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1. ADIABATIC LOCAL-FIELD EFFECTS

In the independent particle picture, the periodic part
of the Hamiltonian is the same as the Hamiltonian in the
absence of the external field H̃ = H0 and does not depend
on the perturbation P . To take into account particle
interactions, corrections to the Hartree, exchange and

correlation terms are included: ∂H̃/∂P = U
(1)
Hxc[n(P )] +

U
(2)
xc [n(P ), n(P )]. These terms arise from the derivative of

the electron density n(P )(r) = ρ(P )(r, r′)δ(r − r′) to the
perturbation P and to the second order in n(P ) and in
the adiabatic approximation are given by

U
(1)
Hxc =

∫
fHxc(r, r′)n(P )(r′)dr′, (1)

U (2)
xc =

1

2

∫
Kxc(r, r′, r′′)n(P )(r′)n(P )(r′′)dr′r′′, (2)

where fHxc and Kxc are the adiabatic kernels related to
the exchange-correlation potential vxc as

fHxc[n(0)](r, r′) =
δvxc(r)

δn(r′)

∣∣∣∣
n=n(0)

+
1

|r− r′| (3)

and

Kxc[n(0)](r, r′, r′′) =
δ2vxc(r)

δn(r′)δn(r′′)

∣∣∣∣
n=n(0)

. (4)

It should be noted that the change in the electron den-
sity is zero for k · p perturbations1. Furthermore, in sys-
tems with time-reversal symmetry in the ground state,
the change of the electron density should also comply
with time-reversal symmetry and for the first order in
the magnetic field, it is possible only when the change in
the electron density is zero. This is the case for all the
systems considered in the present paper.

2. SOLID-STATE FORMULATION

2.1. General form of equations

For solids, it is convenient to work with equations in
reciprocal space. We, therefore, represent the operators
as (note that we omit tilde in reciprocal space)

Õr1r2 =

∫
BZ

dk

(2π)3
eikr1Oke

−ikr2 . (5)

In reciprocal space, Eq. (15) of the paper correspond-
ing to the Liouville equation projected onto unperturbed
Kohn-Sham states can be written as

Lvk(Ω)|ζ(P )
vk 〉 = PckR(P )[ρ

(n−1)
k ,..., ρ

(0)
k ,

n(P )]|u(0)
vk 〉,

(6)

where Lvk(Ω) = Ω +H0k − εvk, R(P ) = R
(P )
k , |u(0)

vk 〉 and

|ζ(P )
vk 〉 are the periodic parts of wavefunctions |η(P )

vk 〉 =

eikr|ζ(P )
vk 〉 and |ψ(0)

vk 〉 = eikr|u(0)
vk 〉, respectively, and Pck =

1−Pvk = 1−ρ(0)
k is the projector onto unoccupied bands

at k-point k.
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As mentioned in the paper, there is no need to solve the

Liouville equation for the block diagonal elements ρ̃
(P )
D

of the derivative of the density matrix within occupied

(ρ̃
(P )
VV = −Pvρ̃(P )

D Pv) and unoccupied (ρ̃
(P )
CC = Pcρ̃

(P )
D Pc)

subspaces. These can be found explicitly from the idem-
potency condition for the Kohn-Sham density matrix
ρ = ρρ (Refs. 2 and 3), which to the first order in the
magnetic field is given by Eq. (18) of the paper. In terms
of the block diagonal part of the density matrix in recip-

rocal space, ρkD = (1−ρ(0)
k )ρk(1−ρ(0)

k )−ρ(0)
k ρkρ

(0)
k , this

equation can be presented as

ρkD − ρ(0)
k = (ρk − ρ(0)

k )(ρk − ρ(0)
k )+

− i

2c
B · ∂kρk × ∂kρk.

(7)

Note that ∂kρk is a matrix and a matrix cross product
with itself can be non-zero.

2.2. First-order derivatives of the density matrix

To get the first-order derivatives ρ
(E)
k = ∂ρk/∂E of

the density matrix with respect to the electric field of
frequency Ω0 (E = E0 exp (iΩ0t)), we consider Eq. (6)
with Ω = Ω0 + iδ (Refs. 1, 4, and 5). The right-hand
side in this case is given by

R(E)[ρk, n
(E)] = −i∂kρk − U (1)

Hxc[n(E)]ρk (8)

with ρk = ρ
(0)
k . The diagonal elements of ρ

(E)
k within the

occupied and unoccupied subspaces are zero: ρ
(E)
kD = 0.

For the derivative ρ
(B)
k = ∂ρk/∂B of the density matrix

with respect to the static magnetic field, Ω = iδ and the
right-hand side is

R(B)[ρk, n
(B)] =− i

2c

(
∂kρk ×Vk −Vk × ∂kρk

)
− U (1)

Hxc[n(B)]ρk.

(9)

As mentioned above, n(B) = 0 for systems with time-
reversal symmetry in the ground state.

As follows from Eq. (7), the diagonal elements of ρ
(B)
k

within the occupied and unoccupied subspaces are given
by

ρ
(B)
kD = − i

2c
∂kρ

(0)
k × ∂kρ

(0)
k . (10)

The derivative ρ
(k)
k = ∂kρ

(0)
k of the density matrix with

respect to the wave vector is calculated within the k · p
theory (Ref. 1) considering the perturbation P = k and
solving Eq. (6) for Ω = 0 and the right-hand side

R(k)[ρk] = −[Vk, ρk] (11)

with the diagonal elements equal to zero: ρ
(k)
kD = 0.

Clearly n(k) =
∫

BZ
(2π)−3dk ∂kρ

(0)
k = 0.

2.3. Second-order derivatives of the density matrix

Let us now discuss the second-order response within
the Sternheimer approach1,6,7. The second-order deriva-

tive ρ
(EB)
k = ∂2ρ

(0)
k /∂E∂B of the density matrix with

respect to the magnetic and electric fields can be found
based on Eq. (6) with Ω = Ω0 + iδ and the right-hand
side

R(EB)[ρ
(E)
k , ρ

(B)
k , n(E), n(B), n(EB)]

= R(E)[ρ
(B)
k , n(E)] +R(B)[ρ

(E)
k , n(B)]

−
(

2U (2)
xc [n(E), n(B)] + U

(1)
Hxc[n(EB)]

)
ρ

(0)
k .

(12)

However, in this case, there is actually no need to solve
Eq. (6) explicitly. Instead a supplementary perturbation
corresponding to a vector potential P = A at frequency
−Ω with the right-hand side

R(A)[ρk, n
(A)] = −1

c
[Vk, ρk]− U (1)

Hxc[n(A)]ρk (13)

can be considered.
Let us show that the first-order derivatives with respect

to the perturbations P = E,B and A are sufficient for
calculation of the contribution ανµ,γ to the polarizability
in the presence of the magnetic field given by Eq. (20)

of the paper. Based on definition of R(A) = R
(A)
k given

by Eq. (13), we can write that

− 1

c
Tr
[
Vρ̃(EB)

]
= Tr

[
R(A)[ρ(0), n(A)]ρ̃(EB)

]
+

∫
U

(1)
Hxc[n(A)]n(EB)dr.

(14)

The terms with ρ̃
(EB)
CC and ρ̃

(EB)
VV are determined by the

block diagonal part ρ
(EB)
kD , which is expressed through the

first-order responses to the magnetic and electric fields
(see Eq. (7)) as

ρ
(EB)
kD = ρ

(E)
k ρ

(B)
k + ρ

(B)
k ρ

(E)
k

− i

2c
B
(
∂kρ

(E)
k × ∂kρ(0)

k + ∂kρ
(0)
k × ∂kρ

(E)
k

)
.

(15)

Then it can be noticed that

Tr
[
R(A)ρ̃

(EB)
CV (Ω)

]
=

∫
BZ

dk

(2π)3

∑
v

〈ψ(0)
vk |R

(A)L−1
vk (Ω)PcR

(EB)|ψ(0)
vk 〉

= Tr
[
ρ̃

(A)
VC (−Ω)R(EB)

]
,

(16)

where the sum is over valence bands v.
The last term in Eq. (14) can be also represented as∫

U
(1)
Hxc[n(A)]n(EB)dr

=

∫
fHxc(r, r′)n(A)(r′)n(EB)(r)dr′dr

= Tr
[
U

(1)
Hxc[n(EB)]

(
ρ̃

(A)
CV + ρ̃

(A)
VC

)] (17)
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Using Eqs. (12), (16) and (17), we finally get

Tr
[
R(A)[ρ(0), n(A)]

(
ρ̃

(EB)
CV + ρ̃

(EB)
VC

)]
+

∫
U

(1)
Hxc[n(A)]n(EB)dr

= Tr
[(
ρ̃

(A)
VC + ρ̃

(A)
CV

)
R(E)[ρ̃(B), n(E)]

]
+ Tr

[(
ρ̃

(A)
VC + ρ̃

(A)
CV

)
R(B)[ρ̃(E), n(B)]

]
− 2

∫
U (2)

xc [n(E), n(B)]n(A)dr.

(18)

Therefore, the contribution ανµ,γ to the polarizability
in the presence of the magnetic field can be expressed
through the first-order derivatives to the perturbations
P = E,B and A in accordance with the “2n + 1”
theorem6,7.

Physically there is no difference between the uniform
vector potential A at frequency −Ω and electric field E =
−c−1∂tA = iΩA/c at the same frequency. Therefore, the
observables corresponding to the responses of the elec-
tron density are related as n(A)(−Ω) = iΩn(E)(−Ω)/c.
To find the relation for the projections of the derivatives
of the density matrix onto the unperturbed wavefunc-
tions, we use that without account of local-field effects,
R(A) = c−1R(k), as seen from Eqs. (11) and (13), Eq.
(8) for R(E) and that n(k) = 0, as discussed before:

c|η(A)
vk (−Ω)〉 − |η(k)

vk 〉

=(L−1
vk (−Ω)− L−1

vk (0))PcR
(k)|ψ(0)

vk 〉

− cL−1
vk (−Ω)PcU

(1)
Hxc[n(A)(−Ω)]|ψ(0)

vk 〉

=ΩL−1
vk (−Ω)L−1

vk (0)PcR
(k)|ψ(0)

vk 〉

− iΩL−1
vk (−Ω)PcU

(1)
Hxc[n(E)(−Ω)]|ψ(0)

vk 〉

=ΩL−1
vk (−Ω)|η(k)

vk 〉

− iΩL−1
vk (−Ω)PcU

(1)
Hxc[n(E)]|ψ(0)

vk 〉

=iΩL−1
vk (−Ω)PcR

(E)|ψ(0)
vk 〉 = iΩ|η(E)

vk (−Ω)〉

(19)

Thus, finding the first-order derivative of the density
matrix with respect to the supplementary perturbation
P = A is reduced to the calculations for the electric field
at frequency −Ω = −Ω0 − iδ. For molecules in a large
simulation box, the wavefunctions can be chosen real and

then |η(E)
vk (−Ω)〉 = (|η(E)

vk (−Ω∗)〉)∗. The responses at fre-
quencies Ω and −Ω∗ are computed for the polarizability
in the absence of the magnetic field (see Eq. (26) below)
and, therefore, no additional calculations for the supple-
mentary perturbation are required in this case.

The second-order derivative ρ
(kE)
k = ∂kρ

(E)
k of the den-

sity matrix with respect to the electric field and wave vec-
tor are found from the solution of Eq. (6) at frequency
Ω = Ω0 + iδ with

R(kE)[ρ
(k)
k , ρ

(E)
k , n(E)] = R(E)[ρ

(k)
k , n(E)]

+R(k)[ρ
(E)
k ]

(20)

and ρ
(kE)
kD = ρ

(k)
k ρ

(E)
k + ρ

(E)
k ρ

(k)
k .

For the second-order derivative ρ
(kB)
k = ∂kρ

(B)
k of the

density matrix with respect to the static magnetic field
and wave vector, we use Ω = iδ,

R(kB)[ρ
(k)
k , ρ̃

(B)
k ,ρ̃

(0)
k , n(B)] = R(B)[ρ

(k)
k , n(B)]

+R(k)[ρ
(B)
k ] +R(kB,2)[ρ

(0)
k ],

(21)

where

R(kµBα,2)[ρk] =
eαβγ
2c

(
[rµ, Vkβ ]

∂ρk
∂kγ
− ∂ρk
∂kβ

[rµ, Vkγ ]
)
,

(22)

and

ρ
(kB)
kD = ρ

(k)
k ρ

(B)
k + ρ

(B)
k ρ

(k)
k

− i

2c

(
∂kρ

(k)
k × ∂kρ(0)

k + ∂kρ
(0)
k × ∂kρ

(k)
k

)
.

(23)

The second-order derivative ρ
(kk)
k = ∂kρ

(k)
k of the den-

sity matrix with respect to the wave vector is calculated
using Eq. (6) for Ω = 0 and

R(kk)[ρ
(k)
k , ρ

(0)
k ] = R(k)[ρ

(k)
k ] +R(2,kk)[ρ

(0)
k ], (24)

where

R(2,kαkβ)[ρk] =
i

2
[[rα, Vkβ ], ρk]. (25)

The corresponding diagonal elements are determined by

ρ
(kk)
kD = ρ

(k)
k ρ

(k)
k .

Similar to n(k), n(kE) = 0, n(kB) = 0 and n(kk) = 0.

2.4. Polarizability in the absence of the magnetic
field

The polarizability in the absence of the magnetic field
is given by Eq. (19) of the paper. Using Eq. (19) from
the previous subsection, this expression can be written
as

α0νµ(Ω) =
1

Ω

∫
BZ

dk

(2π)3

∑
v

(
〈η(kµ)
vk |η

(kν)
vk 〉

−〈η(kν)
vk |η

(kµ)
vk 〉

+iΩ〈η(kν)
vk |η

(Eµ)
vk (Ω)〉 − iΩ〈η(Eµ)

vk (−Ω∗)|η(kν)
vk 〉

)
,

(26)

where the sum is over valence bands v. If the Berry
curvature in the first two lines of this expression is zero
(like for the systems considered in the present paper), the
polarizability takes the same form as in Refs. 1 and 5.
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2.5. Band magnetic dipole moments

The orbital magnetic dipole moments of bands8,9 are
computed as

mγ,nk = i
eαβγ
2c

∑
p

′ 〈ψ
(0)
nk |Vα|ψ

(0)
pk 〉〈ψ

(0)
pk |Vβ |ψ

(0)
nk 〉

εpk − εnk
, (27)

where the sum is taken over all bands p which are non-
degenerate with the band n at k-point k.

Using 60 unoccupied bands for silicon, the magnetic
dipole moments of the highest occupied Γ′25 and lowest
unoccupied Γ15 states with the orbital angular momenta
lz = ±1 at the Γ point of the Brillouin zone are found
to be ±0.37µB and ±3.5µB, respectively. Using 40 un-
occupied bands for boron nitride, the magnetic dipole
moments of the highest occupied and lowest unoccupied
states at the K± points of the Brillouin zone are calcu-
lated to be ∓0.95µB and ∓2.8µB, respectively.

For valence bands v, almost same results can be ob-
tained using

mγ,vk = i
eαβγ
2c
〈η(kα)
vk |H0 − εvk|η

(kβ)
vk 〉, (28)

where no conduction bands are needed. In this way, we
compute the magnetic moments of Γ′25 states in silicon
to be ±0.40µB. For the highest occupied states of boron
nitride at the K± points, we find ∓0.95µB.

3. FINITE-SYSTEM FORMULATION

3.1. Equations solved

For finite systems, the Liouville equation for the
density matrix can be straightforwardly written in the
Coulomb gauge as

Ωρ+ [H, ρ] = [d ·E + m ·B, ρ] , (29)

where d = −r is the electric dipole moment and m =
−r×V/2c is the orbital magnetic dipole moment.

The first-order derivatives ρ(E) and ρ(B) are then com-

puted using ρ
(E)
D = ρ

(B)
D = 0, right-hand sides

R(E)[ρ] =
(
d− U (1)

Hxc[n(E)]
)
ρ (30)

and

R(B)[ρ] =
(
m− U (1)

Hxc[n(B)]
)
ρ, (31)

and frequencies Ω = Ω0 + iδ and Ω = iδ, respectively.
The polarizability α0νµ in the absence of the magnetic

field and the change in the polarizability ανµ,γBγ in the
presence of the magnetic field for finite systems can be
calculated directly as

α0νµ(Ω) = Tr
[
dνρ

(Eµ)(Ω)
]
, (32)

and

ανµ,γ(Ω) = Tr
[
dνρ

(EµBγ)(Ω)
]
, (33)

respectively.
Making the use of the “2n + 1” theorem6,7, explicit

calculation of the second-order derivative ρ(EB) can be
avoided. Instead a supplementary perturbation A, which
in this case corresponds to the electric field at frequency
−Ω, can be introduced:

Tr
[
dρ(EB)(Ω)

]
= Tr

[
R(A)ρ(EB)(Ω)

]
+

∫
U

(1)
Hxc[n(A)]n(EB)dr.

(34)

Then the terms with ρ
(EB)
CC and ρ

(EB)
VV (Eq. (14) of the

paper) can be determined from the idempotency condi-

tion ρ
(EB)
D = ρ(E)ρ(B) + ρ(B)ρ(E). The terms with ρ

(EB)
CV ,

ρ
(EB)
VC and n(EB) can be written in the way analogous to

Eq. (18). In the case of real wavefunctions, |η(A)
v (−Ω)〉 =

(|η(E)
v (−Ω∗)〉)∗ and there is no need to solve additionally

the Liouville equation for the supplementary perturba-
tion.

3.2. A and B terms

The polarizability of finite systems

ανµ(Ω) = α̃νµ(Ω) + α̃µν(−Ω), (35)

can be expressed through sums over molecular states as

α̃νµ(Ω) =
∑
n

〈0|dν |n〉〈n|dµ|0〉
Ωn − Ω

, (36)

where Ωn is the transition frequency for the excited state
n.

In the presence of the magnetic field, the molecular
states are perturbed and the corresponding contribution
to the polarizability gives rise to the B term10–12

α̃Bνµ,γ(Ω) =
∑
n 6=p

〈0|dν |n〉〈n|mγ |p〉〈p|dµ|0〉
(Ωn − Ω)(Ωp − Ω)

+
∑
n,p

{
〈0|dν |n〉〈n|d̄µ|p〉〈p|mγ |0〉

(Ωn − Ω)Ωp

+
〈0|mγ |n〉〈n|d̄ν |p〉〈p|dµ|0〉

Ωn(Ωp − Ω)

}
,

(37)

where the overline denotes the fluctuation operators Ō =
O − 〈0|O|0〉. It is clear from this equation that the B
term introduces only first-order poles and the height of
the corresponding peaks is inversely proportional to the
linewidth.
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The magnetic field, however, also affects the energies
of the molecular states. Such a contribution is referred
to as the A term and is given by10,11,13

α̃Aνµ,γ(Ω) =
∑
n

〈0|dν |n〉〈n|m̄γ |n〉〈n|dµ|0〉
(Ωn − Ω)(Ωn − Ω)

. (38)

This term describing the linear response to the magnetic
field is sufficient as long as |〈n|m̄γ |n〉Bγ | � |Ωn − Ω|.
At resonances, this means that the Zeeman splitting
should be smaller than the linewidth. Using the typi-
cal linewidth δ ∼ 0.1 eV and magnetic moment change
on the order of the Bohr magneton µB, one finds that the
expression is valid even for rather strong magnetic fields
B � δ/µB ∼ 103 T.

As seen from Eqs. (36) and (38), close to the reso-
nances, the A term is determined by the derivative of
the spectral function weighted by the magnetic moment
change upon the excitation. Correspondingly it is present
only for molecules with rotational symmetry at least of
the third order, which have degenerate states with non-
zero orbital momenta, and is manifested through second-
order poles in the magneto-optical spectra. The height of
the corresponding peaks is inversely proportional to the
linewidth squared.

It also follows from Eqs. (36) and (38) that the ratio
of the A term and polarizability in the absence of the
magnetic field at the resonance frequency characterizes
the change in the orbital magnetic moment ∆m upon
the excitation. As discussed above, the A term is non-
zero only for symmetric systems, where there is an axis
of rotational symmetry at least of the third order (let us
denote it z). For such systems, |〈0|dx|n〉| = |〈0|dy|n〉|.
Using that Ωn − Ω = −iδ and the selection rule for the
magnetic quantum number ∆lz = ±1, one gets

α̃Axy,z/α̃xx ∼ ∆mz∆lz/δ (39)

4. ANGLE OF FARADAY ROTATION AND
ELLIPTICITY

Let us establish the relationships between the non-
diagonal elements of the electric susceptibility tensor
χνµ = ανµ/w, where w is the unit cell volume, and the
angle of rotation φz and ellipticity θz gained by the lin-
early polarized light when it passes through the crystal14.
It should be noted that these relationships are the same
in the cases of the magnetic field applied and natural
optical acitivity.

We consider a plane wave propagating through the
crystal along the axis z,

Ẽ = Ẽ0e
i(nΩz/c+Ωt),

B̃ = B̃0e
i(nΩz/c+Ωt),

(40)

where n is the refractive index. We assume that the axis
z is the optical axis so that no birefringence takes place.

In the absence of external charges and currents, the
Maxwell equations can be written as

∇× Ẽ = −1

c

∂B̃

∂t
, ∇× H̃ =

1

c

∂D̃

∂t
,

∇ · D̃ = 0, ∇ · B̃ = 0,

(41)

where D is the displacement field and H is the magne-
tizing field. Assuming B ≈ H one gets

∇×∇× Ẽ =

(
Ω

c

)2

D̃, ∇ · D̃ = 0. (42)

In the absence of the magnetic field or natural optical
activity, χ0xx = χ0yy = (n2

0 − 1)/4π, where n0 is the
ordinary refractive index, and χ0µν = 0 for any µ 6= ν.
In the presence of the magnetic field or natural optical
activity, we assume that χxx ≈ χyy and χxy = −χyx
are much smaller in magnitude than χ0xx. Using that
D̃µ = Ẽµ + 4πP̃µ = (δµν + 4πχµν)Ẽν , where P̃ is the
bulk polarization, the first of Eq. (42) is reduced to(

n2 − 1− 4πχxx −4πχxy
−4πχyx n2 − 1− 4πχyy

)(
Ex
Ey

)
= 0 (43)

and gives n±−n0 ≈ ±2πiχxy/n0. The two solutions cor-
respond to the left (+) and right (−) circularly polarized
light with Ey = ±iEx.

The angle of rotation φz and ellipticity θz gained at
distance l are expressed through the real and imaginary
parts of refractive indices n± as (Ref. 14)

φz(Ω0) =
Ω0l

2c
Re
(
n+ − n−

)
,

θz(Ω0) =
Ω0l

2c
Im
(
n+ − n−

)
,

(44)

which gives

φz(Ω0) = −πΩ0l

c
Im

[
χxy(Ω)− χyx(Ω)

n0

]
,

θz(Ω0) =
πΩ0l

c
Re

[
χxy(Ω)− χyx(Ω)

n0

]
.

(45)

The angle of rotation and ellipticity arising from the ef-
fect of the magnetic field and corresponding to the Fara-
day rotation and MCD signal, respectively, can, there-
fore, be found as

φz(Ω0) = −πΩ0l

c
BzIm

[
χxy,z(Ω)− χyx,z(Ω)

n0

]
,

θz(Ω0) =
πΩ0l

c
BzRe

[
χxy,z(Ω)− χyx,z(Ω)

n0

]
.

(46)

It should be emphasized that the assumption of z
being the axis of rotational symmetry is used above
only to derive the relationship between the polarizabil-
ity ανµ = wχνµ and physical properties like ellipticity
and angle of rotation, which make sense only when the
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FIG. 1. Calculated components Im εxx (upper panel) and
Re εxy (lower panel) of the dielectric tensor of silicon as func-
tions of the frequency of light Ω0 (in eV) for the magnetic field
of 1 T along the z axis. The data obtained in the indepen-
dent particle approximation using 48266 irreducible k-points
(shifted 8×8×8 k-point grids giving the grid of 128×128×128
in total), 6586 irreducible k-points (64×64×64 grid in total)
and 1010 irreducible k-points (32× 32× 32 grid in total) are
shown by black solid, red dashed and green dash-dotted lines,
respectively. The calculated data are blue-shifted in energy
by 0.7 eV to take into account the GW correction to the band
gap15,16.

light components with right and left circular polarization
propagate at almost equal speed. Eq. (20) of the paper
for ανµ,γ does not rely on this assumption and can be
used to compute the polarizability tensor in the presence
of the magnetic field for any arbitrary system, including
highly anisotropic ones.

5. ADDITIONAL DETAILS AND RESULTS OF
CALCULATIONS

5.1. k-point grids and local-field effects

A large number of k-points is required to converge the
magneto-optical spectra of solids. To achieve the neces-
sary number of k-points, shifted k-point grids are consid-
ered. Uniform 8×8×8 and 10×18×1 grids are used for
silicon and boron nitride, respectively. These grids are
sufficient to converge well the eigenstates. The shifts of
mi∆ki/ni with mi = 0, 1, ..., ni− 1 are applied along the
orthogonal axes i = 1− 3, where ∆ki corresponds to the
spacing of the single grid along the axis i. In this way,
the shifted grids constitute in total the uniform grid with
the spacing of ∆ki/ni along the axis i. For silicon, the
cases of n1 = n2 = n3 = 4, 8 and 16 have been considered

FIG. 2. Calculated components Im εxx (upper panel) and
Re εxy (lower panel) of the dielectric tensor of boron nitride
monolayer as functions of the frequency of light Ω0 (in eV) for
the magnetic field of 1 T along the z axis directed out of the
plane. x and y axes are aligned along the armchair and zigzag
directions. The data obtained in the independent particle
approximation using 2993 irreducible k-points (shifted 10 ×
18 × 1 k-point grids giving the grid of 80 × 144 × 1 in total)
and 11745 irreducible k-points (160 × 288 × 1 grid in total)
are shown by black solid and red dashed lines, respectively.
The results calculated with account of the local-field effects
in the ALDA approximation using 11745 irreducible k-points
are represented by blue dash-dotted lines. The calculated
data are blue-shifted in energy by 2.6 eV to take into account
the GW correction to the band gap17.

(Fig. 1). For boron nitride, n1 = n2 = 8 and 16 have
been studied (Fig. 2; along the out-of-plane axis n3 = 1).

Figs. 1 and 2 show that at least 6600 and 3000 irre-
ducible k-points are required to converge the MCD spec-
tra for silicon and boron nitride, respectively. Fig. 2 also
demonstrates that the account of local-field effects in the
adiabatic local-density approximation (ALDA) leads to a
small correction of the absorption and MCD spectra for
boron nitride.

The influence of the parameter β in Eq. (37) of the
paper derived18 for excitonic effects in the framework of
time-dependent current density functional theory (TD-
CDFT) on the absorption and magneto-optical spec-
tra of boron nitride is demonstrated in Fig. 3. For
β = 8 − 20, the prominent excitonic peak is observed
and the shapes of the spectra almost do not change upon
changing β. The value β = 17.5 corresponds to the po-
sition of the peak in accordance with the Bethe-Salpeter
calculations17.
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FIG. 3. Components Im εxx (upper panel) and Re εxy (lower
panel) of the dielectric tensor of boron nitride monolayer as
functions of the frequency of light Ω0 (in eV) calculated using
different values of the parameter β in Eq. (37) of the paper
describing excitonic effects and derived using the TDCDFT
polarization functional18: (black) 0, (blue) 8, (red) 10, (ma-
genta) 12.5, (green) 15, (brown) 17.5, (dark blue) 20. The
magnetic field of 1 T is directed along the z axis, i.e. out of
the plane. The calculated data are blue-shifted in energy by
2.6 eV to take into account the GW correction to the band
gap17.

5.2. Valley g-factor from tight-binding model

According to our estimate, the valley g-factor for the
first excitonic peak in boron nitride is about twice smaller
than the g-factors measured for excitons in WSe2 (Refs.
19–21) and MoSe2 (Refs. 21–23) monolayers. These ex-
perimental results are normally interpreted on the basis
of the simple two-band tight-binding model24–26 for the
electronic states near the K± points. It is assumed19,22,23

that the total magnetic moment of a charge carrier is
composed of the intercellular contribution from phase
winding of delocalized Bloch wavefunctions at K± points,
µk, the intracellular contribution of parent atomic or-
bitals, µl, and contribution of carrier spin, µs. In the K+

valley of WSe2 and MoSe2, these contributions for the
conduction (c) and valence (v) bands are µcs = µvs =
−µB, µcl = 0, µvl = −2µB, µck = −µBm0/m

c
∗ and

µvk = −µBm0/m
v
∗, where m0 is the free electron mass

and mc
∗ and mv

∗ are the effective masses for the con-
duction and valence bands23. For the contribution of
atomic orbitals, it is taken into account that the highest
valence bands in WSe2 and MoSe2 are predominantly
composed of dx2−y2 ± idxy W/Mo orbitals with lz = ±2
and the lowest conduction bands of d2

z W/Mo orbitals
with lz = 0 (Refs. 27). The coupled spin and valley

physics in group-IV dichalcogenides provides that the
spin degree of freedom is frozen out and the spin con-
tributions are the same for the valence and conduction
bands28. In the model with just two bands, the intercellu-
lar contributions to the magnetic dipole moments are the
same in the conduction and valence bands24–26. As a re-
sult, the tight-binding model24–26 shows that the change
of the magnetic dipole moment upon the excitation in
WSe2 and MoSe2 is mostly related to the contribution of
parent atomic orbitals19,22,23. Indeed the corresponding
valley g-factor of 4 is close to the result of experimental
observations19–23 for WSe2 and MoSe2.

The contribution from parent atomic orbitals is absent
in boron nitride, where the first optical transitions take
place between the bands composed of pz orbitals with
lz = 0 (Ref. 29). Therefore, the tight-binding model24–26

gives a vanishing g-factor for boron nitride. The valley
g-factor for boron nitride is, nevertheless, significant ac-
cording to our calculations and comparable to the results
for WSe2 and MoSe2. Therefore, the model24–26 is not
adequate for description of band magnetic dipole mo-
ments in boron nitride. Calculations of band magnetic
dipole moments for WSe2 and MoSe2 with account of a
large number of bands are required to explain properly
the g-factors observed for these materials (see also Ref.
21).

5.3. Computational time

Let us now discuss the computational time required
for calculations of the magneto-optical spectra for solids.
The perturbations P = B, k, kk and kB are static and
the corresponding derivatives of the density matrix are
computed only once at zero frequency. The perturba-
tions P = E and kE at frequencies Ω = ±Ω0 + iδ and
supplementary perturbation A, which is reduced to the
perturbation P = E at frequencies Ω = ±Ω0 − iδ (see
Eqs. (14)–(19) of section 2.3), have to be considered
at each frequency Ω0. If time-reversal symmetry is taken
into account, the response to the perturbation kE should
also be found at frequencies Ω = ±Ω0 − iδ. For the per-
turbation E, Eq. (6) has to be solved three times at each
frequency Ω for the components of the electric field E
along three orthogonal axes. For the perturbation kE,
the equation has to be solved 9 times for three compo-
nents of the electric field E and three components of the
wave vector k. Thus, Eq. (6) is solved 12 times at each
frequency Ω, i.e. 48 times at each frequency Ω0 since
Ω = ±Ω0 ± iδ.

In the absence of the magnetic field, only the response
to the perturbation E at frequencies Ω = ±Ω0 + iδ is
needed (see Eq. (26)). Therefore, Eq. (6) is solved 6
times at each frequency Ω0. This means that if the local-
field effects are not taken into account in Eq. (6), the
calculation of magneto-optical spectra can be up to 8
times slower than of optical polarizaility in the absence of
the magnetic field given that the calculation parameters
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(k-point and real-space grids, etc.) are the same.
If local-field effects are taken into account, the com-

putational time grows considerably because of the steps
where Eq. (6) is solved self-consistently. The per-
turbation kE does not lead to changes in the electron
density1 and no self-consistent calculations are required.
The speed-limiting step is the calculation of the self-

consistent response to the electric field E at frequencies
Ω = ±Ω0±iδ. Since the number of frequencies is doubled
as compared to the case when the magnetic field is absent
(Ω = ±Ω0 + iδ), the calculation of magneto-optical spec-
tra for solids takes about twice as long as simple optical
polarizability.
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