects language processing skills across adulthood. The latter would imply

that vocabulary size is such a good predictor of word learning because it captures a

variety of underlying factors, both environmental and cognitive. Further, computational

and behavioural studies suggest that additional distinct benefits may result from increased

vocabulary size (Steyvers & Tenenbaum, 2005; Sailor, 2013). Thus in addition to cognitive

and environmental causal factors, mechanisms dependent on increased vocabulary size

might have beneficial consequences for language learning and processing.

The present computational modelling study aimed to examine the causes and

consequences of variation in vocabulary learning and size. In a parallel distributed

processing model that learns semantic and phonological representations of spoken

English words and mappings between these representations, we simulated individual

differences in general processing speed and processing resources as well as in quality and

quantity of exposure to linguistic input. Within this model, we tested the role of each

factor independently and their interactions in causing variation in vocabulary size. We

then examined their broader consequences for language processing, specifically effects on

the structure of the emergent lexicon (profile of words acquired and frequency effects),

speed of lexical processing, and rates of novel word learning. The purpose of the model

was to explicitly describe the mechanisms that may underlie the factors suggested to

cause variation in vocabulary size and their consequences for language processing. We

believe it is only through such modelling exercises, in combination with behavioural

studies, that we can isolate the effects of individual factors and gain insights into the

complex interactions between them.

The computational model used in this study was developed from the Parallel

Distributed Processing (PDP) framework (McClelland, Rumelhart, & the PDP
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Research Group, 1986; Rogers & McClelland, 2014). Such models have proved successful

in modelling a broad range of cognitive and developmental phenomena (see Rogers &

McClelland, 2014 for review). These models, sometimes referred to as connectionist

neural networks, consist of multiple layers of non-linear processing units each connected

via weighted connections, which together are able to learn complex mappings between

distributed representations. Such networks are able to learn through applying

error-based learning algorithms (e.g. recurrent backpropagation, Rumelhart, Hinton, &

Williams, 1986) that incrementally make small adjustments to the connection weights

within the network in order for the network’s behaviour to adapt to dynamic constraints

imposed by the learning environment. This leads to the network’s representational

structure, processing, and behaviour being emergent properties of the interaction

between environmental constraints and the network’s computational architecture. Such

a framework is thus well suited to the goals of the current project. It allows the

implementation of variation in initial internal processing constraints (thus offering a

means to model differences in initial cognitive capacities) in addition to variation in

properties of the learning environment (e.g. quality and quantity of linguistic input).

Using distributed phonological and semantic representations, the model is also able to

capture the complex relationships that exist within and between representational

domains that interact to influence learning and processing. We are thus able to

implement limited assumptions regarding the structure of information available in the

learning environment, the incremental learning mechanism that generates sensitivity to

such structure, and the architecture that supports lexical learning and processing, and

then observe the emergent consequences. As a computational model it also allows for

controlled and independent manipulation of both environmental and cognitive

constraints, the emergent consequences of which can then be analysed (e.g. speed of

processing, representational structure, rate of learning) and thus isolated. The degree of

control possible in computational modelling is unique to this technique and therefore

complements any findings from behavioural studies, where the amount of control over or

means of measuring, for example amount of language exposure, are rather restricted.

Computational modelling is an excellent method for the investigation of a process as

complex as word learning, variation in which is likely to be multiply-determined. In

addition, it provides an excellent means of getting a clearer picture of the relationships

between the various factors and skills involved and their effects on learning and

processing.

Within this study we model the learning and processing of spoken English words.

The model architecture supports learning and processing of phonological and semantic

representations of words and the mappings between such representations. It is derived
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from Harm and Seidenberg’s (2004) implementation of the triangle model of reading,

used previously to simulate word learning and processing as an interaction between

phonology, semantics, and orthography. They demonstrated the model’s ability to

reflect word frequency effects on learning and processing. In addition, Monaghan and

colleagues (2017) have reported that the same model shows effects of exposure on

vocabulary size and the size of the frequency x skill interaction, as indicated above.

Thus, an architecture similar to that used in this study has been applied to simulate a

variety of behavioural phenomena including variation in word learning and processing,

and importantly also the size of the word frequency effect. It was therefore deemed well

suited for the endeavour of the present study, namely the modelling of individual

differences in vocabulary learning and size as a function of variation in internal

(cognitive) and external (environmental) factors.

We decided to adopt the pre-literate version of the model by Harm and Seidenberg

(2004; see also Monaghan et al., 2017), focusing on the mapping between phonology and

semantics and, thus, simulating spoken word comprehension and production. The reason

was first of all that we intended to complement the word learning study presented in

Chapter 5, which did not include the orthographic but only spoken forms of the novel

words. Secondly, we intended to keep this first attempt at modelling individual variation

in word learning as a function of differences in cognitive abilities and input as simple

as possible, thus reducing complexity and the time needed for the model to be trained.

Additionally, we did not have a reason to believe that the conclusions from this pre-

literate version of the model would differ from those based on a model that, in addition

to the mappings between phonology and semantics, learns to map onto orthographic

representations.

In summary, this study describes simulations in a parallel distributed processing

model of spoken English, which learns mappings between phonological and semantic

representations. Within the neural network model we manipulated the processing speed

and processing resources of the network, and in addition the quality (number of types)

and quantity (number of tokens) of linguistic input to which it is exposed in the learning

environment. Networks were analysed to examine the consequences of these

manipulations (including interactions) for the size of vocabulary acquired, the rate of

vocabulary development, the structure of the emergent lexicon (frequency, semantic

density, and phonological density of acquired words), the speed of language processing

(including effects of frequency, phonological density, and semantic density), and novel

word learning.

This work thus aimed to offer an explicit description of mechanisms likely to cause

variation in vocabulary size, and an explicit description of how such mechanisms generate
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further consequences for language processing and learning. Are, for example, multiple

mechanisms – in addition to exposure – responsible for generating the observed frequency

by skill interactions?

Further, we wished to use such simulations to explore what has been suggested to

be distinct consequences of variation in vocabulary size. As described above, variation

in language processing performance and in the sensitivity to word frequency effects have

been related to differences in vocabulary size. Modelling word learning as a function

of variation in different environmental and cognitive factors allows us to examine the

consequences of variation in vocabulary size on processing while controlling for the factors

potentially underlying this variation in vocabulary size. In this way, we built on studies

as the ones presented in Chapters 2 to 4 in this dissertation, aiming at providing insights

into the relationship between factors leading to variation in vocabulary size and language

processing performance (see also Fernald et al., 2006). An important question was whether

increased vocabulary size has beneficial effects on processing, which go beyond effects that

can be attributed to potential causes for this greater vocabulary size. Our investigation

examines the relationships between vocabulary size and language processing, vocabulary

size and rate of vocabulary development, and vocabulary size and novel word learning

while taking into account environmental and cognitive factors and underlying mechanisms

that cause variation in vocabulary size.

In a nutshell, two questions guided the present modelling investigation: (1) What

are the causes for variation in vocabulary size?, and (2) What are the consequences of

variation in vocabulary size? In our model, we manipulated processing speed, processing

resources, amount of exposure, and diversity of the input (Corpus Size), and examined

how they relate to variation in the number of words learned by the network (causes). In

addition, we investigated the effects of these manipulations and of emergent differences

in vocabulary size on language processing performance, i.e. speed of processing and the

frequency x skill interaction (consequences). Finally, the model was tested on a short

novel word learning task, and again the effects of the manipulated environmental and

cognitive factors as well as of variation in emergent vocabulary size were examined.

Methods

Architecture

The architecture of the model was based on the parallel distributed processing (PDP)

framework (see McClelland et al., 1986; Rogers & McClelland, 2014), with the network

consisting of multiple layers of nonlinear processing units connected via weighted
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connections. The architecture of our model replicates that of the pre-literate network

used within Harm and Seidenberg (2004), consisting of connected phonological and

semantic layers to simulate spoken language processing.

The network comprised two visible layers; a phonological layer consisting of 200 units,

which simulated processing of phonological information, and a semantic layer consisting of

2446 units, which simulated processing of semantic information (see Figure 6.1). A set of

50 clean-up units was fully connected to and from the phonological layer, while a further

set of 50 clean-up units was fully connected to and from the semantic layer. Hence, the

model was able to develop stable phonological and semantic representations for words.

Activation could pass between semantic and phonological layers via two distinct routes.

The ‘production’ route allowed activation to pass from semantics to phonology, in which

the semantic layer was fully connected in a forward direction to a hidden layer consisting

of 100 or 300 units (see Simulations section below), which in turn was fully connected in

a forward direction to the phonological layer. A separate ‘comprehension’ route allowed

activation to pass in the opposite direction from the phonological layer to the semantic

layer, via a hidden layer consisting of 100 or 300 units. Phonological layer units were fully

connected in a forward direction to units in the hidden layer, which in turn were fully

connected in a forward direction to units in the semantic layer. The numbers of units

in the hidden and clean-up unit layers were determined by pilot studies with the aim of

identifying the minimum number of units needed to form semantics-phonology mappings

for approximately 5000 words.

Figure 6.1: Architecture of the model used in the current simulations.
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As in Harm and Seidenberg (2004) and Monaghan et al. (2017), the model utilizes

time averaged input units (Plaut, McClelland, Seidenberg, & Patterson, 1996). In contrast

to discrete time units, where a unit’s activation from input is computed instantaneously

(i.e. no state transitions), the activation of continuous time units ramps up over time

(i.e. smooth/dynamic state transitions), with the speed of this process being determined

by an integration constant (σ: see Equation 1 below). Hence, activation passes gradually

from one layer to the next. In addition, using time averaged input units implements the

assumption that the network is under pressure to produce the correct output rapidly and

that greater activation leads to faster responses (Harm & Seidenberg, 2004; Plaut et al.,

1996).

Representations

Phonological forms of monosyllabic words were presented at the phonological layer. Just

as in Monaghan et al.’s (2017) work, the phonological layer was composed of 8 phoneme

slots and each slot comprised a set of 25 units each representing distinct phonetic features

(see also Harm & Seidenberg, 2004). A unique binary phonetic feature vector represented

each of 40 distinct phonemes. Thus, the phonological representations were comprised of

200 unit binary feature vectors. We used slot-based representations, with three slots for

the onset, one slot for the vowel, and four slots for the coda of a syllable. In the resulting

CCCVCCCC syllable template, the word pen would be presented as follows: p e n

. Hence, onset and coda consonants were presented in slots adjacent to the vowel.

The vowel slot comprised a set of features to represent both short and long vowels as well

as diphthongs, with each unit representing the presence or absence of a single phonetic

feature.

The semantic layer was composed of 2446 units. We used the same binary semantic

representations as those described in Harm and Seidenberg (2004) and Monaghan et

al. (2017), which were retrieved from Wordnet (Miller, Beckwith, Fellbaum, Gross, &

Miller, 1990). Hence, each word’s semantic representation was an activated subset of

2446 semantic features, where the presence of a feature was indicated by activity 1.

The corpus comprised a total of 5641 monosyllabic words in English. No homophones

were included in the training corpus and word frequencies were retrieved from the CELEX

database (R. Baayen, Piepenbrock, & Van Rijn, 1993) and log-transformed. After a

number of pilot studies, we decided to use a word frequency range of 0.1 to 1.0. Thus, all

words with a log-transformed word frequency between 0.05 and 0.1 were assigned a word

frequency of 0.1. In this way, the model was able to learn all words within a reasonable

number of training trials per word conditioned by word frequency.
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Training

For all manipulations (see below), three different versions of the model with distinct

random seeds, thus with different random orderings of training patterns and different

initial random weight matrices, were trained on four different corpora.

The networks were trained to map between phonological and semantic representations

for all words in the training corpus. Four different tasks were used for that purpose, (1)

phonological and (2) semantic retention tasks, used to train the network on maintaining

phonological/semantic representations over time, and (3) phonology to semantics (pho

→ sem) and (4) semantics to phonology (sem → pho) mapping tasks, simulating spoken

word comprehension (pho→ sem) and production (sem→ pho). Each trial lasted a total

of 12 time steps with time in the model represented by the flow of information between

units in the network. For the phonological retention task, a phonological representation

was clamped on the phonological units from time step 0-7. After time step 7 activity

was free to cycle through the network. The target’s phonological representation was

presented to the phonological layer in time steps 9 to 12, and error was back propagated.

For the semantic retention task, the semantic representation of a word was clamped on

the semantic layer for time steps 0-7 and activity in the model was allowed to cycle. In

time steps 9-12 the target’s semantic representation was provided and error was back

propagated.

For the phonology to semantics mapping task (comprehension), the phonological

representation was clamped to the phonological layer for all 12 time steps and for time

steps 9-12 the word’s semantic representation was presented to the semantic layer and

error was back propagated. Finally, in the semantics to phonology mapping task (speech

production), the semantic representation of a word was clamped to the semantic layer of

the model for all 12 time steps. The word’s phonological representation was provided at

time steps 9-12 error was back propagated. As indicated before, the model was trained

using recurrent backpropagation (Rumelhart et al., 1986). For each word, cross-entropy

error was computed between the model’s output and the target representation. Cross-

entropy error 3 is a commonly used cost function for training PDP neural network models,

where the error increases exponentially as the distance between target and model output

increases. A learning rate of 0.2 was used for the entirety of training, which was comprised

of two stages. In training stage 1, the model was trained on a corpus of 2500 or 5000

3For the binary target vectors used in our simulations, cross entropy error is defined as follows:

−
∑

i

logq(x)

Where i represents each unit in the ouput layer. When the target for unit i=1, q(x) is the actual output
for unit i. While in cases where the target for unit i=0, q(x) = 1-actual output for unit i.
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words while in training stage 2, the model was only trained on an additional 250 novel

words. Training stage 2 was not interleaved with training on words from stage 1 in order

to control for language exposure and to limit effects of capacity limitations.4

In both training stages, words were selected pseudo randomly according to their

frequency and then assigned to one of the training tasks. Due to differences in task

complexity in both training stages, the phonological retention task made up 10% of the

training trials, semantic retention task was completed on 10% the trials, on 40% of trials

the model was trained on the mapping between phonology and semantics, and 40% of

trials were the semantics to phonology mapping task (see Harm & Seidenberg, 2004;

Monaghan et al., 2017). Finally, small amounts of noise were applied to input clamps

for the phonological and semantic layer units, simulating noisy visual and auditory input.

The levels of noise applied was the same across all tasks and trials.

Test measures

The model was tested on all four tasks: The (1) phonological and (2) semantic retention

tasks, where the network had to maintain phonological/semantic representations over

time, and the mapping tasks (3) from phonology to semantics (comprehension) and (4)

from semantics to phonology (production). For the retention as well as the mapping

tasks, the phonological or semantic representation of each word was presented to model.

At the end of the 12 time steps of activation, the model’s production at the phonological

or semantic layer was recorded.

As there was less variation in performance on phonological and semantic mapping

tasks (most networks performed at ceiling on this task) our analysis focused on

performance on the comprehension and production tasks. For both of these tasks, we

recorded cross-entropy error (calculated between output layer activity at the end of

training trials and the target representation), accuracy and reaction time (RT). The

network was considered to have accurately generated the correct word if the cosine

distance between the output layer and target representation was lower than the distance

between the output and all other representations in the training corpus. Overall task

accuracy was measured as the proportion of words for which the network ‘accurately’

generated the target representation. From this we derived the number of words known,

i.e. a network’s vocabulary size, at a particular point in time during training (accuracy

4We accept that given an absence of further training on stage 1 words, training on novel words will
ultimately lead to catastrophic interference and thus knowledge of stage 1 words will diminish. This
could be resolved within the current model by interleaving training on both stage 1 and stage 2 words.
However, as this introduces additional variation across manipulations in total stage 2 language exposure
and increases effects of capacity limitations, we avoided such complexity and in the interest of time,
training on stage 2 words only was implemented.
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x corpus size). The model’s RT was measured as the mean time step at which the cosine

distance between output layer activation and target representation first became lower

than the distance to any other representation in the training corpus.

Simulations

Environmental factors

Quality of language exposure

The number of words in the training corpus was varied in order to investigate the influence

of differences in quality of exposure (number of types) on the model’s word learning

performance. We generated corpora of two different sizes, comprising 2500 or 5000 words,

by randomly sampling words from a larger corpus of 5461 words. As indicated above,

a total of four corpora per level were generated and three versions of the model (with

different seeds) were trained on each corpus. This yielded a total of 24 simulations, 12

per corpus size.

Quantity of language exposure

The total amount of language exposure was the same for all networks, with all of them

being trained on a total of 3 million training trials in training stage 1. Hence, the 2500

word corpus was trained for 1200 training trials per word (2500 words x 1200 trials =

3 million training trials in total). The 5000 words corpus completed 600 training trials

per word (5000 words x 600 trials = 3 million training trials in total). Consequently, at

the end of training the number of trials per word (number of tokens per word) differed

between the two levels of corpus size while the total language exposure, i.e. 3 million

training trials, was constant across the corpus sizes. The effect of quantity of language

exposure (number of tokens) on each network’s learning performance was examined by

testing their performance on the words at various time points during training, namely

at intervals of 50 trials per word. In this way, it was possible to examine the networks’

performances at equal levels of exposure per word and at equal levels of overall language

exposure (trials per word x corpus size).

In training stage 2 all networks were trained on the same number for words, i.e. 250

novel words, for 10 trials per word, independent of the corpus size of training stage 1.

This enabled us to examine the effects of previous knowledge or exposure on novel word

learning.
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Cognitive factors

For each level of each cognitive factor manipulated, 3 networks each with different random

seeds were trained on each of two levels of corpus size (2500 vs. 5000). As indicated before,

four different corpora were generated for each of the three corpus size levels. This resulted

in a total of 24 networks per cognitive factor level (3 networks x 2 corpus sizes x 4 corpora).

Processing speed

To simulate variation in processing speed we varied the integration constant (σ). This

parameter determines the rate at which activation of a processing unit within the network

ramps up over time as a function of the unit’s input (see equation 6.1; equation 14 in

Plaut et al., 1996). Within equation 1: xt is the input to the unit at time t, (σ) is the

integration constant, xt−1is the input to the unit at time t-1 and xi is the summed external

input at time t-1 (i.e. the true input received by the unit at time t-1).

xt = (1− σ)xt−1 + σxi (6.1)

Figure 6.2, displays differences in the temporal dynamics of a high processing speed

unit (integration constant = 4 / [number of time steps, i.e. 12] = 0.333) and low processing

speed unit (integration constant = 2 / [number of time steps, i.e. 12] = 0.167). As

indicated by the figure the activation of a unit with a high integration constant is able

to adapt more rapidly to a given input (see Figure 6.2), such a unit is therefore able

to propagate more information through the network within a given period of time, thus

process information at a faster rate. It therefore follows that it is feasible for networks

with increased integration constants to learn more within a fixed period of time.

Relative to a number of previous implementations, which aim to vary processing

speed within PDP networks (e.g. input gain: Kello & Plaut, 2003, multiple

hyper-parameters: McMurray et al., 2012), varying the integration constant has limited

consequences for the computational properties of a network (see Plaut et al., 1996) and

thus offers a more tractable means of isolating the effects of variation in speed of

processing.

General intelligence

In the present model, general intelligence was operationalised by manipulating the

number of hidden units in both the comprehension and production pathways. Baseline

networks possessed 300 units in each hidden layer, while networks with reduced

processing resources contained 100 units per hidden layer. We thus simulate variation in

general intelligence as differences in the processing resources available at processing
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Figure 6.2: The activation over time of a continuous time averaged input unit when
presented with a fixed input (1, 2, or 10) and assigned a high (0.333) or
low (0.167) integration constant (ic).

bottlenecks within the cognitive system. This manipulation within the model aims to

simulate a plausible mechanism that may underlie variation in performance on tasks

designed to capture variation in general intelligence. We do not argue that this is the

only plausible mechanism for simulating variation in general intelligence. Instead we

believe that variation in performance on tasks that aim to measure this cognitive

component are likely driven by variation in multiple underlying cognitive mechanisms,

and thus we argue that our implementation represents one such mechanism.5

The number of units within a hidden layer ultimately determines the complexity of

the mappings a given network is able to learn. However, it is not our assertion that

variation in vocabulary size as described in the literature review above results from

ultimate capacity limitations of individuals’ cognitive architectures. Instead, care has

been taken to ensure that at all networks with reduced processing capacity reported

within this study possess the capacity to learn all mappings learnt by the networks with

increased processing capacity to which they are compared. Instead as previously stated

this manipulation aims to simulate differences in processing, representation, and

behaviour that may result from reduced computational resources at processing

5In pilot simulations, as an alternative mechanism for modelling variation in general intelligence, we
varied the efficiency of information processing by varying the level of noise added to activation as it passed
along connections in the network (similar to Smith, Monaghan, & Huettig, 2014). Pilot simulations were
unable to identify an appropriate level of noise that effected rate of learning without having catastrophic
effects on the total number of mappings the network was able to learn. We do not, however, rule out
such a mechanism as an alternative viable cause of variation in vocabulary size.
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bottlenecks within the cognitive system. We believe variation in the number of hidden

units is appropriate for this role as it generates variation in network properties such as

the size of the representational space into which representations can be projected, thus

the richness of representations, the confusability of items, and sensitivity to systematic

relationships at higher levels of abstraction; all of which have additional consequences

for processing and learning.

Summary

In summary, different networks were trained on corpora of either 2500 or 5000 words.

In addition to variation in corpus size, the networks varied with regards to the number

of hidden units (100 vs. 300), processing speed (2 vs. 4, with 4 being faster), with

the baseline parameter settings being 300 hidden units and a speed of 4. In this way, we

obtained three different types of networks, namely baseline networks, those with decreased

hidden units, and those with decreased processing speed (see Table 6.1).6

Table 6.1: Summary of networks and manipulations.

Type/

manipulation

Corpus size Hidden units Processing

speed

Baseline 2500 300 4

Hidden units 2500 100 4

Speed 2500 300 2

Baseline 5000 300 4

Hidden units 5000 100 4

Speed 5000 300 2

Analyses and Results

Before turning to the analyses we ran to address the research questions underlying the

present study, the product of the above-described training over a total of 3 million training

trials is presented. Figure 6.3 displays the development of cross entropy error for the

production and comprehension tasks across all training trials. As indicated by the figure,

production and comprehension error reduces over time, reflecting increasing of knowledge

6Networks either diverged in the number of hidden units or processing speed relative to baseline
networks, we did not manipulate both cognitive factors simultaneously, hence we do not report
interactions between cognitive factors.
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of the cross-modal mappings over time, with all networks converging on similar levels of

performance at the end of training.
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Figure 6.3: The development of the mean cross entropy error for the comprehension and
production tasks over the total number of training trials as a function of
corpus size and number of hidden units (top panels) as well as corpus size and
processing speed (bottom panels). Standard errors are indicated in the plot.

Figure 6.4 displays the development of the number of known words, i.e. vocabulary

size, of the networks exposed to 2500 and 5000 words over the total number of training

trials for both comprehension and production. The learning curve is asymptotic with the

number of words in the corpus determining the maximum number of words that can be

acquired by each of the networks.

As indicated by Figures 6.3 and 6.4 the rate of increase in vocabulary size and

decrease in task error for production exceeds that of comprehension. This is due to

differences in the complexity of the mapping tasks; it is more difficult for networks to

generate the sparsely distributed semantic patterns than it is to generate the componential
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Figure 6.4: The development of the mean comprehension and production vocabulary size
(and standard error) over the total number of training trials as a function
of corpus size and number of hidden units (top panels), and corpus size and
processing speed (bottom panels).

phonological patterns.7 Our analysis focuses on behaviour common to both production

and comprehension measures. Within this study we do not aim to draw conclusions

generated by differences in task complexity between production and comprehension.

All further analyses were run on two time points during training namely after

250,000 and 500,000 training trials. This period was selected as it occurs before the

7Behavioural data suggest the opposite, namely that production lags behind comprehension in
vocabulary learning and size. It might be possible that the model is doing a more difficult task by being
required to produce the full semantic code, which is unlikely to be necessary in an average comprehension
task. Alternatively, production may be better than comprehension performance because the model might
be doing an easier production task than humans as the full semantic code is presented as input and does
not need to be generated by other components of cognition.
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networks’ learning performance had reached asymptote and before capacity limitations

greatly influence behaviour (Figure 6.4 demonstrates that vocabulary size was able to

increase substantially beyond levels recorded at 500k training trials given further

training). Further, selecting this period ensured that we analysed time points during

training, at which the networks had already acquired substantial knowledge of their

linguistic environment, and hence results do not reflect behaviour specific to early stages

of language development. Thus, we examine networks at a stage that is likely to reflect

the behaviour of adults, which has been the focus of the experiments presented in the

previous chapters of this dissertation.

Two broad questions guided this study and the analyses of the data generated by

the computational model. First of all, we were interested in the causes of variation

in vocabulary size and secondly, we aimed at examining consequences of variation in

vocabulary size. The presentation of the analyses and results reflects these questions

and is structured accordingly, first addressing the causes of variation in vocabulary size

followed by sections examining potential consequences.

All analyses were run on a total of 72 networks that had been exposed to corpora of

2500 or 5000 words in total and we looked at two different time points (250k and 500k

training trials). Hence, the total amount of exposure (i.e. training trials) was equated

across networks with different corpus sizes while that meant that the number of exposures

per word differed depending on the corpus size. The networks that saw 5000 words in total

had on average 50 exposures per word in 250k training trials and 100 exposures per word

in 500k training trials, whereas the networks that were exposed to 2500 words in total

had seen each word on average 100 times in 250k training trials and 200 times in 500k

training trials. As indicated before, in addition to variation in corpus size, the networks

varied with regards to the number of hidden units (100 vs. 300) processing speed (2 vs.

4, with 4 being faster), with the baseline parameter settings being 300 hidden units and

a speed of 4.

All analyses were run using the lmer function from the lme4 package (Bates et al.,

2015) in R (version 3.4.1; R Core Team, 2017). All models included an intercept and

fixed effects for the factors Training Trials per word, Corpus Size, Hidden Units, and

Speed. In addition, we modelled the two-way interactions between Training Trials per

Word and all other factors, and between Corpus Size and all other variables. All models

included random intercepts for each network and for the four different corpora per corpus

size. All categorical predictors (Corpus Size, Hidden Units, Speed) were dummy coded

and the lower level was in each case used as the reference level (2500 words corpus, 100

hidden units, 2 for processing speed). The continuous predictors, i.e. vocabulary size,
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density, and word frequency, used in some of the analyses, were all z -transformed using

the scale function in R.

Causes of variation in vocabulary learning and size

As indicated before, the model’s performance error was measured as the cosine difference

between the output layer and all phonological or semantic representations in the corpus.

Overall accuracy was measured as the proportion of words for which the cosine distance

between the target and the model’s actual production was closest relative to all other

words in the corpus. The measure of interest for the present analyses was the number of

words acquired by the model, i.e. its vocabulary size, which was derived from accuracy

(corpus size x accuracy rate).

For the purpose of examining the causes for individual differences in vocabulary, we

ran network level analyses examining the number of words known for comprehension as

well as for production at the two different points in time. The analyses on comprehension

vocabulary size showed significant effects of Trials per Word (β = 0.20, t = 9.59, p <

.001), Corpus Size (β = 0.90, t = 17.14, p < .001), Hidden Units (β = 0.68, t = 25.89,

p < .001), and Speed (β = 1.08, t = 41.21, p < .001). Hence, more exposures per word

were associated with larger vocabularies and networks that had been exposed to the larger

corpus or those with more processing capacities or higher processing speed knew more

words after 250k or 500k training trials.

In addition, all two-way interactions were significant. The interaction between

Training Trials per Word and Corpus Size (β = 1.15, t = 67.83, p < .001) indicated

stronger effects of the number of exposures per word for the larger corpus size. With

more exposures per word, the networks exposed to 5000 words learned more words than

those exposed to 2500 words. Thus, networks with an increased input quality (more

diverse input) but not increased input quantity (not more exposure in total) benefitted

more from getting more exposures per word. The learning rate was higher for networks

that were exposed to 5000 vs. 2500 words. Potential reasons for this are further

examined below. Furthermore, Training Trials per Word showed significant interactions

with Hidden Units (β = 0.15, t = 8.81, p < .001) and Speed (β = 0.20, t = 11.82, p <

.001), showing that the effects of both manipulations were stronger with increasing

training. In this early phase of learning, the benefits of having greater processing

capacities and higher processing speed increased with increased exposures per words

while Figure 6.4 shows that the effects of processing capacity and speed on vocabulary

size reduce towards the end of training. Hence, networks with greater processing

capacity and higher processing speed showed higher learning rates but no increase in

overall capacity. Finally, Corpus Size interacted significantly with both Hidden Units (β



6 Variation in vocabulary size: A computational model 185

= 0.80, t = 19.91, p < .001) and Speed (β = 1.11, t = 27.45, p < .001). This suggests

that the effects of Hidden Units and Speed were stronger for the networks exposed to

5000 words as compared to those that are faced with the task of learning a smaller

number of words (2500 words). The benefits of having greater processing capacity (more

hidden units) and higher processing speed were greater for networks that were exposed

to the larger corpus (see Appendix A).

The analyses on the networks’ production vocabulary showed exactly the same effects

(see Table 6.2 for estimates, t-, and p-values).

Table 6.2: The estimates, t-, and p-values for the fixed effects in the mixed-effects analyses
on production vocabulary size after 250k and 500k training trials. For the
dummy coded binary variables, the reference level was in all cases the smaller
value and the comparison level is indicated in brackets.

Fixed effect Estimate t-value p-value

Intercept -1.64 -51.22 <.001

Corpus (5000) 1.56 30.26 <.001

Hidden Units (300) 0.19 7.79 <.001

Speed (4) 0.91 37.32 <.001

Training Trials per Word 0.19 7.61 <.001

Training Trials:Corpus 1.0 49.37 <.001

Training Trials:Hidden Units 0.12 6.02 <.001

Training Trials:Speed 0.21 10.41 <.001

Corpus:Hidden Units 0.58 14.83 <.001

Corpus:Speed 0.83 20.96 <.001

Characteristics of the known words8

Corpus measures that could be extracted to describe the words learned by the model were

average word frequency of the words known by each of the networks as well as phonological

and semantic density. Phonological and semantic density of each word was measured as

the number of words within a hamming distance of 10 from the target. Hence, local

phonological or semantic density was indicated by the number of phonological/semantic

representations that differed in up to 10 units from the target representation.

8We initially intended to run mixed-effects models with error as dependent variable, predicted by
the different cognitive and environmental factors as well as the lexical characteristics word frequency
and semantic as well as phonological density. These logistic models failed to converge. Therefore, we
decided that for the present purposes it is sufficient to provide some insights into the characteristics of
the networks’ lexica by examining the mean word frequency and phonological and semantic densities of
the known words.
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Frequency

We further examined potential reasons for why networks that are exposed to a larger

corpus show an increased learning rate, hence, why they benefit more from an increase

in the number of exposures per word. For this purpose, we looked at the average word

frequency of the words known by each network. The idea was that the larger corpus might

contain a larger number of easier-to-learn high-frequency words, which might initially

increase the learning rate of those networks that are exposed to the larger corpus. The

mean frequency values for both corpus sizes confirmed this.

At same numbers of total training trials, the mean frequencies were higher for the

networks exposed to 5000 words than for those exposed to 2500 words (see Table 6.3 below

and Appendix A for Figures). Thus, the networks that were exposed to a larger corpus

were probably exposed to a larger number of high-frequency words, which were easier

to learn. Therefore, getting more exposures per word was particularly beneficial for the

networks exposed to 5000 words as they were, hence, able to learn the larger number of

high-frequency words whereas the networks exposed to 2500 words had fewer of those easy

words in their input. T-tests confirmed a significant difference in mean word frequencies

between networks that had been exposed to 2500 vs. 5000 words during training for both

time points of interest and for both comprehension (250k trials: t(32373) = -35.62, p <

.001; 500k trials: t(45541) = -35.94, p < .001) and production (250k trials: t(44370) =

-34.86, p < .001; 500k trials: t(58725) = -30.09, p < .001; see Appendix A for Figures).

Furthermore, the differences in mean word frequency of the known words between

50 and 100 trials per word for the networks trained on the larger corpus (comprehension:

t(47308) = 44.74; p < .001; production: t(64048) = 40.85, p < .001) and between 100 and

200 trials per word for the networks trained on the 2500 words corpus (comprehension:

t(33541) = 32.46, p < .001; production: t(43729, p < .001) were statistically significant.

Hence, overall mean word frequency reduced significantly over training confirming the

impression that high-frequency words are learned first and low-frequency words later in

training.
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Table 6.3: Mean word frequency for comprehension and production as a function of corpus
size and number of training trials per word.

Trials per Word Corpus Comprehension Production

Mean SD Mean SD

50 5000 0.64 0.29 0.52 0.31

100 2500 0.52 0.30 0.42 0.31

100 5000 0.52 0.31 0.43 0.31

200 2500 0.42 0.31 0.35 0.30

In addition, we also examined whether the mean word frequencies (and mean

semantic and phonological densities) of the words known by each network reveal

anything about the origins of the advantages for networks with higher processing

capacities or speed.

Interestingly, for both comprehension and production we observed that the mean

word frequency of the known words was lower for the networks with greater processing

capacities (300 hidden units) and for those with higher processing speed (see Tables 6.4

and 6.5). This suggests that the networks that were intended to simulate more intelligent

or faster processing word learners learned a greater number of low-frequency words than

the networks with reduced processing capacities or speed. Note that these low-frequency

words are assumed to be more difficult to learn, only because they are low in frequency;

no other lexical characteristics were manipulated explicitly to render these words more

difficult to learn.

T-tests confirmed significant differences between the mean word frequencies for

networks with 300 vs. 100 hidden units (comprehension: t(138220) = 63.21, p < .001;

production: t(218160) = 26.25, p < .001) and for those with higher vs. lower processing

speed (comprehension: t(109870) = 99.74, p < .001; production: t(171850) = 81.26, p <

.001).9

9For these analyses, data was collapsed across both corpus sizes and both time points of interest.
Analysing data for the networks exposed to 2500 vs. 5000 words and for time points 250k vs. 500k trials
separately yields the same results, with all comparisons between 100 vs. 300 hidden units and speed 2
vs. 4 being significant.
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Table 6.4: Mean word frequency for comprehension and production as a function of
number of hidden units and number of training trials per word.

Corpus Trials per Hidden Comprehension Production

Word Units Mean SD Mean SD

2500 100 100 0.62 0.29 0.45 0.31

2500 100 300 0.52 0.30 0.42 0.31

2500 200 100 0.51 0.31 0.37 0.31

2500 200 300 0.42 0.31 0.35 0.30

5000 50 100 0.75 0.27 0.56 0.31

5000 50 300 0.64 0.29 0.52 0.31

5000 100 100 0.62 0.30 0.47 0.32

5000 100 300 0.52 0.31 0.43 0.31

Table 6.5: Mean word frequency for comprehension and production as a function of
processing speed and number of training trials per word.

Corpus Trials per Speed Comprehension Production

Word Mean SD Mean SD

2500 100 2 0.70 0.27 0.55 0.31

2500 100 4 0.52 0.30 0.42 0.31

2500 200 2 0.58 0.29 0.46 0.31

2500 200 4 0.42 0.31 0.35 0.30

5000 50 2 0.81 0.24 0.64 0.30

5000 50 4 0.64 0.29 0.52 0.31

5000 100 2 0.70 0.28 0.55 0.31

5000 100 4 0.52 0.31 0.43 0.31

Phonological density

Comprehension. At the same stages of training (i.e. 250k trials and 500k trials), the

phonological density as measured by the mean number of words within a hamming

distance of 10 from each word, was larger in the networks exposed to 5000 as compared

to those exposed to 2500 words. As would be expected, more diverse input, i.e. a greater

number of different words, leads to denser phonological networks in the vocabularies

acquired by the model. This was confirmed by a t-test comparing the mean phonological
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density between the two corpus sizes (t (81000) = -178.84, p < .001). Furthermore,

mean phonological density reduced over training. Hence, with increasing exposure (i.e.

training trials per word), the words learned by the networks exposed to both corpus sizes

had on average significantly sparser phonological neighbourhoods (2500 words: t(32738)

= 5.84, p < .001; 5000 words: t(45139) = 7.35, p < .001). Just as for word frequency,

this confirms the idea that words from denser neighbourhoods are easier to learn and

are, thus, learned first before words from less dense neighbourhoods are acquired.

The phonological density of the words known by the networks at the two different

time points, also differed as a function of number of hidden units (t (133920) = 7.38, p <

.001) and processing speed (t (102910) = -2.86, p = .004). The vocabularies of networks

with greater numbers of hidden units and higher processing speed were phonologically

less dense; hence, the number of words within a hamming distance of 10 from each known

word was overall smaller for networks with 300 vs. 100 hidden units and for faster vs.

slower networks.

Production. The relationship between corpus size and phonological density was the

same for production as for comprehension, with the vocabularies known by the networks

that received greater input (5000 words corpus) being phonologically more dense than

the words known by the networks exposed to 2500 words (t (109690) = -208.15, p <

.001). Again, just as for comprehension, phonological neighbourhood density reduced

significantly over training (2500 words: t(43992) = 3.92, p < .001; 5000 words: t(62231),

p < .001).

The number of hidden units did not have an effect on phonological density in the

production vocabularies, although networks with 300 hidden units show numerically

smaller phonological density (t (218300) = -0.07, p = .94). Finally, the phonological

density of the vocabularies known by the faster networks was smaller than the density of

the words known by the slower networks. Hence, networks with faster processing speed

learned more words with more sparse neighbourhoods, i.e. with fewer words within a

hamming distance of 10 (t (168510) = 9.28, p < .001).
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Table 6.6: Mean number of words within a hamming distance of 10 of the phonological
representations. Mean phonological density of all known words depending on
Corpus Size.

Trials per Word Corpus Comprehension Production

Mean SD Mean SD

50 5000 752.57 414.70 738.35 403.68

100 2500 372.12 204.40 365.32 199.74

100 5000 725.67 405.74 718.98 396.52

200 2500 359.60 200.27 358.13 196.42

Table 6.7: Mean number of words within a hamming distance of 10 of the phonological
representations. Mean phonological density of all known words depending on
number of Hidden Units.

Corpus Trials per Hidden Comprehension Production

Word Units Mean SD Mean SD

2500 100 100 388.73 207.76 369.48 200.33

2500 100 300 372.12 204.40 365.32 199.74

2500 200 100 374.85 204.09 360.02 197.54

2500 200 300 359.60 200.27 358.13 196.42

5000 50 100 769.58 414.50 746.19 407.18

5000 50 300 752.57 414.70 738.35 403.86

5000 100 100 762.53 415.87 726.76 400.13

5000 100 300 725.67 405.74 718.98 396.52
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Table 6.8: Mean number of words within a hamming distance of 10 of the phonological
representations. Mean phonological density of all known words depending on
Processing Speed.

Corpus Trials per Speed Comprehension Production

Word Mean SD Mean SD

2500 100 2 383.05 206.83 379.15 203.87

2500 100 4 372.12 204.40 365.32 199.74

2500 200 2 375.27 206.10 396.35 201.01

2500 200 4 359.60 200.27 358.13 196.42

5000 50 2 723.61 402.58 756.79 409.01

5000 50 4 752.57 414.70 738.35 403.86

5000 100 2 743.82 413.30 741.17 405.05

5000 100 4 725.67 405.74 718.98 396.52

Semantic density

Comprehension. Just as for phonological density, the semantic density of the vocabularies

learned by the different networks varied as a function of corpus size. Just as in the case

of phonological density, a word’s semantic density was measured as the mean number of

words within a hamming distance of 10. The networks exposed to 5000 words acquired

semantically denser vocabularies than those exposed to 2500 words during training (t

(81028) = -123.56, p < .001). In the vocabularies of the networks exposed to 5000

words, semantic density did not differ significantly as a function of Training Trials per

Word (t(45018) = 0.14, p = .89 ), whereas the semantic density of the words known

by networks exposed to the smaller corpus reduced significantly with increasing training

per word (t(32758) = 3.95, p < .001). Hence, only for the small corpus, higher number

of trials per word were associated with reduced semantic density, again suggesting that

words with semantically denser neighbourhoods are learned first, supposedly because they

are easier to learn, followed by words from semantically less dense neighbourhoods.

The mean number of words known within a hamming distance of 10 of each target

word was larger for networks with 300 vs. 100 hidden units (t (134890) = -5.71, p < .001).

Hence, the semantic density of the words known was larger for networks with greater

processing capacities. Finally, the semantic density of the comprehension vocabulary was

overall smaller for faster processors (t (100970) = -4.21, p < .001 ).
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Production. For production, the relationship between semantic density and corpus

size was the same as for comprehension, with a larger corpus size being associated with

semantically denser vocabularies learned by the model (t (110070) = -147.66, p < .001).

In addition, the mean semantic density of the known words was lower with increasing

training trials per word; but this was significant only for networks exposed to the 5000

words corpus (t(63414) = 3.01, p = .003), and not for those exposed to the smaller corpus

(t(44266) = 1.21, p = .23). As opposed to comprehension, the production vocabularies

showed semantically less dense vocabularies for networks with 300 vs. 100 hidden units.

The difference was statistically significant for the networks trained on the 5000 words

corpus (t (127640) = 4.32, p < .001), and marginally significant for the networks trained

on the smaller corpus (t (90250) = 1.94, p = .06).

Finally, the number of words within a hamming distance of 10 from each target did

not differ between faster and slower processors for networks trained on 5000 words (t

(99757) = -1.23, p = .22) and those trained on 2500 words (t (68370) = -0.01, p = .99).

Table 6.9: Mean word frequency for comprehension and production as a function of corpus
size and number of training trials per word.

Trials per Word Corpus Comprehension Production

Mean SD Mean SD

50 5000 1183.85 965.13 1179.44 927.41

100 2500 598.35 474.55 571.13 460.70

100 5000 1182.67 940.51 1158.25 915.0

200 2500 578.66 465.44 565.99 458.63
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Table 6.10: Mean word frequency for comprehension and production as a function of
number of hidden units and number of training trials per word.

Corpus Trials per Hidden Comprehension Production

Word Units Mean SD Mean SD

2500 100 100 591.90 484.58 579.35 463.45

2500 100 300 598.35 474.55 571.13 460.70

2500 200 100 591.78 474.0 570.15 459.87

2500 200 300 578.66 465.44 565.99 458.63

5000 50 100 1133.69 977.29 1198.81 935.51

5000 50 300 1183.85 965.13 1179.44 927.41

5000 100 100 1172.74 960.76 1182.12 922.42

5000 100 300 1182.67 940.51 1158.25 915.0

Table 6.11: Mean word frequency for comprehension and production as a function of
processing speed and number of training trials per word.

Corpus Trials per Speed Comprehension Production

Word Mean SD Mean SD

2500 100 2 602.69 490.63 572.41 470.19

2500 100 4 598.35 474.55 571.13 460.70

2500 200 2 602.60 479.33 564.94 463.94

2500 200 4 578.66 465.44 565.99 458.63

5000 50 2 1106.69 979.04 1161.34 956.51

5000 50 4 1183.85 965.13 1179.44 927.41

5000 100 2 1204.35 976.44 1159.57 935.16

5000 100 4 1182.67 940.51 1158.25 915.0

Consequences of variation in vocabulary learning and size

To get insights into the consequences of variation in vocabulary size, we conducted two

different analyses. First of all, we examined the same time points as described above and

looked at the networks’ comprehension and production RTs and the interactions between

word frequency effects and skill, i.e. Hidden Units, Speed, and Vocabulary Size. Secondly,

we examined novel word learning performance of the networks described above. All results

are briefly summarised in two tables at the end of the Results section.
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Reaction times

Reaction times (RTs) are assumed to be an adequate measure of the knowledge of words

and the strength of the representations. As indicated before, the calculation of RTs

was closely related to task error (see Figure 6.3). The RT measure was derived by first

calculating at each time step within the test trial (comprehension or production trial)

the cosine distance between the output layer (semantic layer for comprehension trials,

phonological layer for production trials) and all other word’s representations in the corpus.

The production or comprehension RT was the time step at which the distance between

the model’s output and the target was lowest relative to all other representations in the

corpus.

The interaction between word frequency effects and skill were of particular interest.

Previous studies have shown weaker frequency effects for individuals or networks with

larger vocabularies (i.e. greater linguistic skills) and have proposed that this is a result

of stronger or more entrenched representations in high-vocabulary individuals, which are

less affected by lexical characteristics such as word frequency (Brysbaert et al., 2016a;

Diependaele et al., 2013).

For the purpose of further examining this observation and potential underlying

mechanisms, we analysed the words that all networks had learned by the end of 250k

training trials (this ensured the complexity of the mapping tasks was equated across

manipulations within the model). For these items, we analysed all networks’ RTs at

250k training trials and at 500k training trials, again separately for comprehension and

production. The first mixed-effects models included the predictors Corpus Size, Hidden

Units, and Speed and their interactions, just as before, and in addition to that Word

Frequency, Semantic Density, and Phonological Density. The latter were z -transformed

using the scale function in R, and all two-way interactions between these word-level

characteristics and the network features Corpus Size, Hidden Units, and Speed were

included. In addition to the random intercepts for Network and Corpus, we included a

random intercept for Word. Thus, in the first analyses we included those factors as

predictors, which have been shown to cause variation in vocabulary size (see previous

section). In a second set of analyses, we included Vocabulary Size as continuous,

z -transformed predictor in addition to those other factors to examine whether

Vocabulary Size captures any variance in RTs even when closely related factors (such as

Hidden Units and Speed) are included.

Comprehension. The first analyses showed significant effects of Corpus Size (β = 0.84,

t = 9.48, p < .001), Training Trials per Word (β = -0.31, t = -10.19, p < .001), Hidden

Units (β = -0.14, t = -3.49, p < .001), and Speed (β = -0.74, t = -17.95, p < .001) on



6 Variation in vocabulary size: A computational model 195

comprehension RTs. Networks trained on 5000 words had slower RTs than those trained

on 2500 words. Furthermore, increased training per word, greater processing capacity

and higher processing speed were associated with faster RTs. In addition, networks were

faster at comprehending high-frequency words than words with lower frequencies (β =

-0.26, t = -4.90, p < .001), and showed faster RTs with increasing phonological density

(β = -0.39, t = -7.35, p < .001) and semantic density (β = -0.12, t = -2.19, p = .03).

Additionally, some interactions were significant predictors of comprehension RTs.

The interactions between Corpus Size and Hidden Units (β = -0.25, t = -3.94, p < .001)

and between Corpus Size and Speed (β = -0.44, t = -6.93, p < .001) indicated that the

effects of Hidden Units and Speed differed were stronger for the networks trained on the

5000 vs. 2500 words corpus. Furthermore, the Trials per Word effect was stronger for the

5000 vs. 2500 words corpus (β = -0.51, t = -10.37, p < .001). Training Trials per Word

also showed significant interactions with Speed (β = 0.13, t = 5.95, p < .001), Semantic (β

= 0.13, t = 5.95, p < .001), and Phonological Density (β = 0.13, t = 5.95, p < .001). The

Trials per Word effect was stronger for the slower than for the faster networks, indicating

that increased training was generally beneficial but even more so for networks with reduced

processing speed. Besides that, the Training Trials per Word effect was stronger for the

words with lower Phonological and Semantic densities. Hence, for the words that are

presumably more difficult to learn (those from more sparse neighbourhoods), additional

training was particularly beneficial for the creation of strong representations that are

fast to be accessed. Additionally, significant interactions were found between Semantic

Density and Speed (β = 0.27, t = 15.31, p < .001), Semantic Density and Hidden Units

(β = 0.06, t = 3.30, p < .001), and between Phonological Density and Speed (β = 0.12, t

= 6.40, p < .001). The beneficial effects of high semantic density on comprehension RTs

were stronger for networks with fewer hidden units and lower processing speed. Hence,

networks with processing advantages due to higher processing capacity or speed benefitted

less from high semantic density. The same relationship holds for Phonological Density

and Speed.

The interactions we were most interested in are the interactions between Word

Frequency and different parameters determining what might be called skill, namely the

causes for variation in vocabulary size Corpus Size, Training Trials per word, Hidden

Units and Speed.10 The Word Frequency effect was weaker for the networks trained on

the 5000 words corpus (β = 0.13, t = 5.95, p < .001), as well as for those with higher

numbers of Hidden Units (β = 0.04, t = 2.15, p = .03) and higher Speed (β = 0.05, t =

2.90, p = .004). In addition, Word Frequency effects decreased with an increase in the

10See Appendix C for effects plots of all Frequency x Skill interactions for this analysis of comprehension
RTs. All plots were created based on data extracted using the effects package (version 4.0.0; Fox et al.,
2003) in R.
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number of trials per word (β = 0.07, t = 6.31, p < .001). This suggests smaller

frequency effects on RTs for networks with higher skills, replicating the frequency x skill

interaction, which has previously been reported as an interaction between vocabulary

size and word frequency effects.

As indicated before, we ran the same mixed-effects model but this time added

vocabulary size as an additional predictor. This changed some of the effects but not all

of them. Corpus Size significantly predicted comprehension RTs (β = 3.02, t = 6.08, p

< .001) just as before, with the larger corpus being associated with longer RTs. Also the

effect of Word Frequency stayed the same (β = -0.23, t = -3.06, p = .002), indicating

that high-frequency words elicited faster RTs than low-frequency words. The effects of

Training Trials per Word (β = 0.80, t = 2.63, p = .003) and Speed (β = 1.03, t = 3.20,

p = .001) were positive, now that vocabulary size was included as predictor. Hence,

other than before increased training and higher processing speed were in this model

associated with longer RTs. Hidden Units as well as Phonological and Semantic Density

did not show any significant effects on comprehension RTs when Vocabulary Size was

included as predictor. Vocabulary Size showed a negative effect (β = -1.48, t = -5.96, p

< .001); thus, networks with larger vocabularies had faster RTs.

In addition, the results indicated stronger effects of Speed associated with the

smaller Corpus Size (β = -1.69, t = -4.28, p < .001), and stronger Phonological (β =

-0.15, t = -3.81, p < .001) and Semantic Density (β = -0.24, t = -6.48, p < .001) effects

for the networks trained on the 5000 vs. 2500 words corpus. The first interaction is in

the opposite direction as compared to the model without Vocabulary size, and the

others were not significant in the previous smaller model. Furthermore, the Training

Trials per Word effect was again stronger for the slower networks (β = -0.50, t = -2.65,

p = .008), although this time the Training per Word effect is a positive one (increasing

RTs with increasing number of trials per word). Just as before, the Training per Word

effect was stronger for words from semantically less dense neighbourhoods (β = -0.05, t

= -3.20, p = .001). Furthermore, the interactions between Hidden Units and Semantic

Density (β = -0.09, t = -3.47, p < .001) and Hidden Units and Phonological Density (β

= -0.12, t = -3.81, p < .001) showed even stronger beneficial effects of high density

neighbourhoods on comprehension RTs for networks with 300 vs. 100 hidden units.

Vocabulary Size also interacted with both Semantic (β = 0.14, t = 7.57, p < .001) and

Phonological Density (β = 0.07, t = 3.40, p < .001) indicating opposite effects of

density depending on the network’s vocabulary size. Networks with larger vocabularies

showed negative effects of density, i.e. high-density words were associated with slower

RTs for these networks, whereas low-vocabulary networks showed beneficial effects of

higher neighbourhood density on comprehension RTs. Furthermore, Vocabulary Size
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interacted with Speed (β = 1.0, t = 5.43, p < .001). Networks with lower processing

speed showed stronger benefits of having a large vocabulary. Or in other words,

networks with processing advantages due to high processing speed showed reduced

benefits of having large vocabularies.

The most important interactions were again those between skill or factors determining

a network’s skill (Corpus Size, Training Trials per word, Hidden Units, Speed, Vocabulary

Size) and Word Frequency. The interactions between Corpus Size and Frequency (β =

0.10, t = 2.64, p = .008) and between Training Trials per Word and Frequency (β = 0.06,

t = 3.52, p < .001) were significant. Just as in the model without Vocabulary Size, the

word frequency effects were stronger for networks trained on the smaller corpus, and they

reduced over training; hence, with increasing trials per word, the frequency effect became

weaker. The interactions between Frequency and Hidden Units (β = 0.03, t = 0.95, p

= .34) and Frequency and Speed (β = 0.03, t = 0.91, p = .36) were not significant but

when plotting the effects, a tendency towards smaller frequency effects for more skilled

networks (as has been shown before) can be seen. The interaction between Vocabulary

and Frequency was not significant. Hence, adding Vocabulary Size as predictor, which

probably captures a lot of variance that had in the previous model been captured by

Hidden Units and Speed, influences not only their effects on comprehension RTs but also

the frequency x skill interactions.

When running a model with only Vocabulary Size as predictor in addition to the

lexical characteristics Frequency, Phonological and Semantic Density, we observed the

same beneficial effects of high Frequency and neighbourhood density as previously (see

Appendix C for a table with the model output). Importantly, Vocabulary Size now showed

a strong negative effect indicating larger vocabularies being associated with faster RTs (β

= -0.25, t = -20.60, p < .001), and a frequency x skill interaction (β = 0.05, t = 6.08, p <

.001) that matched the one observed between Frequency and each Corpus Size, Training

Trials per word, Hidden Units, and Speed when Vocabulary Size was not included. Hence,

this confirms the impression that Vocabulary Size captures the variance associated with

these factors that determine skill. Furthermore, this is in line with what has been shown

in the analyses on the causes for variation in vocabulary size, which indicated causal

relationships between vocabulary and all of the above-mentioned factors.

Production. Most of the effects on RTs in the production task corresponded to those

observed in the analyses on comprehension RTs. All estimates, t-, and p-values for are

displayed in a Table in Appendix D, and a short summary of the main effects of all models

is provided in the form of a Table in the end of the Results section. Here we only report

on the effects that deviate from those observed on comprehension.
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In addition to the interactions reported on for comprehension, production RTs were

predicted by interactions between Corpus Size and Phonological Density (β = -0.03, t =

-3.17, p = .002) and Corpus Size and Semantic Density (β = -0.03, t = -3.87, p < .001).

The effects of phonological and semantic density were stronger for networks trained on the

5000 as compared to those trained on the 2500 words corpus. Furthermore, the interaction

between Training Trials per Word and Phonological Density observed for comprehension

was not present in the analyses on production RTs.

Just as for comprehension, we ran the same analyses with Vocabulary Size as

additional predictor to examine whether vocabulary would explain any variance in

comprehension RTs if factors closely related to or even causing variation in vocabulary

size (see section 3.1), such as Corpus Size, Training Trials per word, Hidden Units, and

Speed, are also included in the model. The patterns were again very similar to those

observed in the analyses on comprehension RTs. While the effects of Corpus Size (β =

1.87, t = 7.94, p < .001) and Word Frequency (β = -0.24, t = -8.0, p < .001) stayed the

same when including Vocabulary Size as an additional predictor, the effects of Training

Trials per Word (β = 0.50, t = 3.48, p < .001) and Speed (β = 0.51, t = 4.06, p < .001)

changed direction. Again just as for comprehension, Vocabulary Size showed a

significant negative effect on production RTs (β = -0.77, t = -5.56, p < .001). Hence,

larger vocabularies were associated with faster RTs. Furthermore, just as in the

mixed-effects model without Vocabulary Size as predictor, significant effects of

Phonological (β = -0.18, t = -5.90, p < .001) and Semantic Density (β = -0.25, t =

-8.40, p < .001) indicated that faster RTs were elicited by words from dense

neighbourhoods. We observed significant interactions between Corpus Size and each

Speed (β = -1.41, t = -10.63, p < .001), Training Trials per Word (β = -0.37, t = -2.14,

p = .03), Frequency (β = -0.09, t = -4.18, p < .001), and Phonological (β = -0.08, t =

-3.67, p < .001) and Semantic Density (β = -0.09, t = -4.42, p p < .001). Stronger

effects of Speed, Frequency, and Phonological and Semantic Density were associated

with the larger corpus. The effect of Training Trials per Word was positive for the small

and negative for the large corpus; hence, RTs of the networks trained on 5000 words

showed a reduction of RTs with an increasing number of trials per word, whereas

networks trained on 2500 words showed increasing RTs with training. Training per

Word also showed significant interactions with Speed (β = -0.37, t = -4.10, p < .001),

Phonological Density (β = -0.02, t = -2.41, p < .02), and Vocabulary Size (β = 0.26, t

= 2.61, p = .009). Increasing numbers of trials per word resulted in faster RTs for the

networks with higher speed, and in slower RTs for those with low processing speed. In

addition, networks with greater vocabularies got slower over training whereas networks

with smaller vocabularies showed an increase in speed over training. Finally, the effect
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of Phonological Density increased over training. Semantic Density (β = 0.09, t = 6.89, p

< .001) and Phonological Density (β = 0.14, t = 10.13, p < .001) also both interacted

with Speed, showing that the beneficial effect of high semantic density on production

RTs was stronger for slower networks. In addition, both Phonological (β = 0.02, t =

2.62, p < .009) and Semantic Density (β = 0.03, t= 3.14, p < .002) showed significant

interactions with Vocabulary Size. The beneficial effect of high density neighbourhoods

was stronger for larger vocabularies. Finally, Speed and Vocabulary Size interacted (β =

0.49, t = 7.44, p < .001), with stronger vocabulary size effects for slower networks. Just

as for comprehension, networks with processing advantages due to high processing speed

showed reduced benefits of having large vocabularies.

Again, we were most interested in the interactions between Word Frequency and skill

(i.e. Corpus Size, Training Trials per word, Hidden Units, Speed, Vocabulary Size). As

opposed to the analyses without Vocabulary Size (and to the analyses on comprehension

RTs), the effect of Word Frequency was stronger for the 5000 vs. the 2500 words corpus (β

= -0.09, t = -4.18, p < .001). However, just as in the previous analysis on production RT,

the word frequency effect was weaker for faster networks (β = 0.10, t = 7.17, p < .001)

and reduced with increasing numbers of trials per word (β = 0.03, t = 4.06, p < .001).

The interaction between Word Frequency and Hidden Units was not significant. Finally,

Vocabulary Size and Word Frequency showed a significant interaction (β = 0.07, t = 8.15,

p < .001), with larger vocabularies being associated with smaller frequency effects. Hence,

the typical frequency x skill interaction is present as an interaction between Frequency

and different factors determining skill. Again, adding Vocabulary Size as predictor likely

affects different variables and interactions because of the close or even causal relationship

between the skill-related factors Corpus Size, Training Trials per word, Hidden Units, and

Speed and Vocabulary Size.

Just as for comprehension, we ran a mixed-effects model with only Vocabulary Size as

predictor in addition to the lexical characteristics Frequency, Phonological and Semantic

Density. We again found a significant negative effect of vocabulary size (β = -0.58, t =

-19.31, p < .001), with larger vocabularies being associated with significantly shorter RTs.

In addition, the frequency x skill interaction was again significant (β = 0.07, t = 22.41,

p < .001), with reduced frequency effects for networks with larger vocabularies. For the

estimates, t-, and p-values of all other coefficients, see Appendix D.

Novel word learning

We examined the networks’ novel word learning performance, and how the factors causing

variation in vocabulary size (Corpus Size, Hidden Units, Speed, prior number of training

trials) relate to novel word learning. All above-described and analysed networks performed
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a novel word learning task. After 250k and 500k training trials all networks were exposed

to the same set of 250 words that they had not seen before. This novel word learning

task was run in a total of 2500 training trials, words were selected randomly from the

novel set with each word presented on average 10 times. The networks had to learn

these new form-meaning mappings and were tested on each of them after 2, 6, and 10

trials per novel word. For the purpose of examining novel word learning performance, we

analysed networks’ vocabulary size at these three points during Training 2. Vocabulary

size was again derived from error, i.e. the cosine difference between the model output

and all other representations in both the stage 1 training corpus and stage 2 (novel word)

training corpus. The model was considered accurate if the error was lowest for the target

representation and accuracy was determined as the proportion of words for which the

cosine distance between the target and the model’s actual output was closest relative to

all other words in the corpus. From this we derived the number of words known, i.e. a

network’s vocabulary size, at a particular point in time during stage 2 training (accuracy

x cor).

Mixed-effects models were run on Vocabulary Size as predicted by Training 1 Corpus

Size (2500 vs. 5000), Hidden Units (100 vs. 300), Speed (2 vs. 4), Trials per Word during

training 1 after which the novel word learning started, and Training 2 Trials per Word

(2 vs. 6 vs. 10). As before, all analyses were run on comprehension and production

separately. The continuous predictors Training1 and Training 2 Trials per Word were

z-transformed using the scale function in R and all other predictors were dummy coded

as described before.

We ran additional analyses where we added Vocabulary Size at the end of Training

1 as a continuous (z-transformed) predictor. In this vein, we were able to determine

whether having a larger vocabulary would show benefits for novel word learning that are

not already captured by the factors Corpus Size, Training Trials per word, Hidden Units,

and Speed.

Again, the results of all models are briefly summarised in two Tables in the end of

the Results section.

Comprehension. Novel comprehension vocabulary size was predicted by Hidden Units

(β = 40.33, t = 31.51, p < .001) and Speed (β = 40.04, t = 31.29, p < .001). Networks

with greater processing capacities, i.e. 300 as compared to 100 hidden units and higher

processing speed learned more words during the novel word learning task. In addition,

Training 2 Trials per Word predicted the number of novel words known (β = 17.59, t =

312.26, p < .001); more training was associated with larger novel vocabularies. Training

1 Trials per Word at which novel word learning started was significant (β = 6.23, t =

83.38, p < .001), with larger novel vocabularies being learned when the networks had
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more stage 1 training completed before. Finally, networks that had been exposed to the

larger corpus in Training 1, learned more novel words in Training 2 (β = 16.17, t = 4.17,

p < .001).

The significant interaction between Corpus Size and Training 1 Trials per Word (β =

16.53, t = 269.26, p < .001) reflects the stronger effect of Trials per Word on the networks

exposed to the larger corpus which was reported on before. Hence, due to the fact that

Trials per Word has a stronger effect on the learning for the networks exposed to the larger

corpus, the effect of Training 1 Trials per Word when the novel word learning is initiated is

also stronger on the networks exposed to the 5000 words corpus than on those exposed to

2500 words in Training 1. In addition, the interaction between Corpus Size and Training

2 Trials per Word (β = -2.14, t = -59.99, p < .001) indicates weaker effects of Corpus

Size from Training 1 with increasing Training 2 Trials per Word. Hence, with increasing

training on the novel words, the effect of Training 1 Corpus Size diminished. Furthermore,

the interactions between Corpus Size and Hidden Units (β = 3.86, t = 2.13, p = .03) and

between Corpus Size and Speed (β = 4.44, t = 2.45, p = .01) were significant, indicating

the beneficial effects of increased processing capacity and speed were even more beneficial

for networks exposed to 5000 vs. 2500 words in Training 1. Speed and Training 2 Trials

per Word (β = 10.34, t = 236.97, p < .001) and Hidden Units and Training 2 Trials per

Word (β = 9.69, t = 221.96, p < .001) also showed significant interactions, indicating

stronger effects of Training 2 Trials per Word for networks with higher processing speed

and greater processing capacity. Hence, the learning rate of faster networks and those

with more processing capacity was higher as compared to networks with reduced speed

and processing capacity. The interaction between Speed and Training 1 Trials per Word

(β = -3.19, t = -53.03, p < .001) suggested that for faster networks the time point at

which the novel word learning is initiated has a weaker effect, i.e. leads to less of a

difference in the number of novel words learned, than for slower networks. Hence, for

faster networks, additional exposure to Training 1 items has weaker effects on the number

of words learned in Training 2 than for slower networks. Finally, the interaction between

Hidden Units and Training 1 Trials per Word (β = 1.66, t = 27.67, p < .001) turned

out significant, showing that the starting point of Training 2 has stronger effects on the

number of words learned for networks with 300 vs. 100 hidden units.

As indicated before, we repeated the same analyses, the only difference being that

we added Vocabulary Size after Training 1 as an additional predictor. The results show

the same positive effects of Training 1 Trials per Word (β = 0.52, t = 2.43, p = .02) and

Training 2 Trials per Word (β = 20.57, t = 246.66, p < .001), Hidden Units (β = 29.57,

t = 20.06, p < .001), and Speed (β = 19.08, t = 11.07, p < .001) as the analyses without

Vocabulary Size as predictor. Furthermore, all interactions between these factors were
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the same as in the previously reported analyses (full table in Appendix E). In addition,

Vocabulary Size predicted novel word learning (β = 17.81, t = 18.52, p < .001), with

larger vocabularies being associated with better novel word learning performance.

However, other than in the analyses reported on before, the effect of Corpus Size

on number of words learned in Training 2 turned out negative (β = -20.62, t = -4.98,

p < .001), indicating that networks exposed to a larger corpus in Training 1 learn fewer

words in Training 2. Additionally, Corpus Size interacted with Vocabulary Size (β =

-21.77, t = -17.04, p < .001), showing that for the networks exposed to 5000 words in

Training 1 the vocabulary size effect is much weaker (or almost reversed, hence negative)

as compared to networks exposed to 2500 words in Training 1. Hence, the unexpected

effect of Corpus Size appears to be due to the additional predictor Vocabulary Size, and

its interaction with Corpus Size. The interaction between Vocabulary Size and Speed

(β = -2.73, t = -10.61, p < .001) indicated stronger beneficial effects of Vocabulary on

novel word learning for networks with reduced speed and processing capacities. Hence,

networks that have processing advantages due to increased speed show less additional

benefits due to having larger vocabularies. Furthermore, Vocabulary Size and Training 2

Trials per Word interacted (β = 1.34, t = 47.49, p < .001) showing increasing effects of

Vocabulary Size with increasing training on the novel words. All other interactions stay

the same as in the analyses without Vocabulary Size.

To sum up, adding Vocabulary Size as a predictor only affects the effect Corpus

Size, probably due to an interaction between Corpus Size and Vocabulary Size. All other

effects stay the same. Hence, despite the fact that factors causing variation in Vocabulary

Size (Hidden Units, Speed) are included in the analyses, Vocabulary Size appears to

have additional beneficial effects on novel word learning, independent of these underlying

factors.

Production. The results of the mixed-effects mode on novel production vocabulary

size without vocabulary size as predictor were exactly the same as those of the analyses

on novel comprehension vocabulary size. Therefore the estimates, t-, and p-values of all

predictors can be found in Appendix F. A summary of the main effects can be found in

Table 6.13 in the end of the Results section.

A second mixed-effects model was run including Vocabulary Size as additional

predictor. All effects stayed exactly the same as in the analysis without Vocabulary Size

as predictor (see Appendix F for a full table). Vocabulary Size significantly predicted

novel word learning (β = -3.31, t = -3.10, p = .002) with larger Training 1 vocabularies

being associated with fewer words learned during Training 2. Thus, other than for

comprehension vocabulary knowledge does not seem to benefit the learning of novel
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production vocabulary.11 In addition, Vocabulary Size showed a significant interaction

with Speed (β = -4.50, t = -12.79, p < .001), indicating stronger negative effects of

Vocabulary Size on networks with higher processing speed. Finally, Vocabulary Size and

Training 2 Trials per Word interacted (β = 1.18, t = 32.57, p < .001), indicating that

the negative effects of vocabulary size reduce with increasing training on the novel

words.

11Just as in the RT analyses, we ran an additional mixed-effects model with only Training 1 Vocabulary
Size and Training 2 Trials per Word as predictors. Hence, we did not include the factors that had been
identified as causes for variation in vocabulary size to examine whether the inclusion of different closely
related effects might be the origin of the unexpected negative vocabulary effect. This analysis showed
strong positive effects of both Training 2 Trials per Word (β = 36.06, t = 1524.9, p < .001) and Vocabulary
Size (β = 12.81, t = 287.85, p < .001) on the number of words learned in the novel word learning task,
as well as a significant interaction between the two effects (β = 0.78, t = 33.07, p < .001), similar to the
effects observed for comprehension. Hence, when only including Vocabulary Size as factor determining
skill, the effect of Vocabulary is similar to that of processing speed and capacity in the models that did not
include Vocabulary Size. Including all factors that determine skill and likely share considerable variance in
novel word learning performance, appears to affect the outcome. Overall, more skilled networks (whether
skill is determined based on our manipulations or the number of known words) show stronger novel word
learning performance.
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Table 6.12: The effects of all manipulations on the three dependent measures. All effects
are the same for comprehension and production, and based on models without
vocabulary size as a predictor.

 

Factor 

Dependent measures 

Vocabulary size Reaction times Novel word learning 

Corpus size 
(input quality) 

Larger corpus  

 larger vocabulary   

 higher learning rate 

Larger corpus  

 slower RTs 

Larger corpus 

  better novel word learning 

Trials per word 
in stage 1  
(input quantity) 

More exposures  

 larger vocabulary 

 higher learning rate 

More exposures 

 faster RTs 

More training 1 exposure 

  better novel word learning 

Trials per word 
in stage 2 

  
More exposures 

  better novel word learning 

Hidden units 
(resources) 

 More resources  

 larger vocabulary 

 higher learning rate 

More resources 

 faster RTs 

More resources 

  better novel word learning 

Speed 

Higher speed  

 larger vocabulary 

 higher learning rate 

Higher speed 

 faster RTs 

Higher speed 

  better novel word learning 

Word 
frequency 

 
High-frequency 

 faster RTs 
 

Phonological 
density 

 
High density 

 faster RTs 
 

Semantic 
density 

 
High density 

 faster RTs 
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Table 6.13: The effects of the manipulations on RTs and novel word learning performance,
when including Vocabulary Size as a predictor in the models. Unless stated
otherwise, all effects are the same for comprehension and production. 

Factor 
Dependent measures 

Reaction times Novel word learning 

Corpus size 
(input quality) 

Larger corpus  

 slower RTs 

Larger corpus 

 decreased novel word learning 

Trials per word 
in stage 1  
(input quantity) 

More exposures 

 slower RTs 

More training 1 exposure 

 better novel word learning 

Trials per word 
in stage 2 

 
More exposures 

 better novel word learning 

Hidden units 
(resources) 

 
More resources 

 better novel word learning 

Speed 
Higher speed 

 slower RTs 

Higher speed 

 better novel word learning 

Vocabulary size 
Larger vocabulary 

 faster RTs 

Larger vocabulary 

 Comprehension: better novel 
word learning 

 Production: decreased novel 
word learning 

Word frequency 
High-frequency 

 faster RTs 
 

Phonological 
density 

High density 

 faster production 
RTs 

 

Semantic 
density 

High density 

 faster production 
RTs 

 

Discussion

The present study was the first to model explicitly the relationships between four

distinct environmental and cognitive factors suggested to cause variation in vocabulary

learning and size. We examined the roles of two environmental factors, namely (a)

amount or quantity of exposure, i.e. the number of training trials per word, and (b) the

diversity of the input, i.e. the number of types (2500 vs. 5000). In addition, we
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manipulated the cognitive factors (c) processing speed and (d) computational resources,

with the latter being assumed to simulate variation in general intelligence. We

demonstrated that each of these factors influenced vocabulary size and rate of word

learning, with increased exposure and diversity of the input as well as higher processing

speed and intelligence being associated with larger vocabularies and higher learning

rates (see Figures in Analyses and Results section and Appendix A).

Notably, we examined two time points during training, namely after 250k training

trials and after 500k training trials. We analysed the network’s performance after it had

acquired substantial knowledge of its linguistic environment, therefore avoiding

behaviour limited to early stages of development. The selected time points also occurred

before learning reached asymptote, hence before the number of words they knew was

limited by either the number of words in the training corpus or capacity limitations.

Hence, choosing the two time points for the analyses limited asymptotic effects on

vocabulary size and learning rate and with that effects of over-training and capacity

limitations. We thus simulated adult performance. While asymptotic effects cannot be

excluded completely, it was assumed that small effects are valid because human learners

might also be assumed to gain less from additional exposure once a certain amount of

training is reached (for example in the case of high-frequency words). Finally, although

developmental effects could be analysed using this model, this is beyond scope of current

study. We believe, however, that many of our conclusions extend to early stages of

development. One exception is likely to be the effect of corpus size, where at very early

stages of training a limited set may be advantageous (e.g. Jones & Rowland, 2017).

Variation in vocabulary size

The first set of analyses was run to examine the factors causing variation in the number

of words learned by the model. We found all factors that we manipulated affected the

network’s vocabulary size. An increase in exposure, i.e. training trials per word, was

associated with larger vocabularies, as has been shown in earlier behavioural and

computational studies (Hurtado et al., 2008; Monaghan et al., 2017, see exposure

manipulation in Chapter 5). Furthermore, networks that were exposed to the larger

5000 words corpus, hence those that received more diverse input, ended up with larger

vocabularies than networks exposed to 2500 words. In addition, the two environmental

factors amount of exposure (i.e. input quantity) and diversity (i.e. input quality)

showed an interaction, indicating that the diversity of the input affects learning rate.

Networks exposed to the large corpus, i.e. more types and therefore more diverse input,

showed higher learning rates than those exposed to the small corpus. This is in line with

previous research by Jones and Rowland (2017) indicating that increased diversity of the
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input has beneficial effects on vocabulary learning later in development although

mechanisms underlying this shared property of the two models differ (see later

discussion on the diversity of input mechanisms).

As indicated before, not only the environmental but also the two cognitive factors

we manipulated in the model were shown to predict vocabulary size. Networks with

higher processing speed and more processing resources, i.e. higher intelligence, were

found to develop larger vocabularies than those with reduced speed and resources.

Furthermore, both processing speed and resources, i.e. general intelligence, showed

interactions with the environmental factor exposure, i.e. training trials per word. Hence,

both cognitive factors generated not only greater vocabularies but also an increased

word learning rate. This corresponds to earlier findings from behavioural as well as

computational investigations on the relationship between processing speed and word

learning. Higher (language) processing speed has been associated with improved

vocabulary learning and size in children (Fernald et al., 2006; Marchman & Fernald,

2008). Consistent with previous modelling of effects of variation in processing speed

(McMurray et al., 2012) our simulations suggest that variation in general processing

speed might indeed be a cause of individual differences in word learning and knowledge,

although the mechanisms used to generate such effects were distinct (see later discussion

of cognitive mechanisms).

Furthermore, processing speed and resources also showed interactions with the second

environmental factor, i.e. input diversity. The effects of the two cognitive factors were

stronger for networks trained on more types, i.e. more diverse input, than for those

trained on the smaller corpus. This is a novel finding concerning the relationship between

cognitive and environmental factors causing variation in vocabulary learning and size.

Properties determining ease of word learning

Analyses performed on the properties of words known by each network have shown that

certain lexical characteristics make some words easier to learn for the network than others.

The results of these analyses are supported by the RT analyses, which are discussed below.

As would be expected, high-frequency words are learned more easily than low-frequency

words, due to increased training on such items (more tokens). This replicates findings

from earlier behavioural as well as computational modelling studies, indicating that words

which a learner is exposed to more often are learned more easily and faster (Harm &

Seidenberg, 2004; Monaghan et al., 2017, see effect of exposure in Chapter 5). This is

also in line with the observations made in the behavioural experiment present in Chapter

5, where words that participants had seen more often during training were learned better

than low-exposure words.
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Furthermore, the network learned words with phonologically dense neighbourhoods

more easily than those with sparse neighbourhoods, which also replicates earlier

findings. Storkel and Adlof (2009), for example, found that children learn novel words

from dense phonological neighbourhoods more easily than words from sparse

phonological neighbourhoods (see also Storkel, 2009). Similar to the observations

concerning phonological neighbourhood density, words with dense semantic

neighbourhoods were learned more easily by the network than words with semantically

less dense neighbourhoods. There are a number of studies showing this beneficial effect

of high semantic density on lexical learning (Hills, Maouene, Maouene, Sheya, & Smith,

2009; Sailor, 2013; Steyvers & Tenenbaum, 2005), while the picture is more mixed than

in the case of phonological density (e.g. Sahni, 2010).

Although, as mentioned above there is behavioural evidence that mirrors the

model’s behaviour that increased neighbourhood density is beneficial for learning, this

analysis of the properties of ‘known’ words serves a further purpose of establishing

which characteristics make words easy to learn within the model used in this study.

Aside from word frequency, which has been shown to affect word learning and

processing in emergent connectionist models of the type used in this study (e.g. Harm &

Seidenberg, 2004; Monaghan et al., 2017), high phonological and semantic

neighbourhood density were shown to be advantageous for word learning. The reason is

that representations with dense phonological/semantic neighbourhoods, i.e. those that

are similar to many other words in the input, require smaller changes to the

representational space in order to be accommodated, i.e. learned, by the network. This

makes learning phonological and semantic representations with many neighbours easier

than learning items from sparse neighbourhoods, which thus require larger changes to

the weight structure to be represented and learned. Although this mechanism is valid

for generating the density relationships observed, it is important to acknowledge that

this belies the complexity of the representational factors affecting word learning ease

and success in the current model. As a result of the rich representational structure

implemented in the current model, complex interactions between the representational

structure both within phonological and semantic domains, and across modalities

influence learning. Thus, further analyses are required in order to offer a comprehensive

description of how mechanisms dependent on neighbourhood density operate within the

current model.

Reaction times

Reaction times derived from the model record the time step at which the cosine distance

between the model output and the target is smallest relative to all other representations
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in the corpus. Within the model, RT is dependent on the fidelity of a network’s

representations, as with richer representations the network is quicker to generate

properties of the targets representation that distinguish it from competitors. Thus, RTs

reflect the model’s knowledge of a given word and are assumed to display a similar

non-linear decreasing function with respect to training as observed for task error in

Figure 6.3.

Increased training per word, greater processing speed, and increased computational

resources generated faster RTs. The same factors were also shown to cause variation

in vocabulary size within the model. This is in line with previous behavioural research

indicating a close relationship between language processing speed and vocabulary size

(Fernald et al., 2006).

Our results suggest that the mediating or circular relationship between vocabulary

size and language processing speed, as has been observed by Fernald and colleagues (2006)

and simulated by McMurray and colleagues (2012), might at least in part be due to

individual differences in underlying cognitive and environmental factors that benefit both

vocabulary size and language processing speed. Fernald and colleagues (2006; see also

Marchman & Fernald, 2008) have suggested two explanations for the relationship observed

between word knowledge and language processing, one being that differences in exposure

very early in development lead to variation in early vocabulary size and that this benefits

language processing and therewith subsequent word learning. This mechanism is captured

by our modelling results, where increased exposure (number of tokens) leads to both

increased vocabulary learning (size of vocabulary) and language processing speed (RTs).

The other proposal was that variation in cognitive skills, i.e. factors independent of input,

is behind variation observed both in language processing speed and word learning but is

not limited to the language domain (Fernald et al., 2006). Again our simulations capture

such a relationship both increased general processing speed and processing resources lead

to both increased vocabulary size and faster language processing (RTs). Hence, our

simulations indicate that the two hypotheses (cognitive and environmental) about the

origins of the relationship between vocabulary size and processing speed put forward by

Fernald et al. (2006) are not mutually exclusive but that likely a complex relationship

between external and internal sources of variation results in differences in vocabulary size

and speed of lexical processing.

Furthermore, networks were faster at processing high-frequency words and words

with phonologically and semantically dense neighbourhoods. Hence, the lexical

characteristics that have been shown to have beneficial effects on word learning (see

above) were also found to be advantageous for lexical processing. These properties of

our simulations replicate the typical effects of word frequency (Brysbaert et al., 2018) as
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well as phonological (Vitevitch, 2002; Vitevitch & Sommers, 2003; Yates, Locker, &

Simpson, 2004) and semantic density (Yap, Lim, & Pexman, 2015; Yap, Tan, Pexman,

& Hargreaves, 2011) on RTs, with faster RTs for high-frequency words and those with

denser neighbourhoods. Thus, words with higher frequencies and denser phonological

and semantic neighbourhoods were easier to learn and also easier (i.e. faster) to process

for our model. This makes sense given the close relationship between fidelity of

representations and RTs; properties that allow information about a word to be learnt

more rapidly will result in richer representation and hence faster RTs.

Greater input diversity, by contrast, had negative effects on the model’s lexical

processing speed. Networks that had been exposed to the larger corpus, i.e. a larger

number of distinct types, showed slower comprehension and production RTs. One factor

underlying this behaviour is that RTs are calculated relative to all words in the corpus,

namely as the point in time when the distance between model’s production and the

target is smaller relative to all other words in the corpus. Due to the fact that the larger

5000 words corpus contains more words that are closer to the given target, there are

more words between which the network needs to distinguish and therefore RTs are likely

higher. While this is an inherent property of the larger corpus and RTs associated with

it within the model, it is a potentially valid distinction, for if you know more words the

target must be distinguished from larger numbers of other known words.

It has been shown that larger vocabularies are associated with faster lexical

decision RTs (see Chapters 2 and 3), which may appear at odds to predictions based on

the observation that larger corpora generate slower RTs. However, this data does not

necessarily contradict the model for as the model demonstrates many underlying factors

determine vocabulary size. In addition, different causes underlying variation in

vocabulary size might be responsible for faster RTs being associated with larger

vocabularies instead of vocabulary size itself driving this effect. See below for a more

detailed discussion of that possibility.

We were particularly interested in the frequency x skill interaction, which has been

observed in previous studies. Word frequency effects have been reported to be smaller

for individuals with larger vocabularies (Brysbaert et al., 2016a; Diependaele et al.,

2013; Yap et al., 2009). As stated in the lexical entrenchment hypothesis, this has been

suggested to be due to more entrenched or robust representations in individuals with

larger vocabularies, which are faster to be accessed than those of individuals with

smaller vocabularies. Differences in exposure have been argued to be the main reason

for these differences in sensitivity to word frequency between speakers with smaller vs.

larger vocabularies (Kuperman & Van Dyke, 2013; Monaghan et al., 2017). Monaghan

and colleagues (2017) demonstrated that in their model increased exposure is generates
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an increase in the efficiency of mappings. They demonstrate that the non-linear

relationship between increased training (exposure) and increased knowledge of a given

item (task error) means that additional training on an item leads to increasingly weaker

improvements to stored representations (less additional knowledge or smaller change in

task error). It is such a mechanism that Monaghan et al. (2017) demonstrate to

generate the frequently observed interaction between frequency and vocabulary size. As

previously discussed they argue that increased training (exposure/number of tokens) is

the underlying factor generating both increased vocabulary size and weaker effect of

frequency on processing.

Interestingly, we found two-way interactions between word frequency and all

environmental and cognitive factors that we previously demonstrate to cause variation

in vocabulary size, namely number of of training trials per word (number of tokens),

diversity of input (number of types), processing speed, and processing resources (i.e.

general intelligence). Thus, all of the factors that have been shown to determine the

networks’ skill, i.e. vocabulary size, generated the frequency x skill interaction, with

higher skill networks displaying a reduced word frequency effect.

Furthermore, we observed similar interactions with the two density measures, namely

phonological and semantic neighbourhood density. Thus, what has previously found to be

an interaction between skill, more precisely vocabulary size, and the word frequency effect

might – based on the present model – be extended to interactions between other lexical

characteristics and other cognitive and environmental factors that influence learning and

therefore ‘skill’. Ultimately, our simulations predict that internal properties of the network

or properties of the learning environment that enable a network to learn faster interact

with lexical properties that make certain words easier to learn.

In each of these cases, the relationship between increased skill (i.e. processing speed,

resources, and exposure [number of training trials per word]) and weaker effects of the

lexical characteristics of words (i.e. frequency and density) on processing is generated

by non-linear relationships similar to those between learning and training reported in

Monaghan et al. (2017). As training increases the rate of learning, i.e. the rate of error

reduction, decreases (see Figure 6.3 in the Analyses and Results section), the fidelity of

representations plateaus. Thus, any property of networks that affects the rate of learning,

i.e. the rate of decent along this function, will interact with properties of words that

affect learning. This is because the difference in fidelity of representations (affected by

a given word level characteristic) for networks ahead in their training, (i.e. those with

higher learning rates therefore further down on the learning curve) will thus be smaller.

Therefore, as shown in our simulations, such networks will display smaller differences in

performance on sets of word that differ in such word level characteristics.
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As indicated before, the frequency x skill interaction has been taken to suggest that

the representations in individuals with larger vocabularies are more robust or more

entrenched than those in individuals with smaller vocabularies, leading to reduced

sensitivity to lexical characteristics (Brysbaert et al., 2016a; Diependaele et al., 2013).

The findings of the present study confirm this. A weaker effect of lexical characteristics

indicates, as described above, that the network is further down in the error curve, thus,

has more developed representations. A further examination of the model may offer a

means of describing explicitly in what way representations differ between

high-vocabulary vs. low-vocabulary networks, in what respect are representations more

entrenched (Diependaele et al., 2013) or more robust (Yap et al., 2009), and whether

there are distinctions in such properties due to differing causes of variation in

vocabulary size.

The interaction we observed between Corpus Size, i.e. input diversity, and word

frequency potentially suggests a different origin of the effect. The RTs were found to

be overall slower for networks exposed to more diverse input however the frequency x

skill interaction was still present. As previously described, slower RTs likely result from

RTs being dependent on a network’s ability to differentiate a target from all other words

in the corpus, i.e. all other words to which it is exposed. This leads to an overall

increase in RTs for networks exposed to more diverse input. It is possible this also

has consequences for the frequency by corpus size interaction. However, an alternative

explanation is that the representation of low-frequency words, may gain additional benefit

from knowledge of more tokens relative to high-frequency words. One possible mechanism

that may generate such beneficial effects for larger corpora would be that additional

training on similar mappings or representations leads to faster activation of a given low-

frequency mapping. Further analyses of the corpora of different sizes and the emergent

representations developed within the model are required to understand this intriguing

interaction.

In summary, we replicated the frequency x skill interaction that has previously been

found in behavioural and computational modelling studies and extend them to other

lexical characteristics that affect learning (Brysbaert et al., 2016a; Monaghan et al.,

2017). Additionally, our findings confirm suggestions made earlier that the frequency x

skill interaction indicates differences in how far developed, i.e. robust (Yap et al., 2009)

or entrenched (Diependaele et al., 2013) the network’s representations are. Furthermore,

our findings extend the conclusions from earlier investigations because we did not only

show that vocabulary size is multiply determined by both environmental and cognitive

factors, but also that all of these factors show an interaction with word frequency

effects. This adds further support to arguments that the factor vocabulary size captures
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individual variation in multiple underlying environmental and cognitive components.

The fact that processing speed and resources as well as exposure interact with

frequency, in turn, adds weight to their potential role as underlying variation in

vocabulary size (see above). Hence, it is indicated that not only variation in exposure

leads to individual differences in vocabulary size and differences in the sensitivity to

effects of word frequency (see Monaghan et al., 2017), but that complex relationships

between individual differences in cognitive and environmental effects results in the

observed individual differences in vocabulary size and the frequency x skill interaction.

We acknowledge that, as demonstrated in Monaghan et al. (2017), differences in

exposure alone potentially explain the observed interaction between frequency and skill.

However, given the extensive variation in learners not only in environmental factors but

also in cognitive skills, it is important to aim at explaining observed effects in their full

complexity. Part of this complexity is to take individual variation in cognitive abilities

into account as potentially interacting with effects of exposure and affecting the learning

of words with different degrees of difficulty.

Novel word learning

Results of novel word learning simulations replicate many of the relationships described

above relating to environmental and cognitive effects on learning. We found that networks

with higher processing speed, greater processing resources, increased quantity of exposure

(number of tokens) and diversity of exposure (number of types) learned more words over

the course of Training 2. Furthermore, networks with higher speed and greater resources

learned more words at higher learning rates than their less skilled counterparts. Our

novel word learning simulations aimed to simulate learning of novel words in adulthood,

hence simulations occurred once networks had acquired substantial knowledge of their

linguistic environment, not at early stages of language development. The simulations

thus indicate that cognitive and environmental factors that affect vocabulary size are

likely to continue to influence word learning throughout the lifespan. This is in line with

findings from behavioural research conducted in adult populations (see Chapter 5), which

has indicated positive relationships between novel word learning and increased vocabulary

size. The reason is that our earlier simulations suggested measures of vocabulary size to

capture various underlying factors (environmental and cognitive). Hence, the beneficial

effects of higher processing speed, greater resources (i.e. intelligence), and increased

exposure (number of tokens and number of types) on novel word learning in mature

networks displayed by the model are consistent with and might underlie the vocabulary

size advantages observed in experimental research.
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Novel word simulations were also run to provide further insight into the mechanisms

that may underlie relationships between each of the factors manipulated and vocabulary

size by allowing a separation between learning environments. We discuss such insights in

the following sections of the discussion.

Cognitive factors

Our analyses of networks varying in different cognitive factors demonstrated that higher

processing speed and greater processing resources accelerate learning. Hence, faster

networks and those with more processing resources showed larger vocabularies as well as

faster learning rates, as indicated above. This was true for Training 1 on corpora of 2500

or 5000 words, as well as for Training 2, where all networks were exposed to an

additional set of 250 novel words. In addition, both cognitive factors interacted with the

diversity of the input, indicating that the advantages associated with improved cognitive

skills were stronger for those networks trained on the larger corpus (see above). One

reason behind this is that the networks exposed to more diverse input, hence to the

larger corpus, are presented with more words to learn from. Therefore, processing

advantages due to higher processing speed or more resources leads to faster learning,

such that more words breach the ‘knowledge’ criteria threshold sooner. Thus, additional

potential benefits of learning from more diverse input have an impact on learning more

rapidly in skilled than in less skilled networks (such potential benefits are discussed in

the diversity of input section of the discussion). Overall, many of the effects of improved

cognitive skills mirrored those of increased exposure, thus additional learning.

Analyses of the words known as well as the RTs for known words at 250k and 500k

training trials indicated that more skilled networks learned larger numbers of more difficult

words than their less skilled counterparts. More precisely, the words known by networks

with increased speed and processing resources showed lower mean word frequencies and

overall lower phonological and semantic neighbourhood densities. These observations

provided some insights into what the mechanisms underlying the cognitive advantages

might be. These properties of the acquired words demonstrate that our implemented

mechanisms for varying the speed of information processing and the processing resources

available to a learner lead to a lowering of the threshold on the amount of exposure

required to learn a word of given complexity (e.g. semantic or phonological).

The model’s general speed of processing information was manipulated through

changing the integration constant within each time averaged input processing unit of the

network. This was assumed to be an appropriate means of simulating differences in

general processing speed as the integration constant controls the speed with which input

activation in a given unit ramps up, and thus the rate at which information can
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propagate through the network. Such an implementation thus manipulates speed

directly, with weaker effects on the computational properties of the network than, for

example, a manipulation of input gain would have (Plaut et al., 1996) or a range of

hyperparameters (temperature, inhibition, learning rate: McMurray et al. 2012) that

likely have many additional consequences for network behaviour. Our manipulation of

speed in relation to effects on vocabulary development was in this way distinct from

previous studies (e.g. hebbian-learning algorithm: McMurray et al. 2012) yet replicated

the same behavioural effects, i.e. relationships between RTs, vocabulary size, rate of

vocabulary development. As indicated by Figure 6.2 (Methods section) a larger

integration constant means that a network can react quicker to information available in

the learning environment. This implementation of the mechanism underlying

relationships between general processing speed and vocabulary size proposes that it is

thus possible for faster processors to extract more information from a given period of

exposure, thus extracting more information from which they are able to learn. This is in

line with the behavioural word learning study presented in Chapter 5, which implied

that – although effects may be small – higher processing speed is associated with

reduced sensitivity to differences in the number of exposures to novel words. Further,

online language processing speed, as it was measured in the behavioural studies of

Fernald et al. (2006; see also Marchman & Fernald, 2008), might show a mutual

relationship with vocabulary growth because online language processing skill might

improve with increased training on linguistic input , hence with increased vocabulary

size (as seen in the relationship between iteration, vocabulary size and RTs within the

current model). However, our simulations like those of McMurray et al. (2012) also

demonstrate that such a relationship may exist due to underlying initial differences in

general processing speed, that generate increased vocabulary size, increased language

speed of processing and increased rates of word learning.

The second cognitive factor simulated in this study that, as our results show, also

offers explanation for such relationships observed between vocabulary size, speed of

language processing and rate of word learning, is variation in processing resources.

Although this mechanisms is distinct from that of processing speed, it generates many

similar consequences i.e. faster RTs, frequency x skill interactions, faster rate of word

learning, larger vocabulary size. Increasing the number of hidden units (processing

resources) within a network affects learning and processing as it alters the size of the

representational space into which representations can be projected and thus the richness

of internal representations and the level of abstraction at which networks able to develop

sensitivity.
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This mechanism, implemented within our model, aims to represent variation in

computational resources at bottlenecks within cognitive system. We argue that such a

mechanism is likely to be one of many that underlie variation in performance on tasks

that aim to measure variation in general intelligence, and thus generate relationships

between vocabulary size and general intelligence.

There may of course be alternative ways of implementing differences in intelligence,

one being the introduction of different degrees of noise across all connections in the

network, which would affect variation in general processing efficiency. However, pilot

studies showed that even very small amounts of noise introduced across all connections

in the network had detrimental effects on the model’s learning performance, leading not

only to changes in learning rate but to a significant limitation of overall learning ability.

It is possible however that an appropriate parameter range could be found that would

not lead to such catastrophic effects on performance.

Variation in general intelligence has, to our knowledge, not previously been

implemented to model variation in vocabulary size explicitly but there are potentially

many ways of doing that. Our results support the argument that variation in processing

resources may be a viable mechanism underlying this relationship. Future research is

needed to further examine whether and how manipulations of connection noise or

alternative parameters can be used to simulate variation in general intelligence, and

whether these different implementations have distinct effects on learning and processing.

Finally, the only difference observed between the two cognitive factors manipulated

concerned their interactions with Training 1 Trials per Word in the novel word learning

task. Hence, the point in time when Training 2 started showed different interactive effects

with processing speed vs. resources. The effect of increased Training 1 showed weaker

effects for faster than for slower networks, but stronger effects for networks with more

vs. less processing resources. This might suggest that additional resources do not simply

accelerate learning as in the case of increased processing speed, but also allow for greater

learning capacity. A further examination of differences in the emergent representational

structure of networks with higher processing speed vs. greater resources is required to

further understand the mechanism underlying this observed difference in model behaviour.

In summary, an increase in both the amount of computational resources, i.e.

intelligence, and general processing speed are associated with greater vocabulary size

and faster learning rates. Both cognitive factors showed similar effects on learning in

Training 1 as well as in the novel word learning task. The model presented offers an

explicit description of multiple distinct mechanisms that potentially underlie the

beneficial effects of improved cognitive abilities on lexical learning and language

processing. As indicated before, this is in line with previous research showing beneficial
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effects of processing speed on vocabulary learning and size (Fernald et al., 2006;

McMurray et al., 2012). Further, given our simulations aim to simulate effects present

within adult populations, results of our simulations are consistent with both evidence for

the effects of individual differences in cognitive abilities in children as well as across the

lifespan (Kidd et al., 2018). This indicates that it is not only exposure that leads to

such variation in vocabulary learning, knowledge, and processing but that both

environmental and internal sources for variation interact in determining learning and

processing performance.

Diversity of the input

Our analyses shed light on multiple mechanisms potentially underlying the beneficial

effects of increased input diversity, i.e. larger number of types, on word learning. First, one

consequence of networks being exposed to the larger corpus, is that they were presented

with a higher number of easy to learn words than were present in the smaller corpus.

More precisely, the number of high-frequency words and words with high phonological or

semantic neighbourhood densities was larger in the corpus consisting of a higher number

of distinct types. This was a necessary consequence of randomly sampling words to

form corpora of different sizes and is reflected in the analyses of the words known by

networks trained on either small or large corpora performed at 250k and 500k training

trials. These properties of the input highlight three distinct mechanisms that generate

beneficial effects of greater input diversity: word frequency, phonological neighbourhood

density, and semantic neighbourhood density. More precisely greater diversity of input

leads to exposure to a higher number of high-frequency and -density words. Instead of

a change to the learning threshold (number of training trials network needs to learn a

given word), which was associated with improved cognitive skills, the mechanism in this

case is that there are a larger number of easier to learn words (i.e. high-frequency and

high-density words that require fewer training trials to learn) in the more diverse input.

Thus, the larger, i.e. more diverse, corpus comprised more words that require less training

to breach the learning (‘known’ word) threshold.

Further, such advantages are likely to extend to other properties of the

representational structure both within and across modalities that affect learning. For

example, larger corpora are also likely to contain more words with easier to learn

cross-modal mappings, i.e. mappings that follow systematic relationships between

phonology and semantics. However, such relationships are yet to be analysed and thus

demonstrated within the current model.

The observation that larger numbers of easier to learn words exist in the larger corpus

is closely related to basic assumptions about the characteristics of corpora of different sizes.



218 6 Variation in vocabulary size: A computational model

Within the current study, to limit implementation of assumptions regarding the factors

that generate variation in the diversity of input, we simply randomly sampled from a larger

corpus (5641 words) to generate a smaller sets of different sizes (2500 and 5000 words). It

is however likely that many complex factors play a role in determining differences in the

distribution of word properties (i.e. frequency, semantic density, phonological density)

between populations that differ in the diversity of their linguistic input.12 Investigating

within this model the effects of such factors on the distribution of properties that affect

word learning and their consequences for both vocabulary size and broader aspects of

word processing is beyond the scope of the current study.

Irrespective of sampling method or assumptions about different distributions in

corpora of varying sizes, it is safe to assume that increasing the number of types will

increase the number ‘easy to learn’ words, i.e. words with sufficiently high frequency

and/or density to breach the learning threshold. Our modelling highlights that such

mechanisms may potentially play a major role in generating variation in vocabulary size.

More research is needed, though, to describe how the distributions of lexical properties

that affect word learning differ between populations that differ in their exposure to

language. One important factor to be taken into account in this context is for instance

literacy, i.e. reading and exposure to written text, which has been shown to both

influence the lexical characteristics of the input (Cunningham, 2005) and accelerate

language learning (Nagy, Herman, & Anderson, 1985; Sternberg, 1987). Effects related

to literacy could be modelled in the current framework in order to assess the impact on

word learning, vocabulary size, and broader aspects of language processing.

Novel word learning simulations also show a beneficial effect of increased diversity

of exposure on word learning. In stage 2 (novel word) training all networks are trained

on the same set of 250 words, therefore the above mechanisms are unable to explain this

advantage. Instead a further mechanism must be at work. Knowledge the network has

already acquired from diverse exposure in stage 1 training affects the ease of learning new

words, thus increased diversity of input generates network characteristics that benefit

12Notably, it has been shown that increasing sample size (when sampling from a larger corpus as we did
to create the training corpora) has particularly strong effects on the percentage of low-frequency words
in a sample and less strong effects on the percentage of high-frequency words (Baayen, 2001; Kuperman
& Van Dyke, 2013). Thus, increasing the sample size has an impact in particular on the relative number
of low-frequency words, which leads to an increasing sample size being associated with decreasing ratios
of relative frequencies between low- and high-frequency words (Kuperman & Van Dyke, 2013). Thus, we
acknowledge that differences in the relative frequencies might also exist within the corpora of different
sizes in our study, though are probably smaller in size due to the smaller corpus size difference than the
one described in Kuperman & van Dyke (2013). The observed advantages of the larger corpus size are,
however, likely to be due to the absolute number of high-frequency words, which is higher in the 5000
than the 2500 words corpus, affecting the number of words that are learned more easily. We cannot
make claims about consequences of differences in the percentage of low- vs. high-frequency words in the
corpora of different size.
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novel word learning. Our proposal for this mechanism is as follows. In the current model,

all words to which the network is exposed have an impact on the representational space.

Hence, the more diverse the input to which a network is exposed, the more likely it is

that the network already possesses a representation or a mapping that is similar to that

of the novel word. Thus, smaller changes are required to the weight structure in order

to accommodate the novel word (this is similar to the mechanism described above that

makes high density words easier to learn). This is potentially driving the beneficial effects

observed in the novel word learning simulations, where the greatest benefit of greater

input diversity during Training 1 was found at early stages of Training 2, hence when the

structure of the Training 1 representations were able to exert the greatest influence on

novel word learning. This mechanism overlaps with others in the literature that propose

beneficial effects of increased network size (Steyvers & Tenenbaum, 2005; Sailor, 2013).

This might therefore also be an explanation for why including vocabulary size in the

analyses on novel word learning performance appears to absorb much of the variance

that was previously, i.e. without vocabulary size as predictor, captured by differences in

corpus size, i.e. diversity of the input. Further, analysis of the model is required to test

this hypothesis.

In summary, our simulations of the effects of quality of exposure (number of types)

on vocabulary size and language processing more generally replicate a number of

observed relationships between vocabulary size and language processing (RTs, frequency

effects, novel word learning). As discussed above the model offers an explicit description

of multiple mechanisms driven by increased diversity (number of types) that potentially

explain such observed effects. Ours is not the first computational modelling

investigation of such relationships, Jones and Rowland (2017) also demonstrate that

advantages of increased lexical diversity emerge when a simple (chunk-based) learning

mechanism is applied to learn phonological representations. Our simulations, however,

build on this study, by offering many additional mechanisms that arise from a more

detailed description of the processes involved. More specifically, our model includes both

semantic and phonological components of this task. In doing so we are able to

demonstrate that increased diversity increases the number of words with favourable

characteristics (high frequency, high semantic density, high phonological density) to

which a system is exposed. Further, exposure to more diverse input affects the internal

emergent structure of the network (in phonological, semantic and cross-modal

dimensions) in a manner that is beneficial to novel word learning.
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Vocabulary size

Our simulations demonstrate that many underlying causes of variation in vocabulary

size share beneficial consequences for both language learning and processing (e.g. speed

of processing, rate of word learning). Therefore it is possible to explain positive

relationships between increased vocabulary size and language learning and processing as

consequences of shared underlying factors. It is also possible however, that variance

explained in language learning and processing is attributable to mechanisms that are

driven purely by variation in vocabulary size, i.e. there exist mechanisms that generate

beneficial effects (e.g. increased speed of processing, or rate of word learning)

attributable purely to properties of possessing a larger vocabulary.

Novel word learning analyses that included Training 1 vocabulary size (especially the

models with only vocabulary size as predictor) as a predictor indicated that networks with

larger vocabularies learned more words and had a faster learning rate in the novel word

learning task. Furthermore, as indicated before, networks which had been exposed to the

larger corpus (i.e. more types) in Training 1 showed better novel word learning in Training

2. This suggests an advantage for networks that know larger numbers of distinct words, i.e.

networks with larger vocabularies. This is consistent with evidence from earlier modelling

and experimental studies and preferential attachment theory (Sailor, 2013; Steyvers &

Tenenbaum, 2005) that argues that new items are more likely to be acquired should

the network already possess a similar item that is densely connected. Although, in in our

analysis of the model a similar mechanism is attributed to consequences of variation in the

diversity on input, it is also possible that such a mechanism is at work across all networks

that have greater language knowledge (larger vocabulary size). Further, examination of

the behaviour and internal processing of networks before and during stage 2 training is

required to tease apart cause and effect.

However, analyses of RTs and novel word learning performance where vocabulary

size was included as predictor while also accounting for the various environmental and

cognitive causes for variation in vocabulary size generated mixed results, providing little

evidence for beneficial effects resulting from mechanisms driven by increased vocabulary

size.

Further, we acknowledge that we are unable to rule out effects of mechanisms that

are not captured by our model which may generate distinct advantages as a result of

increased vocabulary size. One such mechanism may result from interactions between

fast mapping, mutual exclusivity, and vocabulary size as, for example, with more words

known it is likely easier to identify novel items and attribute novel labels (McMurray

et al., 2012). Another set of potentially beneficial mechanisms beyond the scope of the

current model may exist in explicit (rather than implicit) learning strategies or heuristics
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which potentially play more significant roles in adulthood. For example, with greater

language knowledge it may become easier to identify explicitly systematic relationships

within and between semantic and phonological representations that then aid learning.

Our examination of the emergent behaviour of a system in which an error based

learning algorithm is applied to learn phonological and semantic representations and the

mappings between such representations, offers little evidence for distinct benefits purely

attributable to increased vocabulary size. Instead, the results of simulations conducted

within such a model suggest that measures of vocabulary size capture variance generated

by a complex interaction of environmental and cognitive causal factors, many of which

share similar consequences for language learning and processing (e.g. increased vocabulary

size, faster processing, faster rates of word learning, frequency x skill interactions). Thus,

if relationships are analysed between vocabulary size and measures of language processing

or learning without a comprehensive representation of such causal factors, then variance

attributable to such factors is likely to load on vocabulary size. Further, given the difficulty

in obtaining measures that accurately capture variance in such underlying causal factors,

such circumstances are likely to often occur, and therefore exaggerate the distinct effects

of variation in vocabulary size. Should such measures be obtainable, it remains to be seen

how much variance can be explained by vocabulary size. However, our simulations suggest

that a substantial part of the frequently observed relationships between vocabulary size

and language processing and learning might be generated by factors underlying differences

in vocabulary size instead of by mechanisms driven purely by variation in vocabulary size.

Given such relationships between the factors that generate variation in vocabulary size and

the difficulty of obtaining measures that accurately capture variation in such underlying

causes, we believe it is only through further computational modelling that it may be

possible to isolate properties of behaviour that can distinguish between distinct causes

and distinct consequences of variation in vocabulary size.

Conclusions

The present study highlights the complexity of the interaction between environmental

and cognitive factors that give rise to variation in vocabulary size. Further, our model

provides an explicit description of multiple mechanisms that cause variation in vocabulary

size and their behavioural consequences, namely differences in lexical processing speed,

learning rate, novel word learning performance, and in the structure of the emergent

lexicon. Our simulations indicate that advantages in language processing observed for

individuals with larger vocabularies are likely to largely result from interactions between

underlying environmental and cognitive factors that generate both improved language
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processing ability and increased vocabulary size (see e.g. Fernald et al., 2006). Further,

our simulations suggest that any additional advantage that results purely from having

a larger vocabulary is likely very small relative to the effects of such causal factors, i.e.

input diversity, exposure, intelligence, processing speed.
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Appendix A
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Figure 6.5: The development of average word frequency for the model’s comprehension
vocabulary across training as a function of Hidden Units, i.e. general
intelligence. Standard errors are indicated in the plot.
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Figure 6.6: The development of average word frequency for the model’s production
vocabulary across training as a function of Hidden Units, i.e. general
intelligence. Standard errors are indicated in the plot.
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Figure 6.7: The development of average word frequency for the model’s comprehension
vocabulary across training as a function of Processing Speed. Standard errors
are indicated in the plot.
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Figure 6.8: The development of average word frequency for the model’s production
vocabulary across training as a function of Processing Speed. Standard errors
are indicated in the plot.
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Appendix B
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Figure 6.9: The Interaction between the word frequency effect and the effect of Trials per
Word. Error bars indicate the standard error.
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Figure 6.10: The Interaction between the word frequency effect and the effect of Corpus
Size. Error bars indicate the standard error.



228 6 Variation in vocabulary size: A computational model

2.0

2.4

2.8

0.4 0.6 0.8 1.0

Frequency

fit

Hidden units
100

300

Figure 6.11: The Interaction between the word frequency effect and the effect of Hidden
Units, i.e. processing capacity, which was assumed to simulate variation in
general intelligence. Error bars indicate the standard error.
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Figure 6.12: The Interaction between the word frequency effect and the effect of
Processing Speed, variation in which was implemented by varying the
integration constant. Error bars indicate the standard error.
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Appendix C

Table 6.14: The estimates, t-, and p-values for all coefficients in the mixed-effects model
on comprehension RT with only Vocabulary Size as skill-related predictor.

Fixed effect Estimate t-value p-value

Intercept 2.33 12.32 <.001

Frequency -0.14 -2.84 <.001

Semantic density -0.17 -3.60 <.001

Phonological density -0.08 -1.66 .10

Vocabulary size (comp) -0.25 -20.60 <.001

Frequency:Sem density -0.08 -1.93 .05

Frequency:Pho density 0.03 0.64 .52

Frequency:Vocabulary 0.05 6.08 <.001

Sem density:Pho density -0.03 -0.57 .57

Sem density:Vocabulary 0.09 12.66 <.001

Pho density:Vocabulary 0.03 4.19 <.001
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Appendix D

Table 6.15: The estimates, t-, and p-values for all coefficients in the mixed-effects model
on production RT (without vocabulary size as predictor).

Fixed effect Estimate t-value p-value

Intercept 2.36 63.44 <.001

Corpus (5000) 0.47 10.31 <.001

Speed (4) -0.62 -27.48 <.001

Hidden Units (300) -0.08 -3.61 <.001

Frequency -0.41 -18.24 <.001

Trials per Word -0.14 -11.94 <.001

Semantic density -0.31 -14.14 <.001

Phonological density -0.23 -10.28 <.001

Corpus:Speed -0.17 -5.21 <.001

Corpus:Hidden Units -0.08 -2.47 .01

Corpus:Frequency 0.07 8.37 <.001

Corpus:Trials per Word -0.24 -25.03 <.001

Corpus:Sem density -0.03 -3.87 <.001

Corpus:Pho density -0.03 -3.17 .002

Speed:Frequency 0.20 27.34 <.001

Hidden Units:Frequency 0.04 5.55 <.001

Frequency:Trials 0.07 17.67 <.001

Frequency:Sem density 0.01 0.49 .62

Frequency:Pho density 0.02 1.09 .27

Speed:Trials per Word 0.15 15.64 <.001

Hidden Units:Trials 0.0009 0.10 .92

Trials:Sem density 0.01 3.79 <.001

Trials:Pho density -0.002 -0.46 .65

Speed:Sem density 0.13 18.50 <.001

Hidden Units:Sem density 0.02 3.05 .002

Sem density:Pho density 0.02 0.80 .43

Speed:Pho density 0.17 23.92 <.001

Hidden Units:Pho density 0.003 0.41 .68
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Table 6.16: The estimates, t-, and p-values for all coefficients in the mixed-effects model
on production RT with only Vocabulary Size as skill-related predictor.

Fixed effect Estimate t-value p-value

Intercept 4.45 5.40 <.001

Frequency -0.36 -1.84 .07

Semantic density -0.08 -1.46 .14

Phonological density -0.10 -1.74 .08

Vocabulary size (prod) -0.58 -19.31 <.001

Frequency:Sem density 0.001 0.25 .80

Frequency:Pho density 0.009 0.73 .57

Frequency:Vocabulary 0.07 22.41 <.001

Sem density:Pho density 0.001 0.30 .76

Sem density:Vocabulary 0.006 7.56 <.001

Pho density:Vocabulary 0.02 12.09 <.001
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Appendix D

Table 6.17: The estimates, t-, and p-values for all coefficients in the mixed-effects model
on comprehension vocabulary size in the novel word learning task including
Vocabulary Size as predictor.

Fixed effect Estimate t-value p-value

Intercept 58.76 17.57 <.001

Corpus (5000) -20.62 -4.98 <.001

Speed (4) 19.08 11.07 <.001

Hidden Units (300) 19.57 20.06 <.001

Trials per Word (2) 20.57 246.66 <.001

Trials per Word (1) 0.52 2.43 .02

Vocabulary size (comp) 17.81 18.52 <.001

Trials 2:Vocabulary 1.34 47.49 <.001

Speed:Corpus 37.49 17.01 .01

Hidden Units:Corpus 22.69 11.59 <.001

Trials 2:Corpus -3.22 -77.39 <.001

Trials 1:Corpus 32.44 32.84 <.001

Vocabulary:Corpus -21.77 -17.04 .002

Speed:Vocabulary -2.73 -10.62 <.001

Speed:Trials 2 8.14 129.36 <.001

Speed:Trials 1 -3.31 -11.13 <.001

Hidden Units:Vocabulary 0.09 0.47 .64

Hidden Units:Trials 2 8.23 156.86 <.001

Hidden Units:Trials 1 0.17 0.68 .50
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Appendix D

Table 6.18: The estimates, t-, and p-values for all coefficients in the mixed-effects model
on novel production vocabulary size (without vocabulary size as predictor).

Fixed effect Estimate t-value p-value

Intercept 60.94 18.13 <.001

Corpus (5000) 14.83 3.12 .002

Speed (4) 32.51 22.85 <.001

Hidden Units (300) 22.53 15.84 <.001

Trials per Word (2) 31.14 490.76 <.001

Trials per Word (1) 4.99 59.31 <.001

Speed:Corpus -1.23 -0.61 .54

Hidden Units:Corpus 11.62 5.77 <.001

Trials 2:Corpus -3.05 -76.01 <.001

Trials 1:Corpus 16.49 238.51 <.001

Speed:Trials 2 6.34 129.09 <.001

Speed:Trials 1 -4.17 -61.48 <.001

Hidden Units:Trials 2 3.32 67.49 <.001

Hidden Units:Trials 1 2.61 38.69 <.001
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Table 6.19: The estimates, t-, and p-values for all coefficients in the mixed-effects model
on novel production vocabulary size (including vocabulary size as predictor).

Fixed effect Estimate t-value p-value

Intercept 58.01 15.21 <.001

Corpus (5000) 20.74 4.09 <.001

Speed (4) 29.13 16.80 <.001

Hidden Units (300) 26.59 17.97 <.001

Trials per Word (2) 33.32 363.78 <.001

Trials per Word (1) 5.84 17.72 .02

Vocabulary size (prod) -3.31 -3.10 .002

Trials 2:Vocabulary 1.18 32.57 <.001

Speed:Corpus 8.44 3.76 <.001

Hidden Units:Corpus 5.94 2.86 .004

Trials 2:Corpus -4.55 -74.96 <.001

Trials 1:Corpus 19.02 18.62 <.001

Vocabulary:Corpus 0.91 0.70 .48

Speed:Vocabulary -4.50 -12.79 <.001

Speed:Trials 2 4.78 69.92 <.001

Speed:Trials 1 -1.13 -4.15 <.001

Hidden Units:Vocabulary 3.71 12.84 <.001

Hidden Units:Trials 2 2.75 53.25 <.001

Hidden Units:Trials 1 0.84 4.72 <.001
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The present dissertation aimed at answering various questions all centering around the

observation that native speakers of a language vary considerably in their vocabulary.

What is the relationship between vocabulary size and language processing? Is a battery

of vocabulary tests really necessary to assess the knowledge of words in native speakers?

And do findings from studies on the typical participants in psychological research, namely

undergraduate university students, apply to individuals from more diverse backgrounds?

These questions were addressed in Chapters 2 to 4 of this dissertation. One central finding

was that there are big differences between native speakers’ knowledge of words.

Having observed such considerable variation in vocabulary size among the native

speakers of a language, I asked what the origin is for some people being better word

learners than others and, therefore, ending up having larger vocabularies than others.

This was the main focus of the remaining two chapters of this dissertation, Chapters 5

and 6. In addition, the computational modelling study presented in Chapter 6 examined

the relationship between causes for variation in vocabulary size and consequences thereof

for language processing and novel word learning performance.

In the following, I provide a summary of the main findings from all chapters.

Subsequently, I discuss them in light of earlier research on lexical processing, vocabulary

size and learning. In addition, implications for future research in general and more

specifically individual differences studies are discussed.

In the experiment detailed in Chapter 2 I investigated individual differences in

vocabulary size – as measured by a battery of seven vocabulary tests – and their

relationship with variation in lexical processing – more precisely word recognition.

Performance on a lexical decision task (LDT) was found to be predicted by word

frequency and vocabulary, with high-frequency words and higher vocabulary scores

being related to faster responses on the LDT. Hence, greater vocabulary knowledge was

indicated to be beneficial for lexical processing, which is in line with the findings from

earlier research (Brysbaert et al., 2016a; Diependaele et al., 2013; Yap et al., 2009).

Furthermore, this relationship between higher vocabulary scores and faster reaction

times (RTs) was not only found for the composite score of vocabulary representing

individuals’ performances on all seven vocabulary tests, but also for the majority of
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individual vocabulary tests. This leads to the second important implication of the study

presented in Chapter 2, namely that based on these findings, six out of the seven

vocabulary tests were each considered to be as representative of participants’ vocabulary

size as the composite score. The PPVT (Schlichting, 2005) as well as Andringa et al.’s

(2012) receptive multiple-choice test, and the newly developed open antonym and

synonym, multiple-choice synonym, and definition tests all showed the same pattern of

the relationship between vocabulary and word recognition accuracy and speed. Solely

the multiple-choice antonym test appeared to be too easy for the present group of

participants; an impression which was supported by the considerably higher test scores

on this test, the lower correlations between this and the other tests, and the Principal

Components Analysis, which showed the smallest loading of the first component on the

multiple-choice antonym test. Consequently, the experiment reported on in Chapter 2

did not provide any evidence for the supposed need to use a battery of different

vocabulary tests to assess word knowledge in the group of participants typically tested

in psychological research, namely undergraduate university students. This is true at

least if the vocabulary test used is capable of eliciting individual differences in test

performance, which was apparently not true for the multiple-choice antonym test.

The experiment reported on in Chapter 3 was intended to complement Chapter

2, in that the same tasks were used to test participants from more diverse educational

backgrounds. It has to be noted that the materials used in this study were in fact not

exactly the same as in the previous experiment. One vocabulary test, namely the open

synonym test, had been indicated to be very challenging for the university students, which

is why I did not include it in the testing of the vocational college students. Furthermore, an

additional five high-frequency filler items were added to the multiple-choice antonym and

synonym tests and to the open antonym test, respectively. This was done to increase the

number of relatively easy items and keep participants motivated throughout the tests.

In addition, pilot studies showed that presenting the LDT stimuli for 3 seconds was

too short for the vocational college students. The length of the stimulus display was,

therefore, increased to 5 seconds. Thus, even without looking at the results, the fact

that these changes were necessary to make the tasks suitable for this more diverse group

of participants than is typically tested tells us something about how homogeneous and

unrepresentative of variation present in the population the group of “typical” participants,

i.e. university students, appears to be.

As might be expected, the vocabulary scores as well as the LDT accuracy rates of

the participants in this experiment were considerably lower than those of the university

students, and the RTs were slower. These performance differences support what has

been indicated before, namely that conclusions based on the “typical” participants
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cannot necessarily be extended to participants from more diverse backgrounds, as the

skills present in the latter group are also much more diverse. It is, hence, questionable

whether and in how far insights gained from testing undergraduate university students

are representative of the variation present in the population, especially when it comes to

studies focusing on individual differences.

With regards to the relationship between lexical processing and vocabulary, we

observed that LDT accuracy but notably not RTs were affected by vocabulary in this

experiment. Hence, higher vocabulary scores were in this group of participants

associated with higher response accuracy on the LDT but not with faster responses.

Besides that, word frequency predicted both accuracy and RTs on the LDT, with

higher-frequency words eliciting higher accuracy rates and faster RTs. In addition, the

word frequency effect on RTs was found to vary as a function of vocabulary score, with

individuals with higher vocabulary scores showing a reduced word frequency effect. This

frequency by skill interaction has previously been reported by studies on word

recognition and has been taken to indicate representational differences between

vocabularies of varying sizes (Diependaele et al., 2013). The lexical representations in

high-vocabulary individuals have been assumed to be more robust or more entrenched

and, therefore, not only faster to be accessed but also less sensitive to effects of word

frequency (Brysbaert et al., 2016a; Diependaele et al., 2013). Monaghan et al. (2017)

used a computational model to demonstrate that differences in the amount of exposure

to linguistic input can explain this frequency by skill interaction, with increased

exposure leading to reduced word frequency effects on processing.

Just as with the results from the experiment in Chapter 2, the findings in this

study indicate beneficial effects of greater vocabulary knowledge on language processing.

However, differently to that reported in the previous chapter, the positive effect of

increased vocabulary size was not found on lexical processing speed but on response

accuracy and participants’ sensitivity to the word frequency effect. Hence, it is

suggested that in this group of participants, increased vocabulary knowledge might be

associated in particular with differences in the entrenchment of lexical representations.

Why the expected relationship between overall RTs and vocabulary did not show is

unclear. If anything, it seems that there was a tendency of high-vocabulary individuals

to show slower RTs. Perhaps participants in this group relied on different strategies when

responding to the lexical decision task. Thus, it might be that participants spent a rather

long time thinking about the target items, delaying their button press until they were sure

enough about what the correct response is. A potential reason for this kind of strategy

might be less confidence in their knowledge relative to, for instance, university students,

leading to these participants’ responses being less intuitive and quick. This might be the



238 7 Summary and discussion

case in particular for individuals who were determined to do well on this task, which may

explain the relationship between slower RTs and higher vocabulary scores. Alternatively,

performance on this task may be affected by these young adults being less proficient

readers than university students, who receive more extensive exposure to written language.

This would be in line with the observation of considerably longer RTs in this experiment

than in the one presented in Chapter 2, and with the need to increase the length of the

stimulus display. The role of reading proficiency in affecting LDT performance could in

future research be tested by using an auditory version of the task.

Finally, vocabulary test performance in this group of participants was rather varied

both within and across individuals, as indicated by the significant but only moderate

correlations between all vocabulary test scores. Hence, based on the research presented

in Chapter 3, we would recommend using at least two vocabulary tests to appropriately

assess word knowledge when testing a similarly diverse group of participants.

In the experiment presented in Chapter 4, the same university students were tested as

in the experiment in Chapter 2. In addition to completing a LDT and the battery of seven

vocabulary tests, they performed a picture-word interference task. Similarly to what has

been found in the previous chapters, higher vocabulary scores were associated with faster

lexical processing. Hence, individuals with greater vocabulary knowledge were faster at

producing the target words in this task than individuals with smaller vocabularies.

After having observed such considerable variation in vocabulary size among the

native speakers of a language, the question of what the origins of these individual

differences in vocabulary learning and size are arose. Chapter 5 presents the findings

from an experiment on novel word learning in adult native speakers, which aimed at

providing first insights into the relationship between variation in cognitive and

environmental factors and their effects on word learning. Not only amount of exposure

and sleep were found to influence novel word learning performance as measured by a

picture naming test, but also nonverbal intelligence and vocabulary. Participants were

tested on the novel word-picture pairings right after training and after a delay of one

week. Their performance was overall better after a delay involving periods of sleep, thus

allowing for overnight consolidation. In addition, test performance was better for words

that had been presented more often during training than for low-exposure words, and

these differences depending on exposure frequency became stronger after a delay of one

week. This supported the impression that lexical consolidation might have taken place

between training and the test after a week. Furthermore, participants with higher

vocabulary scores performed better on the novel word learning task, as indicated by

more accurate picture naming performance. In addition, individuals with higher Raven’s

scores, which were taken to be an indication of nonverbal intelligence, showed stronger
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beneficial effects of higher vocabulary scores on novel word learning than individuals

with lower Raven’s scores. Finally, we observed a tendency towards higher general

processing speed being associated with reduced sensitivity to constraints on the number

of exposures to the novel words. Importantly, overall not only environmental but also

cognitive factors, and potentially complex relationships between them, were implied to

play a role in determining word learning ability.

Especially interesting was the strong effect that vocabulary size was shown to have

on novel word learning performance. It might seem trivial that individuals with higher

vocabulary scores, thus probably better word learning performance, outperform those

with lower vocabulary scores on a task that assesses word learning performance.

However, the question arises: what are the underlying mechanisms for the beneficial

effect of greater vocabulary knowledge on word learning? In addition, one might ask

why some individuals have larger vocabularies in the first place, which appear to benefit

subsequent word learning. Are differences in exposure to linguistic input early in

development the reason for some children acquiring larger vocabularies than others, and

do these advantages then persist throughout the lifespan? Or do individual differences

in general cognitive skills cause the emergence of variation in vocabulary size and do

these differences in cognitive skills continue to influence word learning later in life?

The computational modelling study presented in Chapter 6 of this dissertation was

meant to provide answers to these questions. A distributed connectionist model was

used to investigate potential environmental and cognitive causes for variation in

vocabulary size, and the interactions between them. In addition, the relationship

between variation in vocabulary size and differences in language processing and novel

word learning were examined. In this way, this last chapter combined the research

questions and topics from all previous chapters to provide a bigger picture of the

relationships between causes for variation in vocabulary learning and differences in

processing, and underlying mechanisms of these effects. The environmental factors

quantity and quality of exposure, as well as the cognitive factors general processing

speed and processing resources, and interactions between them were found to influence

vocabulary learning and size. Greater input quantity and quality were associated with

larger vocabularies. In addition, higher processing speed and increased resources were

found to cause higher learning rates as well as greater word knowledge. A mechanism

underlying the latter effects appeared to be that more skilled networks, i.e. those with

greater processing speed and resources, are capable of learning larger numbers of more

difficult to learn words. Greater input diversity, by contrast, was indicated to be

beneficial for word learning due to larger numbers of easy to learn words being included

in larger corpora. Importantly, these causes for variation in vocabulary size were
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observed to all have very similar consequences for language processing and novel word

learning. Origins for improved word learning and vocabulary size appeared to also cause

higher language processing speed, reduced word frequency effects, and better novel word

learning performance. Hence, the computational modelling investigation suggested that

the beneficial effects on language processing and novel word learning that were earlier

attributed to larger vocabularies might be driven by variation in underlying cognitive

and environmental factors. We are, however, unable to rule out that increased

vocabulary size is associated with advantages for word learning that are distinct from

those of underlying cognitive and environmental factors. Mechanisms underlying such

additional benefits might be related to structural or representational characteristics of

greater vocabularies (Sailor, 2013; Steyvers & Tenenbaum, 2005).

Measuring vocabulary size

One of the questions underlying the work presented in the first chapters of this

dissertation was whether a battery of measures is necessary to assess vocabulary size. It

has been argued that no vocabulary test is a pure measure of the knowledge of words

but involves other general cognitive abilities (Bowles & Salthouse, 2008). Therefore,

Bowles and Salthouse (2008) advised researchers to employ a battery of different

measures of vocabulary size, especially in studies where vocabulary knowledge is the

center of interest. Furthermore, Henriksen (1999) has proposed three dimensions along

which vocabulary learning and knowledge varies, namely along continua from partial to

precise knowledge, from shallow to deep knowledge, and from receptive to productive

use ability. Assuming that variation in vocabulary knowledge can be assessed along

these three dimensions also supports the claim that vocabulary tests of different types

(antonym vs. synonym vs. definition) and formats (multiple-choice vs. open) are

necessary to appropriately and comprehensively assess vocabulary size.

This is what I applied in the experiments presented in the first three experimental

chapters of this dissertation. As indicated above, my findings from Chapter 2 (and

Chapter 4) suggest that a single vocabulary test would have been sufficient to assess

vocabulary. All measures except for the multiple-choice antonym test, which appeared

to be too easy for the participants in this experiment, correlated strongly with each

other and showed the same relationship with lexical processing performance. Hence, this

experiment does not provide evidence for the need of multiple measures of vocabulary,

as long as the test that is used is capable of eliciting individual differences in the target

group.

However, the experiment detailed in Chapter 3 where individuals from more diverse

backgrounds were tested provides a slightly different picture and, hence, a different
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answer to the question of whether single vocabulary tests are sufficient to assess word

knowledge. Vocabulary test performance in this more diverse group of participants was

more varied both within and across individuals. It appeared that the relative difference

in difficulty between the vocabulary measures was larger in this than in the university

students group, as suggested for example by the smaller correlations between the tests.

In addition, the predictions about the relationship between vocabulary and lexical

processing differed more in this than in the previous group depending on which

vocabulary test was used in the analyses. Hence, overall my findings indicate that when

testing a more diverse group, which is presumably characterised by a larger range of

skills, the use of at least two different measures of vocabulary is advisable. In this way,

the composite score calculated based on two different test types and/or formats is

probably more representative of participants’ vocabulary than relying on only one test;

especially given the greater performance variability between tests that was observed in

the study presented in Chapter 3.

Testing more diverse groups of participants

In addition to greater variability in vocabulary test performance within the group of

participants in the second experiment (Chapter 3) than in the first experiment (Chapter

2), the average test scores reflected the effect of educational background, which has been

previously reported (see e.g. Brysbaert et al., 2016b). The vocabulary scores achieved

by the participants tested in the first experiment, who were mainly university

undergraduates, were not only more homogeneous but also considerably higher than

those from the participants with more diverse backgrounds tested in the second

experiment. These observations mirror my findings in regards to lexical processing

performance. The latter was also found to be weaker and more varied in the second,

more diverse group of participants. Importantly, as indicated above, the materials of

both the vocabulary tests and the LDT had to be modified to make them suitable for

testing young adults at vocational colleges.

All of these observations point in the same direction, namely that the group of

participants typically tested in psychological and psycholinguistic research, i.e.

undergraduate university students, are not representative of the wider population. An

important implication of my work for future research is the necessity to test participants

from more diverse educational backgrounds (see also Kidd et al., 2018). Theories about

the relationship between cognitive abilities and language processing as well as individual

differences therein should be informed not only by findings from a small, homogeneous,

and likely highly skilled group of individuals but by studies that account for and

represent the full range of skills to be found in the population. Importantly, the present
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work has also demonstrated some of the challenges associated with applying typical

psycholinguistic tasks to a more diverse group of participants. Some measures might

need to be modified to make them suitable for individuals outside the typical group of

participants. This, however, only supports the importance of extending our research to

include participants from more diverse backgrounds.

Vocabulary size and language processing

Besides these methodological implications, the findings from Chapters 2 and 3, as well

as from Chapter 4, provided insight into the relationship between vocabulary knowledge

and language processing. My observations were in line with previous research indicating

that greater vocabularies are associated with beneficial effects on lexical processing in both

comprehension and production. Overall, individuals with higher vocabulary scores showed

higher accuracy rates (Chapter 3) and faster RTs (Chapters 2 and 4) in word recognition

and production. In addition, the frequency by skill interaction, which has been observed

in earlier studies (Brysbaert et al., 2016a; Diependaele et al., 2013; Monaghan et al.,

2017), was replicated in the experiment presented in Chapter 3. Hence, in the more

diverse group of participants higher vocabulary scores were associated with reduced word

frequency effects on lexical decision RTs. It is unclear why the experiment where the

typical group of participants, namely university students, was tested did not show this

effect. One possibility may be that the range of vocabulary scores and LDT performance

in this sample was too small to elicit the frequency by skill interaction.

This interaction between the word frequency effect and skill has been taken to

indicate differences in the degree of robustness or entrenchment of lexical

representations in individuals with smaller vs. larger vocabularies (Brysbaert et al.,

2016a; Diependaele et al., 2013). The typical frequency effect, with faster RTs for high-

as compared to low-frequency words, has been suggested to result from differences in the

efficiency of processing words varying in frequency of occurrence. Especially, increased

exposure, which can be measured as greater vocabulary size, has been argued to cause a

reduction in this difference in processing efficiency between low- and high-frequency

words, which in turn is indicated by reduced frequency effects on lexical processing

(Brysbaert et al., 2016a; Monaghan et al., 2017). Hence, the findings from the

experiment detailed in Chapter 3 are in line with the assumption that higher vocabulary

scores are associated with more entrenched or robust lexical representations, as

indicated by a reduced effect of word frequency on lexical processing.

A question arising in light of these observations is why having a larger vocabulary

is beneficial for lexical processing. It may be assumed that having more words in one’s

lexicon might render processing more difficult or slower as more words might compete for
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selection (Diependaele et al., 2013). The computational modelling study reported on in

Chapter 6 of this dissertation provided some potential answers to this question. First of

all, I replicated the beneficial effects of increased vocabulary size on language processing

speed. Just as observed in earlier behavioural research, networks with larger vocabularies

were faster to comprehend and produce words. Interestingly, however, the model showed

that once factors causing variation in vocabulary size are controlled for, there is little

evidence for additional beneficial effects of vocabulary on processing. The same was true

for the frequency by skill interaction, which was elicited by various skill-related factors, i.e.

factors that were shown to cause variation in vocabulary size. Hence, the factors quantity

and quality of input, processing speed, and processing resources (with the latter taken to

represent general intelligence), influenced vocabulary learning and size, as well as lexical

processing, and showed interactions with the word frequency effect. The computational

modelling study, thus, suggests that at least part of the mechanism behind the vocabulary

advantage in processing might be variation in environmental and cognitive factors that

underlie the observed differences in vocabulary size.

Importantly, the frequency by skill interaction appears to not only be a result of

variation in exposure, which has previously been argued to be the case (Monaghan et al.,

2017). I demonstrated that complex interactions between cognitive and environmental

factors likely cause variation in vocabulary learning rate as well as size and also in lexical

processing efficiency and the sensitivity to word frequency effects. Furthermore, it was

demonstrated that the frequency by skill interaction might be extended to any factor

(environmental and cognitive) determining the learning rate and success of a network,

but also to any characteristic that affects the difficulty of learning and processing a given

lexical item. Aside from word frequency, the lexical characteristics phonological and

semantic density, which in the present model were shown to affect degree of difficulty of

learning and processing lexical representations, interacted with skill. This finding certainly

needs to be examined further in future behavioural and computational investigations.

The present computational model contributed new insights to findings based on

previous studies by taking into account not only variation in exposure but also the

extensive variation in cognitive skills that has been observed across a large range of

individual differences studies (Kidd et al., 2018).

Future research, however, needs to more closely examine the effects of variation in

vocabulary size on structural and representational characteristics of the lexicon. The

present findings cannot rule out that greater vocabulary knowledge has additional

beneficial effects on language processing due to internal, structural properties of the

lexicon, i.e. beneficial effects that go beyond those that can be attributed to underlying

environmental and cognitive factors (Sailor, 2013; Steyvers & Tenenbaum, 2005).
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Individual differences in vocabulary learning

This leaves the question of what causes the considerable variation in vocabulary

knowledge or size observed in the experimental work presented in Chapters 2 to 4. In

the novel word learning experiment reported in Chapter 5, I explored the roles of

individual differences in different environmental and cognitive factors in affecting word

learning performance. Both sleep and higher numbers of exposure were associated with

beneficial effects on learning, which is in line with findings from previous research

(Hurtado et al., 2008; Monaghan et al., 2017; Weighall et al., 2017). Furthermore, both

vocabulary and nonverbal intelligence as measured by the Raven’s Matrices (Raven et

al., 1998) were indicated to influence novel word learning. Individuals with greater

vocabulary knowledge outperformed those with lower vocabulary scores, which

replicated findings from developmental research showing an association between larger

vocabularies and improved word learning performance (Henderson & James, 2018;

Marchman & Fernald, 2008). Higher Raven’s scores were associated with even stronger

beneficial effects of increased vocabulary knowledge and with stronger effects of

overnight consolidation. In addition, there was a tendency of higher general processing

speed to be related to reduced effects of exposure frequency on learning. In a nutshell,

the findings from this word learning study support the assumption that not only

exposure alone but a complex interaction between environmental and cognitive factors

likely causes variation in word learning.

More research on the role of differences in various cognitive skills and their

interactions with properties of the learning environment in adult learners is, however,

necessary. While in this study only university students were tested due to limited

availability of more diverse participant groups and constraints on the test setting, future

investigations into word learning need to be run with participants from more diverse

backgrounds, as has been argued above.

The computational model detailed in Chapter 6 provided valuable insights into

potential causes for variation in vocabulary learning and size. As indicated above the

factors quantity and quality of the input (environmental) and processing speed and

resources (cognitive), with the latter being assumed to simulate variation in intelligence,

were observed to cause variation in vocabulary learning and size. What is more, once

these causes for individual differences in vocabulary size were controlled for, there was

not much evidence for additional beneficial effects of greater vocabulary knowledge on

novel word learning. Hence, the advantages in novel word learning, which have

previously been attributed to vocabulary size itself, appear in this model to be driven by

factors underlying variation in vocabulary size. In line with suggestions made in the

literature, differences in cognitive skills might cause the emergence of differences in
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vocabulary size and at the same time underlie variation in language processing speed, as

described above (Fernald et al., 2006).

In addition to identifying factors likely causing variation in vocabulary size, the

computational model helped shed light on mechanisms potentially underlying the

beneficial effects of increased input quality as well as greater processing speed and

resources. Greater input quality, i.e. greater input corpora, were indicated to aid word

learning due to being comprised of a larger number of easy to learn words as compared

to smaller corpora. Greater skill, i.e. higher speed or greater resources, by contrast

appeared to be advantageous for vocabulary learning due to being associated with the

ability to learn more difficult to learn items. Thus, while larger corpora, i.e. more

diverse input, appeared to be beneficial due to including more words that breach the

learning threshold of the network, increased processing speed and resources (i.e.

intelligence) were associated with a lowering of the learning threshold. These

mechanisms need to be examined more closely in future research; the effects of differing

numbers of types in the input on the distribution of certain lexical characteristics

determining the difficulty of learning and processing a given word, but also potentially

different mechanisms underlying the beneficial effects of different cognitive skills on word

learning require further experimental and computational investigation.

Conclusions

As speakers of a language we know a huge number of words already by early adulthood,

and we continue to be exposed to and learn new words across the entire lifespan. I have

shown that individuals with larger vocabularies are faster at processing language. Thus,

despite knowing more words, which may be expected to render the selection of a single

lexical item more difficult and slower, speakers with larger vocabularies are faster at

making lexical decisions and naming pictures. Furthermore, I have demonstrated that

variation in word learning and vocabulary size is likely caused by complex interactions

between environmental and cognitive factors, such as input quantity and quality,

processing speed, and intelligence. These causes for variation in vocabulary size seem to

a great extent to also underlie variation in language processing performance and

vocabulary learning. Hence, individual differences in lexical processing speed and word

learning that have previously been associated directly with variation in vocabulary size

might, in fact, be driven by factors that cause the variation in vocabulary size.
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Nederlandse samenvatting

De kennis van woorden is een belangrijk onderdeel van onze taalbeheersing. Zowel

onderwijsgerelateerde als beroepsmatige prestaties zijn in grote mate afhankelijk van in

hoeverre we geschreven en gesproken instructies kunnen begrijpen, alsook van of we

onze gedachten en meningen duidelijk kunnen communiceren.

Het aantal woorden dat we kennen is enorm. Een gemiddelde twintigjarige

moedertaalspreker van het Amerikaans-Engels kent naar schatting 42.000 lemma’s,

oftewel de niet-verbogen woordvormen waaruit verbuigingen zijn afgeleid (Brysbaert et

al., 2016b). Echter, ook volwassenen blijven nieuwe woorden bijleren. Sterker nog,

dikwijls verbetert onze woordenschat naarmate we steeds ouder worden (Brysbaert et

al., 2016b; Schroeder & Salthouse, 2004). In de loop der jaren worden we dus

blootgesteld aan een opvallend groot aantal woorden, die we vervolgens leren en,

belangrijker nog, ook onthouden. Naar schatting leert de gemiddelde volwassene er

ongeveer 6000 nieuwe woorden bij tussen zijn twintigste en zestigste. Dat betekent dat

moedertaalsprekers gedurende deze veertig jaar gemiddeld om de dag een nieuw lemma

leren (Brysbaert et al., 2016b; Keuleers et al., 2015).

Daarom is onze woordenschat een voortdurend toenemende inventaris van woorden

om de wereld om ons heen te omschrijven, een verzameling uitdrukkingen voor allerlei

voor ons relevante ervaringen en informatie. Als zodanig ligt het voor de hand om aan

te nemen dat er variatie is in hoeveel en welke woorden mensen kennen. Vaktaal is

een goed voorbeeld van de sterke effecten die ervaring kan hebben op het type woorden

dat iemand kent. De woorden syncope of lunge zijn bijvoorbeeld woorden die mensen

met bepaalde beroepen, interesses of hobby’s kennen, maar ze zijn volledig ondoorzichtig

voor anderen.1 Een andere factor die bëınvloedt hoeveel en welke soort woorden we

kennen is onderwijsachtergrond. Het is aangetoond dat opleidingsniveau een significante

invloed heeft op de woordenschat van mensen over de gehele leeftijdsspanne. Hogere

opleidingsniveaus worden geassocieerd met een grotere woordenschat. Dit is mogelijk toe

te schrijven aan de gevolgen van veel lezen en studeren – aspecten die worden geassocieerd

1In dit geval is syncope een woord dat muzikanten en wellicht ook dansers kennen en het duidt op
een verandering van het ritme in een muziekstuk, waarbij de zware tellen licht worden en de lichte tellen
zwaar. Lunge is een dansbeweging waarbij één been gebogen is en het andere been uitgestrekt.
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met formeel onderwijs – op het groeien van de woordenschat (Brysbaert et al., 2016b;

Keuleers et al., 2015).

Woordenschat

Eerder onderzoek heeft aangetoond dat variatie in het aantal woorden dat mensen

kennen niet alleen invloed heeft op welke ongebruikelijke woorden iemand kent en

begrijpt. Ook de verwerking van veel voorkomende woorden die bijna alle volwassenen

kennen wordt bëınvloed door het aantal woorden dat iemand kent. Van mensen met een

betere woordenschat is vaak aangetoond dat ze ook beter zijn in het verwerken van taal

(Bent et al., 2016; Janse & Jesse, 2014; Rodriguez-Aranda & Jakobsen, 2011; Yap et al.,

2012). Dat betekent dat ze sneller en/of nauwkeuriger zijn in het uitvoeren van

verschillende taken die taalproductie en taalbegrip testen. Het eerste deel van dit

proefschrift (Hoofdstukken 2, 3 en 4) bestudeert de relatie tussen woordenschat en

taalverwerking nader.

Een belangrijke vraag die het bestuderen van woordenschat en taalverwerking

oproept is: hoe kan woordkennis het best worden gemeten? De meeste eerdere studies

hebben slechts één woordenschattoets gebruikt. Er is echter betoogd dat verscheidene

toetsen noodzakelijk zijn om een complexe vaardigheid als woordkennis te kunnen

kwantificeren, met bijvoorbeeld zowel meerkeuze- als open vragen. Daarom is hier

gebruikgemaakt van niet één, maar zeven verschillende woordenschattoetsen, waarvan er

vijf werden ontwikkeld voor de eerste experimenten in dit proefschrift.

In Hoofdstuk 2 en 3 werd de relatie tussen variatie in woordenschat en taalbegrip

onderzocht. Taalbegrip werd gemeten aan de hand van een gangbare taak in de

psycholingüıstiek, lexicale decisie genoemd. In deze taak zien proefpersonen

letterreeksen op een computerscherm en vervolgens moeten ze middels knoppen

aangeven of de reeks op het scherm een bestaand al dan niet een Nederlands woord

vormt. Al met al zijn de bevindingen van dit experiment in overeenstemming met eerder

onderzoek: individuen met een betere woordenschat presteren ook beter op deze taak.

Een belangrijk aspect waarin deze experimenten eerdere studies aanvullen is dat hier

niet alleen universitaire studenten werden getest (Hoofdstuk 2), maar ook jongvolwassenen

met andere achtergronden (Hoofdstuk 3). Het meeste wat we weten over taalverwerking is

gebaseerd op onderzoek met universitaire bachelorstudenten als proefpersonen. Men kan

zich afvragen of de bevindingen van dat onderzoek gegeneraliseerd kunnen worden naar de

gemiddelde jongvolwassene. De reden hiervoor is dat universitaire studenten bijvoorbeeld

vaker worden blootgesteld aan geschreven taal dan de gemiddelde jongvolwassene, hetgeen

waarschijnlijk weer hun taalvaardigheid bëınvloedt.
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Het experiment in Hoofdstuk 3 liet zien dat de scores op woordenschat en lexicale

decisie (oftewel de nauwkeurigheid en snelheid van de gemaakte beslissingen) veel

grotere variatie vertoonden in de groep van niet-universitaire leerlingen. Dat betekent

dat er een grote hoeveelheid variatie in de vaardigheden van mensen onopgemerkt blijft

wanneer alleen universitaire studenten worden getest. Daarnaast was het verband tussen

de woordenschatgrootte en taalverwerking (grotere woordenschat betekent betere

taalverwerking) tussen niet-universitaire leerlingen en universitaire studenten

vergelijkbaar, maar niet hetzelfde. De boodschap hier is dat het noodzakelijk is niet

alleen de “gangbare” groep proefpersonen (universitaire studenten) te toetsen, maar te

streven naar psychologische en psycholingüıstische studies waarin proefpersonen met

uiteenlopender achtergronden deelnemen.

In Hoofdstuk 4 werd getest of het hebben van een grotere woordenschat ook gunstig

is voor taalproductie. Ook hier werden proefpersonen getoetst op de bovengenoemde

zeven woordenschattoetsen. Daarnaast deden ze een taak waarbij ze plaatjes benoemden

en getest werd hoe snel ze dat deden. De resultaten van dit experiment toonden aan dat

mensen met betere woordenschatscores ook sneller waren in het benoemen van plaatjes.

Daarmee is niet alleen taalbegrip, maar ook taalproductie verbonden met woordenschat,

en een grotere woordenschat is voor beide voordelig.

Woordenschatverwerving

De eerste drie hoofdstukken lieten zien dat er aanzienlijke variatie bestaat in de

woordkennis van moedertaalsprekers van een taal, met name wanneer men kijkt naar

mensen met verschillende achtergronden. Daarnaast werd vastgesteld dat die diversiteit

invloed heeft op taalverwerking: een grotere woordenschat wordt geassocieerd met

sneller en nauwkeuriger taalbegrip en taalproductie. Een vraag die hieruit volgt is wat

de oorzaak is van de variatie in woordenschat. Waarom leren sommige mensen meer

woorden dan anderen, waardoor ze uiteindelijk een grotere woordenschat hebben? Zoals

hierboven beschreven worden zowel leeftijd als onderwijs gekoppeld aan verschillen in

woordenschat. Bovendien is er een toenemend aantal studies naar de

woordenschatverwerving van kinderen, die aantonen dat zowel de hoeveelheid

blootstelling aan taal als de snelheid waarmee taal verwerkt wordt tot variatie leiden in

de woordenschat van kinderen (Fernald et al., 2006; Jones & Rowland, 2017; Marchman

& Fernald, 2008). Er is echter, ondanks het feit dat we weten dat ook volwassenen

nieuwe woorden blijven bijleren, weinig onderzoek verricht naar welke factoren hierop

van invloed zijn. Deze vraag werd behandeld in Hoofdstuk 5 en 6 van dit proefschrift.

In het experiment in Hoofdstuk 5 leerden proefpersonen nieuwe woorden. Ze

kwamen naar het lab om 39 woorden te leren die ieder vergezeld waren van een
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kleurenfoto met daarop een afbeelding van de betekenis van het woord. Alle woorden

waren zeer ongebruikelijke woorden van het Nederlands en als zodanig onbekend aan

90% van de Nederlanders en daarmee ook aan de proefpersonen in het experiment. Alle

proefpersonen werden getraind op deze woorden en meteen daarna getoetst, alsook een

week later. Tijdens de training kwamen woorden ofwel drie keer voor, ofwel negen of 16

keer. Het doel van het experiment was met name om de verbanden te onderzoeken

tussen leerprestaties, slaap, de mate van blootstelling aan nieuwe woorden en ook andere

cognitieve vaardigheden. De cognitieve vaardigheden waarop getoetst werd waren

woordenschat, algemene intelligentie, verwerkingssnelheid en kortetermijngeheugen.

Woordenschat werd geëvalueerd in twee van de eerder gebruikte testen en algemene

intelligentie werd gemeten met een onderdeel van een bekende IQ-test.

Verwerkingssnelheid werd gemeten in drie taken waarbij proefpersonen zo snel mogelijk

een knop moesten indrukken na het zien van een plaatje op een computerscherm of het

horen van een piepgeluid door de koptelefoon. Het kortetermijngeheugen waarin we

gëınteresseerd waren heet het fonologische kortetermijngeheugen en duidt op de

vaardigheid om gesproken getallenreeksen of letterreeksen te onthouden. In de taak

waarin dit werd getoetst hoorden proefpersonen gesproken getallenreeksen variërend

tussen de twee en negen cijfers lang en moesten deze vervolgens intypen.

De resultaten van het woordenschatexperiment lieten zien dat proefpersonen woorden

beter onthielden als ze daar vaker op waren getraind. Bovendien waren prestaties beter

in de tweede test, een week na de training, dan onmiddellijk na de training. Dit is een

typisch resultaat: slaap helpt om nieuw geleerde woorden beter te onthouden. Ten slotte

leerden proefpersonen met betere non-verbale intelligentie en een grotere woordenschat

in hun moedertaal gemakkelijker nieuwe woorden.

Maar waarom is een grotere woordenschat of hogere intelligentie voordelig voor het

leren van nieuwe woorden? Dit werd onderzocht in Hoofdstuk 6 aan de hand van een

computationeel model dat de cognitieve processen van taalbegrip en taalproductie

simuleert. Het voordeel van computationeel modelleren is dat factoren of vaardigheden

die moeilijk te meten en te controleren zijn in mensen (zoals de mate van

taalblootstelling en verwerkingssnelheid) expliciet kunnen worden gemanipuleerd. In ons

model werd een aantal factoren gemanipuleerd dat mogelijk leidt tot verschillen in

woordenschatverwerving. Het model simuleerde bijvoorbeeld variatie in algemene

intelligentie en verwerkingssnelheid. Deze studie toonde aan dat zowel een snellere

verwerking als een hogere algemene intelligentie een grotere woordenschat tot gevolg

hebben. Sterker nog, de netwerken met hogere verwerkingssnelheden en met hogere

intelligentie behaalden dit voordeel juist omdat ze niet alleen de makkelijke, maar ook

de moeilijkere woorden leerden.
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Het model werd ook gebruikt om de bevinding nader te analyseren dat individuen

met een grotere woordenschat een snellere taalverwerking hebben en op volwassen

leeftijd beter zijn in het leren van nieuwe woorden. Het model liet zien dat het niet per

se een grotere woordenschat is die leidt tot een snellere taalverwerking en betere

woordenschatverwerving op volwassen leeftijd. Integendeel is het misschien juist toe te

schrijven aan onderliggende factoren, zoals een grotere mate van blootstelling, snellere

verwerking of hogere intelligentie. Een woordenschattoets meet bij mensen mogelijk niet

alleen de grootte van de woordenschat, maar ook deze onderliggende factoren. Dit is

wellicht de reden dat er een sterk verband is tussen de variatie in taalverwerking en die

in woordenschatverwerving.

Samenvatting

Samengevat toont mijn onderzoek aan dat er veel variatie is in de grootte van de

woordenschat van moedertaalsprekers van een taal. Deze verschillen in woordkennis

bëınvloeden taalverwerking: mensen met een grotere woordenschat zijn sneller en

nauwkeuriger in het produceren en het begrijpen van woorden. Daarnaast is aangetoond

dat het noodzakelijk is niet alleen universitaire bachelorstudenten te testen, die

doorgaans de proefpersonen vormen in psycholingüıstisch onderzoek. Niet alle

bevindingen uit studies met universitaire studenten zijn te generaliseren naar groepen

met uiteenlopender achtergronden. Het spectrum van vaardigheden zoals

woordenschatscores en de variatie in taalverwerking worden onderschat wanneer de

focus alleen ligt op universitaire studenten.

Ten slotte is hier onderzocht wat de oorzaak is van variatie in woordenschatgrootte.

Waarom leren sommige mensen meer woorden dan andere mensen en hebben ze

zodoende een grotere woordenschat? Deze studies tonen aan dat individuen met een

grotere woordenschat gemakkelijker nieuwe woorden leren. Dit is waarschijnlijk toe te

schrijven aan onderliggende factoren, zoals de mate van blootstelling, intelligentie en

verwerkingssnelheid. Het gebruikte computationele model liet zien dat een grotere mate

van blootstelling, een hogere intelligentie en een snellere taalverwerking allemaal leidden

tot het leren van een groter aantal woorden enerzijds, en anderzijds tot snellere

taalverwerking en betere prestaties bij het leren van nieuwe woorden. Zodoende belicht

dit proefschrift complexe relaties tussen verscheidene cognitieve vaardigheden,

woordenschatverwerving en woordenschatgrootte en taalverwerking. Toekomstig

onderzoek zal deze aspecten van één van de meest fascinerende vaardigheden van de

mens, namelijk het vermogen om te leren en taal te gebruiken, verder moeten

onderzoeken.

(Translated from English by Merel Maslowski)
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Deutsche Zusammenfassung

Wortwissen oder Vokabular ist ein wichtiger Aspekt unseres Sprachvermögens. Sowohl

schulischer als auch beruflicher Erfolg sind zu einem bedeutenden Teil abhängig davon,

ob wir dazu in der Lage sind, geschriebene und gesprochene Sprache zu verstehen (etwa in

Aufgabenstellungen oder Anweisungen) und unsere Gedanken oder Meinungen deutlich

zu kommunizieren.

Als Muttersprachler einer Sprache kennen wir eine beeindruckende Anzahl von

Wörtern. Im Durchschnitt kennt ein 20 Jahre alter Muttersprachler des Amerikanischen

Englisch 42.000 Lemmas, das sind nicht gebeugte Wortgrundformen (Brysbaert et al.,

2016b). Das Erlernen von Wörtern ist aber nicht irgendwann im jungen

Erwachsenenalter abgeschlossen. Ganz im Gegenteil: Die Größe des Vokabulars nimmt

mit dem Alter zu (Brysbaert et al., 2016b; Schroeder & Salthouse, 2004). Über die

Jahre sind wir einer beachtlichen Anzahl verschiedener Wörter ausgesetzt, von denen

wir viele behalten. Im Alter zwischen 20 und 60 Jahren lernt ein Erwachsener

schätzungsweise 6.000 neue Wörter. Das bedeutet, dass wir in dieser Zeit etwa alle zwei

Tage ein neues Wort lernen (Brysbaert et al., 2016b; Keuleers et al., 2015).

Unser Vokabular ist also ein ständig wachsender Wortschatz, der es uns erlaubt,

uns über die Welt um uns herum und Gedanken und Gefühle auszutauschen. Dabei

sind für unterschiedliche Menschen die unterschiedlichsten Dinge relevant – es liegt also

nahe anzunehmen, dass Menschen sich auch darin unterscheiden, welche und wie viele

Worte sie kennen. Fachworte sind ein sehr intuitives Beispiel dafür, wie stark sich der

Wortschatz verschiedener Menschen mit verschiedenen Erfahrungen unterscheidet. Die

Worte Synkope oder lunge (engl.) sind zum Beispiel Menschen mit bestimmten Berufen,

Interessen oder Hobbies bekannt, wohingegen andere diese Ausdrücke noch nie gehört

haben.2 Ein weiterer Faktor, von dem wir wissen, dass er die Größe des Wortschatzes von

Menschen allen Alters beeinflusst, ist Bildung. Verschiedene Studien haben gezeigt, dass

höhere Bildungsniveaus im Zusammenhang stehen mit einem größeren Vokabular. Das

ist unter anderem darauf zurückzuführen, dass beispielsweise die Ausbildung an einer

2Synkope ist ein Wort, dass Musiker oder vielleicht auch Tänzer kennen. Es beschreibt eine
Veränderung des Betonungsschemas einer Musikstücks, bei dem die eigentlich unbetonten Schläge betont
werden. Lunge (engl.) ist der Name einer Tanzbewegung bzw. -position, bei der ein Bein gebeugt und
das andere gestreckt ist.

265



Universität mit einem umfangreichen Lesepensum verbunden ist, welches wiederum die

Vokabulargröße beeinflusst (Brysbaert et al., 2016b; Keuleers et al., 2015).

Wortwissen

Studien haben gezeigt, dass Unterschiede in der Größe des Wortschatzes nicht nur

Auswirkungen darauf haben, welche seltenen und sehr spezifischen Worte Menschen

kennen und verstehen (etwa Serendipität, was so viel bedeutet wie glücklicher Zufall).

Auch die Verarbeitung von sehr häufig auftretenden Worten, die im Wortschatz fast

aller Erwachsener enthalten sind (etwa Zufall), variiert abhängig davon wie viele Worte

ein Erwachsener kennt. Menschen mit einem umfangreicheren Vokabular zeigen eine

bessere Sprachverarbeitung als Menschen mit geringerem Wortwissen (Bent et al., 2016;

Janse & Jesse, 2014; Rodriguez-Aranda & Jakobsen, 2011; Yap et al., 2012). Das

bedeutet, dass Erwachsene mit einem großen Vokabular in Aufgaben zur Messung von

Sprachverstehen und -produktion gewöhnlich weniger Fehler machen und schneller sind.

Im ersten Teil meiner Doktorarbeit habe ich das Verhältnis zwischen Vokabelwissen und

Sprachverarbeitung näher untersucht (Kapitel 2, 3 & 4).

Wenn man Wortwissen und Sprachverarbeitung erforschen möchte, muss man sich

eine wichtige Frage stellen: Wie misst man Vokabular am besten? In den meisten der

früheren Studien mussten die Testpersonen nur einen einzigen Vokabeltest absolvieren.

Da Wortwissen aber sehr komplex und nicht einfach zu messen ist, haben verschiedene

Forscher argumentiert, dass ein einzelner Test zur Messung von Vokabular nicht

ausreichend ist. Stattdessen wurde vorgeschlagen, dass verschiedene Tests, etwa

Multiple-Choice und offene Vokabeltests, erforderlich sind. Aus diesem Grund habe ich

sieben verschiedene Vokabeltests verwendet, von denen ich fünf selbst entwickelt habe.

In den Kapiteln 2 und 3 habe ich das Verhältnis zwischen Wortwissen und

Sprachverstehen untersucht. Zur Messung von Sprachverstehen wurde die in der

psycholinguistischen Forschung weit verbreitete Lexikalische Entscheidungsaufgabe

verwendet. In dieser Aufgabe sehen die Testpersonen immer je eine Buchstabenreihe auf

dem Bildschirm. Sie müssen entscheiden, ob es sich dabei um ein sinnvolles Wort oder

eine sinnlose Aneinanderreihung von Buchstaben handelt, und dieses Urteil per Druck

auf eine Reaktionstaste abgeben. Insgesamt stehen die Ergebnisse meiner Experimente

in Einklang mit denen früherer Studien: Personen mit besserem Vokabular schnitten in

dieser Aufgabe zur Messung von Sprachverstehen besser ab, das heißt sie waren schneller

als Personen mit geringerem Wortwissen.

Ein wichtiger Unterschied zwischen meinen Experimenten und früheren

Untersuchungen ist, dass ich nicht nur Universitätsstudenten (Kapitel 2) getestet habe,

sondern auch junge Erwachsene unterschiedlicherer Hintergründe, genauer gesagt
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Berufsschüler (Kapitel 3). Der Großteil dessen, was wir über Sprachverarbeitung wissen,

basiert auf Studien, in denen Universitätsstudenten getestet wurden. In dem

Zusammenhang kann man sich aber fragen, ob sich das, was wir aus diesen Studien

gelernt haben, auf den durchschnittlichen jungen erwachsenen Muttersprachler

verallgemeinern lässt. Der Grund dafür ist, dass Universitätsstudenten beispielsweise

sehr viel mehr geschriebener Sprache ausgesetzt sind und vermutlich ein höheres

Lesepensum haben als der durchschnittliche junge Erwachsene, was wiederum die

Sprachfertigkeiten dieser jungen Menschen beeinflusst.

Mein Experiment in Kapitel 3 hat gezeigt, dass die Spanne der Ergebnisse bei den

Vokabeltests und in der Lexikalischen Entscheidungsaufgabe (d.h. die Anzahl an Fehlern

und Schnellheit) in der Gruppe der Berufsschüler deutlich größer war, als in der Gruppe

der Universitätsstudenten. Wenn wir also nur Universitätsstudenten testen, übersehen

wir eine ganze Menge an Varianz, die Menschen verschiedener Hintergründe in

bestimmten Fähigkeiten aufweisen. Zusätzlich war das Verhältnis zwischen Vokabular

und Sprachverarbeitung (größeres Vokabular = schnellere und akkuratere

Sprachverarbeitung) zwar im Großen und Ganzen ähnlich, unterschied sich im Detail

aber doch zwischen den verschiedenen Gruppen von Testpersonen. Die Take-Home

Message ist also, dass es notwendig ist, nicht nur die ”typischen” Testpersonen

(Universitätsstudenten) zu untersuchen, sondern dass wir uns bemühen sollten, auch

Testpersonen vielfältigerer Hintergründe in psychologische und psycholinguistische

Experimente einzubeziehen.

In Kapitel 4 habe ich untersucht, ob ein großes Vokabular auch positive

Auswirkungen auf Sprachproduktion hat. Die Testpersonen in diesem Experiment

haben, wie vorher beschrieben, sieben Vokabeltests gemacht. Zusätzlich dazu haben sie

eine Sprachproduktionsaufgabe absolviert, in der sie nacheinander verschiedene Bilder

auf dem Computerbildschirm sahen, die sie benennen mussten. In dieser Aufgabe haben

wir die Benennungsgeschwindigkeit gemessen. Die Ergebnisse dieses Experiments haben

gezeigt, dass Personen mit besserem Vokabular schneller darin sind, die Bilder zu

benennen. Das macht deutlich, dass Menschen mit größerem Wortwissen nicht nur im

Wortverstehen (wie in der Lexikalischen Entscheidungsaufgabe) schneller und

fehlerfreier abschneiden, sondern auch schneller in der Wortproduktion sind (wie beim

Benennen von Bildern).

Wortlernen

Die ersten drei Kapitel haben gezeigt, dass die Muttersprachler einer Sprache große

individuelle Unterschiede im Wortwissen aufweisen, vor allem wenn man Testpersonen

unterschiedlicher Bildungshintergründe betrachtet. Außerdem wurde gezeigt, dass diese
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Unterschiede im Vokabular einen Einfluss auf Sprachverarbeitungsgeschwindigkeit und

-präzision haben: Wer ein größeres Vokabular hat, ist im Verständnis und der

Produktion von Worten schneller und präziser. Was sind aber die Gründe für diese so

großen Unterschiede im Wortschatz von erwachsenen Muttersprachlern? Warum lernen

manche Menschen mehr Worte als andere und haben daher schließlich ein größeres

Vokabular als andere? Wie zuvor angemerkt wissen wir, dass sowohl das Alter als auch

die Bildung im Zusammenhang stehen mit Unterschieden in der Größe des Vokabulars.

Desweiteren gibt es viele Studien zum Wortlernen bei Kindern. Es wurde gezeigt, dass

Unterschiede in der Menge der Spracherfahrung von (Klein-)Kindern, sowie Unterschiede

in ihrer Sprachverarbeitungsgeschwindigkeit einen Einfluss auf das Wortlernen und die

Größe des Wortschatzes von Kindern haben (Jones & Rowland, 2017; Fernald et al.,

2006; Marchman & Fernald, 2008). Obwohl bekannt ist, dass wir im Erwachsenenalter

weiter ständig neue Worte lernen, gibt es nur wenige Untersuchungen, die sich mit den

Einflussfaktoren auf das Wortlernen in Erwachsenen beschäftigen. Dieser

Forschungsfrage habe ich mich in den Kapiteln 5 und 6 meiner Doktorarbeit gewidmet.

Das Experiment in Kapitel 5 war eine Wortlern-Studie. In diesem Experiment

haben die Testpersonen 39 Worte gelernt, deren Bedeutung jeweils durch ein Foto

repräsentiert wurde. Alle Worte waren sehr seltene niederländische Worte, die laut einer

Studie weniger als 10% der Muttersprachler in den Niederlanden kennen. Die

Testpersonen haben verschiedene Trainingsaufgaben absolviert. Ihre Kenntnis der neu

erlernten Worte wurde sowohl direkt nach dem Training als auch eine Woche später

getestet. Während des Trainings wurden einige Wort-Bild Paare nur drei Mal gezeigt,

wohingegen andere acht Mal und wieder andere sechzehn Mal gezeigt wurden. Das Ziel

des Experimentes war es, die Auswirkungen von Schlaf, der Worthäufigkeit (Anzahl der

Wiederholungen der einzelnen Worte) und von verschiedenen kognitiven Fähigkeiten auf

den Lernerfolg zu untersuchen. Die kognitiven Fähigkeiten, die untersucht wurden,

waren Vokabular, allgemeine Intelligenz, allgemeine Verarbeitungsgeschwindigkeit und

Kurzzeitgedächtnis. Vokabular wurde in zwei Tests gemessen, die ich auch in früheren

Studien schon verwendet habe, und zur Messung von Intelligenz mussten die

Testpersonen einen Teil eines bekannten IQ Tests absolvieren. Allgemeine

Verarbeitungsgeschwindigkeit wurde in drei verschiedenen Tests beurteilt. In diesen

Tests müssen die Testpersonen so schnell wie möglich eine Taste drücken, sobald sie ein

bestimmtes Bild auf dem Bildschirm sehen oder einen Piep-Ton hören. Die Art des

Kurzzeitgedächtnisses, an dem ich interessiert war, nennt man phonologisches

Kurzzeitgedächtnis. Das beschreibt die Fähigkeit, eine Abfolge gesprochener Zahlen oder

Buchstaben im Kurzzeitgedächtnis zu behalten. In der Aufgabe, die ich verwendet habe,

um das phonologische Kurzzeitgedächtnis zu messen, hören die Testpersonen
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gesprochene Abfolgen von Zahlen, die zwischen zwei und neun Zahlen lang sind, und

müssen diese in den Computer eintippen.

Die Wortlernstudie hat gezeigt, dass Testpersonen Wörter besser behalten, je öfter

sie diese im Laufe des Trainings hören. Außerdem haben die Testpersonen in dem zweiten

Test, der eine Woche nach dem Training stattgefunden hat, besser abgeschnitten, als im

Test direkt nach dem Training. Das ist eine ganz typische Beobachtung: Schlaf unterstützt

die Gedächtnisbildung neu erlernter Worte. Zusätzlich haben Testpersonen mit besserer

allgemeiner Intelligenz und größerem Vokabular eine größere Anzahl der neuen Wörter

gelernt.

Aber warum haben ein größeres Vokabular oder eine größere Intelligenz positive

Auswirkungen auf das Erlernen von Wörtern? In Kapitel 6 habe ich die Computation

Modelling Technik verwendet, um diese Frage zu beantworten. Ich habe ein Modell

verwendet, das den kognitiven Prozess des Wortlernens simuliert; also ein Modell, das

das Erlernen von Wortverstehen und Wortproduktion simuliert. Der Vorteil des

Computational Modellings ist, dass es uns erlaubt, Faktoren oder Fähigkeiten, die in

Testpersonen sehr schwierig zu kontrollieren und zu messen sind (wie etwa die Menge an

Sprachinput, die ein Mensch bekommt, oder seine Verarbeitungsgeschwindigkeit),

explizit zu manipulieren. In unserem Modell haben wir einige Faktoren manipuliert, die

potentiell zu Unterschieden im Wortlernen führen können. So wurde das Modell

beispielsweise dazu verwendet, um Unterschiede in der Intelligenz und der allgemeinen

Verarbeitungsgeschwindigkeit zu simulieren. Die Studie hat gezeigt, dass schnellere

Verarbeitungsgeschwindigkeit und höhere Intelligenz tatsächlich zu einem erfolgreicheren

Wortlernen und damit zu einem größeren Vokabular führen. Interessanterweise scheint

es, als ob die höhere Verarbeitungsgeschwindigkeit und Intelligenz deshalb vorteilhaft

für den Wortlernprozess sind, weil sie dazu führen, dass nicht nur leicht zu erlernende

Wörter gelernt werden, sondern auch schwieriger zu erlernende Wörter.

Zusätzlich wurde das Modell verwendet, um eine andere Beobachtung aus den Studien

mit menschlichen Testpersonen weiter zu untersuchen; nämlich die Beobachtung, dass

Personen mit einem größeren Vokabular schneller in der Sprachverarbeitung sind und

im Erwachsenenalter erfolgreicher neue Wörter lernen. Das Modell hat gezeigt, dass es

wahrscheinlich nicht Vokabulargröße per se ist, die zu besserer Sprachverarbeitungs- und

Lernfähigkeit führt. Stattdessen scheint es so, als führten verschiedene Faktoren (mehr

Sprach-Input, schnellere allgemeine Verarbeitungsgeschwindigkeit, höhere Intelligenz) zu

verbesserter Sprachverarbeitung und erfolgreicherem Wortlernen im Erwachsenenalter.

Wenn wir menschliche Testpersonen untersuchen, misst ein Vokabeltest nicht nur die

Größe des Vokabulars, sondern auch diese zugrundeliegenden Faktoren. Das könnte ein
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Grund dafür sein, warum Vokabeltestergebnisse in einem so starken Zusammenhang mit

Unterschieden in der Sprachverarbeitung und dem Wortlernen zu stehen scheinen.

Zusammenfassung

Meine Forschung hat gezeigt, dass es große Unterschiede in der Vokabulargröße von

Muttersprachlern einer Sprache gibt. Diese Unterschiede im Wortschatz beeinflussen die

Sprachverarbeitung: Menschen mit einem größeren Wortwissen sind schneller und

präziser in der Produktion und im Verständnis von Wörtern. Außerdem habe ich

gezeigt, dass es notwenig ist, nicht nur Universitätsstudenten – die ”typischen”

Testpersonen in psycholinguistischen Studien – zu testen. Nicht alle Beobachtungen aus

Studien mit dieser Gruppe von Testpersonen lassen sich auf Testpersonen mit

vielfältigeren Bildungshintergründen verallgemeinern. Zudem unterschätzen wir

deutlich, wie groß die Varianz in der Größe des Wortschatzes und der

Sprachverarbeitungsgeschwindigkeit von Muttersprachlern ist, wenn wir uns auf die

Untersuchung von Universitätsstudenten konzentrieren.

Im zweiten Teil meiner Doktorarbeit habe ich die Frage untersucht, was der

Ursprung für diese Varianz in der Vokabulargröße von Muttersprachlern ist. Warum

haben manche Menschen einen größeren Wortschatz als andere? Meine Studien haben

gezeigt, dass Menschen mit einem größeren Vokabular besser darin sind, neue Worte zu

erlernen. Das liegt jedoch wahrscheinlich an anderen zugrundeliegenden Faktoren, wie

beispielsweise der Menge an sprachlichem Input, Intelligenz oder

Verarbeitungsgeschwindigkeit. Das Computational Model hat gezeigt, dass mehr Input,

höhere Intelligenz und erhöhte Verarbeitungsgeschwindigkeit einerseits dazu führen, dass

das Modell während der frühen Entwicklung mehr Worte lernt, und andererseits auch

schnellere Sprachverarbeitungsgeschwindigkeit und verbessertes Wortlernen im

Erwachsenenalter zur Folge hat. Diese Doktorarbeit hat also geholfen, einige der

komplexen Verhältnisse zwischen kognitiven Fähigkeiten, Wortlernen, Vokabular und

Sprachverarbeitung zu beleuchten. Zukünftige Studien sind nötig, um weitere

Erkenntnisse zu einer der faszinierendsten Fähigkeiten des Menschen zu sammeln,

nämlich der Fähigkeit Sprache so scheinbar mühelos zu erlenen und zu verwenden.
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English summary

The knowledge of words is an important part of our command of a language. Both

educational and professional success are to a great extent dependent on whether we are

able to understand written and spoken instructions and can clearly communicate our

thoughts and opinions.

The number of words that we know is quite impressive. An average 20-year-old native

speaker of American English is estimated to know 42,000 lemmas, i.e. uninflected word

forms from which all inflections are derived (Brysbaert et al., 2016b). However, word

learning does not stop at some point in early adulthood. On the contrary, vocabulary

size tends to improve with ageing and across the entire lifespan (Brysbaert et al., 2016b;

Schroeder & Salthouse, 2004). Thus, over the years, we are exposed to, continue to learn,

and importantly also remember, a remarkable number of words. It has been estimated

that an average adult learns approximately 6,000 new words between the ages of 20 and

60 years. That means in these 40 years, on average one new lemma is learned every two

days (Brysbaert et al., 2016b; Keuleers et al., 2015).

Hence, our vocabularies are ever-growing inventories of words to describe the world

around us, a collection of expressions to describe all kinds of experiences and information

that is relevant to us. It might be assumed that there is variation in how many and

which words people know. Specialist vocabulary is one example for the strong effects of

experience on the type of words known by different individuals. The words syncopation

or lunge are, for instance, known by individuals with certain occupations, interests, or

hobbies, and completely opaque to others.3 Another factor that affects the number and

types of words we know is education. It has been shown that educational level significantly

affects vocabulary size across the entire age range. Higher educational levels are associated

with greater vocabulary knowledge. This is likely due to effects of extensive reading and

studying – which are associated with formal education – on vocabulary growth (Brysbaert

et al., 2016b; Keuleers et al., 2015).

3In this case, syncopation is a word known by musicians or perhaps also dancers and it refers to a
change to the rhythm of a piece of music where the stressed beats become unstressed and the unstressed
ones become stressed. Lunge is a dance movement where one leg is in a bent position and the other leg
is extended.
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Vocabulary knowledge

Previous research has indicated that variation in the number of words people know does

not only affect which uncommon words they know and understand. Also the processing of

very common words that are included in almost all adults’ vocabularies has been shown

to be influenced by how many words an adult knows. Individuals with better vocabulary

knowledge have generally been reported to be better at processing language (Bent et

al., 2016; Janse & Jesse, 2014; Rodriguez-Aranda & Jakobsen, 2011; Yap et al., 2012).

That means they were usually faster and/or more accurate in performing different tasks

assessing language comprehension and production. In the first part of my dissertation

(Chapters 2, 3, & 4) I investigated this relationship between vocabulary and language

processing more closely.

One important question to ask when studying vocabulary and language processing

is: How is vocabulary knowledge best measured? Most of the earlier studies have used

only single vocabulary tests. It has, however, been argued that in order to assess a skill

as complex as word knowledge, it is necessary to use multiple tests, including for instance

multiple-choice and open tests. Therefore, I did not only use one vocabulary measure but

seven different tests, five of which I developed in preparation for my first experiments.

In Chapters 2 and 3, I examined the relationship between variation in vocabulary

and language comprehension. The latter was assessed in a task typically used in

psycholinguistic research, called lexical decision task. In this task, participants are

presented with strings of letters on a computer screen and they are asked to decide

whether or not what they see is an existing Dutch word, by pressing a button. Overall,

the findings from this experiment are in line with what has been found previously:

Individuals with better vocabulary knowledge performed better on the language

comprehension task.

However, one important way in which my experiments extend earlier studies is that I

did not only test university students (Chapter 2) but also young adults from more diverse

backgrounds (Chapter 3). Most of what is known about language processing is based

on studies testing undergraduate university students. One might ask whether what we

know from studies on undergraduate university students can be generalised to the average

young adult. The reason is that university students are, for example, presumably exposed

to more written language than the average young adult, which in turn likely affects their

language abilities.

My experiment in Chapter 3 demonstrated that the range of vocabulary scores and

lexical decision performances (i.e. accuracy rates and speed of making the decisions)

was much larger in the group of non-university students. Consequently, testing only

university students means that we miss a lot of variation in skills that exists in humans.
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In addition, the relationship between vocabulary size and language processing (larger

vocabularies, better language processing) was similar but not exactly the same in the

non-university as in the university students. Hence, the take-home message from this is

that it is necessary to not just test the “typical” group of participants (university students)

but strive for including participants from more diverse backgrounds in psychological and

psycholinguistic studies.

In Chapter 4, I examined whether having a larger vocabulary is also beneficial for

language production. Participants in this experiment again completed the seven

vocabulary tests that were mentioned before. In addition, they did a task where they

had to name pictures and we measured their naming speed. The results of this

experiment show that individuals with better vocabulary scores were faster in naming

the pictures. Hence, not only word comprehension but also word production is related

to vocabulary and knowing more words is beneficial for both.

Vocabulary learning

The first three chapters have shown that there is considerable variation in vocabulary

knowledge among the native speakers of a language, especially when looking at

individuals from diverse backgrounds. Additionally, these differences have an effect on

language processing: Larger vocabularies are associated with faster and more accurate

word comprehension and production. A question arising is what the origins are of this

variation in vocabulary size. Why do some people learn more words than others, thus

ending up having a larger vocabulary than others? As indicated above, both age and

education have been related to differences in vocabulary (Brysbaert et al., 2016b;

Keuleers et al., 2015). In addition, there is a growing body of research on word learning

in children. Differences in the amount of exposure to language and in language

processing speed have been shown to lead to variation in word learning and vocabulary

size in childhood (Fernald et al., 2006; Jones & Rowland, 2017; Marchman & Fernald,

2008). However, despite the fact that we know that word learning continues across the

life span, very little research has investigated which factors affect word learning in

adulthood. This question was addressed in Chapters 5 and 6 of my dissertation.

The experiment in Chapter 5 was a word learning experiment. Participants came

to the lab and learned 39 words, each of which was paired with a coloured photograph

depicting the word’s meaning. All words were very uncommon Dutch words and therefore

unknown to 90% of the native speakers of Dutch in the Netherlands, thus, also to the

participants in the experiment. All participants were trained on these words and tested

immediately after training and one week later. During the training tasks, some words

were presented three times, others nine times, and others 16 times. The purpose of
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the experiment was in particular to examine the relationships between word learning

success, sleep, the amount of exposure to novel words, and different cognitive abilities. The

cognitive abilities we looked at were vocabulary, general intelligence, processing speed, and

short-term memory. Vocabulary was assessed in two of the tests which I had used before,

and general intelligence was measured with a sub-part of a well-known IQ test. Processing

speed was measured in three tasks, where participants had to press a button as quickly

as possible upon seeing a picture on the screen or hearing a beep-sound over headphones.

Finally, the type of short-term memory I was interested in is called phonological short-term

memoryand it describes the ability to keep strings of spoken digits or letters in short-term

memory. In the task to measure this, participants hear spoken strings of digits, ranging

from two-digit to nine-digit strings, and are asked to type them in.

The results of the word learning experiment showed that participants remembered

words better that they had seen more often during training. In addition, their performance

was better in the second test, one week after the training had taken place, than right after

training. This is a typical finding: Sleep supports the formation of memories of newly

learned words. Furthermore, participants with better nonverbal intelligence and better

vocabularies in their native language learned more words.

But why is a larger vocabulary or greater intelligence beneficial for word learning?

In Chapter 6, this issue was addressed using a computational model that simulates the

cognitive process of learning to produce and comprehend words. The advantage of

computational modelling is that constructs that are very difficult to measure and control

in humans (such as the amount of language exposure or processing speed) can be

manipulated explicitly. In our model, a number of factors that potentially lead to

differences in word learning were manipulated. The model was, for example, used to

simulate variation in general intelligence and processing speed. The study showed that

faster processing speed and greater general intelligence do indeed lead to larger

vocabularies. Importantly, it seemed that the networks with increased processing speed

and those with higher intelligence had advantages in word learning because they learned

not only the easy words but also more difficult words.

In addition, the model was used to further examine the finding that individuals with

larger vocabularies are faster in processing language and better at learning novel words

in adulthood. The model demonstrated that it might not be a larger vocabulary per se,

but rather underlying factors (such as more exposure, faster processing speed, or greater

intelligence) that lead to faster language processing and better word learning in adulthood.

When testing human participants, a measure of vocabulary probably captures not only

vocabulary size but also these other underlying factors. That might be the reason why
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vocabulary has been shown to strongly relate to variation in language processing and also

variation in word learning.

Summary

To sum up, my research demonstrated that there is a lot of variation in vocabulary size

among the native speakers of a language. These differences in word knowledge influence

language processing: Individuals with better vocabularies are faster and more accurate

at producing and comprehending words. In addition, I showed that it is necessary to not

only test undergraduate university students – the typical participants in psycholinguistic

research. Not all findings from studies on university students extend to groups of

participants from more diverse backgrounds. The range of skills, in my case vocabulary

scores, and the variation in language processing performance, are underestimated when

focusing on university students only.

Finally, I asked what the origin of variation in vocabulary size is. Why do some

people learn more words than others and therefore end up having larger vocabularies than

others? My studies showed that individuals with larger vocabularies are more successful in

learning novel words. However, this is likely due to underlying factors, such as exposure,

intelligence, or processing speed. The computational model demonstrated that increased

exposure, greater intelligence, and higher processing speed all lead to larger numbers of

words being learned on the one hand, and to faster language processing speed and better

novel word learning on the other hand. Hence, this dissertation shed light on some of the

complex relationships between different cognitive abilities, vocabulary learning and size,

as well as language processing. Future research is needed to further examine these aspects

of one of humans’ most fascinating ability, namely the ability to learn and use language.
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