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It has been suggested that musical creativity is mainly fored by implicit knowledge.
However, the types of spectro-temporal features and depth 6the implicit knowledge
forming individualities of improvisation are unknown. Thistudy, using various-order
Markov models on implicit statistical learning, investigad spectro-temporal statistics
among musicians. The results suggested that lower-order maels on implicit knowledge
represented general characteristics shared among musicies, whereas higher-order
models detected speci ¢ characteristics unique to each muscian. Second, individuality
may essentially be formed by pitch but not rhythm, whereas th rhythms may allow the
individuality of pitches to strengthen. Third, time-cours variation of musical creativity
formed by implicit knowledge and uncertainty (i.e., entrog) may occur in a musician's
lifetime. Individuality of improvisational creativity nyabe formed by deeper but not
super cial implicit knowledge of pitches, and that the rhytims may allow the individuality
of pitches to strengthen. Individualities of the creatiwitmay shift over a musician’s lifetime
via experience and training.

Keywords: Implicit learning, statistical learning, n-gram, Markov model, entropy, characteristics, uncertainty,
hierarchy

INTRODUCTION

Implicit Knowledge and Creativity in Brain

The brain models external phenomena as a hierarchy of statistignamical systems, which
encode causal chain structure in the sensoriuftigton et al., 2006; Friston and Kiebel,
2009; Friston, 20)0to maintain low entropy and free energy in the braimofi Helmholtz,
1909, and predicts a future state based on the internalized s&t@ghanodel to minimize
sensory reaction and optimize motor action regardless of consness Kriston, 2005 This
prediction associates with the brain's implicit, domain-gesd, and innate system, called
implicit learning or statistical learningReber, 1967; Saran et al., 1996; Cleeremans et al.,
1998; Perruchet and Pacton, 200&h which our brain automatically calculates transitibna
probabilities (TPs) of sequential phenomena and grasps inftion dynamics. The terms implicit
learning and statistical learning have been used intergbably and are regarded as the same
phenomenon Perruchet and Pacton, 200@ecause of the implicitness of statistical learning and
knowledge, humans are unaware of exactly what they leamikpku et al., 2014 Nonetheless,
neurophysiological and behavioral responses disclose iitiplicning e ects Francois and Schon,
2011; Francois et al., 2013; Daikoku et al., 2015, 2016a20d;7Koelsch et al., 2016; Yumoto
and Daikoku, 2016, 2018; Daikoku and Yumoto, 20Mhen the brain implicitly encodes TP
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distributions that are inherent in dynamical phenomena,esal  implicit knowledge Dubnov, 2010; Wang, 2010; Rohrmeier and
things are automatically expected, including a probableriitu Rebuschat, 20)2Particularly, Competitive ChunkerServan-
state with a higher TP, facilitating optimisation of perforne  Schreiber and Anderson, 199®ARSERHKerruchet and Vinter,
based on the encoded statistics despite being unable f®99, Information Dynamics of Music (IDyOM) Pearce, 2005;
describe the knowledg&(oadbent, 1977; Berry and Broadbent,Pearce and Wiggins, 20)2and n-gram models Kearce and
1984; Green and Hecht, 1992; Williams, 2005; Rebuschat alidiggins, 200% underpin the hypothesis that music is acquired
Williams, 2012, and inhibit neurophysiological response to by extracting and concatenating chunks, which is a main
predictable external stimuli for the e ciency and low entropy  theory of implicit learning and statistical learning. Althgh
neural processing based on predictive codibgikoku, 2018h  experimental approaches are necessary for understanding the
The implicit knowledge has been considered to contributeeal-world brain's function in music acquisition, the mdagy
to many types of mental representation: the comprehensioapproaches partially outperform experimental results under
and production of complex structural information such asconditions that are impossible to replicate in an experimental
music and languagerohrmeier and Rebuschat, 2Qlintuitive  approach. For example, they can directly verify much of the
decision-makingBerry and Dienes, 1993; Reber, 1993; Perkovieal-world music and time-course variation over long time
and Orquin, 201), auditory-motor planning Pearce et al., periods Qaikoku, 2018p Most experimental approaches use
2010a,b; Norgaard, 20j4and creativity (Viggins, 2013 the specic paradigms, which are ecologically unrealistid an
involved in musical compositionHearce and Wiggins, 2012; focus on the specic type of short-term learning e ects (e.g.,
Daikoku, 2018pand musical improvisationNorgaard, 2014  chord perception, prediction, and timing). Additionally, some
Additionally, compared to languag€iomsky, 1957; Jackendo modeling approaches calculate statistics in music and device
and Lerdahl, 2006 several studies suggest that musicamodels, and also evaluate the validities of these models by
representation including tonality is mainly formed by a taci neurophysiological and behavioral experiments and provide
knowledge Delie’'ge et al., 1996; Delie'ge, 2001; Bigand ambssibilities of novel tasks for neural and behavioral expernits
Poulin-Charronnat, 2006; Ettlinger et al., 2011; Koel2011; (Potter et al., 2007; Pearce et al., 2010a,b; Pearce andng/iggi
Huron, 2012. Thus, itis widely accepted that implicit knowledge 201). A combination of the two approaches is better because
causes a sense of intuition, spontaneous behavior, skilisiiqgn  each can complement the weak points of the other approach
based on procedural learning, and is further closely tied t¢Daikoku, 2018h
musical production such as intuitive creativity, compositiand The n-gram models, which correspond to various-order
playing. Markov model (arkov, 197}, calculate TPs of sequences by
Particularly in musical improvisation, musicians are faice chopping them into short fragments (n-grams) up to a size of n,
to express intuitive creativity and immediately play their ownand are frequently used in both experimental and computationa
music based on long-term training associated with proceburaapproachesKearce and Wiggins, 2004; Daikoku, 20)18the
and implicit learning Clark and Squire, 1998; Ullman, 2001;online musical production, however, is not the mere chopping
Paradis, 2004; De Jong, 2005; Ellis, 2009; Miller et al.).2016f one type of length of sequence, but it is a dynamical preaficti
Thus, compared to other types of musical composition into maintain an aesthetic melody with various length of sees
which a composer deliberates and re nes a composition schenmtemporal, and spectral features, and harmony that interadh wit
for a long time based on musical theory, the performance oéach other I(erdahl and Jackendo, 1983; Hauser et al., 2002;
musical improvisation is intimately bound to implicit knowdge  Jackendo and Lerdahl, 2006That is, the musical production
because of the necessity of intuitive decision-makiggr(y is not restricted to a single stream of events or a hierarchy
and Dienes, 1993; Reber, 1993; Perkovic and Orquin,)201But, rather, they interact with various hierarchical sttuies.
and auditory-motor planning based on procedural knowledgePrevious computationalGonklin and Witten, 1995; Pearce and
(Pearce et al., 2010a,b; Norgaard, 20This suggests that the Wiggins, 201Pand neural studies{aikoku and Yumoto, 2017
stochastic distribution calculated from musical improviesa  expanded the n-gram method to modeling the interaction of
may represent the musicians' implicit and statistical knalgle parallel streams and enhanced the predictive power. However,
and individual creativity in music that has been developeal vithe model that su ces to explain musical creativity cannoilst
implicit learning. Few studies have investigated the refethip be devised. Nonetheless, théh-order Markov models could
between musical improvisation and implicit knowledge. Heregexplain that the prediction continually occurs with each state
this study proposed the computational model of improvisationalbf sequence and that the entropy in the brain (i.e., the awverag
creativity based on the framework of implicit statisticaleing.  surprise of outcomes sampled from a probability distribution,
Applebaum, 200Bgradually decreases by exposure to musical
Computational Model of Musical Creativity sequences. Thus, the TP distribution sampled from music based
The computational model is often used to understand generain nth-order Markov models may refer to the characteristics
music acquisition Cilibrasi et al., 2004; Backer and vanof a composer's super cial-to-deep implicit knowledge: a high
Kranenburg, 2005; Albrecht and Huron, 2012; Ito, 2012probability transition in music may be one that a composer
Prince and Schmuckler, 2012; Albrecht and Shanahan, 2018; more likely to predict and choose based on the latest n
London, 201} entropy-based music prediction/gnzara et al., states, compared to a low-probability transition. The notiuas
1992; lan et al., 1994; Reis, 1999; Pearce and Wiggins, 20al8p been neurophysiologically demonstrated by our previous
Cox, 201), implicit learning, and the metal representation of studies Daikoku et al., 2017b The model has also been

Frontiers in Computational Neuroscience | www.frontiersiorg 2 November 2018 | Volume 12 | Article 89


https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Daikoku Musical Creativity and Implicit Knowledge

applied to develop arti cial intelligence that give computersdepends on hierarchy. If so, the individuality may depend on
learning and decision-making abilities similar to that diet the depth of implicit knowledge. Furthermore, the chronolcai
human brain, such as an automatic composition systBmghael time-course variations of the entropies (uncertainly) arftb t
and Stoddard, 2004; Eigenfeldt, 2010; Boenn et al.,)2ai@ predictability of each tone sequence were examined. It was
natural language processingrent, 1999; Manning and Schutze, hypothesized that implicit knowledge in music gradually shif
1999. Thus, the Markov model is used in the interdisciplinary over a composer's lifetime. The present study rst provided
realms of neuroscience, behavioral science, engineeaind, the ndings on which information (spectral and temporal) and
informatics. hierarchy (1st to 6th orders) represent the individualitiek
musical creativity.
Temporal and Spectral Feature in Musical

Creativity METHODS

Temporal and spectral features are important pieces of ) . )

information for which to con gure characteristics of eacppe ~ Music Information Extraction

of music (e.g., individuality, genre, and culture). Additally, ~The music played by William John Evans (Autumn Leaves from
two types of information are not independent of each otherPortrait in Jazz, 1959; Israel from Explorations, Februar§y119
but rather they closely interact. Thus, the relationshipsieen | Love You Porgy from Waltz for Debby, June 1961; Stella by
temporal (i.e., rhythm) and spectral (i.e., melody) struesir Starlight from Conversations with Myself, 1963; Who Can |
are a large question to understand music creativity. Somé&urn To? from Bill Evans at Town Hall, 1966; Someday My
researchers indicated that humans cannot learn tempordfrince Will Come from the Montreux Jazz Festival, 1968; A
structure independent of spectral structuréuchner and Time for Love from Alone, 1969), Herbert Je rey Hancock
Ste ens, 2001; Shin and Ivry, 2002; O'Reilly et al., }00Bereas (Cantaloupe Island from Empyrean Isles, 1964; Maiden Voyage
other researchers demonstrated temporal implicit learningrom Flood, 1975; Someday My Prince Will Come from The
independent of pitch information $alidis, 2001; Ullén and Piano, 1978; Dolphin Dance from Herbie Hancock Trio'81,
Bengtsson, 2003; Karabanov and Ulle'n, 2008; Brandon et al981; Thieves in the Temple from The New Standard, 1996;
2019 and vice versa[faikoku et al., 2017 Additionally, ~Cottontail from Gershwin's World, 1998; The Sorcerer from
neurophysiological and psychological studies suggestetl thRirections in Music, 2001), and McCoy Tyner (Man from
humans can learn relative rather than absolute temporal andanganyika from Tender Moments, 1967; Folks from Echoes of
spectral Daikoku et al., 2014, 20)5patterns. Thus, the a Friend, 1972; You Stepped Out of a Dream from Fly with
relationships between temporal and spectral features on rausicthe Wind, 1976; For Tomorrow from Inner Voice; 1977; The
creativity and implicit learning remains controversial. Toe Habana Sun from The Legend of the Hour, 1981; Autumn
best of my knowledge, there are no integrated models thdteaves from Revelations, 1988; Just in Time from Dimensions,
cover temporal and spectral features in musical creativie T 1984) were used in the present study. The highest pitches
present study rst provides the implicit-learning models that including the length were chosen based on the following
unify temporal and spectral features in musical improvisationde nitions: the highest pitches that can be played at a given
Additionally, this study investigated which informatiosdectral  point in time, pitches with slurs that can be counted as one,
and temporal) and hierarchy (1st to 6th orders) represent thé@nd grace notes were excluded. In addition, the rests that
individualities of creativity. To comprehensively undeustlhow were related to highest-pitch sequences were also extracted.
musical creativity occurs in the human brain and how temporalThis spectral and temporal information were divided into four
and spectral features are integrated to constitute musicdypes of sequences: (1) a pitch sequence without length and
individuality, it is necessary to investigate the relaships rest information (i.e., pitch sequence without rhythms); (2
between spectral and temporal statistics inherent in music via rhythm sequence without pitch information (i.e., rhythm

various-order hierarchical models. sequence without pitches); (3) a pitch sequence with length an
rest information (i.e., pitch sequence with rhythms); ang &
Study Purpose rhythm sequence with pitch information (i.e., rhythm seqaen

The present study aimed to investigate the statistical dnees  with pitches).

and interactions between the temporal and spectral structure

in improvisation among musicians using various-order Mavko Stochastic Calculation

models, and to examine which information (spectral andPitch Sequence Without Rhythms

temporal) and hierarchy represent the individualities ofForeach type of pitch sequence, all pitches were numberedso tha
musical creativity. The statistical characteristics oé tith-  the rst pitch was 0 in each transition, and an increase or éese
order TP distribution of the spectral (pitch) and temporal in a semitone was 1 and1 based on the rst pitch, respectively.
sequences (pitch length and rest) in improvisational musidkepresentative examples were showRigure 1A This revealed
were investigated. It was hypothesized that there were génethe relative pitch-interval patterns but not the absolute pitc
statistical characteristics shared among musicians andi spe patterns [30, 98]. This procedure was used to eliminate the s ect
statistical characteristics that were unique to each niasic of the change in key on transitional patterns. Interpretatioi

in both spectral and temporal sequences. Additionally, ithe key change depends on the musician, and it is di cult to
was hypothesized that the detectability of the charactesist de ne in an objective manner. Thus, the results in the present
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A Pitch sequence without rhythms ("Who Can | Turn To" by WJ. Evans)
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C Pitch sequence with rhythms ("Maiden Voyage" by HJ. Hancock)

5th-order Model 0,1,3,5,6,8 with 1,1,1,1,1
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’\3; _ 3 - 1:!:!:_:::3: E :_Eg
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FIGURE 1 | Representative phrases of transition patterns in pitch sagence without rhythms(A), rhythm sequences without pitches(B), pitch sequence with rhythms
(C), and rhythm sequences with pitches(D). The musical information was extracted by listening musieformation recording media and originally written for the
present study.

study may represent a variation in the statistics associaidd  is based on the conditional probability of an elemegt £ given
relative pitch rather than absolute pitch. According to retcenthe preceding elements:

neurophysiological studies, human's implicit-learningteys of

auditory sequence capture relative rather than absolutesttian P.encijen/ D Penci\ &) 1)
patterns. In each piece of music for each musician, the TPs of P(en)

the pitch sequences were calculated as a statistic basedltn mu

order Markov chains. The probability of a forthcoming pitchsva Rhythm Sequence Without Pitches

statistically de ned by the last pitch to six successive @tcfi.e., The onset times of each note were used for analyses. Although
rst- to six-order Markov chains). Theath-order Markov model note onsets ignore the length of notes and rests, this metdhooy
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can capture the most essential rhythmic features of the musiaformation content:
[30,99]. To extract a temporal interval between adjacenespt

all onset times were subtracted from the onset of the preeedin | g . ia,/ D log 1 __ (bit) )
note. Then, for each type of rhythm sequence, the second to X P. en/

last temporal interval was divided by the rst temporal intafv H.BJA/ D _ P(ai)P bjai lop P bjai (bit)
Representative examples are showtrigure 1B This revealed ! i

relative rhythm patterns but not absolute rhythm patternsisit 3)

independent of the tempo of each piece of music. In each piece

of music in each musician, the TPs of the rhythm sequences wewhereP (bj|al) is a conditional probability of sequenta bj.” The
calculated as a statistic based on multi-order Markov chadline  entropy were chronologically ordered based on the time caurse
probability of a forthcoming temporal interval was statisfig  in which music is played in each musician. The time-course
de ned by the last temporal interval to six successive temporavariations of the entropies were analyzed by multiple regoessi

intervals, respectively (i.e., rst-to six-order Markovaihs). analyses using the stepwise method. The criteria of the vaian
in ation factor (VIF) and condition index (Cl) were set at VA
Pitch Sequence With Rhythms < 2 and CI< 20 to con rm that there was no multi collinearity

The two methodologies of pitch and rhythm sequences weréCohen etal., 2003

combined. For each type of sequence, all pitches were numbered Furthermore, in each musician, seven pieces of music were
so that the rst pitch was 0 in each transition, and an increaseédveraged in each type of sequence. The transitional patteths w
or decrease in a semitone was 1 antl based on the rst pitch, st to fth highest TPs in each musician, which show higher
respectively. Additionally, for each type of pitch sequende, gpredictabilities in each musician, were used in the regressio
onset times were subtracted from the onset of the precedire, no analyses. The transitional patterns were chronologicaltered

and the second to last temporal intervals were divided by th€ased on the time courses in which music is played in each
rst temporal interval. The representative examples were showmusician. The time-course variations of the TPs were awalyz
in Figure 1C. For each piece of music for each musician, thddy multiple regression analyses using the stepwise method. The
TPs of the pitch sequences with rhythms were calculated asCaiteria of the variance in ation factor (VIF) and conditioindex
statistic based on multi-order Markov chains. The probapitif ~ (Cl) were set at VI 2 and Cl< 20 to con rm that there was

a forthcoming pitch with temporal information was statistigg N0 multi collinearity.

de ned by the last pitch with temporal information to six The logit transformation was applied to normalize the TPs.
successive pitches with temporal information, respectivety,(i Then, using the transitional patterns with rst to fth highst

rst- to six-order Markov chains). In the rst-order hierashical ~ TPs in each musician, the repeated-measure analysis oficasa
model of the pitch sequence with rhythms, a temporal interva(ANOVAs) with a between-factor player (WJ. Evans vs. HJ.
was calculated as a ratio to the crotchet (i.e., quarter )noteHancock vs. M. Tyner) and a within-factor sequences for
because only a temporal interval is included for each sequien€ach hierarchy of Markov model were conducted. When we
and the note length cannot be calculated as a relative terhporéietected signi cant e ects, Bonferroni-correctqubst-hodests
interval. Thus, the patterns of pitch sequence (p) with rhythmgvere conducted for further analysis. Statistical signi caitevels

(r) were represented as [p] with [r]. were set ap D 0.05 for all analyses.

Rhythm Sequence With Pitches RESULTS
The methodologies of sequence extraction were the samess th PCA
of the pitch sequence with rhythm (s&&gure 1D), whereas the _. .
itch Sequence Without Rhythms

TPs of the rhythm, but not pitch, sequences were calculated ad ; . .
statistic based on multi-order Markov chains. The probapitifa 1 N€ €igenvalue and percentages of variance, and the comeilati

forthcoming temporal interval with pitch was statisticallg ded ~ variance and the eigenvectors for the principal components was

by the last temporal interval with pitch to six successive terapo shown iq aSupplementary File In the rst-order hierarchical
interval with pitch (i.e., rst- to six-order Markov chains)hus, model Figure 2A), the two components accounted for 91.445%

the relative pattern of rhythm sequence (r) with pitches (p) ever of the total variance. All of the pieces of music Iqaded higher
represented as [r] with [p]. than.82 on component 1, suggesting that this explains thergéne

component of jazz musical improvisation in three musicianse T

eigenvectors of the pieces of music by W. J. Evans were higher
Statistical Analysis than M. Tyner in component 2, suggesting that this explains
The TP distributions were analyzed by principal componenta component of W. J. Evans or M. Tyner. The component
analysis. The criteria of eigenvalue were set over 1. The r®of H. J. Hancock could not be detected. In the second-order
two components (i.e., the rst and second highest cumulativéhierarchical model, the two components accounted for 20.365%
contribution ratios) were adopted in the present study. Thenpf the total variance. All of the pieces of music loaded higher
the information contents I{enc1|en)] of TP were calculated than.18 on component 1, suggesting that this explains thergéne
based on information theoryShannon, 1991 Furthermore, component of jazz musical improvisation in three musicians.
the conditional entropyH (AB)] in n-order was calculated from In M. Tyner, the eigenvectors other than “The habana sun”
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FIGURE 2 | Principal component analysis scatter plots in pitch sequece without rhythms (A), rhythm sequences without pitches(B), pitch sequence with rhythms
(C), and rhythm sequence with pitches(D). The horizontal and vertical axes represent principal comgment 1 and 2, respectively. The dots represent each piece of
music.

Frontiers in Computational Neuroscience | www.frontiersiorg 6 November 2018 | Volume 12 | Article 89



Daikoku Musical Creativity and Implicit Knowledge

were higher than W. J. Evans in component 2, suggesting thaance” were lower than W. J. Evans in component 1, suggesting
this explains a component of W. J. Evans or M. Tyner. Thehat this explains a component of W. J. Evans or a component
component of H. J. Hancock could not be detected. In the thirdcombining H. J. Hancock and M. Tyner. The eigenvectors of
order hierarchical model, the two components accounted fothe pieces of music by H. J. Hancock were generally lower
13.818% of the total variance. In H. J. Hancock and M. Tynethan W. J. Evans and M. Tyner in component 2, suggesting
the eigenvectors other than “Cotton tail” were lower than 3. that this explains a weak component of H. J. Hancock or a
Evans in component 1, suggesting that this explains a componeabmponent combining W. J. Evans and M. Tyner. In the fth-
of W. J. Evans or a component combining H. J. Hancock and Morder hierarchical model, the two components accounted for
Tyner. No obvious di erence among musicians could be detbcte10.515% of the total variance. The eigenvectors of the piEces
in component 2. In the forth-, fth-, and sixth-order hieratical —music by W. J. Evans were higher than M. Tyner in component
models, the two components accounted for 11.663, 10.968, addand lower than H. J. Hancock in component 2, suggesting
10.586% of the total variance, respectively. The eigemgecfo that these explain components of W. J. Evans, M. Tyner, and
the pieces of music by W. J. Evans were higher than H. J. Hancokk J. Hancock. In the sixth-order hierarchical model, the two
and M. Tyner in component 1, suggesting that this explains @omponents accounted for 10.344% of the total variance. In M.
component of W. J. Evans or a component combining H. JTyner, the eigenvectors other than “For tomorrow” were hegh
Hancock and M. Tyner. The eigenvectors of the pieces of musiban W. J. Evans and H. J. Hancock in component 1, suggesting
by H. J. Hancock were generally lower than W. J. Evans artfiat this explains a component of M. Tyner or a component
M. Tyner in component 2, suggesting that this explains a weakombining W. J. Evans and H. J. Hancock. In W. J. Evans, the
component of H. J. Hancock or a component combining W. Jeigenvectors other than “Israel” were higher than H. J. Hakco
Evans and M. Tyner. in component 2, suggesting that these explain components of W.
J. Evans or H. J. Hancock.
Rhythm Sequence Without Pitches
In the rst-order hierarchical model Figure 2B, only one Rhythm Sequence With Pitches
component, which accounted for 98.685% of the total variancén the rst-order hierarchical model [igure 2D), the two
could be detected. The two components accounted for 91.445%a@mponents accounted for 27.736% of the total variance. All
the total variance. All of the pieces of music loaded highantB5  of the pieces of music loaded higher than.25 on component
on the component, suggesting that this explains the generdl, suggesting that this explains the general component of jazz
component of jazz musical improvisation in three musiciansmusical improvisation in three musicians. The eigenvectars
In the second-, third-, forth, fth-, and sixth-order hierahical the pieces of music by W. J. Evans were lower than M. Tyner in
models, the two components accounted for 29.325, 20.986pmponent 2, suggesting that this explains a component of W.
17.153, 14.780, and 13.376% of the total variance, resglgctivJ. Evans or M. Tyner. In the second-order hierarchical model,
No obvious di erence among musicians could be detected irthe two components accounted for 12.561% of the total vaganc

stochastic models of rhythms. The eigenvectors of the pieces of music by W. J. Evans were
higher than M. Tyner in component 1, suggesting that this
Pitch Sequence With Rhythms explains a component of W. J. Evans or M. Tyner. No obvious

In the rst-order hierarchical models Kigure 20), the two dierence among musicians could be detected in component
components accounted for 13.481% of the total variance. N®. In the third- and forth-order hierarchical models, the two
obvious dierence among musicians could be detected ircomponents accounted for 11.135 and 10.658% of the total
component 1. In W. J. Evans, the eigenvectors other than ‘Yariance, respectively. The eigenvectors of the pieces otmusi
love you porgy” were higher than M. Tyner in component 2,by W. J. Evans were higher than M. Tyner in component 1,
suggesting that this explains a component of W. J. Evans @uggesting that this explains a component of W. J. Evans or M.
M. Tyner. In the second-order hierarchical models, the twoTyner. In W. J. Evans, the eigenvectors other than “l love you
components accounted for 11.558% of the total variance. 14.W. porgy” in the third- and “Israel” in the forth-order hierarchal
Evans, the eigenvectors other than “l love you porgy” werbdrig models were higher than H. J. Hancock in component 2,
than H. J. Hancock and M. Tyner in component 1, suggestinguggesting that this explains a component of W. J. Evans or
that this explains a component of W. J. Evans or a componeri. J. Hancock. In the fth-order hierarchical model, the two
combining H. J. Hancock and M. Tyner. No obvious di erence components accounted for 10.386% of the total variance. In M.
among musicians could be detected in component 2. In the thirdTyner, the eigenvectors other than “Autumn leaves” werdéig
order hierarchical model, the two components accounted fothan W. J. Evans in component 1, suggesting that this explains a
10.970% of the total variance. The eigenvectors of the p@cescomponent of W. J. Evans or M. Tyner. Tyner. The eigenvectors
music by W. J. Evans were higher than H. J. Hancock and Mf the pieces of music by H. J. Hancock were generally lower than
Tyner in component 1, suggesting that this explains a componeW. J. Evans and M. Tyner in component 2, suggesting that this
of W. J. Evans or a component combining H. J. Hancock and Mexplains a weak component of H. J. Hancock or a component
Tyner. No obvious di erence among musicians could be deéctecombining W. J. Evans and M. Tyner. In the sixth-order
in component 2. In the forth-order hierarchical model, the two hierarchical model, the two components accounted for 10.269%
components accounted for 10.774% of the total variance. In Hf the total variance. In H. J. Hancock, the eigenvectors rothe
J. Hancock and M. Tyner, the eigenvectors other than “Dolphirthan “The sorcerer” were lower than M. Tyner in component 1,
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suggesting that this explains a weak component of H. J. HancogGKBLE 1 | The difference in TPs among pitch sequences without rhythmi each
or M. Tyner. In W. J. Evans, the eigenvectors other than “| lovésician.
you porgy” were lower than M. Tyner in component 2, suggesting, e, sequence A Sequence B AB SE

that this explains a weak component of W. J. Evans or M. Tyner. i
A. GENERAL
ANOVA st 0 2 0 3 0076 002  0.023
Pitch Sequence Without Rhythms 0,0 0173  0.02 <0.001
In the rst-order hierarchical models, the main sequence 0,1 0.116 003  0.028
e ect were signi cant F( 99, 53.84yD 7.51,p < 0.001, partial 0,3 0.122  0.014 <0.001
2D 0.29,Table 1A. The main musician e ect were signi cant 0, 3 0,0 0.097 0.02  0.002
[F(Z, 189 D 4.29,p D 0.030, partial 2D 0.32]. The TPs in 0.3 0.045 001  0.005
W. J. Evans were signi cantly higher than those in M. Tyners,q o, 3, 7, 5 0,4,2,0 0742 0.159 0.015
(p D 0.046). The musician-sequence interactions were signi ca 0,2,4.6 0, 1, 2, 3 0.398 0.079 0.007
[F(12) D 6.54, p < 0.001, partial 2 D 0.42, Figure3 and 0,1,3,5 0.519 0.152 0.24
Tables 1B-0). The TP of [0, 1] was signi cantly higher in 0.2.3,5 0621 011  0.002
W. J. Evans than M. Tyner (P 0.008). The TP of [0, 0] was 02,45 0383 0068 0.002
signi cantly lower in W. J. Evans than M. Tynep(© 0.043). 0.4,2,0 0831 0176 0014
The TP of [0, 1] was signi cantly higher in W. J. Evans than,, o, 46,3 01 2 3 a4 0452 0077 0001
H. J. Hancock § D 0.003) and M. Tynerg < 0.001). In the 0, 3 225 0616 0068 <0001
sgcc_)nd-order hierarchical models, the main r?usman e eetav 0.1.3.4.6 068 0147 0.019
S|gn|.cant [Fe, 18D 7.11.,pI.Z) 0.005, partial < D 0.44]_. The 01,58 12 0714 0169 0.046
TPs in M. Tyner were signi cantly lower than those in W. J. 02,457 0786 0184  0.041
Evans p D 0.006) and H. J. Hancock D 0.041). The musician- B3 EVANS
sequence interactions were signi caii oy D 3.72,p < 0.001,
partal 2D 0 26 igure 3andTablos 160 The TRof [0, 1, ° 0279 0059 0018
2] was signi cantly lower in M. Tyner than W. J. Evans [p o’ 0'177 0'034 0'001
0.006) and H. J. Hancock D 0.042). The TP of [0, 2, 3]was o’ L 0'294 0'053 0'001
signi cantly higher in W. J. Evans than H. J. Hancogk¥ 0.033) 0’ . 0'149 0'034 0'007
and M. Tyner (p<0.001), and higher in H. J. Hancock than M. ' ’ ' '
Tyner (p D 0.027). The TP of [0, 2, 0] was signi cantly higher and 023 0. 20 0435 0,09 0.007
in M. Tyner than W. J. Evang( 0.047). The TP of [0, 2, 3] was 0.23 0. 2 4 0585 0.124  0.009
signi cantly higher in W. J. Evans than H. J. HancogkJ 0.005) 0. 2.0 0688 0.115  0.001
and M. Tyner p< 0.001). In the third-order hierarchical models, 0.2.4 0.557. 012 0.012
the main sequence e ect were signi carf§ 13, 10.26D 5.00,p 8d 0 L 2 3 0 3 7.5 0869 0.2 0.03
< 0.001, partial 2 D 0.22,Table 1Al. The musician-sequence 0.0.0,0 109 0208 0.004
interactions were signi cantf4) D 3.89,p < 0.001, partial 0.2,4,6 0838 0138 0001
2 D 0.30,Figure 3and Tables 1B-[). The TP of [0, 1, 2, 0.1,3,4 0,1 3 4 0442 0099 0023
3] was signi cantly lower in M. Tyner than W. J. Evans € 0.2 4 2 0.991  0.152 <0.001
0.001) and H. J. Hancock D 0.008). The TP of [0, 1, 3, 4] 0.3 7.5 0.992  0.149 <0.001
was signi cantly lower in M. Tyner than W. J. EvarsD 0.003). 0,000 1214 0234 0.005
The TP of [0, 3, 7, 5]was signicantly higherin M. Tyner 0,2,4,6 0.961  0.147 <0.001
than W. J. Evansp(D 0.040) and H. J. Hancoclp© 0.009). 0,2,4,5 0, 2, 4 2 0924 0.209  0.026
The TP of [0, 0, 0, 0] was signi cantly lower in W. J. Evans than 0,3 7. 5 0925 0196 0.013
H. J. Hancock § D 0.037) and M. Tynergd D 0.012). The TP 0,0,0,0 1147 0.226  0.006
of [0, 1, 3, 4] was signi cantly higher in W. J. Evans than H. 0,2,4,6 0.894  0.118 <0.001
J. Hancock i§ < 0.001) and M. Tyner < 0.001). The TP of 4th o0, 3, 225 0, 1, 2 3 4 1.019  0.122 <0.001
[0, 2, 4, 5] was signi cantly higher in W. J. Evans than H. J. 0, 2, 40, 2 2113 0.287 <0.001
Hancock ¢ D 0.034) and M. Tynerg < 0.001), and higher in 0, 2,20, 2 2113 0.297 <0.001
H. J. Hancock than M. Tynerp(D 0.021). In the forth-order 0, 3,20, 3 1.642 0358 0.021
hierarchical models, the main sequence e ect were signitcan 0,0,0,0,0 2113 0.219 <0.001
[Fea.65, 9.300 2.40,p D 0.048, partial 2 D 0.12,Table 1A. The 0,1,3,5,6 1459 0212 <0.001
musician-sequence interactions were signi caRph) D 5.92,p 0,2,3,56 1.134  0.164 <0.001
< 0.001, partial 2p 0.40/Figure 3andTables 1B-0). The TP of 0,2,35,7 1.663 0.296 0.002
[0, 1, 2, 3, 4]was signicantly higherin W. J. Evans than 0,2,4,6, 8 2113  0.119 <0.001
H. J. Hancockpj D 0015) and M. Tynerp(< 0001), and hlgher 0,5,3,0 4 1.956 0.188 < 0.001
in H. J. Hancock than M. Tynem(D 0.024). The TP of [0, 2,
4,0, 2]was signi cantly higher in M. Tyner than W. J. Evans (Continued)
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TABLE 1 | Continued TABLE 1 | Continued
Order Sequence A Sequence B A-B SE p-value Order Sequence A Sequence B A-B SE p-value
0,0,0,0,0 0, 1, 2, 3 4 1.094 019  0.002 0,0, 3,0,0, 3,0 1.658 0.258 <0.001
0,1,5,8,12 1623 0383 0.045 0,0,0,0,0,0,0 1.658 0.281  0.001
0,2,4,6,8 0, 1, 2, 3, 4 1.094  0.134 <0.001 0,1,3,4,6,7,9 1.07 0187 0.002
0,1,3,4,6 128  0.255 0.008 0,2,4,5,7,9, 10 1344 0269 0.1
0,1,5,8,12 1623  0.293  0.003 0,4,7,459,12 0, 1, 2, 1, 2 1569 0323 0.013
0,2,3,56 0.979 0.194 0.008 3,
5th 0, 3, 2,259 0 1, 2 3, 4, 1.077 0183  0.002 0, 1,0, 1, 2, 1569 0.296 0.005
5 1, 2
0, 2, 4 17, 2 1.863  0.194 <0.001 0, 2, 4, 17, 2 1569 0335 0.019
4 4, 7
0, 2, 4,0, 2 1.863  0.272 <0.001 0, 3,2, 3,0, 3, 1569 0.347 0.028
4 2
0, 2, 50, 2 1549 0264 0.002 0, 3,4,2,0,2,0 1569 0.296 0.005
5 0, 4 7, 2, 5, 1569 0331 0.017
0, 3,00, 3,0 1.863  0.254 <0.001 9, 7
0, 4 7, 2, 5, 1.863 0.275 <0.001 0,0, 3,0,0, 30 1569 0.296 0.005
9 0,0,0,0,0,0,0 1569 0316 0.011
0,0,0,0,0,0 1863 0237 <0.001 0,1,3,4,6,7,9 0.982 0199 0.011
0,1,2,345 1246 0222 0.003 0,2,4,57,9, 10 1.256  0.286 0.038
0,2,3,578 1344 0231 0.002 C. H. J. HANCOCK
0,2,4,6,8,10 1.863  0.172 <0.001 st 0, 2 0.0 0132 0035 0.029
0,1,3,4,6,7 0, 2, 4, 1361 0.228 0.001 0.3 013 0024 0001
hoaa 4h 0, 1, 2, 3, 40, 3, 225 0529 0.122 0.036
0, 2, 4,0, 2 1.361 0.297 0.024
4 D. M. TYNER
0, 3,00, 3,0 1361 o028 o013 st 0 2 0 1 0255 006 001
0, 4 7, 2 5 1361 0299 0.026 0.0 0175 0035  0.002
9 0,1 029  0.053 0.001
0,0,0,0,0,0 1361 0.265 0.007 0,3 0.171  0.024 <0.001
0,2,4,6,8,10 1.361  0.209 <0.001 0, 3 0,3 0.084 0.017 0.002
0,3,0,1,5,8 0, 2, 4 17, 2 1.883  0.247 <0.001 0,1 0, 3 0.202 0.05  0.016
4 0.2 0.231 0.049 0.003
0, 2, 40, 2 1883 0312 0.001 3d 0, 1, 2, 3 0,1,3,5 0.889 0211 0.04
4 0, 1, 3, 4 0, 2, 3 5 0.713 0.165 0.033
0‘5 2 50 2 1.569  0.306  0.007 4h 0, 2, 40, 2 0, 1, 2, 3, 4 1.402 0.266  0.005
0, 3,0,0, 30 1.883 0.296  0.001 0. 3 225 14020287 0011
0, 4, 7, 2, 5, 1.883 0314 0.001 01,3586 1402 0312 0.026
9 0,2,3,56 1402 033  0.044
0,0,0,0,0,0 1.883  0.281 <0.001 0,2,4,6,8 1402 0237 0.001
0,2,3,57,8 1.364 0.236 0.002 0,53,0, 4 0, 1, 2, 3, 4 1.148 0.23 0.009
0,2,4,6,8,10 1.883 0.23 <0.001 0, 3 225 1148 0.188 0.001
6th 0,301,5812 0, 1, 2, 1, 2 1.658 0.289  0.002 01,356 1148 0255 0.025
3 2 0,2,35,6 1148 0242 0.015
0, 1, 2,1,0, 1, 1344 0284 0.017 0,2,4,6,8 1148 0214  0.004
2 5th 0, 2, 4,0, 2, 0,246,810 1.086 0211 0.007
0, 1,0, 1, 2, 1.658  0.258 <0.001 4
1, 2
0, 2 4 17, 2 1658 0302 0.003
47 (pD 0.008) and H. J. Hancock D 0.042). The TP of [0, 3, 2,
032 30 3 1658 0315 0006 9 5]was signicantly higher in W. J. Evans than H. J. Hancock
2 (p< 0.001) and M. Tynerg< 0.001). The TP of [0, 1, 5, 8, 12]
0. 342020 1658 0258 <0.001 was signi cantly higherin W. J. Evans than M. Tyneild 0.004).
0‘9'4‘7 has 1658 02970003 e 1p of [0,2,3,5,6] was signi cantly higher in W. J. Evaresth

H. J. Hancockg D 0.006) and M. Tynerg < 0.001). The TP of
(continued) [0, 5, 3, 0, 4] was signi cantly higher in M. Tyner than W. J.
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Evans p D 0.004) and H. J. Hancock O 0.001). In W. J. Evans, TPs of [1, 1, 1] was signi cantly higher than those of [1, A},
the TPs of [0, 3, 2,2, 5]was signi cantly higher than those of [1, 1, 1.5], [1, 1, 2], [1 ,2, 1], and [1, 2, 2] (gll< 0.001). The
[0, 1, 2, 3, 4](p< 0.001),[0, 2, 4,0, 2](p< 0.001), TPs of[1, 0.5, 0.5] was signi cantly higher than those of1]1,
[0, 2,2,0, 2](p<0.001), [0, 3,2,0, 3] (pD 0.021), [0,0,0, 1.5] (p< 0.001) and [1, 1, 2] D 0.001). The TPs of [1, 2, 1]
0, 0] p< 0.001), [0, 1, 3, 5, 6p(< 0.001), [0, 2, 3,5, 6p(<  was signi cantly higher than [1, 2, 2p(D 0.027), [1, 0.5, 1]«
0.001), [0, 2, 3, 5, 7p(D 0.002), [0, 2, 4, 6, 8p(< 0.001), and D 0.038), [1, 1, 1.5]n(< 0.001), and [1, 1, 2]p(< 0.001). The
[0,5,3,0, 4] (p< 0.001). The TPs of [0,0,0,0,0] was signi cantlyTPs of [1, 2, 2] was signi cantly higher than [1, 1, 1.5 0.001)
lower than those of [0, 1, 2, 3, 4](pD 0.002)and[0,1,5, and[1, 1, 2] pD 0.037). The TPs of [1, 1, 1.5] was signi cantly
8, 12] p D 0.045). The TPs of [0,2,4,6,8] was signi cantly loweldower than those of [1, 1, 2]p(D 0.006) and [1, 0.5, 1]p(D
thanthose of [0, 1, 2, 3, 4](p< 0.001),[0,1,3,4,6p(>  0.015).Inthe third-order hierarchical models, the mainseqce
0.008), [0, 1, 5, 8, 12p(D 0.003), and [0, 2, 3, 5, 6h © 0.008). e ect were signi cant F go, 50.41D 45.17,p < 0.001, partial
In the fth-order hierarchical models, the main musician &g 2 D 0.72,Table 2A. The musician-sequence interactions were
were signi cant Fp, 1gyD 4.13,p D 0.033, partial 2D 0.32]. signicant [F(14) D 2.58,p D 0.03, partial 2D 0.22,Figure 4,
The TPs in M. Tyner were signi cantly lower than those in W. J.Tables 2B-0). The TP of [1,0.667, 0.667, 0.667] was signi cantly
Evans p D 0.006) and H. J. Hancock D 0.041). The musician- higher in W. J. Evans than H. J. Hancogk[@ 0.016). The TP
sequence interactions were signi carfifgy D 7.07,p < 0.001, of [1, 1, 1, 1.5] was signi cantly higher in W. J. Evans than
partial 2 D 0.44Figure 3and Tables 1B-0). The TP of [0, 2, H. J. Hancock i§ D 0.002) and M. Tynerg D 0.043). In the

4, 7, 2, 4] was signicantly higher in M. Tyner than W. forth-order hierarchical models, the main sequence e ectaver
J. Evans{ D 0.008) and H. J. Hancoclp © 0.008). The TP of signi cant [F262, 47.21)D 22.03,p < 0.001, partial 2D 0.55,
[0, 2, 4,0, 2, 4],[0,1,3,4,6,7],and [0, 3,0, 1, 5, 8] wasTable 2A]. In the fth-order hierarchical models, the main
signi cantly higherin M. Tynerthan W. J. Evanp D 0.022). The = sequence e ect were signi canE{z o2, 54.32P 16.21p < 0.001,
TPof [0, 3, 2,2,5,9]was signi cantly higher in W. J. Evanspartial 2D 0.47 Table 24]. The musician-sequence interactions
than and H. J. Hancock and M. Tyner (afi:< 0.001). The TP were signi cant F1gy D 2.11,p D 0.011, partial 2 D 0.19,
of [0, 1, 3, 5, 6, 8] was signi cantly lower in H. J. Hancock thanFigure 4, Tables 2B-0. In the sixth-order hierarchical models,
M. Tyner (p D 0.022). In the sixth-order hierarchical models, thethe main sequence e ect were signi carfE »g, 59.06\D 17.89,
musician-sequence interactions were signi cafphy D 5.09,p  p < 0.001, partial 2D 0.50,Table 24]. The musician-sequence
< 0.001, partial 2 D 0.36 Figure 3andTables 1B-[). The TP of interactions were signi cant Has) D 2.22,p D 0.007, partial
[0, 1, 2, 3, 4, 5, 6]was signicantlylowerin M. Tyner 2D 0.20Figure 4andTables 2B-0).
than W. J. Evanga(D 0.037). The TP of [0, 2, 4, 7, 2, 4,

7] was signi cantly higher in M. Tyner than W. J. Evars®  Pitch Sequence With Rhythms
0.014) and H. J. Hancoclk © 0.014). The TP of [0, 3, 0, 1, 5, 8, The relative pattern of Pitch sequence (p) with rhythms (r) ever
12]and [0, 4, 7,4, 5, 9, 12] was signi cantly higher in W. J.isva represented as [p] with [r]. In the rst-order hierarchical rdels,

than H. J. Hancock and M. Tynep 0.001). the musician-sequence interactions were signi cafg) D 1.89,
p D 0.006, partial 2 D 0.17 Figure 5. The TP of [0, 1] with [0.5]
Rhythm Sequence Without Pitches was signi cantly higher in W. J. Evans than H. J. Hancock and M.

In the rst-order hierarchical models, the main sequence@e Tyner (p < 0.001). In the second-order hierarchical models, the
were signi cant [F1.24, 22.36)D 553.50,p < 0.001, partial musician-sequence interactions were signi caRk) D 3.58,p

2 D 0.97,Table 2A]. The musician-sequence interactions wereD 0.006, partial 2 D 0.28 Figure 5. The TP of [0, 1, 2]with
signi cant [F(12) D 2.03,p D 0.028, partial 2D 0.18,Figure4,  [1, 0.5], [0, 4,7] with [1, 0.5], and [0, 3, 2] with [1, 1.5] was
Tables 2B-0). The TP of [1, 3] was signi cantly higher in M. signi cantly higher in W. J. Evans than M. Tyngo D 0.031pD
Tyner than W. J. Evansp(D 0.015) and H. J. Hancoclp(@©  0.038, ang D 0.023, respectively). The TP of [0, 4, 7] with [1,1]
0.023). The TP of [1, 0.333] was signi cantly higher in M. Tyne was signi cantly higherin W. J. Evans than H. J. Hancock and M.
than W. J. Evansp(D 0.006) and H. J. Hancoclp (D 0.002). Tyner (p< 0.001). The TP of [0, 7, 0] with [1, 1] was signi cantly
In the second-order hierarchical models, the main sequendeigher in H. J. Hancock than M. Tynep© 0.029). The TP of [0,
e ect were signi cant F2 09, 37.68)D 74.54,p < 0.001, partial 4, 2] with [1, 2] was signi cantly higher in M. Tyner than W. J.

2 D 0.81,Table 2A]. The musician-sequence interactions wereEvans p D 0.005) and H. J. Hancoclp © 0.007). The TP of [0,
signi cant [F(12) D 2.07,p D 0.025, partial 2D 0.19,Figure4, 2, 0] with[1, 3] was signi cantly higher in H. J. Hancock than.W
Tables 2B-0. The TP of [1, 0.333] was signi cantly higherin H. J. Evansg D 0.043). In the third-order hierarchical models, the
J. Hancock than W. J. Evans D 0.015). In W. J. Evans, the TPs musician-sequence interactions were signi cafph) D 4.91,p
of [1, 1, 1] was signi cantly higher than those of [1, 0.5,[l], < 0.001, partial 2 D 0.35,Tables 3A,Band Figure 5. The TP
1,1.5],[1,1,2],[1, 2, 1], and [1, 2, 2] (gil< 0.001). The TPs of [0, 1, 2, 3] with [1,0.5,0.5] was signi cantly higher in
of [1,0.5,0.5] was signi cantly higher than those of [1,,Ab(p W. J. Evans than H. J. Hancogi D 0.036) and M. Tynerd D
D 0.013), [1,1,1.5](< 0.001), [1, 1, 2]g < 0.001), and [1, 2, 0.007). The TP of [0, 2, 5, 7]with[1,1, 1] was signi cantly
2] (p D 0.003). The TPs of [1, 2, 1] was signi cantly higher thanlower in W. J. Evans than H. J. Hancogk D 0.042). The TP
[1,0.5,1] 6D 0.034), [1, 1, 1.5]p(< 0.001),and [1, 1, 2](D  of [0, 2,2, 0] with [1, 1, 1], and [0, 5, 3, 0] with [1, 1, 1] was
0.001). The TPs of [1, 2, 1] was signi cantly higher than [1, 1signi cantly higher in M. Tyner than W. J. Evang © 0.039
1.5] p< 0.001) and [1, 1, 2]J(< 0.001). In H. J. Hancock, the and p D 0.004, respectively). The TP of [04, 3, O] with [1,
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FIGURE 3 | The difference in TPs among W.J. Evans (red), H.J. Hancockl(), and M. Tyner (green) in pitch sequence without rhythms

1, 1] was signi cantly higher in M. Tyner than W. J. Evars ( W. J. Evansfd < 0.001) and H. J. Hancoclp (D 0.041). The
D 0.031) and H. J. Hancoclk © 0.013). The TP of [0, 1, 5, 8] TP of [0, 3, 0, 1] with [1, 1, 1] was signi cantly higher in W. J.
with [1, 1, 1] was signi cantly higher in W. J. Evans than H. J.Evans than H. J. Hancock D 0.027) and M. Tynerg D 0.001).
Hancock ¢ D 0.011) and M. Tynerf{ < 0.001). The TP of [0, The TP of [0, 7, 4, 5] with [1, 1, 1] was signi cantly higher in
2, 4, 5] with [1, 1, 1] was signi cantly lower in M. Tyner than W. J. Evans than H. J. Hancocg D 0.027) and M. Tynerf
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TABLE 2 | The difference in TPs among rhythm sequences without pitcteein TABLE 2 | Continued
each musician.
Order Sequence A Sequence B A-B SE p-value
Order Sequence A Sequence B A-B SE p-value
1,1,1,1,1  1,1,1,1515 0.557 0156  0.046
A GENERAL 1,1,1,21 0.635 0095 <0.001
1st L1 12 1088 0054 <0.001 1,1,1,1,2 1,05, 050505 1423 011  <0.001
1,05 1105 0051 <0.001 1,1,1,1,1 1594 0059 < 0.001
1,15 1.221 0047 <0001 1,1,1,15 15 1.037 0136 <0.001
1,0.667 1229  0.043 <0.001
1,1,1,2,1 0.959  0.093 <0.001
1,3 1.218  0.043 < 0.001
1,1,2,1,1 1425 0108 <0.001
1,0.333 1226  0.043 < 0.001
1,2 1,15 0.133 0014 <0.001 L2121 1119 0201 0001
1 0.667 0141 0015 <ooor 5N 1,1,1,1,1,1 1,051,05,1,05 0.939 0226  0.022
13 0.13 0,015  <0.001 1,1,1,1,1,2 1.648  0.055 <0.001
10333 0138 0015 <0001 1,1,1,1,2,1 0524 0108  0.004
105 115 0416 0013 <0001 1,2,1,2,1,2 1.035 0171 <0.001
10,667 0124 0014 <0001 1,1,1,1,1,2 1,05, 1.33 0.116 <0.001
0.5,0.5,0.5,0.5
1,3 0.113  0.014 <0.001
1,1,1,1,1,1 1.648 0055 <0.001
1,0.333 0121 0014 <0.001
1,1,1,1,2,1 1124 0111 <0.001
2nd 1,05,1 1,05,05 0.764 0179  0.01
1,1,1,15 15,15 1.03 0195  0.002
1,21 0.612  0.096 < 0.001
1,1,1,2,1.1 1299 0126 <0.001
1,1,1 1,0.5,1 1.065  0.093 < 0.001
1,2,1,1,1,1 1567 012  <0.001
1,1,15 1495  0.044 < 0.001
1,2,1,1,1,1 1,1,1,1,2,1 0.443 0112  0.033
1,1,2 1.353  0.061 < 0.001
1,2,1,2,1,2 0.953 0238  0.03
1,21 0.453  0.065 < 0.001 )
6t 1,05,1,05 1,05,05,0.5,0.5, 1122 0208  0.001
1,2,2 0.969  0.071 <0.001 1051 05,05
1,1,15 1,0.5,0.5 1194 0102 <0.001 1111111 1206 017  <0.001
1,051 0.43 0.085  0.002 1,1,2,1,1,1,1 1.064 0208  0.003
. B < 0.
1,1,2 0142 0025 <0.001 1,1,1,1,1,1, 1,05, 0.5, 0.5, 0.5, 1.56 0.154 < 0.001
1,21 1.042  0.067 < 0.001 5 05 0.5
122 0526 0051 <0001 1,1,1,1,1,11 1644 0064 <0.001
1,1,2 1,05,05 1.052 0102 < 0.001 B.W. J. EVANS
L21 09 0074 <0001 g5 11 12 123 0094 <0.001
122 0384 0049 <0001 1,05 1255 0089 <0.001
1,21 1,2,2 0516  0.107  0.003 115 1313 0081 <0001
1,2,2 1,0.5,0.5 0.667 0.1 <0.001 10667 1324 0075 <0001
3rd 1,05,05,05 1,1,1,15 1.062 0072 <0.001 13 1337 0074 <0001
L1112 0955 0073 <0001 1,0.333 134 0075 <0.001
1, 0.667, 1,1,1,15 1.343 0139 <0.001 12 10667 0003 0026 0047
0.667, 0.667
1,3 0107 0027  0.017
1,1,1,2 1236 0153 < 0.001
1,2,1,2 0.794 0168  0.005 1,0.333 0.11 0.025  0.009
11,1,1 1,0.5,0.5,0.5 0542 007 <0001 M 105,05 1,051 1287 031 0.013
1,1,1,15 1.605  0.043 < 0.001 1115 1426 0178 <0.001
1,1,1,2 1497  0.058 < 0.001 L1z 1.337 0177 <0.001
1,1,2,1 0.616  0.073 <0.001 La2z2 0843 0173 <0001
1212 1055 0415 <0001 11,1 1,0.5,1 1.334 0162 <0.001
1,1,1,2 1,1,1,15 0107 0025 0012 1115 1473 0076 <0.001
11,21 1,1,1,15 0989 0076 <0.001 112 1384 0106 <0.001
1,1,1,2 0882 0075 <0.001 121 0.72 0113 <0.001
1,2,1,1 1,1,1,15 1209 0112 <0.001 Laz2 0891 0123 <0.001
11,12 1101 0414 <0.001 1,21 1,051 0.614 0166  0.034
1,2,1,2 1,1,1,15 0.55 0.11 0.003 11,15 0753 0117 <0.001
1,1,1,2 0442 0117  0.037 112 0665 0129 <0001
4th 11,0505  1,1,1,2,1 0.464  0.074 <0.001 122 1115 0582 0088 <0.001
0.5,0.5 1,1,2 0.494 0085 <0.001
(Continued) (Continued)
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TABLE 2 | Continued TABLE 2 | Continued
Order Sequence A Sequence B A-B SE p-value Order Sequence A Sequence B A-B SE p-value
3rd 1,05,05,05 1,1,1,15 1.084 0125 <0.001 1,1,1,1,1,1,1 1425 0364  0.036
1,1,1,2 1.034 0126 < 0.001 1,1,2,1,1,1,1 1.666 0431  0.041
1,0.667,0.667,0B6¥, 1, 1.5 1.809  0.241 < 0.001 C. H. J. HANCOCK
1,1,1,2 1.76 0.265 <0.001  1st 1,1 1,2 1.035 0094 <0.001
1,1,2,1 1.056 0253  0.016 1,05 1.045 0089 <0.001
1,212 1602 0291  0.001 1,15 1.205  0.081 <0.001
1,1,1,1 1,1,1,15 1.517 0.074 <0.001 1,0.667 1.214 0.075 <0.001
1112 1468 0101 <0.001 1,3 1209 0074 <0.001
LL21 0764 0126 <0001 1,0.333 1221 0075 <0.001
1212 131 0.199  <0.001 1,2 1,15 0.17 0.024 <0.001
1,1,2,1 1,1,1,15 0.753 0131  0.001 1,0.667 0179 0026 <0.001
1,1,1,2 0704 0129  0.001 13 0474 0027 <0.001
1,2,1,1 1,1,1,1.5 1.38 0.194 <0.001 1,0.333 0186 0025 <0001
11,12 1.ssl 0198  <0.001 1,05 115 016 0023 <0.001
4th 1,1,1,1,2 1,05,605,0.50.5 1.623 0191 <0.001 1, 0.667 0160 0024 <0001
1,1,1,1,1 1579 0102 <0.001 13 0164 0025 <0001
1,1,1,15, 1.5 1.488  0.235 <0.001 1,0.333 0176 0024 <0001
L1212 0843 0161 0001 ., 1,0.5,0.5 1,1,15 1115  0.178 <0.001
1,1,2,1,1 1507  0.187 <0.001 112 0.92 0177 0.001
1,1,1,2,1  1,05,05,0.50.5 0.78 0.129 < 0.001 1051 1115 0602 0148 0015
11111 0736  0.164  0.006 11,1 1,0.5,1 0.924 0162 <0.001
11,112 0843 0161 0.001 1,1,15 1527  0.076 <0.001
5th 1,1,1,1,1,2 1,05, 1451 0201 < 0.001 119 L33 0106 <0.001
0.5,0.5,0.5,0.5 o
1,1,1,1,1,1 1584  0.095 < 0.001 122 1.02 0123 <0.001
1,1,1,1,21 0993 0192  0.002 L12 1115 0195 0044 0.006
1,1,1,15,1515 154 0338 0009 L21 1051 0606 0166  0.038
1,1,1,2 1,1 1532 0217 <0.001 1115 1208 0117 <0.001
1,2,1,1,1,1 1801 0208 <0.001 112 1013 0128 <0.001
1,1,1,1,2,1 1,2,1,1,1,1 0.809 0194  0.02 122 0701 0185 0027
1,2,1,2,1,2 1,05, 1449 0361  0.03 122 11,15 0.507  0.088 <0.001
0.5,0.5,0.5,0.5 1,1,2 0.312 0085  0.037
1,1,1,1,1,1 1582 0296 0002  3rd 1,05,0505 1,1,1,15 1.037 0125 <0.001
1,1,1,15, 15,15 1538 0317  0.005 1,1,1,2 0.871 0126 <0.001
1,1,1,2,1,1 1.53 0.403  0.048 1,1,1,1 1,0.5,0.5,0.5 0.615 0122  0.002
1,2,1,1,1,1 1799 0412  0.013 1,1,1,15 1.651 0074 <0.001
6th 1,05,1,05 1,05,0.5,0.5 0.5, 1.862  0.36 0.002 1,1,1,2 1485 0101 <0.001
1,051 05,05 1,1,2,1 0571 0126  0.007
1,1,1,1,1,1,1 1739 0.294 < 0.001 12,12 0906 0199  0.007
1111211 1743 0442 0034 1,1,21 1,1,1,15 1081 0131 <0.001
1,1,1,1.5, 1.5, 1777 0434  0.024 11,12 0915 0129 <0.001
1515 1,2,1,1 1,1,1,15 1.085 0194  0.001
11,2,1,1,1,1 1.979  0.36 0.001 L1z 0615 0198  0.006
1,1,1,1,1,1, 1,05, 0.5, 0.5, 0.5, 1708  0.266 < 0.001
) 05 05 1,2,1,2 1,1,1,1 0.906 0199  0.007
111011 1585 041 <0001 1,1,1,15 0.745  0.19 0.028
1111121 1103 0213 o000z 4 1,1,1,1,2 1,05,05,0.505 1294 0191 <0.001
1,1,1,1,2,1,1 1589 024 <0001 11111 1565 0102 <0.001
1,1,1,15, 1.5, 1623  0.37 0.013 111,21 1059 0161 <0.001
15,15 1,1,2,1,1 1.239 0187 <0.001
1,1,2,1,1,1,1 1.826  0.259 < 0.001 1,2,1,2,1 1418 0349 0015
1,2,1,2,1,2, 1,05,0.5,0.5, 0.5, 1548 0396  0.037  5th 1,1,1,1,1,2 1,05, 1.608 0201 <0.001
1 0.5,0.5 0.5,0.5,0.5,0.5
(Continued) (Continued)
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TABLE 2 | Continued

TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value Order Sequence A Sequence B A-B SE p-value
1,1,1,1,1,1 1.622  0.095 <0.001 1,1,1,2,1 0.976  0.161 <0.001
1,1,1,1,2,1 1.218 0192 <0.001 1,1,2,1,1 1529 0187 <0.001
1,1,1,2,1,1 1.217 0217  0.001 1,1,1,21  1,1,1,1,1 0.662 0164  0.017
1,2,1,1,1,1 1.309 0208 <0001  5th 1,1,1,1,1,1 1,05, 0.805  0.164  0.004

6th 1,1,1,1,1,1, 1,05,0.5,0.5, 0.5, 1418  0.266  0.002 0.5,0.5,0.5,0.5

2 0.5,0.5 1,1,1,15,15,15 1.258 0287  0.013
1,1,1,1,1,1,1 1597 011  <0.001 1,1,1,1,1,2 1,05, 0.932 0201  0.007

D. M. TYNER 0.5,0.5,0.5,0.5
1,1,1,1,1,21 131 0.213  <0.001 111111 1737 0095 <0.001
11,1,1,211 137 0.24 0.001 1,1,1,1,2,1 1161 0192 <0.001
1,1,2,1,1,1,1 1.066  0.259  0.023 11,1211 1147 0217 0.002

1st 1,1 1,2 0999  0.094 <0.001 12,1111 1.59 0.208 < 0.001
1,05 1014 0089 <0001  6th 1,1,1,1,1,1, 1,05,05,0.5,0.5, 1555  0.266  0.001
1,15 1.144  0.081 <0.001 2 05,05
10,667 1149 0075 <0001 1,1,1,1,1,1,1 1751 041  <0.001
13 1106 0074 <0001 1,1,1,1,1,2,1 1212 0213  0.001
1,0.333 1117 0.075 <0.001 Litiz1l L 0.24 0.008

12 115 0145 0024 <0001 1,1,2,1,1,1,1 1614 0259 <0.001
1,0.667 0.15 0.026 < 0.001
i’ z sa3 g'iiz g'gz 2'8(1)2 D 0.001). I_n the fqrth-order hi_era_rchical models, the musieia
T ' ' ' sequence interactions were signi carfifg) D 6.90,p < 0.001,

2nd 1,05,05 1,115 1041 0178 <0.001 partial 2D 0.43,Tables 3A,Band Figure 5. The TP of [0, 2,

1,12 0.898 0177 0002 3, 5, 6]with[1, 1,1, 1], and [0, 1,5, 8, 12] with [1, 1, 1,
1,051 L11s 0-55 0.148 0033 1] was signi cantly lower in M. Tyner than W. J. Evans (al:
L1t 1,051 0.936 0162 <0001 1 g002). The TP of [0, 2, 4,0, 2]with[1,1,1,1],[0, 3,
LhLS 14860076 <0001 7 5 Zwith[1,1,1,1],and [0, 3,2, 1, 5]with[1, 1,1,
L12 1342 0106 <0001 1] was signi cantly higher in M. Tyner than W. J. Evans and H.
L2z 0.995 0123 <0001 3 Hancock§ D 0.008p D 0.001, anch D 0.014, respectively).
121 1,051 0615 0166 0034 The TP of [0, 3, 2, 2, 5] with [1, 1, 1, 1] was signi cantly
L1115 1165 0117 <0001 hjgher in W. J. Evans than H. J. Hancogk@ 0.009) and M.
112 1021 0129 <0001  Typer (p D 0.002). The TP of [0, 3, 2, 2, 5] with [1, 1, 1,
122 0.674 0185  0.038 1] was signi cantly higher in W. J. Evans than H. J. Hancock
1,22 1,115 0.491  0.088 0001  and M. Tyner (all:p < 0.001). The TP of [0, 3, 5, 7, 5]
1,12 0347 0.085 0015  with [1, 1, 1, 1] was signi cantly higher in M. Tyner than W. J.

3rd 1,050505 1,1,1,1 0579 0122 0004  Evans pD 0.017). The TP of [0, 3, 2,2, 5] with [1, 1, 1, 1]
1,1,1,15 1067 0125 <0001  was signi cantly higher in W. J. Evans than H. J. Hancogh(
1,1,1,2 0.96 0.126 <0001  0.002) and M. Tyner{ < 0.001). The TP of [0, 3, 2, 2, 5]

1,0.667,0.667,0B6T, 1, 1.5 1417 0241 <o0.001  with [1, 1, 1, 1] was signi cantly higher in H. J. Hancock than
1,1,1,2 1.31 0265 0003 M. Tyner (p D 0.035). In the fth-order hierarchical models, the
1,1,1,1 1,0.5,05,0.5 0579 0122  0.004 musician-sequence interactions were signi caRph) D 6.38,p
1,1,1,15 1646 0074 <0001 < 0.001, partial > D 0.42,Tables 3A,Band Figure 5. The TP
1,1,1,2 1539 0101 <0.001 of[0, 2, 3, 4, 5, 6]with[1,1,1,1,1],and]O, 1, 3,5,
1,1,2,1 0513 0126  0.02 6, 8] with [1, 1, 1, 1, 1] was signi cantly lower in M. Tyner than
1,2,1,2 0.95 0.199  0.004 H. J. Hancock g D 0.022 andp D 0.035, respectively). The TP
1,1,21 1,1,1,15 1134 0131 <ooor Of[0, 2, 4,0, 2, 4]with[1,1,1,1, 1] and[0, 2, 5,0,
1,1,1,2 1.027 0.129 < 0.001 2, 5] with [1, 1,1,1, 1] was signi cantly hlgher in M. Tyner
1,2,1,1 1,1,1,15 1.161 0.194 < 0.001 than W. J. Evans and H. J. Hancock (ﬂ'D 0014) The TP of
1,1,1,2 1054 0198 o001 [0, 3, 2,25 9with[1,1,1,1,1],[0, 1,3, 4,6, 7] with [1,
4th 1,1,1,1,2 1,05,050.505 1352 0191 <oo00o1 1, 1,1, 1] and[0,3,0,1,58] with [1, 1, 1, 1, 1] was sigmitiya
111,11 1638 0102 <0.001 higher in Evans than H. J. Hancock and M. Tyner (ak 0.001).
11,115 15 0.86 0235  0.038 In the sixth-order hierarchical models, the musician-sequeen
interactions were signi cantfgy D 4.20,p < 0.001, partial
(Continued) 2D 0.32,Tables 3A,BandFigure 4. The TP of [0, 2, 4, 7,
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2, 4, T]with[1,1,1, 1,1, 1] was signi cantly higherin M. 6, 7], and [1, 1, 1, 1, 1] with [0, 3, O, 1, 5, 8], were signi d¢gnt
Tyner than W. J. Evans and H. J. Hancock (pID 0.014). The higher in W. J. Evans than H. J. Hancock and M. Tyner (all:
TP of [0, 3,0, 1, 5, 8, 12] with [1, 1, 1, 1, 1, 1] was signi cantl < 0.001). In the fth-order hierarchical models, the musician
higher in W. J. Evans than H. J. Hancock and M. Tyner (@l sequence interactions were signi carfiifgy D 2.31,p < 0.001,

0.001). partial 2D 0.21,Figure 6and Table 4. The TP of [1, 1, 1, 1, 1,
1l with [0, 2, 4, 7, 2, 4, T7]was signicantly higherin
Rhythm Sequence With Pitches M. Tyner than W. J. Evans and H. J. Hancock (@ 0.008).

In the rst-order hierarchical models, the main sequence & e
were signi cant (13, 234D 4.45,p < 0.001, partial 2 D 0.20, Regression Analysis
Table 4. The musician-sequence interactions were signi cantPitch Sequence Without Rhythms
[F26)D 3.54p< 0.001, partial 2 D 0.28 Figure 6andTable 4.  Results were shown ifiable 5A In W. J. Evans, no signi cant
The TP of [1,1] with [0, 3, 6] was signi cantly lower in W.  regression equation was detected in the rst-, second-thfor
J. Evans than M. Tynemp(D 0.037). The TP of [1, 1] with [0, and sixth-order hierarchical models. In the third-order
4, 6], and [1,1] with [0, 3, 6] was signi cantly higher in W. hierarchical model, a signi cant regression equation wasfb
J. Evans than M. Tyner (alp D 0.025). The TP of [1, 1] with [F 4 D 16.19,p D 0.012], with an adjusted®? of 0.84. The
[0, 4, 6] was signi cantly higher in M. Tyner than W. J. Evanspredicted chronological order is equal to 9.43-17.98 (tramsit
(p D 0.001) and H. J. Hancockp(D 0.004). In the second- of [0, 3, 7, 5]) 7.23 (transition of [0, 2, 4, 5]). The
order hierarchical models, the musician-sequence intesas  TPs of [0, 2, 4, 5] and [0, 3, 7, 5] gradually decreased
were signi cant F4) D 5.53,p < 0.001, partial 2 D 0.42, consistently with the ascending chronological order ([03,
Figure 6and Table 4. The TP of [1, 1, 1] with [0, 1, 3, 4] 7, 5] p D 0.007, [0, 2, 4, 5p D 0.031). In the fth-order
was signi cantly lower in M. Tyner than W. J. Evars€ 0.001) hierarchical model, a signi cant regression equation wastb
and H. J. Hancockg(D 0.001). The TP of [1, 1, 1] with [0,2,  [F4 5 D 14.74,p D 0.012], with an adjuste® of 0.70. The
4, 2],[1,1,1]with [0, 3, 7, 5]was signicantly higher predicted chronological order is equal to 5.33-9.31 (traositf
in M. Tyner than W. J. Evans and H. J. Hancogk< 0.001). [0, 2, 3,5, 7, 8]). The TPs of [0, 2, 3, 5, 7, 8] gradually deeeka
The TP of [1, 1, 1] with [0, 1, 3, 4] was signi cantly lower consistently with the ascending chronological ordei)( 0.012).
in H. J. Hancock than W. J. Evang D 0.007) and M. Tyner{  In H. J. Hancock, no signi cant regression equation was detkc
D 0.001). The TP of [1, 1, 1] with [0,2, 4, 2],and[1,1,1] in all of the hierarchical models. In M. Tyner, no signi cant
with [0, 3, 7, 5]was signi cantly higher in W. J. Evans than regression equation was detected in the rst-, third-, fott
H. J. Hancock g D 0.005) and M. Tynerg{< 0.001). The TP of fth-, and sixth-order hierarchical models. Only in the sewb
[1, 1, 1] with [0, 2, 4, 5] was signi cantly lower in M. Tyner tha order hierarchical model, a signi cant regression equatioas
W. J. Evans{D 0.048). The TP of [1, 1, 1] with [0, 5, 3, O] wasfound [F, 4 D 31.04,p D 0.004], with an adjuste&? of 0.91.
signi cantly higher in M. Tyner than W. J. Evan® O 0.002). The predicted chronological order is equal ta3.68C 28.30
In the third-order hierarchical models, the main sequen@te (transition of [0, 2, 5]) C 10.59 (transition of [0, 2, 0]). The
were signi cant Fs.os, 90.90 2.91p D 0.017, partial 2D 0.14, TPs of [0, 2, 5] and [0, 2, 0] gradually increased consistently
Table 4. The musician-sequence interactions were signi cantwith the ascending chronological order ([02, 5] p D 0.003,
[F26)D 5.88p< 0.001, partial 2 D 0.40 Figure 6andTable 4. [0, 2, 0]p D 0.038). These TPs were signi cant predictors of the
The TP of[1, 1,1, 1]with [0, 1, 2, 3, 4]was signicantly chronological order.
lower in M. Tynerthan W. J. Evang D 0.040) and H. J. Hancock
(pD 0.046). The TP of [1,1, 1, 1] with[0,2, 4, 7, 2],[1,1, Rhythm Sequence Without Pitches
1,1]with [0, 2,2,0, 2]were signicantly higherin M. Tyner Results were shown iflable 5B In W. J. Evans, no signi cant
than W. J. Evansp(D 0.008 andp D 0.015, respectively) and H. regression equation was detected in the rst-, third-, fert
J. Hancock§ D 0.008 andb D 0.015, respectively). The TP of , fth-, and sixth-order hierarchical models. In the second-
[1, 1,1, 1]with [0, 3, 2,2,5]was signicantly higher in W. order hierarchical model, a signi cant regression equatieas
J. Evans than H. J. Hancock and M. Tyner (plD 0.001). The found [F, 5 D 16.85 D 0.009], with an adjuste&®? of 0.73.
TP of [1, 1, 1, 1] with [0, 3, 2, 0, 3] was signi cantly lower The predicted chronological order is equal tol.29C 17.75
in W. J. Evans than M. Tynemp(D 0.038). The TP of [1, 1, 1, (transition of [1, 2, 2]). The TPs of [1, 2, 2] gradually inaszd
1] with [0, 1, 3, 4, 6], and [1, 1, 1, 1] with [0, 2, 3, 5, 6] wasconsistently with the ascending chronological ordeiX 0.009).
signi cantly higherin W. J. Evans than M. TynguD 0.046 angp  In H. J. Hancock, no signi cant regression equation was deteéc
D 0.002, respectively). The TP of[1, 1, 1, 1]with [0, 1,5, 8wB3] in the second-, third-, forth-, fth-, and sixth-order hierchical
signi cantly higherin W. J. Evans than H. J. HancogkX 0.006) models. In the rst-order hierarchical model, a signi cant
and M. Tyner p< 0.001). In the forth-order hierarchical models, regression equation was founB 3y D 82.70p D 0.002], with
musician-sequence interactions were signi cafphy D 5.58,p  an adjusted?? of 0.98. The predicted chronological order is equal
< 0.001, partial 2 D 0.38,Figure 6and Table 4. The TP of [1, to 12.73-583.67 (transition of [1, 0.333]J9.86 (transition of
1,1,1,1]with [0, 2, 4, 7, 2, 4],and[1, 1, 1,1, 1]Jwith [1, 1.5]) C 33.53 (transition of [1, 2]). The TPs of [1, 0.333]
[0, 2, 5,0, 2, 5]weresignicantly higherin M. Tynerthan and [1, 1.5] gradually decreased and those of [1, 2] gradually
W. J. Evans and H. J. Hancock (alD 0.008). The TP of [1, 1, increased consistently with the ascending chronologicaén(p
1,1, 1] with [0, 3, 2,2,5,9],[1, 1, 1,1, 1] with [0, 1, 3, 4, D 0.001p D 0.007, angp D 0.034, respectively). In M. Tyner, no
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FIGURE 4 | The difference in TPs among W.J. Evans (red), H.J. Hancockl(te), and M. Tyner (green) in rhythm sequences without pitels.

signi cant regression equation was detected in the rseé¢end-, predicted chronological order is equal to 0.825.37 (transition
third-, fth-, and sixth-order hierarchical models. In theofth-  of [1, 2, 1, 2, 1]). The TPs of [1, 2, 1, 2, 1] gradually incrdase
order hierarchical model, a signi cant regression equatias consistently with the ascending chronological orde( 0.030).
found [F(;, 5yD 9.08,p D 0.030], with an adjusteB? of 0.57. The These TPs were signi cant predictors of the chronologicalesr
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FIGURE 5 | The difference in TPs among W.J. Evans (red), H.J. Hancockl(), and M. Tyner (green) in pitch sequence with rhythms.
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TABLE 3 | The difference in TPs among pitch sequences with rhythms inazh TABLE 3 | Continued
musician.
Order Sequence A Sequence B A-B  SE p-value
Order Sequence A Sequence B A-B SE p-value
0, 430 2 4 1.461 0.312 0.02
A. WJ. EVANS with1,1,1,1,1
3rd 0, 1, 2, 3with1, 0, 2,2,0with1,1,1 1.461 0.333 0.038 0,1,3,4,6, 7with 1, 0, 2, 3, 4 5 6 1435 0.29 0.011
0.5,05 1,1,1,1 with1,1,1,1,1
0,1,5,8with1,1,1 0, 2, 5 7withl, 156 0.24 <0.001 0, 2, 40, 2, 4 1591 0.294 0.004
1,1 with1,1,1,1,1
0, 4, 3, 0 with 1,1,1 1.569 0.356 0.035 0 2 50 2 5 1.591 0.294 0.004
0,1,3,5with1,1,1 1.318 0.295 0.032 with1,1,1,1,1
4th 0, 2, 3, 5 6wth 0, 3, 7, 5 3with 1.461 0.338 0.043 0, 3, 2,0, 1, 2with 1.591 0.308 0.007
1,1,1,1 1,111 1,1,1,1,1
0, 4, 2,0,1with1, 1.461 0.332 0.037 0, 3, 5 7, 3, 5 1591 0.308 0.007
1,1,1 with1,1,1,1,1
1,1 with 1,1,1,1, 1
0, 3, 2,0,1with1, 0,1,3,2, 1with 1,1, 1.362 0.301 0.027 0 430 2 4 1.591 0308 0.007
1,1,1 1,1 with1,1,1,1,1
2, 13, 2,2,5with 1, 1, 2 12i 14, 0, 2with 1.774 0.314 0.002 0,3,0,1,5,8with 1, 0, 2, 3, 4, 5 6 1413 0331 0048
! T 1,1,1,1 with1,1,1,1,1
0, 3, 5 7, 5with 1.774 0.335 0.005 0 2 40 2 4 1569 0335 0.019
1,1,1,1 X with1,1,1,1,1
0, 3, 7, 5 3with 1.774 0.292 0.001
. 0, 2 50 2 5 1569 0335 0.019
1,1, 1,1 .
with 1,1,1,1,1
0, 3,2, 1, 5with 1.774 0.301 0.001
0, 3 20 1, 2 1.569 0.347 0.028
1,1, 1,1 .
. with1,1,1,1,1
0, 4, 2,0,1with1, 1.774 0.327 0.004
111 0, 3, 5 7, 3, 5 1569 0.347 0.028

0,1,3,2 1with1,1, 1774 0314 0.002 with1,1,1,1,1
1,1 0, 3 7,5 3 7 1569 0.347 0028

0,2,3,5 7with1,1, 1.376 0.297 0.022 with 1,1,1, 1,1

11 0, 4,3,0, 2, 4 1.569 0.347 0.028
0,1,5,812with1,1, 0, 2, 4,0, 2with 1.664 0.8 0.038 with1,1,1,1,1
1,1 1.1,1,1 6th  0,3,0,1,58 12with 0, 1, 3, 4, 5 6, 1413 0.322 0.038
0, 3, 7, 5 3with 1.664 0.361 0.023 111,111 7with1,1,1,1,1,1
1,1,1,1 0, 2, 4 7, 2, 4 1413 0331 0.048
0, 3,2, 1, 5withl, 1.664 0.369 0.028 7with1,1,1,1,1,1
1,1,1 0, 2, 4,0, 2 1.413 0.327 0.043
0, 4, 2,0,1withl, 1.664 0.376 0.034 4, Twith1,1,1,1,
1,11 1,1
0,1,3,2,1with1,1, 1.664 0.365 0.026 0, 2, 5 1.413 0.327 0.043
1,1 7,3, 5 7withl,
0,2,3,56with1,1, 0, 3, 7, 5 3with 1.328 0.289 0.024 11111
1,1 1,1,1,1 0, 2, 50, 2 1.413 0.322 0.038
0, 3,2, 1, 5with 1.328 0.299 0.033 5, 8with1,1,1,1,
1,1,1,1 1,1
0, 4, 2,0,1withl, 1.328 0.31 0.047 B. M. TYNER
1,1,1 3rd  0,3,0,1with1,1,1 04,2 0with1, 1,1 1558 0.322 0.014
5th 0, 3, 2,2,59with 0, 2 3, 4, 5 6 1304 0291 0031 4h 0, 3, 7, 5 3with 0, 3, 2,0 1withl, 1413 0.327 0.044
1,1,1,1,1 with1,1,1,1,1 1,1,1,1 1,1,1
0, 2, 40 2 4 1461 029 0.013 0, 3, 2,2,5with1l, 1413 0292 0.014
with 1,1, 1,1, 1 1,1,1
0, 2, 50 2 5 1461 0299 0013 0,2,3,56with1, 1, 1.413 0.289 0.013
with 1,1, 1,1, 1 1,1
0, 3, 20, 1, 2with 1.461 0.312 0.02
1,1,1,1,1
0, 3 5 7, 3 5 1461 0.312 0.02
with 1, 1, 1,1, 1 Pitch Sequence With Rhythms

0, 3 7, 5 3 7 1461 0312 0.02

with1 11,11 Results were shown ifiable 5C In W. J. Evans, no signi cant

regression equation was detected in all of the hierarciicalels.
(continued) 1N H. J. Hancock, no signi cant regression equation was detéc
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TABLE 4 | The difference in TPs among rhythm sequences with pitches ieach TABLE 4 | Continued
musician.
Order Sequence A Sequence B A-B SE p-value
Order Sequence A Sequence B A-B SE p-value
1,1,1,1with0, 2, 1.931 0.336  0.002
A. GENERAL 2,0, 2
Ist 1,1with0,4,6 1,1witho, 1, 3 0.948 0.185 0.006 1,1,1,1with0, 3, 1.931 0.425 0.023
1,1witho, 2, 3 0.883  0.177  0.009 2,0, 3
1,1with0, 1,2 0971 0.16 0.001 1,1,1,1with0,2,4, 1931 0.332  0.001
1, 1with 0, 2, 3 1114 0176  0.001 6,8
1,1with0, 3,7 1.015 0.212 0.013 1,1, 1,1 with O, 1,1,1,1with0, 2, 1.844 0.404 0.022
3rd  1,1,1,1with0, 1,1,1,1with0,2,4, 0891 0.2 0.028 2.3.5.6 4 12
1,3,4,6 6,8 1,1,1,1with0, 2, 1.844 0.382 0.012
B. WJ. EVANS 20 2 _
Ist  1,1with0,4,6  1,1witho, 1, 3 1752 032  0.003 é’ ;' 1, 1with0,2,4, 1844 0391 0016
1,1witho, 2, 3 1.337 0.307 0.035 ) ' )
) 4th  1,1,1,1,1with  1,1,1,1, 1withO, 1.678 0.325  0.007
1,1witho, 2, 4 1.863 0.429  0.036 0. 3 2259 2 4 7 2 4
L1with0, 4, 6 17e1 0331  0.004 1,1,1,1, Lwith 0, 1678 0325  0.007
1,1with0, 1,2 1.84 0.277 <0.001 2, 50, 2, 5
1,1with0, 2,3 1.945  0.305 <0.001 1,1, 1,1, 1 with 1.678 0.269  0.001
1,1with0,3,6 1.863 0.338  0.003 0, 3,00, 30, 1,
1,1with 0,3, 7 1716 0367  0.017 1515115
2nd 1,1, 1with 0, 1,1,1with0, 2, 2197 0327 <0.001 1,1,1,1, 1 with O, 1678 0307  0.004
1, 3, 4 4, 2 32, 1, 5 3
1,1, 1witho, 3, 2197 0289 <0.001 1,1,1,1, 1 with 0, 1.678  0.307  0.004
7, 5 4, 7, 2, 5 9
1,1,1with0,2,4,6 1569 0359  0.028 1,1,1,1,1with0,0, 1678 0269  0.001
) 3,00, 3, 1
1,1, 1 with 0,5,3,0 2197 0489  0.022 o S
n e 0.667, 1, 1, 0.667
1,1, 1 with 0, 1,1, 1 with 0,1,5,8 1924 0.329  0.001 )
5 4 o 1,1,1,1,1with0,2, 1678 0.269  0.001
. 4, 4,6,8,10
1,1,1with 0,2, 3,5 1.83 0.387  0.013 )
1,1,1,1,1with0,4, 1678 0.307  0.004
1,1, 1 with 0, 1,1, 1with0, 2, 1461 0.329  0.025 20 3.2
3, 7, 5 5 9 ) )
] 1,1,1,1, 1with  1,1,1,1, 1with O, 1.839 0.312  0.001
1,1, 1with 0,1,5,8 1.924 0.308  0.001 0.1.34.6 7 2 4 7, 2 4
1,1, 1 with 1,1, 1 with 0,5,3,0 1.924 0437  0.027 1111 1witho 1839 0312 0001
0,158 2, 50 2 5
1,1, 1 with 1,1, 1with0, 2, 2197 0413  0.004 1111 1witho 1839 0255 <0001
0,2,4,5 4, 2 3,0,0, 3,0, 1,
1,1,1with0o, 3, 2.197 0.423 0.005 15,15 1,15
75 1,1,1,1, 1 with 0, 1839 0294  0.001
1,1,1with 0, 2, 4, 6 1569 0.356  0.026 32 1, 5 3
3rd 1,1,1,1withO, 1,1,1,1with0, 2, 1.883 0.314 0.001 1,1,1,1, 1 withO0, 1.839 0.294 0.001
3, 2,25 4,7, 2 4, 7, 2, 5 9
1,1,1,1with0, 2, 1.883  0.339 0.003 1,1,1,1,1with0,0, 1.839 0.255 <0.001
50, 2 3,0,0, 3, 1,
1,1,1,1with0, 2, 1.883  0.285 <0.001 0.667, 1, 1, 0.667
2,0, 2 1,1,1,1,1with0,2, 1839 0.255 <0.001
1,1,1,1with0, 3, 1.883 0.356  0.004 4,6,8,10
2,0, 3 1,1,1,1,1with0,4, 1839 0.294  0.001
1,1,1,1with0,2,4, 1.883 0.242 <0.001 2,0, 3,2
6,8 1,1,1,1,1with  1,1,1,1, 1 with O, 1569 0.347  0.028
1,1,1,1with0,  1,1,1,1with0, 2, 1696 0.373  0.022 0,3,01,5,8 2, 4, 7, 2, 4
1,346 2,0, 2 1,1,1,1,1with 0, 1569  0.347 0.028
1,1,1,1with0,2,4, 1696 0.346  0.01 2, 50, 2 5
6,8 1,1,1,1, 1 with 0, 1569 0.296  0.005
1,1,1,1with0,  1,1,1,1with0, 2, 1931 0.362  0.004 3,0,0, 3,0, 1,
1,5,8,12 4,7, 2 15,151,15
1,1,1,1with0, 2, 1931 0411  0.016 1,1,1,1, 1 with 0, 1569 0.331  0.017
50, 2 3,2, 1, 5 3
(Continued) (Continued)
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TABLE 4 | Continued

Order Sequence A Sequence B A-B SE p-value
1,1,1,1, 1 with O, 1.569 0.331 0.017
4, 7, 2, 5 9
1,1,1,1, 1 with 0, O, 1.569 0.296 0.005
3,000, 3, 1,
0.667, 1, 1, 0.667
1,1,1,1,1with 0, 2, 1.569 0.296 0.005
4,6, 8,10
1,1,1,1, 1 with 0, 4, 1.569 0.331 0.017
2,0, 3,2
C. H. J. HANCOCK
Ist  1,1with0,4,6 1,1with0o, 1, 3 1.394 0.32 0.035
1,1with0o, 2, 3 1.327 0.307 0.038
1,1with0, 1,2 1.343 0.277 0.012
1,1with0, 2,3 1.445 0.305 0.015
1,1with0, 3,5 1.519 0.355 0.041
2nd 1,1, 1withO, 1,1,1with0, 2, 1.377 0.327 0.041
1, 3, 4 4, 2
1,1,1with0, 3, 1.485 0.289 0.005
7, 5
3rd  1,1,1,1with O, 1,1,1,1with 0, 2, 1.525 0.353 0.038
3, 2,2,5 3,57
1,1,1,1with 0, 2, 4, 1.501 0.357 0.048
57
D. M. TYNER
2nd 1,1, 1withO, 1,1,1with0, 2, 1.618 0.327 0.008
1, 3, 4 4, 2
1,1,1with0o, 2, 1.774 0.368 0.011
5 9
1,1,1with0, 3, 1.799 0.289 0.001
7, 5
1,1, 1 with 1,1,1with0, 2, 1.618 0.329 0.009
0,1,5,8 4, 2
1,1,1with0o, 2, 1.774 0.342 0.005
5 9
1,1,1with0, 3, 1.799 0.308 0.001
7, 5
3rd  1,1,1,1with O, 1,1,1,1with 0, 2, 4, 1.038 0.223 0.018

2, 50 2

in the rst-, third-, forth-, fth-, and sixth-order hierarchical

[F1,5 D 7.35,p D 0.042], with an adjusted®? of 0.51. The
predicted chronological order is equal to 5.67-3.33 (traositi
of [0, 3,2, 1, 5]with[1, 1, 1, 1]). The TPs of [0, 3, 2,

1, 5] with [1, 1, 1, 1] gradually decreased consistently with
the ascending chronological ordgw D 0.042). These TPs were
signi cant predictors of the chronological order.

Rhythm Sequence With Pitches
Results were shown ifiable 5D. In W. J. Evans, no signi cant
regression equation was detected in the rst-, third-,
and sixth-order hierarchical models. In the second-order
hierarchical model, a signi cant regression equation wasfb
[Fo, 4 D 13.80,p D 0.016], with an adjusted®? of 0.81. The
predicted chronological order is equal to 3.61-4.72 (traositi
of [1, 1, 1] with [0, 2, 4, 6])C 2.61 (transition of [1, 1, 1]
with [0, 2, 5, 9]). The TPs of [1, 1, 1] with [0, 2, 4, 6]
gradually decreaseg O 0.006) and the TPs of [1, 1, 1] with
[0, 2, 5, 9] gradually increasedp(D 0.049) consistently
with the ascending chronological order. In the forth-order
hierarchical model, a signi cant regression equation wasfb
[Fu, 5y D 17.72,p D 0.008], with an adjusted?® of 0.74.
The predicted chronological order is equal to 5.33-629.65
(transition of [1, 1, 1, 1, 1] with [0, 3, 2,0, 1, 3]). The TPs
of [1, 1, 1, 1, 1] with [0, 3, 2, 0, 1, 3] gradually decreased
consistently with the ascending chronological ordgr D
0.008). In the fth-order hierarchical model, a signicant
regression equation was found~{ 5y D 8.33,p D 0.034],
with an adjusted R2 of 0.55. The predicted chronological
order is equal to 5.00-3.50 (transition of [1, 1, 1, 1, 1, 1hwit
[0, 3, 2,0, 1,3, 4]). The TPs of [1, 1, 1, 1, 1, 1] with [0,
3, 2,0, 1, 3, 4] gradually decreased consistently with the
ascending chronological ordep © 0.034). In H. J. Hancock,
no signi cant regression equation was detected in the sdeon
third-, forth-, fth-, and sixth-order hierarchical modal. In the
rst-order hierarchical model, a signi cant regressionwegion
was found Fq, 5y D 15.06,p D 0.012], with an adjuste&? of
0.70. The predicted chronological order is equal to 12.644d.1
(transition of [1, 1] with [0, 2, 3]). The TPs of [1, 1] with
[0, 2, 3]gradually decreased consistently with the ascending
chronological order § D 0.012). These TPs were signi cant
predictors of the chronological order. In M. Tyner, no signima
regression equation was detected in all of the hierarchical

models. In the second-order hierarchical model, a signittan models.

regression equation was foun&{ 5 D 8.33,p D 0.034], with

an adjustedrR? of 0.55. The predicted chronological order is Time-Course Variation of Entropy
equal to 3.0C 10.50 (transition of [0, 4, 2] with [1, 2]). The Results were shown ifiable 6 In the rhythm sequence with
TPs of [0, 4, 2] with [1, 2] gradually increased consistentihw pitches in H. J. Hancock, signi cant regression equation was

the ascending chronological ordep O 0.034). In M. Tyner,

detected in the higher- but not lower-order hierarchical dets.

no signi cant regression equation was detected in the rst-In the fth-order hierarchical model, a signi cant regreiss
, second-, fth-, and sixth-order hierarchical models. Ineth equation was found H;, 5y D 10.58,p D 0.023], with an

third-order hierarchical model, a signi cant regressioguation
was found F 5 D 12.99,p D 0.015], with an adjusted®?

adjustedR? of 0.62. The predicted chronological order is equal
to 5.73-193.34. The entropies of rhythm sequence with pitches

of 0.67. The predicted chronological order is equal to 5.44gradually decreaseg D 0.023) consistently with the ascending
3.72 (transition of [0, 0, O, 0] with [1, 1, 1]). The TPs of [0, chronological order. In the sixth-order hierarchical model
0, 0, 0] with [1, 1, 1] gradually decreased consistently wlih t signi cant regression equation was founé&{ sy D 9.28,p D
ascending chronological ordep © 0.015). In the forth-order 0.029], with an adjusteB? of 0.58. The predicted chronological

hierarchical model, a signi cant regression equation wasnt

order is equal to 5.67-272.31. The entropies of rhythm secgien
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FIGURE 6 | The difference in TPs among W.J. Evans (red), H.J. Hancockl(ke), and M. Tyner (green) in rhythm sequence with pitches.
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TABLE 5 | Regression analyses based on the stepwise method.

Model 1 Model 2

Variable B SEB VIF Cl B SEB VIF Cl

W. J. Evans Third 0,3 7, 5 16.36 5.99 0.77*  1.00 2.36 17.98 354 0.85*  1.02 245
0,2,4,5 7.22 2.22 0.55* 1.02 840
R2 0.52 0.84
F 7.46* 16.19*
Fith 0,2,3,5,7,8 5.58 1.45 0.86* 1.00  2.03
R2 0.70
F 14.74*
M. Tyner Second 0, 2, 5 31.21 7.67 0.88* 1.00 7.34 28.30 4.47 0.80*  1.04 518
0,2,0 10.59 3.15 0.42* 1.04 896
R? 0.72 0.91
F 16.56* 31.04%
B.RHYTHMTRANSITION
W. J. Evans Second 1,2,2 17.75 433 0.88* 1.00  6.19
R2 0.73
F 16.85*
H.J. Hancock  First 1,0.333 506.2  129.84 0.87*  1.00 10.04 4717 76.01 0.81* 102 283
1,15 4048  12.27 0.43* 1.02 1162
R? 0.70 0.90
F 15.20% 28.05%
M. Tyner Forth 1,2,1,2,1 5.37 1.78 0.80* 1.00 4.20
R? 0.57
F 9.08*
C.PITCHTRANSITION WITHRHYTHM
H.J.Hancock  Second  0,4,2 with 1,2 10.50 3.64 0.79* 1.00  1.82
R2 0.55
F 8.33*
M. Tyner Third 0,0,0,0with 1,1, 1 3.72 1.03 0.85* 1.00 2.6
R? 0.67
F 12.99%
Forth 0, 3,2, 1, 5with1,1, 3.33 1.23 0.77*  1.00 255
1,1
R2 0.51
F 7.35*
D.RHYTHMTRANSITIONWITHPITCH
W. J. Evans Second  1,1,1with0,2,4,6 3.50 1.21 0.79* 1.00 1.82 4.72 0.90 1.07* 130  2.20
1,1,1with0, 2, 5, 9 2.61 0.93 0.57* 130  4.09
R? 0.55 0.81
F 8.33* 13.80*
Forth 1,1,1,1,1witho, 3, 2, 629.6 1496 0.88* 1.00  1.00
0,1,3
R? 0.74
F 17.72%
Fifth 1,1,1,1,1, 1with0, 3, 3.50 1.21 0.79* 1.00 1.82
2,0,1,34
) 0.55
F 8.33*
H. J. Hancock First 1,1witho, 2, 3 11.40 2.94 0.87* 1.00 10.07
R2 0.70
F 15.06*

*p < 0.05, **p < 0.01. SE, standard error; VIF, variance in ation factorCl, condition index.
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TABLE 6 | Time—course variation of entropy (rhythm sequence with ergpies).

understand the di erences between TPs in each sequence among
musicians, only the transitional patterns with rstto fthighest

Model TPs from each musician, which showed higher predictalbdlitie
Hierarchy  Variable SEB VIF  Cl in each musician, were analyzed using an ANOVA. In lower-
order models, universal sequences that are common among
Fiffth Rhythm " 5944 082" 100 250 mysicians could be detected. For example, in a 1st-order model
;ﬁgﬁgg?ﬁ it of pitch sequence without rhythnHgure 3 top), the extracted
Hancock sequences of [0, 0], [0,1], [O, 1], [0, 2], [O, 2], [0, 3], and
R2 0.62 [0, 3] correspond to repetition of the same tone, and semi-fone
= 10.58* whole-tone, and minor-third transitions. These sequences a
Sixth Rhythm 89.38 081 100 247 frequently exploited in many types of music (e.g., Classieak),
sequence with are easier toimmediately play because of the small pitch iaterv
pitches in and lead to a smooth melody. However, in the 6th-order model
HE”COCK (Figure 3, bottom), the TPs for the sequences of [0, 3, 0, 1, 5,
E 90';’88* 8,12]and [0, 2, 4, 7, 2, 4, 7] were dierentamong

musicians. Although the di erence could also be detected even
in the 1st-order model, higher-order models showed a larger
di erence of TPs among musicians, suggesting that indiviiya

of musical prediction and production is larger with a deeper
with pitches gradually decreased D 0.029) consistently with implicit knowledge. In summary, the results of the presentlgtu
the ascending chronological order. No signi cant regressi suggest that the individuality of improvisational creatyinay
equation was detected in W.J. Evans and M.Tyner. be formed by deeper implicit knowledge, whereas lower-order
implicit knowledge may be shared among musicians.

_ _ _ _ Pitch and Rhythm
Interpretation of Multi-Order Hierarchical In the pitch sequences with and without rhythms and the

Models for Implicit Learning rhythm sequence with pitches=igures 1A,C,D, W. J. Evans'

In the context of implicit-learning models on information gory ~ @nd M. Tyners components could be detected in any-order
and predictive codingRriston, 2005; Pearce and Wiggins, 2012Model. Inarhythm sequence without pitcRigure 1B), however,
Rohrmeier and Rebuschat, 2Q1the TP distribution sampled N0 obvious dierence among musicians could be detected.
from musical improvisation based on n-order Markov models These results suggest that individuality of musical cuétgtiis
may refer to the characteristics of a composer's super @al-t Shaped by spectral, rather than temporal, implicit knowledge.
deep (i.e., n-order) implicit knowledge: a tone with high TPHoOwever, the results also suggest that temporal knowledge at
compared to a tone with a low TP may be one that a composé?aSt contributes to formation of individuality; TP distrtion

is more likely to predict and choose based on the latest n tone§f pitch sequences “with” rhythms, compared to those “witHout
The notion has been neurophysiologically demonstrated iy ohythms, showed clear individuality among three musicians
previous studies on predictive codingdikoku et al., 2017  from a lower-order model (i.e., 4th-order model). Additialty,
Using the various-order Markov stochastic models that unifyin two types of rhythm sequences without and with pitches
temporal and spectral features in musical improvisation, thdFigures 2B,D respectively), TP distribution with, but not
present study investigated the stochastic di erence of terapor Without, pitches showed individuality of improvisation. Ehi
and spectral features among musicians, and claried whici$uggests that temporal and spectral implicit knowledge imtera
information (pitch and rhythm) and depth (1st to 6th orders) With each other. The ANOVA results support these PCA ndings.
represent the individualities of improvisational creatiand Inlower-order models, the extent of the di erence in TPs among

how they interact with each other. musicians is larger for pitch sequences with rhythrRgy(re 7)
than for those without rhythm Figure 3). Additionally, in two

Hierarchy types of rhythm sequences without and with pitchEgy(res 5

The results of principal component analysis (PCA) suggested respectively), the extent of the TP di erence among musicians
that the lower-order models represented general statisticés larger in rhythm sequences with, compared to without,
characteristics shared among musicians, whereas higiler-o pitches. Together, these results suggest that the indilrtgluct
models represented speci ¢ statistical characteristics were improvisational creativity may essentially be formed by pitmiit
unique to each musicianF{gure 1). In the 1st-order models not rhythm, implicit knowledge. However, implicit knowledgé

of any type of temporal and spectral sequences, and 2nd-ordgtythm may strengthen individuality.

models of sequences other than pitch sequence with rhythm, L L

component 1 showed general characteristics in improvisation-r'me‘course Variation of Implicit

These results suggest that the individuality of improvisasi Knowledge

creativity depends on the depth of implicit knowledge. ThisIn all types of spectro-temporal sequences of each hierarchy,
hypothesis could also be underpinned by ANOVA results. Tdime-course variation of TPs in some sequences could be

“p < 0.05. SE, standard error; VIF, variance in ation factQrCl, condition index.

DISCUSSION
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detected. There were two types of time-course variationstid@ represent uncertainly in musi¢garce and Wiggins, 20@ould
gradually decrease, and those that gradually increaseistems be detected in higher-order hierarchy in one musician.
with the chronological order. Thus, implicit knowledge of git It is generally considered that musical expression in
and rhythm could be shifted over a musician's life. Howeverimprovisation is mainly shaped by tacit knowled@e(ie ge et al.,
the ndings suggested that the time-course variations insTP 1996; Koelsch et al., 2000; Delie'ge, 2001; Bigand and Poulin
do not depend on hierarchy and spectro-temporal features;harronnat, 2006; Ettlinger et al., 2011; Koelsch, 201Tpiu
while the individuality among musicians may depend on thes€01). Particularly, the expression of musical improvisation,
features. This suggests that the shifts in implicit knowkedgay compared to other types of musical composition in which a
occur in each musician's lifetime, regardless of spectnoptral composer deliberates a composition scheme for a long time based
features and the depth of knowledge. It may be interesting ton musical theory, forces musicians to continually prediattea
investigate if the ndings of gradual shifts in TPs re ectabe of forthcoming tone, and immediately play the melody based on
implicit knowledge via experience and training. Learning taypl intuitive decision-making and auditory-motor planning, v
the piano enhances auditory-motor skills based on proceduraire considered to tie in with procedural and implicit knowledg
knowledge {orgaard, 201)f which corresponds to implicit (Berry and Dienes, 1993; Reber, 1993; Clark and Squire, 1998;
knowledge Clark and Squire, 1998; Ullman, 2001; ParadisUliman, 2001; Paradis, 2004; De Jong, 2005; Ellis, 2009; Ndrgaar
2004; De Jong, 2005; Ellis, 2009; Muller et al., R0IbBus, 2014; Mdiller et al., 2016; Perkovic and Orquin, 20Ilhus,
through experience and long-term training over the playershe musical improvisation may be more strongly related to
life, implicit knowledge that is tied to musical expressionyma the implicit knowledge, compared to other types of music.
shift (Daikoku et al., 2012 On the other hand, the time- Few studies have investigated the relationship betweericalus
course variations of the entropies, which represent unceltéin  improvisation and implicit learning via computational model
music (Pearce and Wiggins, 200@ould be detected in higher- (Norgaard, 201¥and neural correlate Adhikari et al., 2016;
order hierarchy in one musician. Future study is needed td.opataetal., 20)7In a series of my previous neurophysiological
investigate the relationships of time-course variationwen  studies using Markov stochastic models and other studies on
speci ¢ phrase and general uncertainty. In addition, the lssu music, implicit learning of pitch, harmony, and dyad chord
of the present study cannot completely support the hypothesisould be re ected in event-related responses (ERP/ERF) based
because time-course variations among only seven pieces ai predictive coding Daikoku et al., 2014, 2015, 2016, 2017a;
music for each musician were investigated. Further re$emrc Daikoku and Yumoto, 2017; Moldwin et al., 2010ther studies
needed to verify a larger number of music pieces in a musgianalso detected neural correlates to the motor control foritrg
lifetime, and to examine behavioral and neurophysiologicaprediction and production when playing the pianBignco et al.,
results. 2016, and to improvisational creativity of musié¢>(nho et al.,
2015; Adhikari et al., 2016; Lopata et al., 20These studies

. . . suggest that the mental representation of a musician's kedge
General Discussion: Informatics and facilitates optimisation of motor actiondDgikoku et al., 2018
Neural Aspects in Musical Creativity in the framework of information theory on brain function. Eh
In summary, the present study found three types of resultsndings of the present study were based on relative but not
on improvisational music and implicit knowledge: hierarchy, absolute stochastic feature of music. Thus, the resultsgstudy
spectro-temporal features, and time-course variation.tFtree  could support the previous neurophysiological and psychological
lower-order TP distribution represented general charastes studies that suggest that human's brain learn relative eath
shared among musicians, whereas higher-order TP distobut than absolute temporal and spectralgikoku et al., 2014, 20).5
detected specic characteristics that were unique to eacpatterns.
musician. Thus, the individuality of improvisational craaty The veri cation of computational models and the neural
might be formed by deeper (i.e., higher-order), but notcorrelates have also been performed in previous studies (see
super cial (i.e., lower-order), implicit knowledge. Second review, Rohrmeier and Rebuschat, 2Q1ZFor example, the
the TP distribution with pitch information detected specic n-gram models calculate probability of sequential patterns
characteristics that were unique to each musician, wheredyy chopping them into short fragments (n-grams) up to
the TP distribution with only rhythm information could not a size of n. This model, which is frequently veried by
detect di erences among musicians. Thus, the individualify oneural approaches, is considered to correspond to chunking
improvisational creativity may essentially be formed by s@éc and word-segmentation processes in implicit learnitia (an
(i.e., pitch), but not temporal (i.e., rhythm), implicit knoedige, et al., 1995 The online perception and production of real-
whereas the rhythms may allow the individuality of pitches toworld dynamical music, however, is not the mere chopping
strengthen. Third, TPs of some phrase were gradually deageasef sequential patterns like word segmentation, but dynainica
and increased consistent with the chronological order farthea prediction to maintain an aesthetic melody with various temgdo
musician, regardless of hierarchy and spectro-temporalfeat and spectral features, hierarchical structure, and harmueijch
in the TP distributions. Thus, time-course variation of inpt  interact with each otherl(erdahl and Jackendo, 1983; Hauser
knowledge in pitches and rhythms may occur throughout aet al., 2002; Jackendo and Lerdahl, 2pOMlusical prediction
musician’s lifetime regardless of the depth of knowledgetl@n and the representation constantly occurs with each state of
other hand, the time-course variations of the entropies,clhi sequences during learning and playing music. In additioeyth
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