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Using the method or time-delayed embedding, a signal can be embedded into

higher-dimensional space in order to study its dynamics. This requires knowledge of

two parameters: The delay parameter τ , and the embedding dimension parameter D.

Two standard methods to estimate these parameters in one-dimensional time series

involve the inspection of the Average Mutual Information (AMI) function and the False

Nearest Neighbor (FNN) function. In some contexts, however, such as phase-space

reconstruction for Multidimensional Recurrence Quantification Analysis (MdRQA), the

empirical time series that need to be embedded already possess a dimensionality higher

than one. In the current article, we present extensions of the AMI and FNN functions

for higher dimensional time series and their application to data from the Lorenz system

coded in Matlab.

Keywords: averagemutual information, false-nearest neighbors, time-delayed embedding, Multidimensional Time

series, Multidimensional Recurrence Quantification Analysis, code:Matlab

1. INTRODUCTION

Many prominent methods of nonlinear time series analysis, such as Recurrence Quantification
Analysis (RQA – Webber and Zbilut, 1994) or Convergent Cross Mapping (Sugihara et al., 2012;
Mønster et al., 2017) require the reconstruction of the phase space profiles of time series, because
the analysis techniques are applied to the phase-space profiles of the time series, and not to the time
series themselves.

One way to solve the problem of reconstructing a higher dimensional phase-space from a one
dimensional time series is the method of time-delayed embedding (Packard et al., 1980; Takens,
1981): If the dynamics of the latent dimensions that co-determine the dynamics of an observed time
series are coupled to each other, then one can reconstruct the dynamics of these latent dimensions
from the observed one-dimensional time series by plotting the values of that series (multiple times)
against itself at a certain lag, as shown by Takens’ theorem. The resulting coordinates in higher
dimensional phase-space approximate the phase-space of the actual multidimensional system from
which the original time series was taken.
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In order to perform phase-space reconstruction using the
method of time-delayed embedding, one needs to know two
parameters: The delay parameter τ , which is the lag at which the
time series has to be plotted against itself, and the embedding
dimension parameter D, where D − 1 is the number of times
that the time series has to be plotted against itself using the
delay τ . If these two parameters are known, one can reconstruct
an approximation of the original phase-space dynamics from a
one-dimensional time series (Buzug and Pfister, 1992). Figure 1
provides an example using data from the Lorenz system (Lorenz,
1963), which is a system of three coupled differential equations.
For the Lorenz system, D is principally known (i.e., D = 3,
except for the fix-point attractor of the system), but τ still needs to
be estimated, because it depends on the properties of numerical
integration method chosen.

For most empirical time series, however, both of these two
parameters are unknown ab initio and have to be estimated.
Two standard methods to estimate these parameters in one-
dimensional time series are the computation of the Average
Mutual Information (AMI) function and the False Nearest
Neighbor (FNN) function, where the first local minima of
those functions (or the point at which those functions level-
off) are indicative of the delay and embedding dimension (e.g.,
Abarbanel, 1996; Marwan et al., 2007).

Accordingly, these functions have been implemented
in many software packages for the analysis of dynamic
systems. Sometimes, however, more than one time series is
available (i.e., different variables from the same system, or the
same variables from different parts of the system), and the
basis for the analysis—and the reconstruction of the phase-
space—is multidimensional time series data. For example, we
recently described multivariate extensions of RQA, namely
Multidimensional Recurrence Quantification Analysis (MdRQA:
Wallot et al., 2016b) for the analysis of multidimensional time
series and Multidimensional Cross-Recurrence Quantification
Analysis (MdCRQA: Wallot, 2018). Hence, when the underlying
data is multivariate, then one needs to somehow combine the
information from the individual component signals of the
multidimensional time series to properly estimate values for τ

and D.

FIGURE 1 | The original three-dimensional Lorenz system (A), a time series corresponding to the dynamics of the x-axis of the Lorenz system (B), two surrogate

series of the x-axis data by shifting the time series for a number of lags equal to τ (C) and 2τ (D). Note the loss of data points in creating the surrogate data in (C,D)

evident through missing data points at the end of the time series. When the time series in (B–D) are plotted against each other, the resulting phase-space (E)

approximates the original phase-space of the Lorenz system (A).

In psychology, the interest in examining the common
dynamics of multidimensional/multivariate time series has
been particularly prominent in psycho-physiological research,
particularly on the physiological signature on arousal and
emotions (see (Kreibig, 2010), for a review) and in joint action
research (see (Marsh et al., 2009; Knoblich et al., 2011), for
reviews)—or the intersection of both sub-fields (e.g., Konvalinka
et al., 2011; Müller and Lindenberger, 2011; Mønster et al., 2016).

Analysis methods that are based on phase-space
reconstruction have been particularly prominently used in
research on joint action (e.g., Shockley et al., 2003, 2007;
Richardson and Dale, 2005; Dale et al., 2011; Fusaroli and
Tylén, 2016; Mønster et al., 2016; Wallot et al., 2016a), but their
application was thus far constrained to the assessment of two
one-dimensional time series. For example, Louwerse et al. (2012)
investigated multimodal facial expression during conversation,
such as smiling, frowning, nodding, rolling the eyes etc. However,
the application of Cross-Recurrence Quantification Analysis
(CRQA), a phase-space based analysis technique, could only
be used to investigate the shared dynamics for each of those
features in isolation between two interlocutors, because CRQA
is restricted to one-dimensional time series. As noted above,
we have recently published multivariate extensions that would
allow the simultaneous analysis of multiple features, but proper
methods for the parameter estimation of the analysis were
missing.

The assessment of coupling or common dynamics between
multidimensional time series is relevant to many fields, but
it has mostly been physics and related disciplines that have
developed models and parameter estimation procedures for such
data. Usually, however, these methods are published as formal
descriptions. Accordingly, applicable software—for example for
psychologists interested in using such methods—needs to be
custom-coded.

Hence, in the present paper, we present Matlab
implementations of the AMI and FNN functions used
for one-dimensional time series that extend them for the
application to multidimensional time series in order to estimate
τ and D. For the delay parameter τ , we implemented the
uniform multivariate average mutual information method
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(Vlachos and Kugiumtzis, 2009), and for the embedding
dimension parameter D, we present an implementation that is a
simple extension of the original false nearest neighbor algorithm
proposed by Kennel et al. (1992).

In the following, we will briefly describe the two methods,
then provide an example application using the Lorenz system,
summarize the Matlab functions that implement the methods,
and finish with a discussion of their advantages and limitations,
as well as suggestions for their usage. A summary of the
abbreviations and notation used in this article, can be found in
the Appendix to this paper.

2. AVERAGE MUTUAL INFORMATION (AMI)

To find the optimal time delay for embedding a one-dimensional
time series, Fraser and Swinney (1986) developed a method to
find time delayed coordinates that are as independent from each
other as possible. They quantified dependence as the mutual
information I(x(t), x(t + τ )) between the original time series
x(t) and the time series x(t + τ ) shifted by τ . Since mutual
information is computed for a times series and a time-shifted
version of the same time series, this is called the auto mutual
information or average mutual information (AMI). The auto
mutual information can be considered a nonlinear generalization
of the autocorrelation function, and it is given by the expression

I(x(t), x(t + τ )) =
∑

i,j

pij(τ ) log

(

pij(τ )

pipj

)

(1)

Here, pi is the probability that x(t) is in bin i of the histogram
constructed from the data points in x, and pij(τ ) is the probability
that x(t) is in bin i and x(t+ τ ) is in bin j. Note that only the joint
probability pij(τ ) depends on τ , and that the AMI function also
depends on how the histograms are constructed, i.e., the width
and position of the bins.

To obtain coordinates for time delayed phase-space
embedding that are as independent as possible, Fraser and
Swinney proposed using the position of the first minimum of
I(x(t), x(t + τ )) as the optimal value of τ . Using that particular
value means that the first coordinate of the phase-space
embedded signal y1(t) = x(t) will be maximally independent
of the second coordinate y2(t) = x(t + τ ), etc. In practice the
AMI function may not have a local minimum, but may, e.g., be
a monotonically decreasing function of τ . Consequently other
criteria have been developed, such as the lowest value of τ for
which the AMI function drops below the value 1/e (see Kantz
and Schreiber, 2004, chapter 9 for a discussion).

Several methods have been proposed to generalize this
procedure for estimating the time delay to the case of
multidimensional time series (Garcia and Almeida, 2005; Hirata
et al., 2006; Vlachos and Kugiumtzis, 2009). Here, we have
chosen the simplest possible method, referred to by Vlachos
and Kugiumtzis (2009) as the uniform multivariate average
mutual information method. Using this method, the time delay
τ is estimated using AMI averaged over all the dimensions in
the data. The analyses presented by Vlachos and Kugiumtzis
(2009), showed that the uniform multivariate method achieves

state space reconstruction at a quality comparable to more
complicated non-uniform multivariate methods.

Of course this simple approach might not be applicable to
all multidimensional data, e.g., if some dimensions have a very
different auto mutual information function, this might give a
different optimal value for the time delay. The implementation
presented here allows a simple check for whether this is the
case, viz. the option to plot the AMI for each dimension of
the data. If the individual dimensions have very different AMI
functions, a more advanced approach might be needed, such as
embedding individual dimensions using different time delays, or
re-sampling some of the dimensions at a lower rate, unless of
course this results in loss of information. Another way might
be do a search of the parameter space, where for example the
minimum, maximum and average values of the parameters are
used, and the results are compared to each other.

Otherwise, the time delay for phase-space embedding of the
data can be performed just as in the uni-dimensional case, by
identifying the value of τ for which the AMI function drops
below 1/e (i.e., the fist value of the autocorrelation function that
lies below the standard error of the function) or attains its first
local minimum.

3. FALSE NEAREST NEIGHBORS (FNN)

Suppose we have a one-dimensional time series (such as the data
displayed in Figure 1B), and we know—or assume—that these
data come from a system with higher-dimensional dynamics
(such as the Lorenz system displayed in Figure 1A). Then
according to Takens’ theorem (Takens, 1981), we can try to
reconstruct the higher dimensional dynamics by embedding
the original one-dimensional time series, using time-delayed
surrogate copies of it. To be precise, we can construct a time series
y(t) of D-dimensional points from the original one-dimensional
time series x(t) as follows:

y(t) = (x(t), x(t + τ ), . . . , x(t + (D− 1)τ ) (2)

Here, both t and τ are integers used to index the sampled data,
but they can be expressed in units of real time when multiplied
by the sampling interval. The time delay τ can be estimated using
the AMI-approach described above. The embedding dimension
D can now be estimated by examining the change in distance
between neighboring points in phase-space, as we progressively
embed the original time series into higher dimensions.

The basic idea underlying the estimation of embedding
dimension using FNN was proposed by Kennel et al. (1992)
according to the following logic: Suppose two data points in the
one-dimensional time series are close together (e.g., adjacent)—
then they are neighbors. Their difference in magnitude provides
us with the distance of those neighbors. If we embed the
time series once (i.e., into two dimensions) using some time
delay τ , then we can use the coordinates of those data points
to examine whether the distance between them has changed
appreciably. If embedding changes the distance between the
neighbors appreciably, then they are dubbed false neighbors,
and this indicates that the data need to be embedded further. If
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their distance does not change appreciably, then they are dubbed
true neighbors and embedding leaves the shape of the attractor
unchanged, meaning that the current embedding dimension
is sufficient. This can be done for consecutively increasing
embedding dimensions D, and we choose a value for D at the
point where the number of FNN drops to 0, or subsequent
embeddings do not change the number of FNNs or the point
before which the number of FNNs starts to increase again.

In practice, not all neighbors are investigated, but as the
name implies, the method focuses only on the nearest neighbors,
and the definition of what an appreciable change in distance is
depends on a distance criterion that needs to be defined by the
user of the method (see function descriptions and applications
below). Using the formula from Kennel et al. (1992), if we have a
D-dimensional phase-space and denote the rth nearest neighbor
of a coordinate vector y(t) by y(r)(t), then the square of the
Euclidean distance between y(t) and the rth nearest neighbor is:

R2D(t, r) =

D−1
∑

k=0

[

x(t + kτ )− x(r)(t + kτ )
]2

(3)

Now applying the logic outlined above, we can go from a D-
dimensional phase-space to (D+ 1)-dimensional phase-space by
time-delayed embedding, adding a new coordinate to y(t), and
ask what is the squared distance between y(t) and the same rth
nearest neighbor:

R2D+1(t, r) = R2D(t, r)+
[

x(t + Dτ )− x(r)(t + Dτ )
]2

(4)

As explained above, if the one-dimensional time series is already
properly embedded inD dimensions, then the distanceR between
y(t) and the rth nearest neighbor should not appreciably change
by some distance criterion Rtol (i.e., R < Rtol). Moreover, the
distance of the nearest neighbor when embedded into the next
higher dimension—relative to the size of the attractor—should
be less than some criterion Atol (i.e., RD+1 < Atol). Doing this for
the nearest neighbor of each coordinate will result in many false
nearest neighbors when embedding is insufficient, or in few (or
no) false nearest neighbors when embedding is sufficient.

Now the implementation of the FNN-algorithm presented in
this paper simply extends the one-dimensional case by beginning
this computation with a multidimensional time series, which is
effectively treated as a d-dimensional phase-space, were d is the
number of component variables of the multidimensional time
series x1(t), x2(t), . . . , xd(t). Accordingly, embedding does not
proceed by increasing the embedding dimension D by 1 per step,
as in the one-dimensional case, but by d, because time-delayed
surrogates are themselves already d-dimensional. Hence, D + 1
in Equation (4) is replaced by (D+ 1) · d in Equation (5).

R2D·d(t, r) =

d
∑

j=1

D−1
∑

k=0

[

xj(t + kτ )− x
(r)
j (t + kτ )

]2

R2(D+1)·d(t, r) = R2D·d(t, r)+

d
∑

j=1

[

xj(t + Dτ )− x
(r)
j (t + Dτ )

]2

(5)

This allows us to estimate the embedding parameter D for
multidimensional time series, but the logic of selecting a value
for D remains the same as with one-dimensional time series.
Note, however, that in our implementationD does not denote the
embedding dimension per se, but denotes the number of times
that the d-dimensional time series needs to be embedded. Hence,
the embedding a d = 3-dimensional time series D = 2 times
results in a phase-space with d× D = 6 dimensions.

With the described methods it is possible for researchers to
estimate parameters for the embedding of multidimensional time
series. This is useful in cases where measurements of multiple
variables from the same dynamical system are available. In
experimental psychology this could be, e.g., multiple variables
from a participant in a in psychophysical or psychophysiological
study, or the same variable measured for multiple participants
that interact in a joint action study. Using the methods and
functions provided here, these variables can be used to embed the
systems’ dynamics in a higher-dimensional phase space, which
is a prerequisite for applying phase-space based methods such
as MdRQA (Wallot et al., 2016b) or MdCRQA (Wallot, 2018).
Without the ability to use multiple variables for the embedding,
researchers would be limited to analyzing one variable at a time.
As a case in point, it was demonstrated by Wallot et al. (2016b)
that MdRQA can be used to systematically analyze dynamics at
different levels—from individual dynamics over dyadic dynamics
up to groups of three (and in principle the method can be
applied to groups of arbitrary size), and that higher-dimensional
dynamics seem to capture group interaction better than the
average of the individual or dyadic dynamics.

4. EXAMPLE APPLICATION: THE LORENZ
SYSTEM

In the following, we use the mdDelay and mdFnn functions on
data from the Lorenz system (Lorenz, 1963), which is defined as:

ẋ = σ (y− x)

ẏ = (ρ − z)− y

ż = xy− βz

(6)

To create the example data, we used the parameters σ = 10,
ρ = 28, and β = 8/3. Next, we used the functions on each
of the individual dimensions of the Lorenz system (x, y, z),
corresponding to standard embedding of one-dimensional time
series. Then, we used the functions on each of the three possible
pairing of the three dimensions (xy, xz, yz), corresponding to
two-dimensional time series for which embedding parameters are
sought.

Finally, we also subjected all of the three dimensions (x, y, z)
as a three-dimensional time series to the functions to estimate
embedding parameters.

For example, if we want to use the mdDelay and the mdFnn
functions to estimate embedding parameters for the three-
dimensional (x, y, z) time series consisting of all three dimensions
of the Lorenz system, which are stored as columns in the variable
data, we use the function mdDelay to estimate the time delay as
follows:
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FIGURE 2 | (A) Shows the graphical output of the mdDelay function for the three-dimensional time series from the Lorenz system. Since the function was called with

the option to show the AMI function (Equation 1) for each dimension in the data, there are three curves. The default threshold value (1/e) is shown as the horizontal

line in the plot. (B) Shows the graphical output of the mdFnn function for the three-dimensional time series from the Lorenz system. The function was called with the

parameters maxEmb = 10, tau = 15 using all three variables x, y and z with 104 number of data points each. The function shows an immediate drop-off of the

percentage of false-nearest neighbors to 0, indicating that no additional embedding is necessary for the three-dimensional time series from the Lorenz system.

tau = mdDelay(data, ’maxLag’, 25,

’plottype’, ’all’);

Here the maximum time delay has been set to 25 using the
optional parameter maxLag because the default value of 10 is
not big enough, which is evident from the output shown in
Figure 2A, where it is clearly seen that the mutual information
has not attained a minimum or is below the threshold for delays
less than or equal to 10. The parameter plottype has been set to
“all,” meaning that the AMI for each dimension of the data will
be shown in the plot.

The first local minimum of the AMI function is for values of
τ = 15, 16, and 19 respectively for the three curves. Only for one
of the curves does the auto mutual information drop below the
default threshold (1/e) at τ = 12. The mdDelay function uses
the threshold criterion per default, but when this fails (as it does
for two of the dimensions in the data) it reverts to selecting the
minimum. The function calculates the mean value of τ estimated
for each dimension, and returns this value, which for the Lorenz
data gives a time delay of τ = (12+15+19)/3 ≈ 15.33. Since this
value is in good agreement with what is obtained from looking at
the plot, we use the nearest integer value τ = 15 to estimate the
embedding dimension using themdFnn function, which is called
as follows:

[fnnPerc, embTimes] = mdFnn(data, 15);

That is, we use the three dimensions of the Lorenz system, where
each dimension is a column and the data points are in the
rows, the delay parameter is tau = 15, and the default values
are used for the number of embeddings considered (1 to 10),
the distance criterion Rtol (10), and plot of the function is also
provided by default. Viewing the FNN-function displayed in
Figure 2B, this suggests that the available three-dimensional time

series is already of appropriate dimensionality, and no further
time-delayed embedding is necessary.

Table 1 summarizes the results for all the possible
combinations of time series of dimension 1, 2, and 3 constructed
from the three variables x, y, and z of the Lorenz system. As
can be seen, the dispersion of delays tends to decrease as the
dimensionality of the data set increases, converging in average
toward the delay parameter estimated for the fully three-
dimensional system. Furthermore, the embedding parameter
decreases as the dimensionality of the time series increases,
clearly showing a dimensionality of 3 for all one-dimensional
time series, and likewise a dimensionality of 3 for the three-
dimensional time series. For the cases of the two-dimensional
time series, we necessarily get mixed results that can at best
approximate the true dimensionality of the system, because the
two-dimensional time series already provides two dimensions,
and there is no integer-multiple of two for a three-dimensional
system. Hence, the parameter either slightly overestimates
the true dimensionality (as for the combination x and y), or
underestimates the true dimensionality (as for the combinations
x and z, as well as y and z).

Unlike the classical embedding parameter obtained
from univariate FNN algorithms, the multidimensional
FNN parameter does not provide the overall estimate of
dimensionality, but has to be multiplied with the dimensionality
of the underlying time series. For example for x, we have a
one-dimensional time series and an embedding parameter of
three, which provides an estimate of the true dimensionality
of 1 · 3 = 3. For the combination of x and y, this estimate is
2 · 2 = 4, and for the combination of all three dimensions
it is 3 · 1 = 3. To determine the necessary number of
embeddings, the dimensionality now needs to be compared
to the dimensionality of the data: For x, because it is a
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TABLE 1 | Estimated delay τ and embedding dimension D for different

combinations of time series from the Lorenz system.

Time series d τ D D · d

x 1 19 3 3

y 1 15 3 3

z 1 12 3 3

x, y 2 17 2 4

x, z 2 16 1 2

y, z 2 14 1 2

x, y, z 3 15 1 3

Also shown is the dimension of the data d and the dimension of the resulting phase space

D · d.

one-dimensional time series, the data need to be embedded
two additional times. For the combination of x and y, the
time series is two-dimensional and the estimate of the true
dimensionality is four. Hence, the two-dimensional time series
needs to be embedded one additional time. Finally, for the
combination of x, y and z, the data are already three-dimensional
to begin with, and hence do not need to be embedded any
further.

The added value of using the multivariate functions over
univariate for multivariate time-series becomes clear when we
examine a case where we have a dimensional time series
composed of dimensions that have “embeddable” dynamics and
dimensions that are uninformative for embedding (i.e., random
noise). Consider the case where we have a multidimensional time
series with two dimensions, where one is the x-dimension of the
Lorenz system and the other one is random noise drawn from
a uniform distribution. From the perspective of an empirical
scientist, this could be the case where two dimensions of a system
are measured and it is (wrongly) assumed that both capture
dimensions of the actual dynamics of the system, when in fact
only one of these two dimensions captures the system dynamics,
but the other one is completely uninformative.

If we use the univariate estimation of embedding parameters
for our two-dimensional time series, we would observe the
following estimates for the embedding parameters: For the first
dimension of our two-dimensional time series (i.e., x-dimension
of the Lorenz system) we would estimate τ = 19 and D = 3 (see
also the first row of Table 1). For the second dimension of our
two-dimensional time series (i.e., random numbers), we would
estimate τ = 1 and D = 3. For empirical data, such differences
are usually resolved by averaging the parameters (e.g., Wallot and
Leonardi, under review), which would lead us to τ = 10 and
D = 3.

However, because the univariate functions do not estimate
the number of times one needs to embed the data per se, but
the absolute dimensionality of the systems, we need to divide
the embedding parameter by the dimensionality of our time
series. That is, we conclude that we have a three-dimensional
system, and assume that we have measured two out of these three
dimensions. Hence, our estimate for the number of times the time
series needs to be embedded is D = 3/2 = 1.5. Since we can

embed our data only in integer dimensions, we must now choose
whether we want to slightly under-embed (i.e., to not embed at
all, D = 1) or over-embed (D = 2) the data. However, both
estimates of underestimate the true number of times the data
need to be embedded, which is 2 additional times.

Using the multivariate functions, we obtain a delay parameter
of τ = 10 and an embedding parameter of D = 3. Here, τ

is indeed underestimated as in the univariate approach, but D
is estimated correctly, because for the multivariate estimation,
D = 3 does not mean that the dimensionality of the system
is three, but that the two-dimensionally time series needs
to be embedded two additional (i.e., D − 1) times. Hence,
the multivariate functions provide a better estimate of the
embedding parameters than the univariate functions. However,
the estimates are not perfect (τ is still being underestimated),
and of course other scenarios are possible where the correct
embedding parameters could have been obtained by chance using
the univariate functions and averaging of the parameter estimates
(i.e., in case the dimensionality for our random number series
would have been estimated with D = 9).

5. DESCRIPTION OF FUNCTIONS

The function mdDelay calculates the average mutual information
for each component signal of a multivariate time series for a
specified number of lags and provides the average of individual
results. The functionmdFnn calculates false nearest neighbors for
a multivariate time series for a specified number of embeddings
and provides the percentage of false nearest neighbors for each
successive embedding of the multivariate time series. The inputs
and outputs of the two functions are described in more detail
below.

5.1. Inputs
mdDelay (data)

data is an n × d matrix, where n is the number of data points
in the time series and d is the number of dimensions of the time
series. The function can be called using the optional parameters
listed in Table 2, e.g., tau = mdDelay (data, “plottype,” “both”).
The optional parameter “criterion” controls what method is used
to find the optimal delay as follows:

“criterion” controls the method used for finding the optimal
delay. If set to “firstBelow” the function will use the lowest
delay at which the AMI function drops below the value set
by the “threshold” parameter. If set to “localMin” the function
will use the position of the first local minimum of the AMI
function. If no local minimum is found the function will fall
back to using “firstBelow” and if no value below “threshold” is
found the function will fall back to using the position absolute
minimum in the range [1, “maxLag”]. The default value is:
“firstBelow.”

mdFnn(data, tau)

data is an n × d matrix, where n is the number of data points
in the time series and d is the number of dimensions of the time
series.
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TABLE 2 | Optional parameters for the function mdDelay.

Parameter Description Values Default value

“criterion” The criterion used to

find the delay

“firstBelow,”

“localMin”

“firstBelow”

“threshold” Value below which AMI

is considered

sufficiently low

real number 1/e

“numBins” The number of bins

used in histograms

integer 10

“maxLag” The highest time lag

used to compute AMI

integer 10

“plottype” Controls the type of

plot produced

“mean,” “all,”

“both,” “none”

“mean”

TABLE 3 | Optional parameters for the function mdFnn.

Parameter Description Values Default value

“maxEmb” The maximum number

of embedding

dimensions

Integer 10

“doPlot” Controls whether

results are plotted

Integer/logical 1/true

“numSamples” Number of randomly

sampled points

Integer 500

“Rtol” First criterion for FNN

classification

Real number 10

“Atol” Second criterion for

FNN classification

Real number 2

tau is an integer that gives the delay (number of lags) for the
embedding. There is no default value for this input.

The function can be called using the optional parameters
listed in Table 3, e.g., mdFnn(data, tau, “maxEmb,” 20, “doPlot,”
false) to set the maximum embedding dimension to 20 instead
of the default value of 10, and turn off plotting of the result. The
parameters that can be set are:

“numSamples” is the number of randomly selected
coordinates from phase-space for which (false-)nearest neighbors
are computed. Selecting a random sample of coordinates is done
to decrease computation time for long time series. The default
value is 500, or alternatively the maximum number of available
phase-space coordinates if that number is less than 500.

“Rtol” provides the first criterion for classifying neighboring
coordinates in phase-space as false neighbors. The default value
is 10.

“Atol” provides the second criterion for classifying
neighboring coordinates in phase-space as false neighbors.
The default value is 2.

5.2. Outputs
tau = mdDelay(data)

The returned value tau is the estimate of the time delay to be
used for the embedding of data. The user is stronlgy urged not
to use this estimate without checking the plotted AMI that is also

provided by the function. It is also advisable to check if this value
depends on the method and parameters (e.g., maxLag, numBins,
threshhold) used.

[fnnPerc, embTimes] = mdFnn(fnnPerc, embTimes)

fnnPerc is a vector with the percentage of points classified as false
nearest neighbors for each (additional) embedding of the time
series.

embTimes is a vector providing the number of times the
d-dimensional signal has been embedded.

6. DISCUSSION

In this paper, we provide two methods—and their
implementations in Matlab—for the estimation of embedding
parameters of multivariate time series. These methods make
it possible to estimate embedding parameters for analysis
techniques that require phase-space reconstruction when
multidimensional time series have been recorded (e.g., Wallot
et al., 2016b; Wallot, 2018), the analysis of which has become
increasingly prominent in physiological research that considers
the integration of multiple dependent measures to capture
arousal, for example, or in joint action research where groups
of participants interact and continuous measures of each
participant are recorded.

We want to point out some limitations of the methods
presented here. First of all our algorithms to compute estimates
for the time delay and embedding dimension should not be used
without inspecting the plots, since both the choice of time delay
and embedding dimension rely on the form of the curves (AMI
and FNN). As an example, the estimated time delay for the x
variable of the Lorenz system in our example is τ = 19, which is
based on the first local minimum of the AMI function. However,
inspection of the mutual information as a function of time delay
reveals that the curve is very flat in the range τ ∈ [13, 20], so
it is probably better to select a value from the lower end of this
interval, since we are interested in the lowest value of τ that
minimizes the mutual information. Given a sufficient number of
data points, the lowest value for the mutual information function
could be chosen, of course, but higher values for τ (and D)
decrease the number of data points available for analysis, and
hence it might be important to select lower values for these
parameters within a reasonable range.

Another limitation is that we only consider a fixed bin width
when we construct the histograms used to compute mutual
information. For time series that have very different densities in
different parts of the range, adaptive binning algorithms may be
more appropriate (see Cellucci et al., 2005, for a comparison of
algorithms).

If the individual dimensions have very different AMI
functions and result in very different estimates of the time delay,
it may be inappropriate to embed them all with the same value
of τ . In some cases this may be handled by re-sampling some of
the dimensions at a lower rate, but care must be taken not to lose
relevant information in the process. A better approach might be
to use different time delays for the individual dimensions when
performing the phase space embedding.
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A practical issue for long, high-dimensional time series is
the computation time for the estimation procedure which might
be several minutes per time series. Here, drawing random sub-
series from the original time series and estimating dimensionality
over several such sub-series can provide a solution to this
problem, or at least a substantial decrease in processing
time.

Even though our methods allow for the estimation of
embedding parameters of multidimensional time series, they
provide limited accuracy when the true dimensionality of the
system under investigation is not an integer-multiple of the
dimensionality of the time series, because the method of time-
delayed embedding proceeds only in integer dimensions.
However, in the examples shown above, our method
results in the minimum possible error for correct data sets,
since the resulting phase-space dimension differs from the

correct dimension by one, and in improved estimates for
noisy/ill-composed data sets, where estimates—particularly of
dimensionality—are better compared to univariate parameter
estimation.
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APPENDIX I: ABBREVIATIONS AND
NOTATION

˙ – The dot (as in ẋ) denotes the time derivative ẋ =
dx
dt

AMI – Average mutual information or Auto Mutual
Information, see I(x(t), x(t + τ ))

CRQA – Cross-Recurrence Quantification Analysis
d – dimensionality of a multivariate time series
D – Embedding parameter for phase-space reconstruction
FNN – False-nearest neighbor(s)
I(x(t), x(t + τ )) – Mutual information. A nonlinear measure

of dependence between (x(t) and x(t + τ ))
MdRQA – Multidimensional Recurrence Quantification

Analysis
pi – The probability that a point sampled from x(t) is in bin

number i of the histogram of x

pij(τ ) – The probability that x(t) is in bin i and x(t + τ ) is in
bin j

R – distance between a coordinate and its nearest neighbor in
phase-space

Rtol – distance criterion for defining false nearest neighbors
RQA – Recurrence Quantification Analysis
x – A 1-dimensional time series. Also: x-dimension of the

Lorenz system
y – y-dimension of the Lorenz system
y – Phase-space embedded time series constructed from lower

dimensional data
β – Coupling parameter (beta) for the Lorenz system
ρ – Coupling parameter (rho) for the Lorenz system
σ – Coupling parameter (sigma) for the Lorenz system
τ – Delay parameter (tau) for phase-space reconstruction
z – z-dimension of the Lorenz system
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