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Universal, high-fidelity quantum gates based on
superadiabatic, geometric phases on a solid-state spin-qubit at
room temperature
Felix Kleißler1, Andrii Lazariev1 and Silvia Arroyo-Camejo1

Geometric phases and holonomies are a promising resource for the realization of high-fidelity quantum operations in noisy devices,
due to their intrinsic fault-tolerance against parametric noise. However, for a long time their practical use in quantum computing
was limited to proof of principle demonstrations. This was partly due to the need for adiabatic time evolution or the requirement of
complex, high-dimensional state spaces and a large number of driving field parameters to achieve universal quantum gates
employing holonomies. In 2016 Liang et al. proposed universal, superadiabatic, geometric quantum gates exploiting transitionless
quantum driving, thereby offering fast and universal quantum gate performance on a simple two-level system. Here, we report on
the experimental implementation of a set of non-commuting single-qubit superadiabatic, geometric quantum gates on the
electron spin of the nitrogen-vacancy center in diamond under ambient conditions. This provides a promising and powerful tool for
large-scale quantum computing under realistic, noisy experimental conditions.
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INTRODUCTION
Currently we reside in an exciting era, in which large-scale circuit-
based quantum computers do not exist yet, but their realization
appears to become increasingly more feasible. This era of ‘Noisy
Intermediate-Scale Quantum Computers’ (NISQ),1 offers circuit-
based computing platforms with O(10) physical qubits and
quantum annealers acting on O(103) physical qubits. Despite
these impressive achievements in scaling-up the number or
qubits, a profound challenge for building viable quantum
computers is yet the achievable fidelity of the fundamental
quantum gates. Only when fidelity and robustness of the quantum
gates are significantly improved, can quantum error correction
codes be efficaciously deployed and thus universal large-scale
quantum computation will become a reality.
Today, one of the most promising resources for intrinsically

fault-tolerant qubit gates are geometric (Abelian) and holonomic
(non-Abelian) phases.2–4 The quantum geometric phase was first
shown to arise when a state vector is parallel-transported along a
closed loop within a parameter space associated with a non-trivial
state space geometry.5 The value of the geometric phase is
determined by global geometric properties of the respective
Hilbert space, rather than dynamic parameters. Because para-
metric noise is characteristically of local nature, geometric phases
are prominent to be intrinsically invariant with respect to such
small control parameter imperfections.6 This intrinsic robustness
of geometric phases was proposed to deliver a key performance
advantage in the context of quantum computation. However, a
general resilience of geometric phase-based quantum gates
against decoherence effects (in open quantum system) has not
been demonstrated theoretically or experimentally to the best of
our knowledge. Zanardi and Rasetti were pioneers to propose

quantum gate evolution based on holonomies, i.e., non-Abelian
geometric phases.7,8 However, the quantum systems coherence
time in combination with adiabatic system evolutions limited
geometric quantum gates to proof-of-principle demonstrations
without much practical relevance.9

Only recently the generalization towards non-Abelian, non-
adiabatic holonomic quantum gates (HQG) broke this limitation by
nonadiabatically transporting a computational subspace in a
higher-dimensional Hilbert space.10 To this end, the holonomy
arises from the rotation of a complex vector (represented by a
Rabi oscillation between the bright and excited states of the
dressed three-level system) around a static, complex vector given
by the dark state. Experimental realizations11–13 of this HQG
concept achieved high-fidelity quantum gate performance
exceeding the threshold required for the implementation of
quantum error correction protocols.14,15 Because a holonomy can
only arise in a more than two-dimensional Hilbert space the
implementation of HQG requires higher-dimensional quantum
systems with at least two well controlled driving fields (for
examples see refs. 16–21).
In contrast, non-adiabatic geometric phases22–24 allow for

quantum computation in a two-dimensional computational space
equivalent to the systems Hilbert space at the cost of time-
dependent driving fields. Until now, the realization of the latter
has been pending. Here, we report the first realization of a
recently proposed single-qubit superadiabatic geometric quan-
tum gate (SAGQG) scheme25 which exploits the concept of
transitionless quantum driving (TQD)26 to realize adiabatic state
evolution in finite time (i.e., a significantly shorter time frame than
conventionally suggested by the adiabatic theorem). The gate
operations are generated by controlling a single time-dependent
driving field keeping the experimental resources minimal, while
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combining the advantages of geometric and superadiabatic
evolutions.
Experiments are performed utilizing the electron spin dedicated

to the nitrogen-vacancy (NV) center in diamond, a promising
candidate for the implementation of a scalable quantum registers.
Dynamic single-qubit27 and multi-qubit28 gates as well as non-
adiabatic non-Abelian geometric single-qubit gates13 have
demonstrated its significance for quantum information applica-
tions, even at room-temperature. Moreover, the use of optimized
samples eliminates/supresses the noise environment as source of
error and high fidelity quantum computation can be obtained by
choosing quantum operations insensitive to control parameter
imperfections.

RESULTS
Superadiabatic geometric quantum gates
The SAGQG proposal25 builds upon the concept of the Aharonov-
Anandan type non-adiabatic geometric phase.29 For the
Aharonov-Anandan phase to be solely of geometric nature, in
the total phase

Φ ¼ �
Z T

0
hψðtÞjHðtÞjψðtÞidt þ

Z T

0
h~ψðtÞjið∂=∂tÞ~ψðtÞidt (1)

the first, dynamic-phase term must vanish (here j~ψðtÞi is the
reference section state on the projective Hilbert space P30). This
can be achieved by driving the state vector with a driving field
that is applied perpendicularly to the state vector at all times.
Under this condition driving the state vector on the Bloch sphere,
the solid angle ~Ω enclosed by the Bloch vector trajectory
determines the acquired geometric phaseγ ¼ Φ ¼ ~Ω=2 (Fig. 1a).
The Aharonov-Anandan phase is restricted to generate U(1)

phase shift gates. The total Hamiltonian of the SAGQG is
constructed employing the technique of transitionless driving26

where a reverse engineered correction Hamiltonian compensates
for undesired transitions between the basis states. This way the
effective superadiabatic Hamiltonian drives the instantaneous
eigenstates exactly such that non-adiabatic correction terms are
cancelled and the evolution of dynamic phases is fully suppressed,
even within the fast driving regime.
Considering a two-level system with a time-dependent single

driving field, our original Hamiltonian H0(t) has the following form
in the co-rotating reference frame of the external driving field

H0ðtÞ ¼ �h
2

ΔðtÞ þ _ΔðtÞt ΩRðtÞe�iφ

ΩRðtÞeiφ �ðΔðtÞ þ _ΔðtÞtÞ

 !
; (2)

where the driving field is applied with a detuning Δ(t) = ω0−
ωD(t), with ω0 the qubit resonance frequency and ωD(t) the driving

field frequency, phase φ, and Rabi frequency ΩR(t). The non-
standard form of the Hamiltonian in Eq. (2) in the rotating frame of
the driving field arises from its time-dependent detuning (see
Supplementary Information for details on the derivation of Eq. (2)).
Exploiting the concept of TQD26 and deriving a suitable correction
Hamiltonian Hc Liang et al.25 propose the superadiabatic
Hamiltonian

HSðtÞ ¼ H0 þ Hc ¼ �h
2

ΔðtÞ þ _ΔðtÞt ΩSðtÞe�i½φþϕSðtÞ�

ΩSðtÞei½φþϕSðtÞ� �ðΔðtÞ þ _ΔðtÞtÞ

 !
; (3)

where ΩSðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩRðtÞ2 þ ΩCðtÞ2

q
is the superadiabatic Rabi

frequency, and φS(t) = arctan[ΩC(t)/ΩR(t)] is the superadiabatic
phase. The corrected Rabi frequency is
ΩCðtÞ ¼ _ΩRðtÞðΔðtÞ þ _ΔðtÞtÞ � ΩRðtÞ∂tðΔðtÞ þ _ΔðtÞtÞ� �

=Ω2, where
the generalized Rabi frequency is introduced as

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩRðtÞ2 þ ðΔðtÞ þ _ΔðtÞtÞ2

q
. The instantaneous eigenstates of

the original Hamiltonian H0(t) are λ± ðtÞj i. (The explicit expression
of the superadiabatic Rabi frequency ΩS(t), detuning ΔSðtÞ ¼
ΔðtÞ þ _ΔðtÞt and phase φ(t) are given in the 'Methods' section.)
In order to realize universal quantum computation the SAGQG

applies a strategy previously developed by Zhu and Wang23,31

which is based on choosing a pair of orthogonal states λ± ðtÞj i
undergoing a cyclic evolution: λ± ðTÞj i ¼ exp iϕ±½ � λ± ð0Þj i. Over
the full length of the SAGQG transformation the dynamic phase is
designed to cancel such that the system evolution becomes fully
geometric UðT ; 0Þ λ± ð0Þj i ¼ exp ± iγ½ � λ± ð0Þj i where the evolution
operator U(T, 0) imprints only a U(1) phase factor on each of the
eigenstates λ± ð0Þj i. Wang and Zhu ingeniously identified that
these trivial phase factors on the λ± ð0Þj i nevertheless translate to
a non-Abelian transformation on the computational states in the
co-rotating frame. Thus, even though the SAGQG is not based on a
non-Abelian holonomy, in virtue of the elaborate basis transfor-
mation between the cyclic states and the computational states the
U(1) geometric-phase factors convert to a non-Abelian, geometric
transformation of the computational states allowing for universal
quantum computation.

Bloch sphere trajectory
The SAGQG state evolution is based on a sequence of four
trajectory segments of time duration τ, leading to a total gate
length of tGate = 4τ (see Methods section for details). We
investigate and visualize the quantum gate Bloch sphere
trajectory of a qubit initialized into the |0〉 state in a stroboscopic
manner by applying projective readout pulses at times tm. As two
representative gates we realize the Pauli-Z (Fig. 2a, b) and the
Pauli-X (Fig. 2c, d) gate. The measured Bloch vector trajectories
(dots) are in very good agreement with the numerically calculated
trajectories (solid lines). Rotations around the y-axis (Pauli-Y gate)
can be realized by setting φ= π/2 for the original Hamiltonian
H0(t). In the realization of the Pauli-Z gate, the non-adiabatically
obtained original trajectory is observed (compare Fig. 1a), since
the input eigen state |0〉 is equivalent to the Hamiltonians
instantaneous eigenstate λ± ð0Þj i at t = 0. The particular shape of
the trajectory in Fig. 2c, d illustrates that the geometric phase is
obtained utilizing a sophisticated parameter time-dependence.

Generalization to geometric gate with arbitrary phase value
So far we demonstrated that rotations by γ= π/2 around the x and
z-axis can be fulfilled with high fidelity by performing super-
adiabatic geometric quantum computation. In addition, by varying
the opening angle of the “orange slice” trajectory an arbitrary
geometric phase γ can be acquired. Utilizing the states |0〉,
1=

ffiffiffi
2

p
0j i � 1j ið Þ and 1=

ffiffiffi
2

p
0j i þ i 1j ið Þ we demonstrate the rota-

tion for different geometric phases γ (see Fig. 2e–k). In order to

Fig. 1 Superadiabtic geometric quantum gate concept. a Antici-
pated “orange slice” Bloch sphere trajectory (blue) enclosing the
solid angle ~Ω ¼ 2γ (red). b Two-level system and microwave field
parameter (detuning Δ(t), Rabi frequency ΩS(t) and phase φ + ϕS(t))
utilized for the realization of superadiabatic geometric quantum
computation
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visualize the phase gate we map the acquired phase into a
population by application of a projective π/2-pulse around the
y-axis. Hence, we show that the SAGQG concept additionally
allows for the generation of an arbitrary phase shift gate.
Collectively with the former we thus provide a universal set of
single-qubit geometric quantum gates.

Fidelity assessment and fault-tolerance
Quantification of the performance of the superadiabatic geo-
metric gates is obtained via standard quantum process tomo-
graphy (QPT)32 measurements, which allow to reconstruct the full
experimental quantum process matrix χexp and therefore to
determine the quantum gate fidelity F= Tr(χexpχ0),

33 where χ0 is
the theoretically anticipated process matrix (for details on the
experimental QPT procedure see Supplementary Information and
ref. 13). Due to their dynamic nature and finite time duration the
QPT pulses are susceptible to errors and we obtain the corrected
quantum gate fidelity value ~F ¼ F=FID by normalization with the
fidelity of the identity operation. We determine the experimental
gate fidelities of the SAGQG to be ~FSAGQGx ¼ 0:994þ0:026

�0:031 and
~FSAGQGz ¼ 0:995þ0:021

�0:024 for Pauli-X and Pauli-Z operations, respec-
tively. Additionally, the Hadamard gate is realized by a rotation of
π/2 around the y-axis (Ry(π/2)) and a subsequent rotation by π
around the z-axis (Rz(π)), resulting in an experimental fidelity of
~FSAGQGH ¼ 0:992þ0:022

�0:029. These values clearly exceed the necessary
fidelity threshold on the order of 1− 10−2 for the implementation
of state-of-the-art error correction codes based on, e.g., surface
codes.34,35 The SAGQG concept thus qualifies as a promising
candidate for the implementation of scalable quantum
computing.
Besides the fidelity of the individual, logical gates, we

additionally assess the average error probability over the set of
universal gates employing randomized benchmarking.36 Based on
the application of randomly assembled sequences of a set of

logical gates, randomized benchmarking allows for a good
estimation of the error scaling given a long sequence of quantum
gates, as relevant for viable applications in longer quantum
algorithms. Figure 3a presents the average fidelity as a function of
the number of computational gates l. For the SAGQG we obtain an
average probability of error per gate of εSAGQGg ¼ 0:0013ð3Þ,
whereas an identical analysis for a set of dynamic quantum gates
represented by π and π/2-pulses reveals an average probability of
error of εdynamic

g ¼ 0:023ð8Þ, i.e., the geometric-phase based
SAGQG performs one order of magnitude better than its
dynamic-phase based standard gate (see Supplementary Informa-
tion for details). Our results suggest that the SAGQG is significantly
more resilient with respect to the type of noise and parameter
imperfections present in our experimental system than the
standard realization of dynamic phase-based quantum gates.
Since the longest sequence duration (in total 99 gates) is much
shorter than the longitudinal relaxation time (Tseq ≈ 32 μs << T1 ≈
14ms), decoherence effects are expected to be negligible and
parametric noise is assumed to be the main source of error. Our
experimental findings demonstrate the intrinsical robustness of
non-adiabatic geometric phase-based quantum gates with respect
to certain, experimentally very relevant types of parametric noise.
These experimental findings of a non-adiabatic geometric
quantum gate (Table 1) are in accordance with theoretical
predictions of robustness in the distinct, but related adiabatic
geometric gates.6,8,37–39 This joint robustness trait can be
attributed to the fact that both adiabatic and non-adiabatic
geometric phases and holonomies are global features, which are
intrinsically robust with respect to locally occurring parameter
imperfections and noise leaving the state-space area enclosed by
the trajectory on the respective projective space invariant.
In the following we examine the fidelity performance of the

SAGQG with respect to variations in the gate evolution time. This
is important for two reasons: (1) In order to most efficiently exploit
the coherence time of the qubit, we need to investigate the

Fig. 2 Superadiabatic geometric gate realization: a Simulated and reconstructed Bloch sphere trajectory of the superadiabatic geometric
Pauli-Z gate in the driving field frame for a spin initialized into the |0〉 state. b Bloch vector components u(t)= ρ10(t)+ ρ01(t) (blue), v(t)= i
(ρ01(t)− ρ10(t)) (orange) and w(t)= ρ00(t)− ρ11(t) (green), where ρ(t) is the density matrix representation of the instantaneous state, of the
trajectory presented in a versus the gate time in multiples of τ. Solid lines represent numerically calculated trajectories and dots indicate
measured values. Analogously c and d follow for the realized Pauli-X gate. e–g Measured population of the |0〉 state for a spin initialized into
the states e |0〉, f 1=

ffiffiffi
2

p
0j i � 1j ið Þ and g 1=

ffiffiffi
2

p
0j i þ i 1j ið Þ in dependence on γ for superadiabatic rotations around the x (green) and z-axis

(blue). Dashed lines represent the expected values. Bloch spheres h, i, k indicate the initialized state (red arrow)
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theoretical velocity limits and experimental performance of the
SAGQG and aim for fast quantum gate performance. (2) We
experimentally examine the intrinsical robustness of the SAGQG
with respect to experimental parameter imperfections. In parti-
cular we analyse the SAGQG performance outside its optimal
parameter specifications. The latter is particularly relevant for the
common experimental case where the Rabi frequency (for
practical reasons) obeys a maximum bound maxt ΩSðt;Ω0;Δ0Þð Þ �
Ωmax (for parameter dependences see 'Methods' section). Given
such a practical maximum bound Ωmax for the experimentally
achievable Rabi frequency, in Fig. 3b we show a contour plot of
the numerically determined minimal τ-value, denoted τmin(Ω0, Δ0),
fulfilling the necessary criterion maxt ΩSðt;Ω0;Δ0Þð Þ � Ωmax . We
like to stress again, the τmin(Ω0, Δ0) limit is not given by theoretical
constraints related to the state evolution (e.g., adiabaticity), but it
is merely defined by the experimentally achievable Rabi strength
Ωmax. The smallest, experimentally feasible τ-value is equivalent to
1/(2Ωmax) corresponding to the length of a π-pulse tπ, ultimately
limiting the SAGQG length to tGate ≥ 2/Ωmax= 4tπ. For our
experimental conditions the minimal gate length tGate= 4τπ
corresponds to tGate= 284 ns. If τ were chosen smaller than τmin

this would require maxt ΩSðt;Ω0;Δ0Þð Þ to exceed Ωmax which—
given experimental limitations on Ωmax—cannot be fulfilled by
any experimental parameter set. Forcing τ < τmin experimentally
leads to a marked mismatch between required and actual value of
the driving field strength ΩS(t), i.e., an inconsistent, erroneous
driving field parameter set.
For an experimental robustness analysis of the SAGQG we

explicitly vary the gate time parameter τ within a non-optimal
range of τ reaching from 0.5 ⋅ tπ to 1.5 ⋅ tπ (whereas the theoretical
minΩ0;Δ0 τminð Þ ¼ tπ) for three sets of parameters A, B, and C (Ω0=
{1.5, 1.5, 2} MHz and Δ0= {1.5, 6, 8} MHz). The minΩ0 ;Δ0 τminð Þ value
for each parameter set is marked in Fig. 3c as a vertical, dashed
line of matching colors, respectively. Figure 3c shows the
extracted quantum gate fidelity F of the Pauli-X gate in
dependence of τ. We observe that even for τ smaller than the
calculated threshold τmin the quantum gate fidelity F remains
close to one. Only for τ < tπ ≈ 71 ns is the fidelity dropping. These
results proof the tolerance of the SAGQG to perform stably over a

large range of timing parameter variations and give evidence for
the intrinsic robustness of the SAGQG against timing imprecision
and concomitant mismatches in the driving field strength.

DISCUSSION
In this work we demonstrated the experimental realization of the
recently proposed universal set of single-qubit SAGQGs, utilizing
the NV center electron spin in diamond at room temperature. Our
experimental demonstration exhibits fast and high-fidelity qubit
gate performance while requiring only a minimalistic qubit and
control system for its realization, if compared to schemes based
on holonomic qubit gates reaching similar high-fidelity perfor-
mance. The realization within a two-level system sets compara-
tively low requirements on the experimental apparatus and the
single driving field reduces the number of control parameters
significantly. We explicitly investigated and confirmed the
tolerance of this gate type with respect to errors in the gate time
and experimentally verified its robustness.
An extension of the SAGQG concept to a two-qubit controlled-

NOT and controlled-PHASE has been proposed25 and would,
together with the single-qubit set presented here, provide a
universal set of SAGQGs. Beyond the demonstration in this work
performed on an NV center spin qubit, this single-qubit gate
technique is directly translatable to other promising experimental
qubit systems, like, e.g., atomic, ion, transmon or flux qubits.
Beyond quantum computing, the SAGQG concept presented here
could be employed as a universal, high-fidelity building block for
other novel quantum technologies being fundamentally based on
quantum operations, like quantum communication or qubit-
assisted nanosensing applications.

METHODS
Original Hamiltonian
In the following the driving field parameter for the realization of
superadiabatic phase gate according to Liang et al.25 are listed. The Rabi
frequency used to yield ΩS(t) reads

ΩRðtÞ ¼

Ω0 1� cos πt
τ

� �
; 0 � t<τ

Ω0 1þ cos πðt�τÞ
τ

h i
; τ � t<2τ

Ω0 1� cos πðt�2τÞ
τ

h i
; 2τ � t<3τ

Ω0 1þ cos πðt�3τÞ
τ

h i
; 3τ � t � 4τ

8>>>>>>><
>>>>>>>:

(4)

Fig. 3 Robustness analysis: a The randomized benchmarking analysis reveals the decay of the average fidelity in dependence of the number
of computational gates l for a set of SAGQG (orange) and a set of dynamic quantum gates (blue). The average probability of error per gate are
εSAGQGg ¼ 0:0013ð3Þ and εDynamic

g ¼ 0:023ð8Þ, respectively. Error bars represent the standard error of the mean. b Minimal value of τ in
dependence on the free parameter Ω0 and Δ0 for a system with maximal Rabi frequency Ωmax= 7 MHz. cMeasured quantum gate fidelity F as
a function of τ for three free parameter combinations indicated in b by A, B and C. Solid lines are a guide to the eye. Vertical dashed lines
represent the numerically calculated minimal τ value fulfilling ΩS(t, τ, Ω0, Δ0) ≤Ωmax

Table 1. Experimentally obtained corrected quantum gate fidelities ~F
and average gate error εg of the single-qubit SAGQGs

~Fx ~FZ ~FH εg

0:994þ0:026
�0:031 0:995þ0:021

�0:024 0:992þ0:022
�0:029 0.0013(3)
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To obtain the experimentally relevant detuning Δ(t) of the driving field
the following differential equation needs to be solved for:

ΔSðtÞ ¼ ΔðtÞ þ _ΔðtÞt ¼

Δ0 cos πtτ þ 1
� �

; 0 � t<τ

Δ0 cos πðt�τÞ
τ � 1

h i
; τ � t<2τ

Δ0 cos πðt�2τÞ
τ þ 1

h i
; 2τ � t<3τ

Δ0 cos πðt�3τÞ
τ � 1

h i
; 3τ � t � 4τ

8>>>>>>><
>>>>>>>:

(5)

The value of the acquired geometric phase γ ¼ π � ð~φ1 � ~φ2Þ is defined
by constant phases ~φ1 and ~φ2 added to the driving field phase

φþ ϕsðtÞ ¼
~φ1 þ ϕsðtÞ; 0 � t <2τ

~φ2 þ ϕsðtÞ; 2τ � t � 4τ

�
: (6)

For the realization of the Pauli-Z gate presented here we set ~φ1 ¼ 0 and
~φ2 ¼ π=2 resulting in the wanted phase value of γ= π/2. The driving field
parameter for the realization of a spin-flip gate follow in a similar manner
and are shown in the supplementary material explicitly.

NV center in diamond
The NV center consists of a substitutional nitrogen atom and an adjacent
vacant lattice site in the carbon diamond lattice. A spin-one system is
associated with the negatively charged NV species, which can be efficiently
initialized40 and readout41 by optical means. The triplet ground state
features a zero field splitting of D ≈ 2π × 2.87 GHz between the ms= 0 and
ms=−1, ms=+1 states. Aligning an external magnetic field of |B| ≈ 400 G
along the NV center axis enables dynamic nuclear polarization of the
nitrogen nuclear spin42,43 and sets the triplet transition frequencies to ms

= 0↔ms=−1(ω0− ≈ 2π × 1.73 GHz) and ms= 0↔ms=+1(ω0+ ≈ 2π ×
4.01 GHz). Both transitions can be manipulated coherently by applying
microwave fields at frequencies ω−=ω0−+ δ− and ω+=ω0++ δ+, where
δ± is the detuning from the resonance. For our experiments we employ the
two-level system comprised of the ms= 0 and ms=−1 states. We define
ms= 0 and ms=−1 as the logic states |0〉 and |1〉, respectively.

Experimental realization
A custom-made confocal microscope equipped with a 546 nm cw laser
serves for optical initialization of the NV spin qubit and facilitates optical
readout of the final spin states from the NV spin’s emitted fluorescence
intensity. Coherent microwave manipulation is conducted by means of an
arbitrary waveform generator (AWG) that can be programmed at a high
sampling rate of 25 GSamples/s as needed. While the Rabi frequency and
detuning of the applied MW field needed to follow specific time-
dependences, maximum values were ΩS= 7MHz and ΔS= 2MHz.
The employed NV center was generated in an isotopically pure diamond

from Element 6 (99.999% 12C abundance) as grown diamond substrate, by
14N ion implantation at around 10MeV, leading to the formation of NV
center in a depth of around 3.7 μm below the diamond surface after
annealing. We determine a longitudinal relaxation time of T1= (13.7 ± 2.2)
ms and a spin-dephasing time of T�2 ¼ ð4:25± 0:27Þ μs. At a magnetic field
of ≈ 402 G aligned along the NV center axis we obtain a nuclear
polarization of 0.94 ± 0.05 G into the mI=+1 hyperfine state.
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