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A detailed account of the Kohn–Sham (KS) algorithm from quantum chemistry, formulated rig-
orously in the very general setting of convex analysis on Banach spaces, is given here. Starting
from a Levy–Lieb-type functional, its convex and lower semi-continuous extension is regularized to
obtain differentiability. This extra layer allows us to rigorously introduce, in contrast to the common
unregularized approach, a well-defined KS iteration scheme. Convergence in a weak sense is then
proven. This generalized formulation is applicable to a wide range of different density-functional
theories and possibly even to models outside of quantum mechanics. Published by AIP Publishing.
https://doi.org/10.1063/1.5037790

I. INTRODUCTION

Density-functional theory (DFT) is usually presented
based on the Hohenberg–Kohn theorem1 and received a thor-
ough mathematical investigation in terms of convex analysis
by Lieb.2 Yet it is the Kohn–Sham (KS) iteration scheme,3 built
upon the consequences of the Hohenberg–Kohn theorem, that
makes it applicable to problems of quantum chemistry and
where it developed an unprecedented utility. In Kohn–Sham
theory, a complex, interacting system with basic state vari-
able x (density) is compared against a simpler, non-interacting
reference system that reproduces the exact same state x. To
achieve that, the reference system is complemented with an
auxiliary potential x∗KS that acts as a dual system variable and
gets fixed by the connection of both systems via their respec-
tive energy functionals. Since no explicit expression for the
Kohn–Sham potential x∗KS is at hand, a clever self-consistent
iteration scheme is set up (see Sec. III B).

Nonetheless, up until now very few results about the con-
vergence of this procedure are at hand. Among mathematical
analyses of the self-consistent field procedure used to solve
the Hartree–Fock or Kohn–Sham equations, we want to high-
light, in particular, the work on the optimal damping algorithm
(ODA) formulated in terms of one-particle reduced density
matrices and Kohn–Sham matrices.4–6

In a setting where computationally efficient, approximate
density functionals are used, the Kohn–Sham wave function
as the underlying physical structure is crucial for providing
a good first approximation to the kinetic energy since this
is, in practice, very hard to approximate from the density
alone. However, in the rigorous mathematical setting of this
work, where properties of the exact density functionals are
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analyzed and employed, the Kohn–Sham wave function itself
does not show up. Somewhat unconventionally, one can there-
fore choose to work with the exact energy of the Kohn–Sham
system as a (orbital-free) density functional. This makes the
whole analysis just as much applicable to orbital-free methods
like Thomas–Fermi theory. The analog of the self-consistent
field procedure in this setting is then a procedure that deter-
mines a sequence of densities and Kohn–Sham potentials that
converges to a self-consistent pair. Working in this setting,
Wagner et al.7 adapted the ODA and claimed, unfortunately
mistakenly, to show convergence to a self-consistent pair of
a ground-state density and a Kohn–Sham potential. Further-
more, the usual setting of Kohn–Sham theory is traditionally
built on ill-defined quantities (cf. Sec. II A). This situation
changed only recently when work by Kvaal et al.8 showed
how Moreau–Yosida regularization of convex functionals can
be employed to make the Kohn–Sham theory rigorous. Specif-
ically, Kvaal et al.8 presented a well-defined iteration scheme
based on a Hilbert space setting for density and potential vari-
ables. However, the important problem of convergence was
not addressed in this mathematically strict formulation of the
theory.

In this work, we aim at closing gaps of Kohn–Sham
theory while at the same time considerably extending its
scope. Important results include the following: (i) In Sec. II E,
Lemma 5 gives an abstract, convex analytical version of the
Hohenberg–Kohn theorem as an automatic consequence of
strict monotonicity of the superdifferential of the energy func-
tional. (ii) Section II F is a full generalization of the regular-
ization tools of Kvaal et al.8 to reflexive Banach spaces that
will be employed to formulate a rigorous Kohn–Sham iter-
ation scheme in Sec. III B. We especially discuss Gâteaux
and Fréchet differentiability of regularized functionals (Theo-
rem 9) and the connection between solutions to the regularized
ground-state problem and “physical” solutions (Corollary 11).
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(iii) Finally, Sec. III B with Theorem 12 gives the Kohn–
Sham iteration scheme and shows a weak form of convergence.
This result is based on an idea by Wagner et al.7 but here
repeated for the well-defined setting of regularized function-
als. Gaps in the previously attempted convergence proof in
Ref. 7 are uncovered in Remark 5. A generalized Banach
space formulation of DFT has the advantage of laying possible
solid foundations to many types of ground-state DFTs, includ-
ing more recent developments in current-density-functional
theory (CDFT),9 quantum-electrodynamical DFT,10 thermal
DFT,11 and reduced density matrix functional theory.12,13

Note that, even though most of the presentation has a link to
quantum mechanics, the formulation here is kept in a gen-
eral fashion that might prove valuable for applications to
other fields. The usual DFT setting for many-electron quan-
tum systems is presented in Sec. IV, where we also dis-
cuss extensions of the standard theory that include magnetic
fields.

II. PRELIMINARIES
A. The general problem

The principal state variable x (density) is chosen from
a real Banach space X. The dual space of X (consisting of
potentials) is

X∗ = {x∗ : X → R | x∗ linear and continuous}

and we write 〈x∗, x〉 = x∗(x) for the dual pairing between x ∈ X
and x∗ ∈ X∗. In DFT, one is studying a variational problem that
consists of finding the N-electron ground-state density corre-
sponding to minimal energy (see Sec. IV A). For the general
problem, we consider an energy functional E : X∗ → R given
by

E(x∗) = inf {F̃(x) + 〈x∗, x〉 | x ∈ X̃ } (1)

for some functional F̃ : X̃ → R, X̃ ⊆ X, that originates
from the underlying physical problem. In such models, F̃(x)
stands for all energy contributions of internal effects, while
the dual pairing 〈x∗, x〉 represents the potential energy that
is seen as an external and controllable effect. The domain
of F̃ is limited to a certain set of “physical” densities X̃
that by themselves usually do not form a linear space, and
F̃(x) represents the minimal possible internal energy for a
given state x. Such a F̃, called the Levy–Lieb functional2,14

in the DFT literature, is in general not convex or lower semi-
continuous. Therefore one introduces (borrowing terminology
from DFT) the universal Lieb functional, F : X → R ∪ {+∞},
as2

F(x) = sup{E(x∗) − 〈x∗, x〉 | x∗ ∈ X∗}, (2)

in terms of which we may obtain the energy as

E(x∗) = inf {F(x) + 〈x∗, x〉 | x ∈ X }. (3)

The functional F is by construction convex and lower semi-
continuous (Ref. 2, Theorem 3.6) and has F(x) = +∞whenever
x ∈ X \ X̃ (corresponding to “unphysical” densities). If one
chooses x∗ ∈ X∗ such that a minimizer x ∈ X̃ for (1) exists
and thus E(x∗) = F̃(x) + 〈x∗, x〉, then it follows after insertion
into (2) that F(x) = F̃(x). Each minimizer in (1) is therefore a
minimizer in (3), but the converse does not hold. A minimizer

in (3) need not be a minimizer in (1) and in general F ≤ F̃
on X̃.

To find the state x of minimal energy in (1) by just relying
on F, we must determine

arg min{F(x) + 〈x∗, x〉 | x ∈ X }, (4)

calling for differentiation of F(x) + 〈x∗, x〉with respect to x. But
even though F already has some nice properties, one cannot
assume that F is differentiable.15 Yet the more general notion
of “subdifferential” (see Definition 2) gives a non-unique,
implicit answer to (4), namely,

− x∗ ∈ ∂F(x) ⇐⇒ E(x∗) = F(x) + 〈x∗, x〉. (5)

For a given density x, a non-empty subdifferential means that
this state is “v-representable” (we will use this term commonly
found in the literature instead of calling it “x∗-representable”),
meaning that it can be found as the minimizer to (1) with
a corresponding potential in X∗. (Note that the concept of
v-representability depends on the choice of X and X∗.) For
given x∗, (5) is the variational problem that finally gets approx-
imated with the aid of a Kohn–Sham reference system. To
facilitate the iteration scheme with well-defined quantities,
Moreau–Yosida regularization (see Sec. II F) is employed. This
yields a functional Fε that is also functionally differentiable.
But before that, we give the relation between the fundamental
functionals E and F a strict mathematical meaning.

B. Convex conjugates

To start with, we say that a convex function f : X
→ R ∪ {+∞} is proper if not identical to +∞. Let Γ0(X)
denote the set of proper, convex, lower semi-continuous func-
tions X → R ∪ {+∞}. On the dual side, Γ∗0(X∗) is the set of
proper convex and weak-∗ lower semi-continuous functions
X∗ → R ∪ {+∞}. We also introduce the sets Γ(X) = Γ0(X)
∪{±∞} and Γ∗(X∗) = Γ∗0(X∗)∪ {±∞}. Collectively, these
functions are known as the closed convex functions on X.
Likewise, Γ∗0(X∗) contains the closed convex functions on X∗.

Key in the presented framework will be two close rela-
tives to the convex conjugate (Legendre–Fenchel transform),
a non-standard definition introduced in Refs. 2 and 8. For
f : X → R ∪ {±∞} and g : X∗ → R ∪ {±∞}, we define
the (skew) conjugate functions

f ∧(x∗) = inf {f (x) + 〈x∗, x〉 | x ∈ X }, f ∧ ∈ −Γ∗(X∗),

g∨(x) = sup{g(x∗) − 〈x∗, x〉 | x∗ ∈ X∗}, g∨ ∈ Γ(X).

The following non-trivial result relates f and g to their
biconjugates (f ∧)∨ and (g∨)∧, respectively:

Theorem 1 (Fenchel–Moreau biconjugation).

f = (f ∧)∨ ⇐⇒ f ∈ Γ(X),

g = (g∨)∧ ⇐⇒ g ∈ −Γ∗(X∗).

This theorem sets up a one-to-one correspondence
between the closed convex functions on X and the closed
concave functions on X∗. If f and g are not closed convex
and concave, respectively, then the weaker results f ≥ (f ∧)∨

and g ≤ (g∨)∧ hold and we may think of biconjugation as
performing “gamma regularizations” of f and g.
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We have already used the skew conjugations in (1)–(3)
above, which may now be more succinctly written in the fol-
lowing form (having extended F̃ to the whole X by setting it
equal to +∞ outside X̃):

E = F̃∧, F = E∨, E = F∧.

We note that the ground-state energy is closed concave
E ∈ −Γ∗0(X∗) and that the closed convex Lieb functional
F = (F̃∧)∨ ∈ Γ0(X) is the gamma regularization of the
Levy–Lieb functional F̃ < Γ(X). (In the DFT context, the
Lieb functional is the gamma regularization of any admis-
sible density functional in the Hohenberg–Kohn variational
principle.)

C. Banach space derivatives

Definition 2. We give the following notions for deriva-
tives of a function f : X → R ∪ {+∞}:

(i) f is Gâteaux differentiable at x ∈ dom(f ) if there exists
a ∇f (x) ∈ X∗ such that for all u ∈ X

lim
t→0

1
t

(f (x + tu) − f (x)) = 〈∇f (x), u〉.

(ii) f is Fréchet differentiable at x ∈ dom(f ) if there exists
a ∇f (x) ∈ X∗ such that

lim
h→0
‖h‖−1(f (x + h) − f (x) − 〈∇f (x), h〉) = 0.

(iii) f proper convex is subdifferentiable at x ∈ X if it has a
nonempty subdifferential ∂f (x) ⊂ X∗ at x given by

∂f (x) =
{
x∗ ∈ X∗ | ∀y ∈ X :

f (x) − f (y) ≤ 〈x∗, x − y〉
}
.

The elements of ∂f (x) are known as the subgradients
of f at x.

We denote by dom(f ) the effective domain of f (the subset
of X where f is finite) and by dom(∂f ) the domain of subdif-
ferentiability of f (the subset of X where ∂f is non-empty). We
note that dom(∂f ) ⊂ dom(f ) but ∂f (x) = ∅ may also happen
for x ∈ dom(f ). If f is closed convex, then dom(∂f ) is dense
in dom(f ) by the Brøndsted–Rockafellar theorem.

On the dual space, we mostly work with proper concave
functions, whose superdifferentials are defined by

∂g(x∗) =
{
x ∈ X | ∀y∗ ∈ X∗ :

g(x∗) − g(y∗) ≥ 〈x∗ − y∗, x〉
}
.

(6)

Note that ∂g(x∗) is by definition a subset of X rather than
X∗∗ ⊇ X. The spaces X and X∗∗ only match if they are reflexive,
which will be an important property later. In an obvious man-
ner, we may also define supergradients on X and subgradients
on X∗.

D. Optimality conditions

Sub- and superdifferentiations are precisely the tools
needed to characterize the optimality of convex and concave
conjugations. The following results are easily established from
the definition of the sub- and superdifferentials:

Lemma 3. If f : X → R ∪ {±∞} proper convex and g :
X∗ → R ∪ {±∞} proper concave then

−x∗ ∈ ∂f (x) ⇐⇒ f ∧(x∗) = f (x) + 〈x∗, x〉,

x ∈ ∂g(x∗) ⇐⇒ g∨(x) = g(x∗) − 〈x∗, x〉.

Proof. From the definitions of subdifferential and conju-
gate function, we have

−x∗ ∈ ∂f (x)

⇐⇒ ∀y ∈ X : f (y) + 〈x∗, y〉 ≥ f (x) + 〈x∗, x〉

⇐⇒ inf {f (y) + 〈x∗, y〉 | y ∈ X } ≥ f (x) + 〈x∗, x〉

⇐⇒ inf {f (y) + 〈x∗, y〉 | y ∈ X } = f (x) + 〈x∗, x〉

⇐⇒ f ∧(x∗) = f (x) + 〈x∗, x〉.

The result for g follows in a similar manner. �

For closed convex functions, we obtain by setting g = f ∧

in Lemma 3 and applying the biconjugation theorem:

Lemma 4 (Ref. 16, Proposition 2.33). For f ∈ Γ0(X), we
have

−x∗ ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∧(x∗).

Finding a solution to−x∗ ∈ ∂f (x) is therefore equivalent to
finding a solution to x ∈ ∂f ∧(x∗). This switch between primal
and dual problems will be used several times in this work.

E. Monotonicity of subdifferentials

Lemma 5. Let f : X → R∪ {+∞} be proper convex. Then
∂f is a monotone operator, that is, for any x, y ∈ X, each pair
of the x∗ ∈ ∂f (x) and y∗ ∈ ∂f (y) satisfies

〈x∗ − y∗, x − y〉 ≥ 0.

If f is strictly convex, then ∂f is strictly monotone, mean-
ing that the inequality holds strictly for x , y. For concave
functions, the inequality is reversed.

Proof. Let x, y ∈ X be subdifferentiable points and select
subgradients x∗ ∈ ∂f (x), y∗ ∈ ∂f (y). Then

f (x) − f (y) ≤ 〈x∗, x − y〉,

f (y) − f (x) ≤ 〈y∗, y − x〉 = 〈−y∗, x − y〉.

Adding these subgradient inequalities together, we obtain
monotonicity. If f is strictly convex, then the subgradient
inequalities hold strictly for x , y, yielding strict monotonic-
ity. �

The above lemma is a rigorous convex analytical version
of a more physically motivated lemma in Wagner et al.7 and
is equivalent to the Hohenberg–Kohn theorem. To see that,
assume that E is concave (which is not true generally but will
be the case for the regularized version, see Remark 3) and
take x ∈ ∂E(x∗), y ∈ ∂E(y∗). Then by Lemma 5, we get
strict monotonicity of ∂E, and with the roles of x, y and x∗, y∗

interchanged, it follows from x∗ , y∗ that x , y. This means
that different potentials always lead to different states and that
the corresponding mapping x∗ 7→ x ∈ ∂E(x∗) is injective and
thus invertible on the restricted codomain of v-representable
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states. This is just the main statement of the Hohenberg–Kohn
theorem (including possible degeneracies), which is discussed
again in the standard setting of DFT in Sec. IV A.

F. Moreau–Yosida regularization

To perform regularization of functionals, we have to
demand additional properties for X, X∗. Most importantly, the
spaces have to be reflexive. Note that X reflexive implies X∗

reflexive and vice versa. Additional conditions will include
strict and (in Theorem 9) uniform convexity. In a strictly con-
vex space, the connecting line segment between surface points
of the unit ball lies strictly inside the ball, while in a uni-
formly convex space, the distance of the middle point of the
line segment from the surface is not only non-zero but also
depends only on the length of the segment, not on the cho-
sen points themselves. Obviously, a uniformly convex space
is also strictly convex. (For further details, see Ref. 16, Secs.
1.2.3 and 1.2.4.)

It is interesting to note that uniform convexity of X implies
reflexivity (Milman–Pettis theorem). By a theorem due to
Asplund, if X is assumed reflexive, an equivalent norm can
be chosen such that X and X∗ are strictly convex (yet not
uniformly convex). In the following, we still keep the addi-
tional assumption of strict convexity in order to maintain the
respective given norms of the Banach spaces at hand. Impor-
tant uniformly convex spaces are the Lebesgue spaces Lp with
1 < p < ∞, but not L1 or L∞, which are not even reflexive or
strictly convex. Spaces that are reflexive but admit no equiv-
alent norm that makes them uniformly convex exist,17 but do
not occur “naturally.”

The following simple functional will be the centerpiece
of the regularization performed here.

Definition 6. Set φ(·) = 1
2 ‖ · ‖

2 on X and X∗. Then for
ε > 0, the Moreau–Yosida regularization of a f ∈ Γ0(X) is
defined as

fε(x) = inf {f (y) + ε−1φ(x − y) | y ∈ X }.

Remark 1. The function φ is strictly convex if and only
if the respective Banach space is strictly convex (Ref. 16,
Proposition 1.103).

Remark 2. Alternatively we can define f ε = f ◽ ε−1φ,
where the box notation stands for the infimal convolution of f
and g and is given by

(f � g)(x) = inf {f (y) + g(x − y) | y ∈ X }.

A minimal value of f (if it exists) is preserved at the same
location when passing over to f ε . The infimum in the defi-
nition above is always uniquely attained, f ε ∈ Γ0(X), and is
everywhere finite on X; features for which reflexivity and strict
convexity of X, X∗ are imperative (Ref. 16, Sec. 2.2.3). This
unique minimizer for any given x gives rise to the definition
of the proximal mapping

prox
εf

(x) = arg min{f (y) + ε−1φ(x − y) | y ∈ X }

= arg min{εf (y) + φ(x − y) | y ∈ X }.

Definition 7. The duality map on X is

J(x) = {x∗ ∈ X∗ | ‖x∗‖ = ‖x‖, 〈x∗, x〉 = ‖x‖2} (7)

and assigns to each state a set of dual elements.

The duality map is a bijective mapping X→X∗ in the case
of X, X∗ reflexive and strictly convex (Ref. 16, Proposition
1.117). Of particular interest is the subdifferential of φ that
yields just the duality map (Ref. 16, Example 2.32),

∂φ(x) = J(x). (8)

Under the assumption that X is reflexive, we can define J−1 on
all of X∗ [Ref. 16, Proposition 1.117(iv)] and then also have
(8) in the reverse direction

∂φ(x∗) = J−1(x∗). (9)

Proposition 8 (Ref. 18). If X∗ is strictly convex, then φ is
Gâteaux differentiable, and if X∗ is uniformly convex, then φ
is Fréchet differentiable. In both cases, the derivative is the
duality map J.

If we recall that the Moreau–Yosida regularization of
a functional corresponds to the infimal convolution with φ
(Remark 2), we can expect that the regularity properties of φ
that follow from Proposition 8 are taken over to the regularized
functional f ε = f◽ε−1φ. This means that f ε should be Gâteaux
differentiable if X∗ is strictly convex and Fréchet differentiable
if X∗ is uniformly convex, statements that get proven by the
following theorem:

Theorem 9. Suppose f ∈ Γ0(X) and that X, X∗ are reflex-
ive and strictly convex. Then fε is Gâteaux differentiable on X
and

∇fε(x) = ε−1J(x − prox
εf

(x)).

If X∗ is uniformly convex, then f ε is even Fréchet differen-
tiable.

Proof. The proof of the first part can be found in Ref. 16,
Theorem 2.58, with the derivative given by (2.57) there. That
the derivative can indeed be evaluated by application of the
proximal mapping, which is shown in the Proof of Theorem
2.58. Proposition 1.146 (i) in Ref. 16 further states that if X∗

is uniformly convex then ∇f ε: X → X∗ is continuous, which
implies Fréchet differentiability (Ref. 19, Lemma 34.3). �

We now turn our attention to the convex conjugate pair
E = F∧ from (1) and (2) and their regularized versions,

Fε(x) = inf {F(y) + ε−1φ(x − y) | y ∈ X },

Eε(x∗) = (Fε)∧(x∗).

Note especially that Eε is not the regularization of E but rather
the transformation of the regularized Fε .

Theorem 10. Suppose F ∈ Γ0(X) and X reflexive then

Eε(x∗) = E(x∗) − εφ(x∗) and (10)

∂Eε(x∗) = ∂E(x∗) − εJ−1(x∗). (11)
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Proof. To prove (10), note that by definition

Eε(x∗) = (Fε)∧(x∗)

= inf {F(y) + ε−1φ(x − y) + 〈x∗, x〉 | x, y ∈ X }

= inf
{
F(y) + 〈x∗, y〉

+ ε−1φ(x − y) + 〈x∗, x − y〉 | x, y ∈ X
}

= inf {F(y) + 〈x∗, y〉 | y ∈ X }

+ inf {ε−1φ(z) + 〈x∗, z〉 | z ∈ X }

= F∧(x∗) + (ε−1φ)∧(x∗).

From φ(x) = ‖x‖2/2, it follows that φ∧(x∗) = −‖x∗‖2/2. Fur-
thermore, the scaling relation (λf )∧(x∗) = λf ∧(x∗/λ), λ > 0,
gives (ε−1φ)∧(x∗) = −ε‖x∗‖2/2. Thus

(ε−1φ)∧(x∗) = −εφ(x∗)

and we can conclude that (10) holds. Equation (11) fol-
lows directly from forming the superdifferential of (10) and
inserting (9). �

Remark 3. Equation (10) shows that Eε is strictly con-
cave as the sum of a concave function and the strictly concave
−εφ (if X∗ is strictly convex). From strict concavity follows
that Eε(x∗) − 〈x∗, x〉 attains its maximum at one point only,
so the regularized version of (2) has a unique maximizer. The
subdifferential of the conjugate Fε = (Eε)∨, which gives this
maximizer just like in (5), is thus a singleton. That the subd-
ifferential ∂Fε gives a singleton is naturally true in the case
of Gâteaux differentiability as in Theorem 9. (See Ref. 16
just above Proposition 2.33 and also note Proposition 2.40 in
this context.) Strict concavity of the energy functional also
connects to strict monotonicity of its superdifferential and the
Hohenberg–Kohn theorem, see Sec. II E.

Corollary 11. Let X, X∗ be reflexive and strictly convex.
Any solution of the regularized problem x ∈ ∂Eε(x∗) is con-
nected to a “physical” solution of the unregularized problem
by the proximal mapping

prox
εF

(x) ∈ ∂E(x∗) ⊂ X̃.

Proof. Take x ∈ ∂Eε(x∗), which is equivalent to
−x∗ ∈ ∂Fε(x) due to Lemma 4. This subdifferential is even a
singleton by Theorem 9 and it holds that

−x∗ = ε−1J(x − prox
εF

(x)).

Since the duality map is bijective we apply J−1 to get

−εJ−1(x∗) = x − prox
εF

(x).

We have here also used the fact that the duality map is always
a homogeneous function. Now, comparing this with (11) in
Theorem 10, we conclude from x ∈ ∂Eε(x∗) that proxεF(x)
∈ ∂E(x∗). It finally follows from the definition of E in (3) and
F(x) = +∞, whenever x ∈ X \ X̃ that this solution is always
in X̃ . �

III. REGULARIZED KOHN–SHAM ITERATION
A. Basic setup

Assume that x∗ ∈ X∗ has been given and we want to obtain
the ground-state energy E(x∗) from (1) and the correspond-
ing minimizer x from (4), meaning that we must satisfy the
equivalent conditions

−x∗ ∈ ∂F(x) ⇐⇒ x ∈ ∂E(x∗).

Transforming to the regularized energy functional with the
help of Theorem 10, we obtain

x ∈ ∂E(x∗) = ∂Eε(x∗) + εJ−1(x∗),

E(x∗) = Eε(x∗) + εφ(x∗).

Parallel to that we assume the existence of a reference
functional F̃0 : X̃ → R that belongs to the Kohn–Sham system
and captures parts of the system’s internal physics and leads
to a variational problem that is supposedly easier to solve. Just
like with F̃, we derive the regularized functionals F0

ε and E0
ε

and set up the reference problem in an analogous fashion

−x∗KS ∈ ∂F0
ε(x) ⇐⇒ x ∈ ∂E0

ε(x∗KS),

−x∗ ∈ ∂Fε(x) ⇐⇒ x ∈ ∂Eε(x∗).

Note that the minimizer state x is the same in both cases, which
makes it necessary to choose a different and at this stage unde-
termined potential for the reference system, the Kohn–Sham
potential x∗KS. The v-representability problem that strikes the
standard Kohn–Sham construction at this point (not being able
to choose a potential such that the same state is the solution)
plays no role in the regularized version. By differentiability of
Fε and F0

ε , achieved through regularization, such a potential
always exists as the (negative) derivative of the regularized
functionals

x∗KS = −∇F0
ε(x), x∗ = −∇Fε(x).

Subtraction of those two equations yields the first step in a self-
consistent iteration scheme that begins with a density x1 as a
guess to the minimizer x and eventually converges to x∗KS. One

sensible initial guess used in Theorem 12 later is x1 ∈ ∂E0
ε(x∗),

which means just taking the fixed external potential as a rough
first approximation to the Kohn–Sham potential also capturing
internal effects. The next iteration toward x∗KS is then given by

x∗i+1 = x∗ + ∇Fε(xi) − ∇F0
ε(xi). (12)

The expression ∇Fε −∇F0
ε , although in practice not

known explicitly, is at least accessible through approximations
since major contributions are expected to cancel due to simi-
lar physical effects in both systems. In DFT, this potential is
known by the name “Hartree exchange–correlation” and sub-
sumes all interaction effects that are lost in the non-interacting
reference system. The second part of the Kohn–Sham iteration
is then the solution of the (simple or simpler) reference system

xi+1 ∈ ∂E0
ε(x∗i+1).

The stopping condition is x∗i+1 = −∇F0
ε(xi) because this

gives x∗ = −∇Fε(xi) from (12), which means that xi is the
state yielding minimal (regularized) energy and consequently
x∗i+1 = x∗KS. Note that this Kohn–Sham potential belongs to the
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regularized reference system and the resulting state is “unphys-
ical” and in general x < X̃. Effectively we introduced two
transformational layers to the problem, first the reference sys-
tem that gets connected to the sought-after solution with the
whole Kohn–Sham procedure and second the regularization.
Invoking Theorem 10 and Corollary 11, it is possible to trans-
late both the ground-state energy and the corresponding state
back to the original unregularized layer.

The important question of convergence of the Kohn–Sham
scheme remains unaddressed up to this point. We shall see that,
to guarantee at least weak convergence, the iteration must be
slightly changed and not the full step from xi to xi+1 is to
be taken (following the ODA of the extended KS scheme in
Ref. 6).

B. Kohn–Sham iteration scheme

We can now formulate the iteration scheme and prove a
weak form of convergence in terms of the energy.

Theorem 12. Let X, X∗ be reflexive and strictly convex,
E0 be finite everywhere, x∗ ∈ X∗ fixed, and set x∗1 = x∗ and

select x1 ∈ ∂E0
ε(x∗). Iterate i = 1, 2, . . . according to

(a) Set x∗i+1 = x∗ + ∇Fε(xi) − ∇F0
ε(xi) and stop if x∗i+1

= −∇F0
ε(xi) = x∗KS.

(b) Select x′i+1 ∈ ∂E0
ε(x∗i+1).

(c) Choose ti ∈ (0, 1] such that for xi+1 = xi + ti(x′i+1 − xi),
one still has

〈∇Fε(xi+1) + x∗, x′i+1 − xi〉 ≤ 0.

Then the strictly descending sequence {Fε(xi) + 〈x∗, xi〉}i

converges as a sequence of real numbers to

eε(x∗) = inf
i
{Fε(xi) + 〈x∗, xi〉} ≥ Eε(x∗).

Thus, eε(x∗) + εφ(x∗) is an upper bound for the ground-state
energy E(x∗).

Proof. First, we demonstrate that the superdifferential of
E0
ε is always non-empty such that step (b) can be performed

(as well as the initial selection of x1). Note that this is equiv-
alent to showing ∂E0 everywhere non-empty because of (10)
in Theorem 10. Since E0 is closed concave it is guaranteed
to be weak-∗ upper semi-continuous, which is equivalent to
weak semi-continuity because X is reflexive. But weak (semi-)
continuity always implies strong (semi-)continuity. Finiteness
of E0 everywhere means dom(E0) = X∗ which also yields
dom(∂E0) = X∗ by Corollary 2.38 in Ref. 16. This gives us a
non-empty superdifferential of E0

ε everywhere.
Next, we note that both Fε and F0

ε are Gâteaux differ-
entiable by Theorem 9 and start by checking the directional
derivative of Fε + x∗ at xi in the step direction x′i+1 − xi. From
(a) in the KS scheme above, we have

〈∇Fε(xi) + x∗, x′i+1 − xi〉

= 〈x∗i+1 + ∇F0
ε(xi), x′i+1 − xi〉.

If x∗i+1 = −∇F0
ε(xi) then from (a) x∗ = −∇Fε(xi), which is the

desired ground-state solution, and we have converged to the KS
potential x∗KS = x∗i+1. Otherwise, because of x′i+1 ∈ ∂E0

ε(x∗i+1)

and xi ∈ ∂E0
ε(−∇F0

ε(xi)), we can invoke Lemma 5 for the
strictly concave E0

ε (see Remark 3) and get

〈∇Fε(xi) + x∗, x′i+1 − xi〉

= 〈x∗i+1 + ∇F0
ε(xi), x′i+1 − xi〉 < 0.

This means that we can always choose a maximal step size ti

in (c) above such that

Fε(xi+1) + 〈x∗, xi+1〉 < Fε(xi) + 〈x∗, xi〉.

This sequence {Fε(xi) + 〈x∗, xi〉}i is by definition bounded
below by Eε(x∗) and hence convergent.

Finally, we set eε(x∗) = limi→∞(Fε(xi) + 〈x∗, xi〉). By (10)
of Theorem 10

Fε(xi) + 〈x∗, xi〉 ≥ Eε(x∗) = E(x∗) − εφ(x∗).

Consequently, eε(x∗) + εφ(x∗) is an upper bound to the (non-
regularized) ground-state energy E(x∗). �

Remark 4. The first part of the proof of Theorem 12, using
finiteness of E0 to get a non-empty superdifferential ∂E0(x∗)
(or also ∂E0

ε(x∗)) for all potentials x∗ ∈ X∗, shows that we
are apparently able to always find a state x of minimal (non-
interacting) energy. By Lemma 4 and Eq. (5)

x ∈ ∂E0(x∗) ⇐⇒ −x∗ ∈ ∂F0(x)

⇐⇒ E0(x∗) = F0(x) + 〈x∗, x〉,

we have that the infimum in (1) with F̃ replaced by F̃0 (or F0)
is a minimum. Reflexivity is needed to access the full range
of superdifferentials that are defined in X instead of X∗∗ [see
discussion after Eq. (6)], which is of no significance since
reflexivity establishes X ' X∗∗.

Remark 5. The modification of the Kohn–Sham iteration
to include a reduced step size [see (c) in Theorem 12] and
also the convergence of the energy quantity Fε + x∗ were
modeled after Ref. 7. These authors mistakenly claim that
“the KS algorithm described above is guaranteed to converge.”
But neither was convergence proven in the usual sense within
Banach spaces nor must a converging sequence of poten-
tials lead to the correct x∗KS. Additionally, the work7 does not
use the regularized version of the functionals and thus differ-
entiability (v-representability) cannot be guaranteed. Further
investigations of the Kohn–Sham iteration scheme within the
framework established here are needed to determine whether
a stronger version of convergence can be achieved.

IV. APPLICATIONS
A. Standard density-functional theory

The standard setting of DFT for an N-electron quantum
system governed by Coulombic repulsion was pioneered by
Lieb,2 but without the tools of Moreau–Yosida regularization
or a study of the Kohn–Sham iteration scheme. Adopting the
setting to our framework is straightforward.

We now change to standard notation and set x = ρ and x∗

= v . The Levy–Lieb functional F̃ is defined on the state space
of physical densities,2 the N-representable densities,

X̃ = {ρ ∈ L1(R3) | ρ ≥ 0,∇
√
ρ ∈ L2(R3), ‖ρ‖1 = N },
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which include all states of finite kinetic energy. Furthermore,
X̃ ⊂ L3(R3)∩L1(R3) by Sobolev embedding.2 The functional
is then given as the expectation value of the universal part of
the standard Hamiltonian,

Hλ = −
1
2

∑
i

∇2
i + λ

∑
i<j

1
rij

,

with a constrained-search over all wave functions ψ that yield
a given density ρ ∈ X̃ (denoted as ψ 7→ ρ),

F̃(ρ) = inf
ψ 7→ρ
{〈ψ, H1ψ〉}.

Note that λ = 1 corresponds to the interacting system. The
functional for the non-interacting (λ = 0) Kohn–Sham system
is similarly given by

F̃0(ρ) = inf
ψ 7→ρ
{〈ψ, H0ψ〉}

or a restriction of the minimization domain to only those ψ
that are Slater determinants.

By the convex conjugate transformations (1) and (2),
the functionals E and F are defined on the larger space
of densities L3(R3) ∩ L1(R3) and the dual space of poten-
tials L3/2(R3) + L∞(R3), which includes singular Coulomb
potentials. With X = L3 ∩ L1 and X∗ = L3/2 + L∞, the con-
vex Lieb functional F is nowhere differentiable but the set
of v-representable densities dom(∂F) is dense in the set of
N-representable densities dom(F) (Ref. 2, Theorem 3.14). The
concave ground-state energy E is finite on X∗ [Ref. 2, Theo-
rem 3.1(iii)], superdifferentiable at all potentials v that support
an electronic ground state, and differentiable whenever the
ground-state density is nondegenerate. We have

−v ∈ ∂F(ρ) ⇐⇒ ρ ∈ ∂E(v).

Kvaal and Helgaker20 showed that

ρ ∈ ∂E(v) ⇐⇒ E(v) = tr ΓρH(v),

where H(v) = H1 +
∑

iv(ri) is the Hamiltonian with potential
v and Γρ is a ground-state density matrix with density ρ. It
follows that ∂E(v) contains precisely all (ensemble) ground-
state densities associated with the potential v , while ∂F(ρ)
contains all potentials associated with the ground-state density
ρ. Clearly, if H(v) does not have a ground state, then ∂E(v) = ∅.

The Hohenberg–Kohn theorem, as the cornerstone of
DFT, drops out “for free” in the regularized version from strict
monotonicity of ∂Eε , see Sec. II E. This property follows in
turn from Eε being strictly concave. Yet without Moreau–
Yosida regularization this strict concavity of E is not at hand
and arriving at the usual Hohenberg–Kohn theorem requires
a refined analysis of the ground-state density that must not be
zero on a set of nonzero measures.21

To continue, the choice X = L3 ∩ L1 (X∗ = L3/2 + L∞)
does not fit the framework developed here since the L1 − L∞

pair destroys reflexivity. A simple solution lies in just widen-
ing the density space to X = L3(R3), which includes X̃ . The
dual space for potentials is then restricted to X∗ = L3/2(R3),
which is reflexive as required by the above theorems. Coulomb
potentials on all of R3 are then ruled out but are still included
if the spatial domain is limited to a bounded Ω ⊂ R3. Also,
the non-interacting energy E0 is everywhere finite on X by the

fact that E has this property on L3/2 + L∞ (as remarked above).
Thus, Theorem 12 is applicable in this setting. Furthermore,
under the assumption of reflexivity, and as noted in Remark
4, finiteness of E0 (E) gives a non-empty superdifferential
∂E0(v) (∂E(v)). In DFT with X = L3, if the corresponding
density ρ ∈ X is N-representable then we can even assign an
associated ground-state wave function. This is similar to the
domain (or box [−l,l]3) truncation of Ref. 8, Sec. III A, where a
ground state naturally exists for every potential. The setting of a
free particle in infinite space, where clearly no ground state is at
hand, must then be ruled out. The critical requirement is clearly
reflexivity of X, which excludes the use of L1 as a density
space.

We remark that gauge symmetry can become complicated
in a regularized setting. In Kvaal et al. (Ref. 8, Sec. V B), it
was shown that, in a Hilbert space setting where v ∈ L2(Ω), the
complications remain fairly mild. In the present example, with
v ∈ L3/2(Ω), the gauge symmetry becomes more unwieldy. We
use the symmetry E(v + c) = E(v) + cN, with c ∈ R a constant
shift, of the unregularized energy functional and the definition
Eε (v) = E(v) − ε

2 ‖v ‖
2
3/2 to write

Eε (v + c) = Eε (v) + cN −
ε

2
(
‖v + c‖23/2 − ‖v ‖

2
3/2

)
.

Noting the functional derivative

∇‖v ‖23/2 = 2‖v ‖1/23/2 |v |
1/2 sgn(v)

and comparing to Eq. (11) above, we obtain

∂Eε (v + c) − ∂Eε (v) = εJ−1(v) − εJ−1(v + c)

= ε ‖v ‖1/23/2 |v |
1/2 sgn(v)

− ε ‖v + c‖1/23/2 |v + c|1/2 sgn(v + c),

where sgn denotes the sign function. The fact that this differ-
ence does not vanish means that the potentials v + c and v map
to different regularized ground-state densities.

Conventionally, the Kohn–Sham approach leads to the
minimization problem (see the work of Refs. 22 and 23 for
more technical details)

E(v) = inf
ψ
{F(ρψ) + 〈v , ρψ〉}

= inf
ψ
{T (ψ) + J(ρψ) + Fxc(ρψ) + 〈v , ρψ〉}, (13)

where T (ψ) is the kinetic energy, J(ρψ) is the Hartree term, and
Fxc(ρ) = F(ρ)−F0(ρ)− J(ρ) is the exchange-correlation func-
tional. Also, we have above used the notation ρψ to indicate
that the density ρ has been computed from ψ, i.e.,

ρψ(r) =
∫
R3(N−1)

|ψ |2dr2 · · · drN .

Glossing over the fact that F(ρ) is not differentiable, the
stationary condition for the above minimization gives the
Kohn–Sham equations. When the iterative procedure defined
in Theorem 12 converges to the minimum, one obtains the
Kohn–Sham potential vKS. Given this potential, it then only
requires finding the ground state of a fixed, non-interacting
Hamiltonian H0 + vKS in order to determine the Kohn–Sham
wave function ψKS that solves the wave function optimization
problem in (13) above.
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Another related problem is that of finding a Kohn–Sham
potential vKS that reproduces the density ρgs of the ground
state of the interacting Hamiltonian H1 + vext. This can be
done using the optimization problem

F0(ρgs) = sup
v

(E0(v) − 〈v , ρgs〉). (14)

When the iterative procedure defined in Theorem 12 converges
to the minimum of the energy functional, it in fact solves this
problem too in a way that does not require a priori knowledge
of ρgs. Instead, the interacting density ρgs is specified only
implicitly by specifying the external potential vext.

In summary, although the Kohn–Sham wave function opti-
mization problem (13) and the Lieb optimization problem (14)
are distinct, the iterative procedure analyzed above addresses
both problems. However, in solving the v-representability
problem, we have introduced non-N-representable densities,
that is, densities ρ < dom(F). The question then arises
regarding the representation of such densities. The non-N-
representable densities are obtained in step (b) of Theorem 12
as a supergradient of the regularized non-interacting energy
ρ′i+1 ∈ ∂E0

ε(vi+1). Since

∂E0
ε(vi+1) = ∂E0(vi+1) − εJ−1(vi+1),

we may first select an element of ∂E0(vi+1) in the usual man-
ner (by solving the non-interacting Schrödinger equation) and
then add the regularization correction −εJ−1(vi+1). See Sec-
tion VI B in Ref. 8 for further details on how the regularization
modifies the Kohn–Sham eigenvalue problem.

B. Current-density-functional theories

In current-density-functional theory (CDFT), both the
paramagnetic current density and the total (physical) current
density can be used together with the particle density ρ. We
refer to Refs. 24 and 25 for a discussion of the choice of
variables in CDFT. For the specific case of uniform magnetic
fields, the current-density degrees of freedom can be reduced
into a theory that has been named linear vector potential-DFT
(LDFT).26

The work of Lieb in DFT2 was in parts continued into
paramagnetic CDFT in Ref. 27, where it was proven that each
component of the paramagnetic current density is an element
of L1(R3). However, since L1 does not fulfill the requirements
presented here, further analysis of function spaces for the para-
magnetic formulation is needed. Nonetheless, we conjecture
that each component of the paramagnetic current is an element
of L1 ∩ Lq for 1 < q < 2 and we suggest L3/2 as a suitable space
to choose. We moreover point out that the work in Ref. 23 only
addressed the problem of v-representability by generalizing
the work in Ref. 22 to include paramagnetic current densities.
The problem of differentiability was not dealt with. The appli-
cation of the theory outlined here to CDFT formulated with
the paramagnetic current density is left for future work and
will be based on the above conjecture.

As far as the total (physical) current density is concerned,
recent work has established a density-functional theory based
on the Maxwell–Schrödinger model.9 In this theory, the poten-
tial space contains pairs x∗ = (v , B) of electrostatic scalar
potentials and magnetic fields. Holding v fixed, the magnetic

self-energy plays the role of φ above, yielding a ground state
energy E(x∗) that is already a Moreau–Yosida regularization
with respect to the argument B. The formalism admits con-
struction of a universal density functional F(x) defined for
pairs x = (ρ, β), where ρ is the electron density and β is a
type of internal magnetic field that plays the role of an inde-
pendent variational parameter. Moreover, for any fixed ρ in its
domain, the universal functional is differentiable with respect
to β. A further regularization with respect to ρ results in func-
tionals Eε(x∗) and Fε(x) that are within the scope of the above
convergence result.

The Maxwell–Schrödinger model is itself an approxi-
mation to a more complete description taking into account
the quantized nature of the light field that generates the
internal magnetic field β.28 This more complete description
is based on the Pauli–Fierz Hamiltonian of non-relativistic
quantum electrodynamics,28,29 which describes the interac-
tion among charged particles (electrons and effective nuclei)
by the exchange of photons, the fundamental gauge bosons
of the electromagnetic force.30 Consequently, the resulting
density-functional reformulation is a multi-component the-
ory of fermions and bosons10 and we have two potentials
x∗ = (v , j) that act on the respective particle families. Here
v is the usual electrostatic scalar potential acting on the elec-
trons and j is an external classical transversal charge current
that acts on the photons. Using the standard Maxwell rela-
tions, this external current can be directly related to a unique
classical magnetic field B.10 The conjugate pair x = (ρ, A)
is then the usual electronic density and the transversal elec-
tromagnetic vector potential A that is generated by the pho-
tons of the coupled matter-photon system. Again, by using
the Maxwell relations, the transversal vector potential A is
uniquely associated with an internal magnetic field β. The
above discussed Moreau–Yosida regularization can then be
applied to quantum-electrodynamical DFT, and a rigorous
Kohn–Sham iteration scheme based on coupled Maxwell–
Pauli–Kohn–Sham equations can be introduced. We note that
the presented density-functionalization and generalization of
the Kohn–Sham procedure are applicable in a straightforward
manner to other coupled fermion-boson problems. This high-
lights the applicability of the introduced approach beyond the
usual confinement of traditional electronic-structure theory.

ACKNOWLEDGMENTS

We are very grateful toward an anonymous referee who
not only highlighted some important mistakes in a draft of
this work but also hinted us toward possible solution schemes.
This work was supported by the Norwegian Research Coun-
cil through the CoE Hylleraas Centre for Quantum Molecular
Sciences Grant No. 262695. A.L. is grateful for the hospi-
tality received at the Max Planck Institute for the Structure
and Dynamics of Matter in Hamburg, while visiting M.P. and
M.R. M.P. acknowledges support by the Erwin Schrödinger
Fellowship No. J 4107-N27 of the FWF (Austrian Science
Fund). A.L. and S.K. were supported by ERC-STG-2014 under
Grant Agreement No. 639508. E.I.T. was supported by the
Norwegian Research Council through Grant No. 240674. T.H.
is grateful to the Centre for Advanced Study at the Norwegian



164103-9 Laestadius et al. J. Chem. Phys. 149, 164103 (2018)

Academy of Science and Letters, Oslo, Norway, where parts
of this work was carried out.

1P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
2E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
3W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
4E. Cancès and C. Le Bris, Int. J. Quantum Chem. 79, 82 (2000).
5E. Cancès, in Mathematical Models and Methods for Ab Initio Quan-
tum Chemistry, Volume 74 of Lecture Notes in Chemistry, edited by
M. Defranceschi and C. Le Bris (Springer, 2000).

6E. Cancès, J. Chem. Phys. 114, 10616 (2001).
7L. O. Wagner, E. M. Stoudenmire, K. Burke, and S. R. White, Phys. Rev.
Lett. 111, 093003 (2013).

8S. Kvaal, U. Ekström, A. M. Teale, and T. Helgaker, J. Chem. Phys. 140,
18A518 (2014).

9E. I. Tellgren, Phys. Rev. A 97, 012504 (2018).
10M. Ruggenthaler, e-print arXiv:1509.01417v2 (2017).
11F. G. Eich, M. Di Ventra, and G. Vignale, J. Phys.: Condens. Matter 29,

063001 (2016).
12K. Pernal and K. J. H. Giesbertz, in Density-Functional Methods for Excited

States, Volume 368 Topics in Current Chemistry, edited by N. Ferré,
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