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It has been suggested that musical creativity is mainly formed by implicit knowledge.
However, the types of spectro-temporal features and depth of the implicit knowledge
forming individualities of improvisation are unknown. This study, using various-order
Markov models on implicit statistical learning, investigated spectro-temporal statistics
among musicians. The results suggested that lower-order models on implicit knowledge
represented general characteristics shared among musicians, whereas higher-order
models detected speci�c characteristics unique to each musician. Second, individuality
may essentially be formed by pitch but not rhythm, whereas the rhythms may allow the
individuality of pitches to strengthen. Third, time-course variation of musical creativity
formed by implicit knowledge and uncertainty (i.e., entropy) may occur in a musician's
lifetime. Individuality of improvisational creativity may be formed by deeper but not
super�cial implicit knowledge of pitches, and that the rhythms may allow the individuality
of pitches to strengthen. Individualities of the creativity may shift over a musician's lifetime
via experience and training.

Keywords: Implicit learning, statistical learning, n-gram, Markov model, entropy, characteristics, uncertainty,
hierarchy

INTRODUCTION

Implicit Knowledge and Creativity in Brain
The brain models external phenomena as a hierarchy of statistical dynamical systems, which
encode causal chain structure in the sensorium (Friston et al., 2006; Friston and Kiebel,
2009; Friston, 2010) to maintain low entropy and free energy in the brain (von Helmholtz,
1909), and predicts a future state based on the internalized stochastic model to minimize
sensory reaction and optimize motor action regardless of consciousness (Friston, 2005). This
prediction associates with the brain's implicit, domain-general, and innate system, called
implicit learning or statistical learning (Reber, 1967; Sa�ran et al., 1996; Cleeremans et al.,
1998; Perruchet and Pacton, 2006), in which our brain automatically calculates transitional
probabilities (TPs) of sequential phenomena and grasps information dynamics. The terms implicit
learning and statistical learning have been used interchangeably and are regarded as the same
phenomenon (Perruchet and Pacton, 2006). Because of the implicitness of statistical learning and
knowledge, humans are unaware of exactly what they learn (Daikoku et al., 2014). Nonetheless,
neurophysiological and behavioral responses disclose implicit learning e�ects (Francois and Schön,
2011; François et al., 2013; Daikoku et al., 2015, 2016, 2017a,c,d; Koelsch et al., 2016; Yumoto
and Daikoku, 2016, 2018; Daikoku and Yumoto, 2017). When the brain implicitly encodes TP
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distributions that are inherent in dynamical phenomena, several
things are automatically expected, including a probable future
state with a higher TP, facilitating optimisation of performance
based on the encoded statistics despite being unable to
describe the knowledge (Broadbent, 1977; Berry and Broadbent,
1984; Green and Hecht, 1992; Williams, 2005; Rebuschat and
Williams, 2012), and inhibit neurophysiological response to
predictable external stimuli for the e�ciency and low entropyof
neural processing based on predictive coding (Daikoku, 2018b).
The implicit knowledge has been considered to contribute
to many types of mental representation: the comprehension
and production of complex structural information such as
music and language (Rohrmeier and Rebuschat, 2012), intuitive
decision-making (Berry and Dienes, 1993; Reber, 1993; Perkovic
and Orquin, 2017), auditory-motor planning (Pearce et al.,
2010a,b; Norgaard, 2014), and creativity (Wiggins, 2018)
involved in musical composition (Pearce and Wiggins, 2012;
Daikoku, 2018a) and musical improvisation (Norgaard, 2014).
Additionally, compared to language (Chomsky, 1957; Jackendo�
and Lerdahl, 2006), several studies suggest that musical
representation including tonality is mainly formed by a tacit
knowledge (Delie`ge et al., 1996; Delie`ge, 2001; Bigand and
Poulin-Charronnat, 2006; Ettlinger et al., 2011; Koelsch,2011;
Huron, 2012). Thus, it is widely accepted that implicit knowledge
causes a sense of intuition, spontaneous behavior, skill acquisition
based on procedural learning, and is further closely tied to
musical production such as intuitive creativity, composition, and
playing.

Particularly in musical improvisation, musicians are forced
to express intuitive creativity and immediately play their own
music based on long-term training associated with procedural
and implicit learning (Clark and Squire, 1998; Ullman, 2001;
Paradis, 2004; De Jong, 2005; Ellis, 2009; Müller et al., 2016).
Thus, compared to other types of musical composition in
which a composer deliberates and re�nes a composition scheme
for a long time based on musical theory, the performance of
musical improvisation is intimately bound to implicit knowledge
because of the necessity of intuitive decision-making (Berry
and Dienes, 1993; Reber, 1993; Perkovic and Orquin, 2017)
and auditory-motor planning based on procedural knowledge
(Pearce et al., 2010a,b; Norgaard, 2014). This suggests that the
stochastic distribution calculated from musical improvisation
may represent the musicians' implicit and statistical knowledge
and individual creativity in music that has been developed via
implicit learning. Few studies have investigated the relationship
between musical improvisation and implicit knowledge. Here,
this study proposed the computational model of improvisational
creativity based on the framework of implicit statistical learning.

Computational Model of Musical Creativity
The computational model is often used to understand general
music acquisition (Cilibrasi et al., 2004; Backer and van
Kranenburg, 2005; Albrecht and Huron, 2012; Ito, 2012;
Prince and Schmuckler, 2012; Albrecht and Shanahan, 2013;
London, 2013), entropy-based music prediction (Manzara et al.,
1992; Ian et al., 1994; Reis, 1999; Pearce and Wiggins, 2006;
Cox, 2010), implicit learning, and the metal representation of

implicit knowledge (Dubnov, 2010; Wang, 2010; Rohrmeier and
Rebuschat, 2012). Particularly, Competitive Chunker (Servan-
Schreiber and Anderson, 1990), PARSER (Perruchet and Vinter,
1998), Information Dynamics of Music (IDyOM) (Pearce, 2005;
Pearce and Wiggins, 2012), and n-gram models (Pearce and
Wiggins, 2004) underpin the hypothesis that music is acquired
by extracting and concatenating chunks, which is a main
theory of implicit learning and statistical learning. Although
experimental approaches are necessary for understanding the
real-world brain's function in music acquisition, the modeling
approaches partially outperform experimental results under
conditions that are impossible to replicate in an experimental
approach. For example, they can directly verify much of the
real-world music and time-course variation over long time
periods (Daikoku, 2018a). Most experimental approaches use
the speci�c paradigms, which are ecologically unrealistic and
focus on the speci�c type of short-term learning e�ects (e.g.,
chord perception, prediction, and timing). Additionally, some
modeling approaches calculate statistics in music and device
models, and also evaluate the validities of these models by
neurophysiological and behavioral experiments and provide
possibilities of novel tasks for neural and behavioral experiments
(Potter et al., 2007; Pearce et al., 2010a,b; Pearce and Wiggins,
2012). A combination of the two approaches is better because
each can complement the weak points of the other approach
(Daikoku, 2018b).

The n-gram models, which correspond to various-order
Markov model (Markov, 1971), calculate TPs of sequences by
chopping them into short fragments (n-grams) up to a size of n,
and are frequently used in both experimental and computational
approaches (Pearce and Wiggins, 2004; Daikoku, 2018b). The
online musical production, however, is not the mere chopping
of one type of length of sequence, but it is a dynamical prediction
to maintain an aesthetic melody with various length of sequence,
temporal, and spectral features, and harmony that interact with
each other (Lerdahl and Jackendo�, 1983; Hauser et al., 2002;
Jackendo� and Lerdahl, 2006). That is, the musical production
is not restricted to a single stream of events or a hierarchy
but, rather, they interact with various hierarchical structures.
Previous computational (Conklin and Witten, 1995; Pearce and
Wiggins, 2012) and neural studies (Daikoku and Yumoto, 2017)
expanded the n-gram method to modeling the interaction of
parallel streams and enhanced the predictive power. However,
the model that su�ces to explain musical creativity cannot still
be devised. Nonetheless, thenth-order Markov models could
explain that the prediction continually occurs with each state
of sequence and that the entropy in the brain (i.e., the average
surprise of outcomes sampled from a probability distribution,
Applebaum, 2008) gradually decreases by exposure to musical
sequences. Thus, the TP distribution sampled from music based
on nth-order Markov models may refer to the characteristics
of a composer's super�cial-to-deep implicit knowledge: a high-
probability transition in music may be one that a composer
is more likely to predict and choose based on the latest n
states, compared to a low-probability transition. The notionhas
also been neurophysiologically demonstrated by our previous
studies (Daikoku et al., 2017b). The model has also been
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applied to develop arti�cial intelligence that give computers
learning and decision-making abilities similar to that of the
human brain, such as an automatic composition system (Raphael
and Stoddard, 2004; Eigenfeldt, 2010; Boenn et al., 2012) and
natural language processing (Brent, 1999; Manning and Schütze,
1999). Thus, the Markov model is used in the interdisciplinary
realms of neuroscience, behavioral science, engineering,and
informatics.

Temporal and Spectral Feature in Musical
Creativity
Temporal and spectral features are important pieces of
information for which to con�gure characteristics of each type
of music (e.g., individuality, genre, and culture). Additionally,
two types of information are not independent of each other,
but rather they closely interact. Thus, the relationships between
temporal (i.e., rhythm) and spectral (i.e., melody) structures
are a large question to understand music creativity. Some
researchers indicated that humans cannot learn temporal
structure independent of spectral structure (Buchner and
Ste�ens, 2001; Shin and Ivry, 2002; O'Reilly et al., 2008), whereas
other researchers demonstrated temporal implicit learning
independent of pitch information (Salidis, 2001; Ullén and
Bengtsson, 2003; Karabanov and Ulle'n, 2008; Brandon et al.,
2012) and vice versa (Daikoku et al., 2017d). Additionally,
neurophysiological and psychological studies suggested that
humans can learn relative rather than absolute temporal and
spectral (Daikoku et al., 2014, 2015) patterns. Thus, the
relationships between temporal and spectral features on musical
creativity and implicit learning remains controversial. Tothe
best of my knowledge, there are no integrated models that
cover temporal and spectral features in musical creativity. The
present study �rst provides the implicit-learning models that
unify temporal and spectral features in musical improvisation.
Additionally, this study investigated which information (spectral
and temporal) and hierarchy (1st to 6th orders) represent the
individualities of creativity. To comprehensively understand how
musical creativity occurs in the human brain and how temporal
and spectral features are integrated to constitute musical
individuality, it is necessary to investigate the relationships
between spectral and temporal statistics inherent in music via
various-order hierarchical models.

Study Purpose
The present study aimed to investigate the statistical di�erences
and interactions between the temporal and spectral structure
in improvisation among musicians using various-order Markov
models, and to examine which information (spectral and
temporal) and hierarchy represent the individualities of
musical creativity. The statistical characteristics of the nth-
order TP distribution of the spectral (pitch) and temporal
sequences (pitch length and rest) in improvisational music
were investigated. It was hypothesized that there were general
statistical characteristics shared among musicians and speci�c
statistical characteristics that were unique to each musician
in both spectral and temporal sequences. Additionally, it
was hypothesized that the detectability of the characteristics

depends on hierarchy. If so, the individuality may depend on
the depth of implicit knowledge. Furthermore, the chronological
time-course variations of the entropies (uncertainly) and the
predictability of each tone sequence were examined. It was
hypothesized that implicit knowledge in music gradually shifts
over a composer's lifetime. The present study �rst provided
the �ndings on which information (spectral and temporal) and
hierarchy (1st to 6th orders) represent the individualitiesof
musical creativity.

METHODS

Music Information Extraction
The music played by William John Evans (Autumn Leaves from
Portrait in Jazz, 1959; Israel from Explorations, February 1961;
I Love You Porgy from Waltz for Debby, June 1961; Stella by
Starlight from Conversations with Myself, 1963; Who Can I
Turn To? from Bill Evans at Town Hall, 1966; Someday My
Prince Will Come from the Montreux Jazz Festival, 1968; A
Time for Love from Alone, 1969), Herbert Je�rey Hancock
(Cantaloupe Island from Empyrean Isles, 1964; Maiden Voyage
from Flood, 1975; Someday My Prince Will Come from The
Piano, 1978; Dolphin Dance from Herbie Hancock Trio'81,
1981; Thieves in the Temple from The New Standard, 1996;
Cottontail from Gershwin's World, 1998; The Sorcerer from
Directions in Music, 2001), and McCoy Tyner (Man from
Tanganyika from Tender Moments, 1967; Folks from Echoes of
a Friend, 1972; You Stepped Out of a Dream from Fly with
the Wind, 1976; For Tomorrow from Inner Voice; 1977; The
Habana Sun from The Legend of the Hour, 1981; Autumn
Leaves from Revelations, 1988; Just in Time from Dimensions,
1984) were used in the present study. The highest pitches
including the length were chosen based on the following
de�nitions: the highest pitches that can be played at a given
point in time, pitches with slurs that can be counted as one,
and grace notes were excluded. In addition, the rests that
were related to highest-pitch sequences were also extracted.
This spectral and temporal information were divided into four
types of sequences: (1) a pitch sequence without length and
rest information (i.e., pitch sequence without rhythms); (2)
a rhythm sequence without pitch information (i.e., rhythm
sequence without pitches); (3) a pitch sequence with length and
rest information (i.e., pitch sequence with rhythms); and (4) a
rhythm sequence with pitch information (i.e., rhythm sequence
with pitches).

Stochastic Calculation
Pitch Sequence Without Rhythms
For each type of pitch sequence, all pitches were numbered so that
the �rst pitch was 0 in each transition, and an increase or decrease
in a semitone was 1 and� 1 based on the �rst pitch, respectively.
Representative examples were shown inFigure 1A. This revealed
the relative pitch-interval patterns but not the absolute pitch
patterns [30, 98]. This procedure was used to eliminate the e�ects
of the change in key on transitional patterns. Interpretationof
the key change depends on the musician, and it is di�cult to
de�ne in an objective manner. Thus, the results in the present
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FIGURE 1 | Representative phrases of transition patterns in pitch sequence without rhythms(A), rhythm sequences without pitches(B), pitch sequence with rhythms
(C), and rhythm sequences with pitches(D). The musical information was extracted by listening music information recording media and originally written for the
present study.

study may represent a variation in the statistics associatedwith
relative pitch rather than absolute pitch. According to recent
neurophysiological studies, human's implicit-learning system of
auditory sequence capture relative rather than absolute transition
patterns. In each piece of music for each musician, the TPs of
the pitch sequences were calculated as a statistic based on multi-
order Markov chains. The probability of a forthcoming pitch was
statistically de�ned by the last pitch to six successive pitches (i.e.,
�rst- to six-order Markov chains). Thenth-order Markov model

is based on the conditional probability of an element enC1, given
the precedingn elements:

P.enC1jen/ D
P(enC1 \ en)

P(en)
(1)

Rhythm Sequence Without Pitches
The onset times of each note were used for analyses. Although
note onsets ignore the length of notes and rests, this methodology
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can capture the most essential rhythmic features of the music
[30,99]. To extract a temporal interval between adjacent notes,
all onset times were subtracted from the onset of the preceding
note. Then, for each type of rhythm sequence, the second to
last temporal interval was divided by the �rst temporal interval.
Representative examples are shown inFigure 1B. This revealed
relative rhythm patterns but not absolute rhythm patterns; itis
independent of the tempo of each piece of music. In each piece
of music in each musician, the TPs of the rhythm sequences were
calculated as a statistic based on multi-order Markov chains. The
probability of a forthcoming temporal interval was statistically
de�ned by the last temporal interval to six successive temporal
intervals, respectively (i.e., �rst- to six-order Markov chains).

Pitch Sequence With Rhythms
The two methodologies of pitch and rhythm sequences were
combined. For each type of sequence, all pitches were numbered
so that the �rst pitch was 0 in each transition, and an increase
or decrease in a semitone was 1 and� 1 based on the �rst pitch,
respectively. Additionally, for each type of pitch sequence, all
onset times were subtracted from the onset of the preceding note,
and the second to last temporal intervals were divided by the
�rst temporal interval. The representative examples were shown
in Figure 1C. For each piece of music for each musician, the
TPs of the pitch sequences with rhythms were calculated as a
statistic based on multi-order Markov chains. The probability of
a forthcoming pitch with temporal information was statistically
de�ned by the last pitch with temporal information to six
successive pitches with temporal information, respectively (i.e.,
�rst- to six-order Markov chains). In the �rst-order hierarchical
model of the pitch sequence with rhythms, a temporal interval
was calculated as a ratio to the crotchet (i.e., quarter note),
because only a temporal interval is included for each sequence
and the note length cannot be calculated as a relative temporal
interval. Thus, the patterns of pitch sequence (p) with rhythms
(r) were represented as [p] with [r].

Rhythm Sequence With Pitches
The methodologies of sequence extraction were the same as those
of the pitch sequence with rhythm (seeFigure 1D), whereas the
TPs of the rhythm, but not pitch, sequences were calculated asa
statistic based on multi-order Markov chains. The probability of a
forthcoming temporal interval with pitch was statistically de�ned
by the last temporal interval with pitch to six successive temporal
interval with pitch (i.e., �rst- to six-order Markov chains). Thus,
the relative pattern of rhythm sequence (r) with pitches (p) were
represented as [r] with [p].

Statistical Analysis
The TP distributions were analyzed by principal component
analysis. The criteria of eigenvalue were set over 1. The �rst
two components (i.e., the �rst and second highest cumulative
contribution ratios) were adopted in the present study. Then,
the information contents [I(enC1|en)] of TP were calculated
based on information theory (Shannon, 1951). Furthermore,
the conditional entropy[H(AB)] in n-order was calculated from

information content:

I .enC1jen/ D log2
1

P.enC1jen/
(bit) (2)

H .BjA/ D �
X

i

X

j

P(ai)P
�
bj

�
�ai

�
log2 P

�
bj

�
�ai

�
(bit)

(3)

whereP(bj|ai) is a conditional probability of sequence“ai bj.” The
entropy were chronologically ordered based on the time courses
in which music is played in each musician. The time-course
variations of the entropies were analyzed by multiple regression
analyses using the stepwise method. The criteria of the variance
in�ation factor (VIF) and condition index (CI) were set at VIF
< 2 and CI< 20 to con�rm that there was no multi collinearity
(Cohen et al., 2003).

Furthermore, in each musician, seven pieces of music were
averaged in each type of sequence. The transitional patterns with
�rst to �fth highest TPs in each musician, which show higher
predictabilities in each musician, were used in the regression
analyses. The transitional patterns were chronologically ordered
based on the time courses in which music is played in each
musician. The time-course variations of the TPs were analyzed
by multiple regression analyses using the stepwise method. The
criteria of the variance in�ation factor (VIF) and condition index
(CI) were set at VIF< 2 and CI< 20 to con�rm that there was
no multi collinearity.

The logit transformation was applied to normalize the TPs.
Then, using the transitional patterns with �rst to �fth highest
TPs in each musician, the repeated-measure analysis of variances
(ANOVAs) with a between-factor player (WJ. Evans vs. HJ.
Hancock vs. M. Tyner) and a within-factor sequences for
each hierarchy of Markov model were conducted. When we
detected signi�cant e�ects, Bonferroni-correctedpost-hoctests
were conducted for further analysis. Statistical signi�cance levels
were set atp D 0.05 for all analyses.

RESULTS

PCA
Pitch Sequence Without Rhythms
The eigenvalue and percentages of variance, and the comulative
variance and the eigenvectors for the principal components was
shown in aSupplementary File. In the �rst-order hierarchical
model (Figure 2A), the two components accounted for 91.445%
of the total variance. All of the pieces of music loaded higher
than.82 on component 1, suggesting that this explains the general
component of jazz musical improvisation in three musicians. The
eigenvectors of the pieces of music by W. J. Evans were higher
than M. Tyner in component 2, suggesting that this explains
a component of W. J. Evans or M. Tyner. The component
of H. J. Hancock could not be detected. In the second-order
hierarchical model, the two components accounted for 20.365%
of the total variance. All of the pieces of music loaded higher
than.18 on component 1, suggesting that this explains the general
component of jazz musical improvisation in three musicians.
In M. Tyner, the eigenvectors other than “The habana sun”
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FIGURE 2 | Principal component analysis scatter plots in pitch sequence without rhythms (A), rhythm sequences without pitches(B), pitch sequence with rhythms
(C), and rhythm sequence with pitches(D). The horizontal and vertical axes represent principal component 1 and 2, respectively. The dots represent each piece of
music.
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were higher than W. J. Evans in component 2, suggesting that
this explains a component of W. J. Evans or M. Tyner. The
component of H. J. Hancock could not be detected. In the third-
order hierarchical model, the two components accounted for
13.818% of the total variance. In H. J. Hancock and M. Tyner,
the eigenvectors other than “Cotton tail” were lower than W.J.
Evans in component 1, suggesting that this explains a component
of W. J. Evans or a component combining H. J. Hancock and M.
Tyner. No obvious di�erence among musicians could be detected
in component 2. In the forth-, �fth-, and sixth-order hierarchical
models, the two components accounted for 11.663, 10.968, and
10.586% of the total variance, respectively. The eigenvectors of
the pieces of music by W. J. Evans were higher than H. J. Hancock
and M. Tyner in component 1, suggesting that this explains a
component of W. J. Evans or a component combining H. J.
Hancock and M. Tyner. The eigenvectors of the pieces of music
by H. J. Hancock were generally lower than W. J. Evans and
M. Tyner in component 2, suggesting that this explains a weak
component of H. J. Hancock or a component combining W. J.
Evans and M. Tyner.

Rhythm Sequence Without Pitches
In the �rst-order hierarchical model (Figure 2B), only one
component, which accounted for 98.685% of the total variance,
could be detected. The two components accounted for 91.445% of
the total variance. All of the pieces of music loaded higher than.95
on the component, suggesting that this explains the general
component of jazz musical improvisation in three musicians.
In the second-, third-, forth, �fth-, and sixth-order hierarchical
models, the two components accounted for 29.325, 20.985,
17.153, 14.780, and 13.376% of the total variance, respectively.
No obvious di�erence among musicians could be detected in
stochastic models of rhythms.

Pitch Sequence With Rhythms
In the �rst-order hierarchical models (Figure 2C), the two
components accounted for 13.481% of the total variance. No
obvious di�erence among musicians could be detected in
component 1. In W. J. Evans, the eigenvectors other than “I
love you porgy” were higher than M. Tyner in component 2,
suggesting that this explains a component of W. J. Evans or
M. Tyner. In the second-order hierarchical models, the two
components accounted for 11.558% of the total variance. In W.J.
Evans, the eigenvectors other than “I love you porgy” were higher
than H. J. Hancock and M. Tyner in component 1, suggesting
that this explains a component of W. J. Evans or a component
combining H. J. Hancock and M. Tyner. No obvious di�erence
among musicians could be detected in component 2. In the third-
order hierarchical model, the two components accounted for
10.970% of the total variance. The eigenvectors of the piecesof
music by W. J. Evans were higher than H. J. Hancock and M.
Tyner in component 1, suggesting that this explains a component
of W. J. Evans or a component combining H. J. Hancock and M.
Tyner. No obvious di�erence among musicians could be detected
in component 2. In the forth-order hierarchical model, the two
components accounted for 10.774% of the total variance. In H.
J. Hancock and M. Tyner, the eigenvectors other than “Dolphin

dance” were lower than W. J. Evans in component 1, suggesting
that this explains a component of W. J. Evans or a component
combining H. J. Hancock and M. Tyner. The eigenvectors of
the pieces of music by H. J. Hancock were generally lower
than W. J. Evans and M. Tyner in component 2, suggesting
that this explains a weak component of H. J. Hancock or a
component combining W. J. Evans and M. Tyner. In the �fth-
order hierarchical model, the two components accounted for
10.515% of the total variance. The eigenvectors of the piecesof
music by W. J. Evans were higher than M. Tyner in component
1 and lower than H. J. Hancock in component 2, suggesting
that these explain components of W. J. Evans, M. Tyner, and
H. J. Hancock. In the sixth-order hierarchical model, the two
components accounted for 10.344% of the total variance. In M.
Tyner, the eigenvectors other than “For tomorrow” were higher
than W. J. Evans and H. J. Hancock in component 1, suggesting
that this explains a component of M. Tyner or a component
combining W. J. Evans and H. J. Hancock. In W. J. Evans, the
eigenvectors other than “Israel” were higher than H. J. Hancock
in component 2, suggesting that these explain components of W.
J. Evans or H. J. Hancock.

Rhythm Sequence With Pitches
In the �rst-order hierarchical model (Figure 2D), the two
components accounted for 27.736% of the total variance. All
of the pieces of music loaded higher than.25 on component
1, suggesting that this explains the general component of jazz
musical improvisation in three musicians. The eigenvectorsof
the pieces of music by W. J. Evans were lower than M. Tyner in
component 2, suggesting that this explains a component of W.
J. Evans or M. Tyner. In the second-order hierarchical model,
the two components accounted for 12.561% of the total variance.
The eigenvectors of the pieces of music by W. J. Evans were
higher than M. Tyner in component 1, suggesting that this
explains a component of W. J. Evans or M. Tyner. No obvious
di�erence among musicians could be detected in component
2. In the third- and forth-order hierarchical models, the two
components accounted for 11.135 and 10.658% of the total
variance, respectively. The eigenvectors of the pieces of music
by W. J. Evans were higher than M. Tyner in component 1,
suggesting that this explains a component of W. J. Evans or M.
Tyner. In W. J. Evans, the eigenvectors other than “I love you
porgy” in the third- and “Israel” in the forth-order hierarchical
models were higher than H. J. Hancock in component 2,
suggesting that this explains a component of W. J. Evans or
H. J. Hancock. In the �fth-order hierarchical model, the two
components accounted for 10.386% of the total variance. In M.
Tyner, the eigenvectors other than “Autumn leaves” were higher
than W. J. Evans in component 1, suggesting that this explains a
component of W. J. Evans or M. Tyner. Tyner. The eigenvectors
of the pieces of music by H. J. Hancock were generally lower than
W. J. Evans and M. Tyner in component 2, suggesting that this
explains a weak component of H. J. Hancock or a component
combining W. J. Evans and M. Tyner. In the sixth-order
hierarchical model, the two components accounted for 10.269%
of the total variance. In H. J. Hancock, the eigenvectors other
than “The sorcerer” were lower than M. Tyner in component 1,
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suggesting that this explains a weak component of H. J. Hancock
or M. Tyner. In W. J. Evans, the eigenvectors other than “I love
you porgy” were lower than M. Tyner in component 2, suggesting
that this explains a weak component of W. J. Evans or M. Tyner.

ANOVA
Pitch Sequence Without Rhythms
In the �rst-order hierarchical models, the main sequence
e�ect were signi�cant [F(2.99, 53.84)D 7.51,p < 0.001, partial
� 2 D 0.29,Table 1A]. The main musician e�ect were signi�cant
[F(2, 18) D 4.29, p D 0.030, partial� 2 D 0.32]. The TPs in
W. J. Evans were signi�cantly higher than those in M. Tyner
(p D 0.046). The musician-sequence interactions were signi�cant
[F(12) D 6.54, p < 0.001, partial� 2 D 0.42, Figure 3 and
Tables 1B–D]. The TP of [0, � 1] was signi�cantly higher in
W. J. Evans than M. Tyner (pD 0.008). The TP of [0, 0] was
signi�cantly lower in W. J. Evans than M. Tyner (p D 0.043).
The TP of [0, 1] was signi�cantly higher in W. J. Evans than
H. J. Hancock (p D 0.003) and M. Tyner (p < 0.001). In the
second-order hierarchical models, the main musician e�ect were
signi�cant [F(2, 18) D 7.11,p D 0.005, partial� 2 D 0.44]. The
TPs in M. Tyner were signi�cantly lower than those in W. J.
Evans (p D 0.006) and H. J. Hancock (p D 0.041). The musician-
sequence interactions were signi�cant [F(20) D 3.72,p < 0.001,
partial � 2 D 0.29,Figure 3andTables 1B–D]. The TP of [0,� 1,
� 2] was signi�cantly lower in M. Tyner than W. J. Evans (pD
0.006) and H. J. Hancock (p D 0.042). The TP of [0,� 2, � 3] was
signi�cantly higher in W. J. Evans than H. J. Hancock (pD 0.033)
and M. Tyner (p< 0.001), and higher in H. J. Hancock than M.
Tyner (p D 0.027). The TP of [0,� 2, 0] was signi�cantly higher
in M. Tyner than W. J. Evans (p D 0.047). The TP of [0, 2, 3] was
signi�cantly higher in W. J. Evans than H. J. Hancock (pD 0.005)
and M. Tyner (p< 0.001). In the third-order hierarchical models,
the main sequence e�ect were signi�cant [F(5.13, 10.26)D 5.00,p
< 0.001, partial� 2 D 0.22,Table 1A]. The musician-sequence
interactions were signi�cant [F(24) D 3.89,p < 0.001, partial
� 2 D 0.30,Figure 3 and Tables 1B–D]. The TP of [0,� 1, � 2,
� 3] was signi�cantly lower in M. Tyner than W. J. Evans (p <
0.001) and H. J. Hancock (p D 0.008). The TP of [0,� 1, � 3, � 4]
was signi�cantly lower in M. Tyner than W. J. Evans (p D 0.003).
The TP of [0,� 3, � 7, � 5] was signi�cantly higher in M. Tyner
than W. J. Evans (p D 0.040) and H. J. Hancock (p D 0.009).
The TP of [0, 0, 0, 0] was signi�cantly lower in W. J. Evans than
H. J. Hancock (p D 0.037) and M. Tyner (p D 0.012). The TP
of [0, 1, 3, 4] was signi�cantly higher in W. J. Evans than H.
J. Hancock (p < 0.001) and M. Tyner (p < 0.001). The TP of
[0, 2, 4, 5] was signi�cantly higher in W. J. Evans than H. J.
Hancock (p D 0.034) and M. Tyner (p < 0.001), and higher in
H. J. Hancock than M. Tyner (p D 0.021). In the forth-order
hierarchical models, the main sequence e�ect were signi�cant
[F(4.65, 9.30)D 2.40,p D 0.048, partial� 2 D 0.12,Table 1A]. The
musician-sequence interactions were signi�cant [F(26) D 5.92,p
< 0.001, partial� 2 D 0.40,Figure 3andTables 1B–D]. The TP of
[0, � 1, � 2, � 3, � 4] was signi�cantly higher in W. J. Evans than
H. J. Hancock (p D 0.015) and M. Tyner (p < 0.001), and higher
in H. J. Hancock than M. Tyner (p D 0.024). The TP of [0,� 2,
� 4, 0,� 2] was signi�cantly higher in M. Tyner than W. J. Evans

TABLE 1 | The difference in TPs among pitch sequences without rhythmsin each
musician.

Order Sequence A Sequence B A-B SE p-value

A. GENERAL

1st 0, � 2 0, � 3 0.076 0.02 0.023

0, 0 0.173 0.02 < 0.001

0, 1 0.116 0.03 0.028

0, 3 0.122 0.014 < 0.001

0, � 3 0,0 0.097 0.02 0.002

0,3 0.045 0.01 0.005

3rd 0, � 3, � 7, � 5 0, 4, 2, 0 � 0.742 0.159 0.015

0, 2, 4, 6 0, � 1, � 2, � 3 � 0.398 0.079 0.007

0, 1, 3, 5 � 0.519 0.152 0.24

0, 2, 3, 5 � 0.621 0.11 0.002

0, 2, 4, 5 � 0.383 0.068 0.002

0, 4, 2, 0 � 0.831 0.176 0.014

4th 0, 2, 4, 6, 8 0, � 1, � 2, � 3, � 4 � 0.452 0.077 0.001

0, � 3, � 2,2,5 � 0.616 0.068 < 0.001

0, 1, 3, 4, 6 � 0.68 0.147 0.019

0, 1, 5, 8, 12 � 0.714 0.169 0.046

0, 2, 4, 5, 7 � 0.786 0.184 0.041

B. W. J. EVANS

1st 0, 0 0, � 1 � 0.279 0.069 0.016

0, � 2 � 0.213 0.035 < 0.001

0, � 3 � 0.177 0.034 0.001

0, 1 � 0.294 0.053 0.001

0, 3 � 0.149 0.034 0.007

2nd 0, � 2, � 3 0, � 2, 0 0.435 0.09 0.007

0,2,3 0, � 2, � 4 0.585 0.124 0.009

0, � 2, 0 0.688 0.115 0.001

0,2,4 0.557 0.12 0.012

3rd 0, � 1, � 2, � 3 0, � 3, � 7, � 5 0.869 0.2 0.03

0, 0, 0, 0 1.09 0.208 0.004

0, 2, 4, 6 0.838 0.138 0.001

0, 1, 3, 4 0, � 1, � 3, � 4 0.442 0.099 0.023

0, � 2, � 4, � 2 0.991 0.152 < 0.001

0, � 3, � 7, � 5 0.992 0.149 < 0.001

0, 0, 0, 0 1.214 0.234 0.005

0, 2, 4, 6 0.961 0.147 < 0.001

0, 2, 4, 5 0, � 2, � 4, � 2 0.924 0.209 0.026

0, � 3, � 7, � 5 0.925 0.196 0.013

0, 0, 0, 0 1.147 0.226 0.006

0, 2, 4, 6 0.894 0.118 < 0.001

4th 0, � 3, � 2,2,5 0, � 1, � 2, � 3, � 4 1.019 0.122 < 0.001

0, � 2, � 4, 0, � 2 2.113 0.287 < 0.001

0, � 2, 2, 0, � 2 2.113 0.297 < 0.001

0, � 3, 2, 0, � 3 1.642 0.358 0.021

0, 0, 0, 0, 0 2.113 0.219 < 0.001

0, 1, 3, 5, 6 1.459 0.212 < 0.001

0, 2, 3, 5, 6 1.134 0.164 < 0.001

0, 2, 3, 5, 7 1.663 0.296 0.002

0, 2, 4, 6, 8 2.113 0.119 < 0.001

0, 5, 3, 0, � 4 1.956 0.188 < 0.001

(Continued)
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TABLE 1 | Continued

Order Sequence A Sequence B A-B SE p-value

0, 0, 0, 0, 0 0, � 1, � 2, � 3, � 4 � 1.094 0.19 0.002

0, 1, 5, 8, 12 � 1.623 0.383 0.045

0, 2, 4, 6, 8 0, � 1, � 2, � 3, � 4 � 1.094 0.134 < 0.001

0, 1, 3, 4, 6 � 1.28 0.255 0.008

0, 1, 5, 8, 12 � 1.623 0.293 0.003

0, 2, 3, 5, 6 � 0.979 0.194 0.008

5th 0, � 3, � 2, 2, 5, 9 0, � 1, � 2, � 3, � 4,
� 5

1.077 0.183 0.002

0, � 2, � 4, � 7, � 2,
� 4

1.863 0.194 < 0.001

0, � 2, � 4, 0, � 2,
� 4

1.863 0.272 < 0.001

0, � 2, � 5, 0, � 2,
� 5

1.549 0.264 0.002

0, � 3, 0, 0, � 3, 0 1.863 0.254 < 0.001

0, � 4, � 7, � 2, � 5,
� 9

1.863 0.275 < 0.001

0, 0, 0, 0, 0, 0 1.863 0.237 < 0.001

0, 1, 2, 3, 4, 5 1.246 0.222 0.003

0, 2, 3, 5, 7, 8 1.344 0.231 0.002

0, 2, 4, 6, 8, 10 1.863 0.172 < 0.001

0, 1, 3, 4, 6, 7 0, � 2, � 4,
� 7,� 2,� 4

1.361 0.228 0.001

0, � 2, � 4, 0, � 2,
� 4

1.361 0.297 0.024

0, � 3, 0, 0, � 3, 0 1.361 0.28 0.013

0, � 4, � 7, � 2, � 5,
� 9

1.361 0.299 0.026

0, 0, 0, 0, 0, 0 1.361 0.265 0.007

0, 2, 4, 6, 8, 10 1.361 0.209 < 0.001

0, 3, 0, 1, 5, 8 0, � 2, � 4, � 7, � 2,
� 4

1.883 0.247 < 0.001

0, � 2, � 4, 0, � 2,
� 4

1.883 0.312 0.001

0, � 2, � 5, 0, � 2,
� 5

1.569 0.306 0.007

0, � 3, 0, 0, � 3,0 1.883 0.296 0.001

0, � 4, � 7, � 2, � 5,
� 9

1.883 0.314 0.001

0, 0, 0, 0, 0, 0 1.883 0.281 < 0.001

0, 2, 3, 5, 7, 8 1.364 0.236 0.002

0, 2, 4, 6, 8, 10 1.883 0.23 < 0.001

6th 0, 3, 0, 1, 5, 8, 12 0, � 1, � 2, � 1, � 2,
� 3, � 2

1.658 0.289 0.002

0, � 1, � 2, 1, 0, � 1,
� 2

1.344 0.284 0.017

0, � 1, 0, � 1, � 2,
� 1, � 2

1.658 0.258 < 0.001

0, � 2, � 4, � 7, � 2,
� 4, � 7

1.658 0.302 0.003

0, � 3, 2, � 3, 0, � 3,
2

1.658 0.315 0.006

0, � 3, 4, 2, 0, 2, 0 1.658 0.258 < 0.001

0, � 4, � 7, � 2, � 5,
� 9, � 7

1.658 0.297 0.003

(Continued)

TABLE 1 | Continued

Order Sequence A Sequence B A-B SE p-value

0, 0, � 3, 0, 0, � 3, 0 1.658 0.258 < 0.001

0, 0, 0, 0, 0 ,0, 0 1.658 0.281 0.001

0, 1, 3, 4, 6, 7, 9 1.07 0.187 0.002

0, 2, 4, 5, 7, 9, 10 1.344 0.269 0.01

0, 4, 7, 4, 5, 9, 12 0, � 1, � 2, � 1, � 2,
� 3, � 2

1.569 0.323 0.013

0, � 1, 0, � 1, � 2,
� 1, � 2

1.569 0.296 0.005

0, � 2, � 4, � 7, � 2,
� 4, � 7

1.569 0.335 0.019

0, � 3, 2, � 3, 0, � 3,
2

1.569 0.347 0.028

0, � 3, 4, 2, 0, 2, 0 1.569 0.296 0.005

0, � 4, � 7, � 2, � 5,
� 9, � 7

1.569 0.331 0.017

0, 0,� 3, 0, 0, � 3,0 1.569 0.296 0.005

0, 0, 0, 0, 0, 0, 0 1.569 0.316 0.011

0, 1, 3, 4, 6, 7, 9 0.982 0.199 0.011

0, 2, 4, 5, 7, 9, 10 1.256 0.286 0.038

C. H. J. HANCOCK

1st 0, � 2 0, 0 0.132 0.035 0.029

0, 3 0.13 0.024 0.001

4th 0, � 1, � 2, � 3, � 4 0, � 3, � 2, 2, 5 0.529 0.122 0.036

D. M. TYNER

1st 0, � 2 0, � 1 0.255 0.06 0.01

0, 0 0.175 0.035 0.002

0, 1 0.29 0.053 0.001

0, 3 0.171 0.024 < 0.001

0, � 3 0,3 0.084 0.017 0.002

0,1 0, � 3 � 0.202 0.05 0.016

0,2 � 0.231 0.049 0.003

3rd 0, � 1, � 2, � 3 0, 1, 3, 5 � 0.889 0.211 0.04

0, � 1, � 3, � 4 0, � 2, � 3, � 5 � 0.713 0.165 0.033

4th 0,� 2,� 4,0,� 2 0, � 1, � 2, � 3, � 4 1.402 0.266 0.005

0, � 3, � 2, 2, 5 1.402 0.287 0.011

0, 1, 3, 5, 6 1.402 0.312 0.026

0, 2, 3, 5, 6 1.402 0.33 0.044

0, 2, 4, 6, 8 1.402 0.237 0.001

0, 5, 3, 0, � 4 0, � 1, � 2, � 3, � 4 1.148 0.23 0.009

0, � 3, � 2, 2, 5 1.148 0.188 0.001

0, 1, 3, 5, 6 1.148 0.255 0.025

0, 2, 3, 5, 6 1.148 0.242 0.015

0, 2, 4, 6, 8 1.148 0.214 0.004

5th 0, � 2, � 4, 0, � 2,
� 4

0, 2, 4, 6, 8, 10 1.086 0.211 0.007

(p D 0.008) and H. J. Hancock (p D 0.042). The TP of [0,� 3, � 2,
2, 5] was signi�cantly higher in W. J. Evans than H. J. Hancock
(p < 0.001) and M. Tyner (p < 0.001). The TP of [0, 1, 5, 8, 12]
was signi�cantly higher in W. J. Evans than M. Tyner (pD 0.004).
The TP of [0,2,3,5,6] was signi�cantly higher in W. J. Evans than
H. J. Hancock (p D 0.006) and M. Tyner (p < 0.001). The TP of
[0, 5, 3, 0,� 4] was signi�cantly higher in M. Tyner than W. J.
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Evans (p D 0.004) and H. J. Hancock (p D 0.001). In W. J. Evans,
the TPs of [0,� 3, � 2, 2, 5] was signi�cantly higher than those of
[0, � 1, � 2, � 3, � 4] (p < 0.001), [0,� 2, � 4,0,� 2] (p < 0.001),
[0, � 2,2,0,� 2] (p < 0.001), [0,� 3,2,0,� 3] (p D 0.021), [0, 0, 0,
0, 0] (p < 0.001), [0, 1, 3, 5, 6] (p < 0.001), [0, 2, 3, 5, 6] (p <
0.001), [0, 2, 3, 5, 7] (p D 0.002), [0, 2, 4, 6, 8] (p < 0.001), and
[0,5,3,0,� 4] (p < 0.001). The TPs of [0,0,0,0,0] was signi�cantly
lower than those of [0,� 1, � 2, � 3, � 4] (p D 0.002) and [0, 1, 5,
8, 12] (p D 0.045). The TPs of [0,2,4,6,8] was signi�cantly lower
than those of [0,� 1, � 2, � 3, � 4] (p < 0.001), [0, 1, 3, 4, 6] (p D
0.008), [0, 1, 5, 8, 12] (p D 0.003), and [0, 2, 3, 5, 6] (p D 0.008).
In the �fth-order hierarchical models, the main musician e�ect
were signi�cant [F(2, 18) D 4.13,p D 0.033, partial� 2 D 0.32].
The TPs in M. Tyner were signi�cantly lower than those in W. J.
Evans (p D 0.006) and H. J. Hancock (p D 0.041). The musician-
sequence interactions were signi�cant [F(28) D 7.07,p < 0.001,
partial � 2 D 0.44,Figure 3andTables 1B–D]. The TP of [0,� 2,
� 4,� 7, � 2, � 4] was signi�cantly higher in M. Tyner than W.
J. Evans (p D 0.008) and H. J. Hancock (p D 0.008). The TP of
[0, � 2, � 4,0,� 2, � 4], [0, 1, 3, 4, 6, 7], and [0, 3, 0, 1, 5, 8] was
signi�cantly higher in M. Tyner than W. J. Evans (pD 0.022). The
TP of [0,� 3, � 2, 2, 5, 9] was signi�cantly higher in W. J. Evans
than and H. J. Hancock and M. Tyner (all:p < 0.001). The TP
of [0, 1, 3, 5, 6, 8] was signi�cantly lower in H. J. Hancock than
M. Tyner (p D 0.022). In the sixth-order hierarchical models, the
musician-sequence interactions were signi�cant [F(28) D 5.09,p
< 0.001, partial� 2 D 0.36,Figure 3andTables 1B–D]. The TP of
[0, � 1, � 2, � 3, � 4, � 5, � 6] was signi�cantly lower in M. Tyner
than W. J. Evans (p D 0.037). The TP of [0,� 2, � 4, � 7, � 2, � 4,
� 7] was signi�cantly higher in M. Tyner than W. J. Evans (p D
0.014) and H. J. Hancock (p D 0.014). The TP of [0, 3, 0, 1, 5, 8,
12] and [0, 4, 7, 4, 5, 9, 12] was signi�cantly higher in W. J. Evans
than H. J. Hancock and M. Tyner (p < 0.001).

Rhythm Sequence Without Pitches
In the �rst-order hierarchical models, the main sequence e�ect
were signi�cant [F(1.24, 22.36) D 553.50, p < 0.001, partial
� 2 D 0.97,Table 2A]. The musician-sequence interactions were
signi�cant [F(12) D 2.03,p D 0.028, partial� 2 D 0.18,Figure 4,
Tables 2B–D]. The TP of [1, 3] was signi�cantly higher in M.
Tyner than W. J. Evans (p D 0.015) and H. J. Hancock (p D
0.023). The TP of [1, 0.333] was signi�cantly higher in M. Tyner
than W. J. Evans (p D 0.006) and H. J. Hancock (p D 0.002).
In the second-order hierarchical models, the main sequence
e�ect were signi�cant [F(2.09, 37.68)D 74.54,p < 0.001, partial
� 2 D 0.81,Table 2A]. The musician-sequence interactions were
signi�cant [F(12) D 2.07,p D 0.025, partial� 2 D 0.19,Figure 4,
Tables 2B–D]. The TP of [1, 0.333] was signi�cantly higher in H.
J. Hancock than W. J. Evans (p D 0.015). In W. J. Evans, the TPs
of [1, 1, 1] was signi�cantly higher than those of [1, 0.5, 1],[1,
1, 1.5], [1, 1, 2], [1, 2, 1], and [1, 2, 2] (all:p < 0.001). The TPs
of [1,0.5,0.5] was signi�cantly higher than those of [1, 0.5, 1] (p
D 0.013), [1,1,1.5] (p < 0.001), [1, 1, 2] (p < 0.001), and [1, 2,
2] (p D 0.003). The TPs of [1, 2, 1] was signi�cantly higher than
[1, 0.5, 1] (p D 0.034), [1, 1, 1.5] (p < 0.001), and [1, 1, 2] (p D
0.001). The TPs of [1, 2, 1] was signi�cantly higher than [1, 1,
1.5] (p < 0.001) and [1, 1, 2] (p < 0.001). In H. J. Hancock, the

TPs of [1, 1, 1] was signi�cantly higher than those of [1, 0.5,1],
[1, 1, 1.5], [1, 1, 2], [1 ,2, 1], and [1, 2, 2] (all:p < 0.001). The
TPs of [1, 0.5, 0.5] was signi�cantly higher than those of [1,1,
1.5] (p < 0.001) and [1, 1, 2] (p D 0.001). The TPs of [1, 2, 1]
was signi�cantly higher than [1, 2, 2] (p D 0.027), [1, 0.5, 1] (p
D 0.038), [1, 1, 1.5] (p < 0.001), and [1, 1, 2] (p < 0.001). The
TPs of [1, 2, 2] was signi�cantly higher than [1, 1, 1.5] (p< 0.001)
and [1, 1, 2] (p D 0.037). The TPs of [1, 1, 1.5] was signi�cantly
lower than those of [1, 1, 2] (p D 0.006) and [1, 0.5, 1] (p D
0.015). In the third-order hierarchical models, the main sequence
e�ect were signi�cant [F(2.80, 50.41)D 45.17,p < 0.001, partial
� 2 D 0.72,Table 2A]. The musician-sequence interactions were
signi�cant [F(14) D 2.58,p D 0.03, partial� 2 D 0.22,Figure 4,
Tables 2B–D]. The TP of [1,0.667, 0.667, 0.667] was signi�cantly
higher in W. J. Evans than H. J. Hancock (p D 0.016). The TP
of [1, 1, 1, 1.5] was signi�cantly higher in W. J. Evans than
H. J. Hancock (p D 0.002) and M. Tyner (p D 0.043). In the
forth-order hierarchical models, the main sequence e�ect were
signi�cant [F(2.62, 47.21)D 22.03,p < 0.001, partial� 2 D 0.55,
Table 2A]. In the �fth-order hierarchical models, the main
sequence e�ect were signi�cant [F(3.02, 54.32)D 16.21,p < 0.001,
partial� 2 D 0.47,Table 2A]. The musician-sequence interactions
were signi�cant [F(16) D 2.11,p D 0.011, partial� 2 D 0.19,
Figure 4, Tables 2B–D]. In the sixth-order hierarchical models,
the main sequence e�ect were signi�cant [F(3.28, 59.06)D 17.89,
p < 0.001, partial� 2 D 0.50,Table 2A]. The musician-sequence
interactions were signi�cant [F(16) D 2.22,p D 0.007, partial
� 2 D 0.20,Figure 4andTables 2B–D].

Pitch Sequence With Rhythms
The relative pattern of Pitch sequence (p) with rhythms (r) were
represented as [p] with [r]. In the �rst-order hierarchical models,
the musician-sequence interactions were signi�cant [F(28) D 1.89,
p D 0.006, partial� 2 D 0.17,Figure 5]. The TP of [0, 1] with [0.5]
was signi�cantly higher in W. J. Evans than H. J. Hancock and M.
Tyner (p < 0.001). In the second-order hierarchical models, the
musician-sequence interactions were signi�cant [F(28) D 3.58,p
D 0.006, partial� 2 D 0.28,Figure 5]. The TP of [0,� 1, � 2] with
[1, 0.5], [0, 4,7] with [1, 0.5], and [0,� 3, � 2] with [1, 1.5] was
signi�cantly higher in W. J. Evans than M. Tyner (p D 0.031,p D
0.038, andp D 0.023, respectively). The TP of [0, 4, 7] with [1,1]
was signi�cantly higher in W. J. Evans than H. J. Hancock and M.
Tyner (p < 0.001). The TP of [0, 7, 0] with [1, 1] was signi�cantly
higher in H. J. Hancock than M. Tyner (p D 0.029). The TP of [0,
4, 2] with [1, 2] was signi�cantly higher in M. Tyner than W. J.
Evans (p D 0.005) and H. J. Hancock (p D 0.007). The TP of [0,
2, 0] with [1, 3] was signi�cantly higher in H. J. Hancock than W.
J. Evans (p D 0.043). In the third-order hierarchical models, the
musician-sequence interactions were signi�cant [F(28) D 4.91,p
< 0.001, partial� 2 D 0.35,Tables 3A,Band Figure 5]. The TP
of [0, � 1, � 2, � 3] with [1,0.5,0.5] was signi�cantly higher in
W. J. Evans than H. J. Hancock (p D 0.036) and M. Tyner (p D
0.007). The TP of [0,� 2, � 5, � 7] with [1, 1, 1] was signi�cantly
lower in W. J. Evans than H. J. Hancock (p D 0.042). The TP
of [0, � 2, 2, 0] with [1, 1, 1], and [0, 5, 3, 0] with [1, 1, 1] was
signi�cantly higher in M. Tyner than W. J. Evans (p D 0.039
and p D 0.004, respectively). The TP of [0,� 4, 3, 0] with [1,
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FIGURE 3 | The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in pitch sequence without rhythms.

1, 1] was signi�cantly higher in M. Tyner than W. J. Evans (p
D 0.031) and H. J. Hancock (p D 0.013). The TP of [0, 1, 5, 8]
with [1, 1, 1] was signi�cantly higher in W. J. Evans than H. J.
Hancock (p D 0.011) and M. Tyner (p < 0.001). The TP of [0,
2, 4, 5] with [1, 1, 1] was signi�cantly lower in M. Tyner than

W. J. Evans (p < 0.001) and H. J. Hancock (p D 0.041). The
TP of [0, 3, 0, 1] with [1, 1, 1] was signi�cantly higher in W. J.
Evans than H. J. Hancock (p D 0.027) and M. Tyner (p D 0.001).
The TP of [0, 7, 4, 5] with [1, 1, 1] was signi�cantly higher in
W. J. Evans than H. J. Hancock (p D 0.027) and M. Tyner (p
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TABLE 2 | The difference in TPs among rhythm sequences without pitches in
each musician.

Order Sequence A Sequence B A-B SE p-value

A. GENERAL

1st 1, 1 1, 2 1.088 0.054 < 0.001

1, 0.5 1.105 0.051 < 0.001

1, 1.5 1.221 0.047 < 0.001

1, 0.667 1.229 0.043 < 0.001

1, 3 1.218 0.043 < 0.001

1, 0.333 1.226 0.043 < 0.001

1, 2 1,1.5 0.133 0.014 < 0.001

1, 0.667 0.141 0.015 < 0.001

1, 3 0.13 0.015 < 0.001

1, 0.333 0.138 0.015 < 0.001

1, 0.5 1,1.5 0.116 0.013 < 0.001

1, 0.667 0.124 0.014 < 0.001

1, 3 0.113 0.014 < 0.001

1, 0.333 0.121 0.014 < 0.001

2nd 1, 0.5, 1 1, 0.5, 0.5 � 0.764 0.179 0.01

1, 2, 1 � 0.612 0.096 < 0.001

1, 1, 1 1,0.5,1 1.065 0.093 < 0.001

1, 1, 1.5 1.495 0.044 < 0.001

1, 1, 2 1.353 0.061 < 0.001

1, 2, 1 0.453 0.065 < 0.001

1, 2, 2 0.969 0.071 < 0.001

1, 1, 1.5 1, 0.5, 0.5 � 1.194 0.102 < 0.001

1, 0.5, 1 � 0.43 0.085 0.002

1, 1, 2 � 0.142 0.025 < 0.001

1, 2, 1 � 1.042 0.067 < 0.001

1, 2, 2 � 0.526 0.051 < 0.001

1, 1, 2 1, 0.5, 0.5 � 1.052 0.102 < 0.001

1, 2, 1 � 0.9 0.074 < 0.001

1, 2, 2 � 0.384 0.049 < 0.001

1, 2, 1 1,2,2 0.516 0.107 0.003

1, 2, 2 1, 0.5, 0.5 � 0.667 0.1 < 0.001

3rd 1, 0.5, 0.5, 0.5 1, 1, 1, 1.5 1.062 0.072 < 0.001

1, 1, 1,2 0.955 0.073 < 0.001

1, 0.667,
0.667, 0.667

1, 1, 1, 1.5 1.343 0.139 < 0.001

1, 1, 1, 2 1.236 0.153 < 0.001

1, 2, 1, 2 0.794 0.168 0.005

1,1, 1, 1 1, 0.5, 0.5,0.5 0.542 0.07 < 0.001

1, 1, 1, 1.5 1.605 0.043 < 0.001

1, 1, 1, 2 1.497 0.058 < 0.001

1, 1, 2, 1 0.616 0.073 < 0.001

1, 2, 1, 2 1.055 0.115 < 0.001

1, 1, 1, 2 1, 1, 1, 1.5 0.107 0.025 0.012

1, 1, 2, 1 1, 1, 1, 1.5 0.989 0.076 < 0.001

1, 1, 1, 2 0.882 0.075 < 0.001

1, 2, 1, 1 1, 1, 1, 1.5 1.209 0.112 < 0.001

1, 1, 1, 2 1.101 0.114 < 0.001

1, 2, 1, 2 1, 1, 1, 1.5 0.55 0.11 0.003

1, 1, 1, 2 0.442 0.117 0.037

4th 1, 0.5, 0.5,
0.5, 0.5

1, 1, 1, 2, 1 0.464 0.074 < 0.001

(Continued)

TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1, 1 1, 1, 1, 1.5, 1.5 0.557 0.156 0.046

1, 1, 1, 2, 1 0.635 0.095 < 0.001

1, 1, 1, 1, 2 1, 0.5, 0.5,0.5,0.5 � 1.423 0.11 < 0.001

1, 1, 1, 1, 1 � 1.594 0.059 < 0.001

1, 1, 1, 1.5, 1.5 � 1.037 0.136 < 0.001

1, 1, 1, 2, 1 � 0.959 0.093 < 0.001

1, 1, 2, 1, 1 � 1.425 0.108 < 0.001

1, 2, 1, 2, 1 � 1.119 0.201 0.001

5th 1, 1, 1, 1, 1,1 1,0.5,1,0.5,1,0.5 0.939 0.226 0.022

1, 1, 1, 1, 1, 2 1.648 0.055 < 0.001

1, 1, 1, 1, 2, 1 0.524 0.108 0.004

1, 2, 1, 2, 1, 2 1.035 0.171 < 0.001

1, 1, 1, 1, 1, 2 1, 0.5,
0.5,0.5,0.5,0.5

� 1.33 0.116 < 0.001

1, 1, 1, 1, 1,1 � 1.648 0.055 < 0.001

1, 1, 1, 1, 2, 1 � 1.124 0.111 < 0.001

1, 1, 1, 1.5, 1.5, 1.5 � 1.03 0.195 0.002

1, 1, 1, 2, 1,1 � 1.299 0.126 < 0.001

1, 2, 1, 1, 1, 1 � 1.567 0.12 < 0.001

1, 2, 1, 1, 1, 1 1, 1, 1, 1, 2, 1 0.443 0.112 0.033

1, 2, 1, 2, 1, 2 0.953 0.238 0.03

6th 1, 0.5, 1, 0.5,
1, 0.5, 1

1, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5

� 1.122 0.208 0.001

1, 1, 1, 1, 1,1,1 � 1.206 0.17 < 0.001

1, 1, 2, 1, 1, 1, 1 � 1.064 0.208 0.003

1, 1, 1, 1, 1, 1,
2

1, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5

� 1.56 0.154 < 0.001

1, 1, 1, 1, 1,1,1 � 1.644 0.064 < 0.001

B. W. J. EVANS

1st 1, 1 1,2 1.23 0.094 < 0.001

1, 0.5 1.255 0.089 < 0.001

1, 1.5 1.313 0.081 < 0.001

1, 0.667 1.324 0.075 < 0.001

1, 3 1.337 0.074 < 0.001

1, 0.333 1.34 0.075 < 0.001

1, 2 1,0.667 0.093 0.026 0.047

1, 3 0.107 0.027 0.017

1, 0.333 0.11 0.025 0.009

2nd 1, 0.5, 0.5 1,0.5,1 1.287 0.31 0.013

1, 1, 1.5 1.426 0.178 < 0.001

1, 1, 2 1.337 0.177 < 0.001

1, 2, 2 0.843 0.173 < 0.001

1,1, 1 1,0.5,1 1.334 0.162 < 0.001

1, 1, 1.5 1.473 0.076 < 0.001

1, 1, 2 1.384 0.106 < 0.001

1, 2, 1 0.72 0.113 < 0.001

1, 2, 2 0.891 0.123 < 0.001

1, 2, 1 1,0.5,1 0.614 0.166 0.034

1, 1, 1.5 0.753 0.117 < 0.001

1, 1, 2 0.665 0.129 < 0.001

1, 2, 2 1, 1, 1.5 0.582 0.088 < 0.001

1, 1, 2 0.494 0.085 < 0.001

(Continued)

Frontiers in Computational Neuroscience | www.frontiersin.org 12 November 2018 | Volume 12 | Article 89



Daikoku Musical Creativity and Implicit Knowledge

TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

3rd 1, 0.5, 0.5, 0.5 1, 1, 1, 1.5 1.084 0.125 < 0.001

1, 1, 1, 2 1.034 0.126 < 0.001

1,0.667,0.667,0.6671, 1, 1, 1.5 1.809 0.241 < 0.001

1, 1, 1, 2 1.76 0.265 < 0.001

1, 1, 2, 1 1.056 0.253 0.016

1, 2, 1, 2 1.602 0.291 0.001

1, 1, 1, 1 1, 1, 1, 1.5 1.517 0.074 < 0.001

1, 1, 1, 2 1.468 0.101 < 0.001

1, 1, 2, 1 0.764 0.126 < 0.001

1, 2, 1, 2 1.31 0.199 < 0.001

1, 1, 2, 1 1, 1, 1, 1.5 0.753 0.131 0.001

1, 1, 1, 2 0.704 0.129 0.001

1, 2, 1, 1 1, 1, 1, 1.5 1.38 0.194 < 0.001

1, 1, 1, 2 1.331 0.198 < 0.001

4th 1, 1, 1, 1, 2 1, 0.5, 0.5,0.5,0.5 � 1.623 0.191 < 0.001

1, 1, 1, 1, 1 � 1.579 0.102 < 0.001

1, 1, 1, 1.5, 1.5 � 1.488 0.235 < 0.001

1, 1, 1, 2, 1 � 0.843 0.161 0.001

1, 1, 2, 1, 1 � 1.507 0.187 < 0.001

1, 1, 1, 2, 1 1, 0.5, 0.5,0.5,0.5 � 0.78 0.129 < 0.001

1, 1, 1, 1, 1 � 0.736 0.164 0.006

1, 1, 1, 1, 2 0.843 0.161 0.001

5th 1, 1, 1, 1, 1,2 1, 0.5,
0.5,0.5,0.5,0.5

� 1.451 0.201 < 0.001

1, 1, 1, 1, 1, 1 � 1.584 0.095 < 0.001

1, 1, 1, 1, 2, 1 � 0.993 0.192 0.002

1, 1, 1, 1.5, 1.5, 1.5 � 1.54 0.338 0.009

1, 1, 1, 2, 1,1 � 1.532 0.217 < 0.001

1, 2, 1, 1, 1, 1 � 1.801 0.208 < 0.001

1, 1, 1, 1, 2, 1 1, 2, 1, 1, 1, 1 � 0.809 0.194 0.02

1, 2, 1, 2, 1, 2 1, 0.5,
0.5,0.5,0.5,0.5

� 1.449 0.361 0.03

1, 1, 1, 1, 1, 1 � 1.582 0.296 0.002

1, 1, 1, 1.5, 1.5, 1.5 � 1.538 0.317 0.005

1, 1, 1, 2, 1, 1 � 1.53 0.403 0.048

1, 2, 1, 1, 1, 1 � 1.799 0.412 0.013

6th 1, 0.5, 1, 0.5,
1, 0.5, 1

1, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5

� 1.862 0.36 0.002

1, 1, 1, 1, 1, 1, 1 � 1.739 0.294 < 0.001

1, 1, 1, 1, 2, 1,1 � 1.743 0.442 0.034

1, 1, 1, 1.5, 1.5,
1.5,1.5

� 1.777 0.434 0.024

1,1, 2, 1, 1, 1, 1 � 1.979 0.36 0.001

1, 1, 1, 1, 1, 1,
2

1, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5

� 1.708 0.266 < 0.001

1, 1, 1, 1, 1, 1, 1 � 1.585 0.11 < 0.001

1, 1, 1, 1, 1, 2, 1 � 1.103 0.213 0.002

1, 1, 1, 1, 2, 1, 1 � 1.589 0.24 < 0.001

1, 1, 1, 1.5, 1.5,
1.5,1.5

� 1.623 0.37 0.013

1, 1, 2, 1, 1, 1, 1 � 1.826 0.259 < 0.001

1, 2, 1, 2, 1, 2,
1

1, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5

� 1.548 0.396 0.037

(Continued)

TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1, 1, 1, 1 � 1.425 0.364 0.036

1, 1, 2, 1, 1, 1, 1 � 1.666 0.431 0.041

C. H. J. HANCOCK

1st 1, 1 1, 2 1.035 0.094 < 0.001

1, 0.5 1.045 0.089 < 0.001

1, 1.5 1.205 0.081 < 0.001

1, 0.667 1.214 0.075 < 0.001

1, 3 1.209 0.074 < 0.001

1, 0.333 1.221 0.075 < 0.001

1, 2 1,1.5 0.17 0.024 < 0.001

1, 0.667 0.179 0.026 < 0.001

1, 3 0.174 0.027 < 0.001

1, 0.333 0.186 0.025 < 0.001

1, 0.5 1,1.5 0.16 0.023 < 0.001

1, 0.667 0.169 0.024 < 0.001

1, 3 0.164 0.025 < 0.001

1, 0.333 0.176 0.024 < 0.001

2nd 1, 0.5, 0.5 1, 1, 1.5 1.115 0.178 < 0.001

1, 1, 2 0.92 0.177 0.001

1,0.5,1 1, 1, 1.5 0.602 0.148 0.015

1,1,1 1,0.5,1 0.924 0.162 < 0.001

1, 1, 1.5 1.527 0.076 < 0.001

1, 1, 2 1.331 0.106 < 0.001

1, 2, 2 1.02 0.123 < 0.001

1, 1, 2 1, 1, 1.5 0.195 0.044 0.006

1, 2, 1 1,0.5,1 0.606 0.166 0.038

1, 1, 1.5 1.208 0.117 < 0.001

1, 1, 2 1.013 0.129 < 0.001

1, 2, 2 0.701 0.185 0.027

1, 2, 2 1, 1, 1.5 0.507 0.088 < 0.001

1, 1, 2 0.312 0.085 0.037

3rd 1, 0.5, 0.5,0.5 1, 1, 1, 1.5 1.037 0.125 < 0.001

1, 1, 1, 2 0.871 0.126 < 0.001

1, 1, 1, 1 1, 0.5, 0.5,0.5 0.615 0.122 0.002

1, 1, 1, 1.5 1.651 0.074 < 0.001

1, 1, 1, 2 1.485 0.101 < 0.001

1, 1, 2, 1 0.571 0.126 0.007

1, 2, 1, 2 0.906 0.199 0.007

1, 1, 2, 1 1, 1, 1, 1.5 1.081 0.131 < 0.001

1, 1, 1, 2 0.915 0.129 < 0.001

1, 2, 1, 1 1, 1, 1, 1.5 1.085 0.194 0.001

1, 1, 1, 2 0.919 0.198 0.006

1, 2, 1, 2 1, 1, 1, 1 � 0.906 0.199 0.007

1, 1, 1, 1.5 0.745 0.19 0.028

4th 1, 1, 1, 1, 2 1, 0.5, 0.5,0.5,0.5 � 1.294 0.191 < 0.001

1, 1, 1, 1, 1 � 1.565 0.102 < 0.001

1, 1, 1, 2, 1 � 1.059 0.161 < 0.001

1, 1, 2, 1, 1 � 1.239 0.187 < 0.001

1, 2, 1, 2, 1 � 1.418 0.349 0.015

5th 1, 1, 1, 1, 1, 2 1, 0.5,
0.5,0.5,0.5,0.5

� 1.608 0.201 < 0.001

(Continued)
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TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1, 1,1 � 1.622 0.095 < 0.001

1, 1, 1, 1, 2, 1 � 1.218 0.192 < 0.001

1, 1, 1, 2, 1, 1 � 1.217 0.217 0.001

1, 2, 1, 1, 1, 1 � 1.309 0.208 < 0.001

6th 1, 1, 1, 1, 1, 1,
2

1, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5

� 1.418 0.266 0.002

1, 1, 1, 1, 1,1,1 � 1.597 0.11 < 0.001

D. M. TYNER

1, 1, 1, 1, 1, 2, 1 � 1.31 0.213 < 0.001

1, 1, 1, 1, 2, 1,1 � 1.37 0.24 0.001

1, 1, 2, 1, 1, 1, 1 � 1.066 0.259 0.023

1st 1, 1 1,2 0.999 0.094 < 0.001

1, 0.5 1.014 0.089 < 0.001

1, 1.5 1.144 0.081 < 0.001

1, 0.667 1.149 0.075 < 0.001

1, 3 1.106 0.074 < 0.001

1, 0.333 1.117 0.075 < 0.001

1, 2 1,1.5 0.145 0.024 < 0.001

1, 0.667 0.15 0.026 < 0.001

1, 3 0.108 0.027 0.016

1, 0.333 0.118 0.025 0.004

2nd 1, 0.5, 0.5 1, 1, 1.5 1.041 0.178 < 0.001

1, 1, 2 0.898 0.177 0.002

1, 0.5,1 1, 1, 1.5 0.55 0.148 0.033

1, 1, 1 1, 0.5, 1 0.936 0.162 < 0.001

1, 1, 1.5 1.486 0.076 < 0.001

1, 1, 2 1.342 0.106 < 0.001

1, 2, 2 0.995 0.123 < 0.001

1, 2, 1 1,0.5,1 0.615 0.166 0.034

1, 1, 1.5 1.165 0.117 < 0.001

1, 1, 2 1.021 0.129 < 0.001

1, 2, 2 0.674 0.185 0.038

1, 2, 2 1, 1, 1.5 0.491 0.088 0.001

1, 1, 2 0.347 0.085 0.015

3rd 1, 0.5, 0.5,0.5 1, 1, 1, 1 � 0.579 0.122 0.004

1, 1, 1, 1.5 1.067 0.125 < 0.001

1, 1, 1, 2 0.96 0.126 < 0.001

1,0.667,0.667,0.6671, 1, 1, 1.5 1.417 0.241 < 0.001

1, 1, 1, 2 1.31 0.265 0.003

1, 1, 1, 1 1, 0.5, 0.5,0.5 0.579 0.122 0.004

1, 1, 1, 1.5 1.646 0.074 < 0.001

1, 1, 1, 2 1.539 0.101 < 0.001

1, 1, 2, 1 0.513 0.126 0.02

1, 2, 1, 2 0.95 0.199 0.004

1, 1, 2, 1 1, 1, 1, 1.5 1.134 0.131 < 0.001

1, 1, 1, 2 1.027 0.129 < 0.001

1, 2, 1, 1 1, 1, 1, 1.5 1.161 0.194 < 0.001

1, 1, 1, 2 1.054 0.198 0.001

4th 1, 1, 1, 1, 2 1, 0.5, 0.5,0.5,0.5 � 1.352 0.191 < 0.001

1, 1, 1, 1, 1 � 1.638 0.102 < 0.001

1, 1, 1, 1.5, 1.5 � 0.86 0.235 0.038

(Continued)

TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 2, 1 � 0.976 0.161 < 0.001

1, 1, 2, 1, 1 � 1.529 0.187 < 0.001

1, 1, 1, 2, 1 1, 1, 1, 1, 1 � 0.662 0.164 0.017

5th 1, 1, 1, 1, 1,1 1, 0.5,
0.5,0.5,0.5,0.5

0.805 0.164 0.004

1, 1, 1, 1.5, 1.5, 1.5 1.258 0.287 0.013

1, 1, 1, 1, 1,2 1, 0.5,
0.5,0.5,0.5,0.5

� 0.932 0.201 0.007

1, 1, 1, 1, 1,1 � 1.737 0.095 < 0.001

1, 1, 1, 1, 2, 1 � 1.161 0.192 < 0.001

1, 1, 1, 2, 1,1 � 1.147 0.217 0.002

1, 2, 1, 1, 1, 1 � 1.59 0.208 < 0.001

6th 1, 1, 1, 1, 1, 1,
2

1, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5

� 1.555 0.266 0.001

1, 1, 1, 1, 1, 1, 1 � 1.751 0.11 < 0.001

1, 1, 1, 1, 1, 2, 1 � 1.212 0.213 0.001

1, 1, 1, 1, 2, 1,1 � 1.11 0.24 0.008

1, 1, 2, 1, 1, 1, 1 � 1.614 0.259 < 0.001

D 0.001). In the forth-order hierarchical models, the musician-
sequence interactions were signi�cant [F(28) D 6.90,p < 0.001,
partial � 2 D 0.43,Tables 3A,BandFigure 5]. The TP of [0,� 2,
� 3, � 5, � 6] with [1, 1, 1, 1], and [0, 1, 5, 8, 12] with [1, 1, 1,
1] was signi�cantly lower in M. Tyner than W. J. Evans (all:p
D 0.002). The TP of [0,� 2, � 4, 0,� 2] with [1, 1, 1, 1], [0,� 3,
� 7, � 5, � 3] with [1, 1, 1, 1], and [0,� 3, 2,� 1,� 5] with [1, 1, 1,
1] was signi�cantly higher in M. Tyner than W. J. Evans and H.
J. Hancock (p D 0.008,p D 0.001, andp D 0.014, respectively).
The TP of [0,� 3, � 2, 2, 5] with [1, 1, 1, 1] was signi�cantly
higher in W. J. Evans than H. J. Hancock (p D 0.009) and M.
Tyner (p D 0.002). The TP of [0,� 3, � 2, 2, 5] with [1, 1, 1,
1] was signi�cantly higher in W. J. Evans than H. J. Hancock
and M. Tyner (all:p < 0.001). The TP of [0,� 3, � 5, � 7, � 5]
with [1, 1, 1, 1] was signi�cantly higher in M. Tyner than W. J.
Evans (p D 0.017). The TP of [0,� 3, � 2, 2, 5] with [1, 1, 1, 1]
was signi�cantly higher in W. J. Evans than H. J. Hancock (p D
0.002) and M. Tyner (p < 0.001). The TP of [0,� 3, � 2, 2, 5]
with [1, 1, 1, 1] was signi�cantly higher in H. J. Hancock than
M. Tyner (p D 0.035). In the �fth-order hierarchical models, the
musician-sequence interactions were signi�cant [F(28) D 6.38,p
< 0.001, partial� 2 D 0.42,Tables 3A,Band Figure 5]. The TP
of [0, � 2, � 3, � 4, � 5, � 6] with [1, 1, 1, 1, 1], and [0, 1, 3, 5,
6, 8] with [1, 1, 1, 1, 1] was signi�cantly lower in M. Tyner than
H. J. Hancock (p D 0.022 andp D 0.035, respectively). The TP
of [0, � 2, � 4, 0,� 2, � 4] with [1, 1, 1, 1, 1], and [0,� 2, � 5, 0,
� 2, � 5] with [1, 1, 1, 1, 1] was signi�cantly higher in M. Tyner
than W. J. Evans and H. J. Hancock (all:p D 0.014). The TP of
[0, � 3, � 2, 2, 5, 9] with [1, 1, 1, 1, 1], [0, 1, 3, 4, 6, 7] with [1,
1, 1, 1, 1], and [0,3,0,1,5,8] with [1, 1, 1, 1, 1] was signi�cantly
higher in Evans than H. J. Hancock and M. Tyner (all:p< 0.001).
In the sixth-order hierarchical models, the musician-sequence
interactions were signi�cant [F(28) D 4.20,p < 0.001, partial
� 2 D 0.32,Tables 3A,BandFigure 4]. The TP of [0,� 2, � 4, � 7,
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� 2, � 4, � 7] with [1, 1, 1, 1, 1, 1] was signi�cantly higher in M.
Tyner than W. J. Evans and H. J. Hancock (all:p D 0.014). The
TP of [0, 3, 0, 1, 5, 8, 12] with [1, 1, 1, 1, 1, 1] was signi�cantly
higher in W. J. Evans than H. J. Hancock and M. Tyner (all:p D
0.001).

Rhythm Sequence With Pitches
In the �rst-order hierarchical models, the main sequence e�ect
were signi�cant [F(13, 234)D 4.45,p < 0.001, partial� 2 D 0.20,
Table 4]. The musician-sequence interactions were signi�cant
[F(26) D 3.54,p < 0.001, partial� 2 D 0.28,Figure 6andTable 4].
The TP of [1,1] with [0,� 3, � 6] was signi�cantly lower in W.
J. Evans than M. Tyner (p D 0.037). The TP of [1, 1] with [0,
� 4, � 6], and [1,1] with [0, 3, 6] was signi�cantly higher in W.
J. Evans than M. Tyner (all:p D 0.025). The TP of [1, 1] with
[0, 4, 6] was signi�cantly higher in M. Tyner than W. J. Evans
(p D 0.001) and H. J. Hancock (p D 0.004). In the second-
order hierarchical models, the musician-sequence interactions
were signi�cant [F(24) D 5.53,p < 0.001, partial� 2 D 0.42,
Figure 6 and Table 4]. The TP of [1, 1, 1] with [0,� 1, � 3, � 4]
was signi�cantly lower in M. Tyner than W. J. Evans (p < 0.001)
and H. J. Hancock (p D 0.001). The TP of [1, 1, 1] with [0,� 2,
� 4, � 2], [1, 1, 1] with [0,� 3, � 7, � 5] was signi�cantly higher
in M. Tyner than W. J. Evans and H. J. Hancock (p < 0.001).
The TP of [1, 1, 1] with [0,� 1, � 3, � 4] was signi�cantly lower
in H. J. Hancock than W. J. Evans (p D 0.007) and M. Tyner (p
D 0.001). The TP of [1, 1, 1] with [0,� 2, � 4, � 2], and [1, 1, 1]
with [0, � 3, � 7, � 5] was signi�cantly higher in W. J. Evans than
H. J. Hancock (p D 0.005) and M. Tyner (p < 0.001). The TP of
[1, 1, 1] with [0, 2, 4, 5] was signi�cantly lower in M. Tyner than
W. J. Evans (p D 0.048). The TP of [1, 1, 1] with [0, 5, 3, 0] was
signi�cantly higher in M. Tyner than W. J. Evans (p D 0.002).
In the third-order hierarchical models, the main sequence e�ect
were signi�cant [F(5.05, 90.90)D 2.91,p D 0.017, partial� 2 D 0.14,
Table 4]. The musician-sequence interactions were signi�cant
[F(26) D 5.88,p < 0.001, partial� 2 D 0.40,Figure 6andTable 4].
The TP of [1, 1, 1, 1] with [0,� 1, � 2, � 3, � 4] was signi�cantly
lower in M. Tyner than W. J. Evans (pD 0.040) and H. J. Hancock
(p D 0.046). The TP of [1, 1, 1, 1] with [0,� 2, � 4, � 7, � 2], [1, 1,
1, 1] with [0,� 2, 2, 0,� 2] were signi�cantly higher in M. Tyner
than W. J. Evans (p D 0.008 andp D 0.015, respectively) and H.
J. Hancock (p D 0.008 andp D 0.015, respectively). The TP of
[1, 1, 1, 1] with [0,� 3, � 2, 2, 5] was signi�cantly higher in W.
J. Evans than H. J. Hancock and M. Tyner (all:p D 0.001). The
TP of [1, 1, 1, 1] with [0,� 3, 2, 0,� 3] was signi�cantly lower
in W. J. Evans than M. Tyner (p D 0.038). The TP of [1, 1, 1,
1] with [0, 1, 3, 4, 6], and [1, 1, 1, 1] with [0, 2, 3, 5, 6] was
signi�cantly higher in W. J. Evans than M. Tyner (pD 0.046 andp
D 0.002, respectively). The TP of [1, 1, 1, 1] with [0, 1, 5, 8, 12]was
signi�cantly higher in W. J. Evans than H. J. Hancock (pD 0.006)
and M. Tyner (p< 0.001). In the forth-order hierarchical models,
musician-sequence interactions were signi�cant [F(28) D 5.58,p
< 0.001, partial� 2 D 0.38,Figure 6andTable 4]. The TP of [1,
1, 1, 1, 1] with [0,� 2, � 4, � 7, � 2, � 4], and [1, 1, 1, 1, 1] with
[0, � 2,� 5, 0,� 2,� 5] were signi�cantly higher in M. Tyner than
W. J. Evans and H. J. Hancock (all:p D 0.008). The TP of [1, 1,
1, 1, 1] with [0,� 3, � 2, 2, 5, 9], [1, 1, 1, 1, 1] with [0, 1, 3, 4,

6, 7], and [1, 1, 1, 1, 1] with [0, 3, 0, 1, 5, 8], were signi�cantly
higher in W. J. Evans than H. J. Hancock and M. Tyner (all:p
< 0.001). In the �fth-order hierarchical models, the musician-
sequence interactions were signi�cant [F(28) D 2.31,p < 0.001,
partial � 2 D 0.21,Figure 6andTable 4]. The TP of [1, 1, 1, 1, 1,
1] with [0, � 2, � 4, � 7, � 2, � 4, � 7] was signi�cantly higher in
M. Tyner than W. J. Evans and H. J. Hancock (all:p D 0.008).

Regression Analysis
Pitch Sequence Without Rhythms
Results were shown inTable 5A. In W. J. Evans, no signi�cant
regression equation was detected in the �rst-, second-, forth-,
and sixth-order hierarchical models. In the third-order
hierarchical model, a signi�cant regression equation was found
[F(2, 4) D 16.19,p D 0.012], with an adjustedR2 of 0.84. The
predicted chronological order is equal to 9.43–17.98 (transition
of [0, � 3, � 7, � 5]) � 7.23 (transition of [0, 2, 4, 5]). The
TPs of [0, 2, 4, 5] and [0,� 3, � 7, � 5] gradually decreased
consistently with the ascending chronological order ([0,� 3,
� 7, � 5] p D 0.007, [0, 2, 4, 5]p D 0.031). In the �fth-order
hierarchical model, a signi�cant regression equation was found
[F(1, 5) D 14.74,p D 0.012], with an adjustedR2 of 0.70. The
predicted chronological order is equal to 5.33–9.31 (transition of
[0, 2, 3, 5, 7, 8]). The TPs of [0, 2, 3, 5, 7, 8] gradually decreased
consistently with the ascending chronological order (p D 0.012).
In H. J. Hancock, no signi�cant regression equation was detected
in all of the hierarchical models. In M. Tyner, no signi�cant
regression equation was detected in the �rst-, third-, forth-,
�fth-, and sixth-order hierarchical models. Only in the second-
order hierarchical model, a signi�cant regression equationwas
found [F(2, 4) D 31.04,p D 0.004], with an adjustedR2 of 0.91.
The predicted chronological order is equal to� 3.68 C 28.30
(transition of [0, � 2, � 5]) C 10.59 (transition of [0, 2, 0]). The
TPs of [0,� 2, � 5] and [0, 2, 0] gradually increased consistently
with the ascending chronological order ([0,� 2, � 5] p D 0.003,
[0, 2, 0]p D 0.038). These TPs were signi�cant predictors of the
chronological order.

Rhythm Sequence Without Pitches
Results were shown inTable 5B. In W. J. Evans, no signi�cant
regression equation was detected in the �rst-, third-, forth-
, �fth-, and sixth-order hierarchical models. In the second-
order hierarchical model, a signi�cant regression equationwas
found [F(1, 5) D 16.85,p D 0.009], with an adjustedR2 of 0.73.
The predicted chronological order is equal to� 1.29 C 17.75
(transition of [1, 2, 2]). The TPs of [1, 2, 2] gradually increased
consistently with the ascending chronological order (p D 0.009).
In H. J. Hancock, no signi�cant regression equation was detected
in the second-, third-, forth-, �fth-, and sixth-order hierarchical
models. In the �rst-order hierarchical model, a signi�cant
regression equation was found [F(3, 3) D 82.70,p D 0.002], with
an adjustedR2 of 0.98. The predicted chronological order is equal
to 12.73–583.67 (transition of [1, 0.333])� 79.86 (transition of
[1, 1.5]) C 33.53 (transition of [1, 2]). The TPs of [1, 0.333]
and [1, 1.5] gradually decreased and those of [1, 2] gradually
increased consistently with the ascending chronological order (p
D 0.001,p D 0.007, andp D 0.034, respectively). In M. Tyner, no
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FIGURE 4 | The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in rhythm sequences without pitches.

signi�cant regression equation was detected in the �rst-, second-,
third-, �fth-, and sixth-order hierarchical models. In the forth-
order hierarchical model, a signi�cant regression equation was
found [F(1, 5) D 9.08,p D 0.030], with an adjustedR2 of 0.57. The

predicted chronological order is equal to 0.82C 5.37 (transition
of [1, 2, 1, 2, 1]). The TPs of [1, 2, 1, 2, 1] gradually increased
consistently with the ascending chronological order (p D 0.030).
These TPs were signi�cant predictors of the chronological order.
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FIGURE 5 | The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in pitch sequence with rhythms.
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TABLE 3 | The difference in TPs among pitch sequences with rhythms in each
musician.

Order Sequence A Sequence B A-B SE p-value

A. WJ. EVANS

3rd 0, � 1, � 2, � 3 with 1,
0.5, 0.5

0, � 2, 2, 0 with 1, 1, 1 1.461 0.333 0.038

0, 1, 5, 8 with 1, 1, 1 0, � 2, � 5, � 7 with 1,
1, 1

1.56 0.24 < 0.001

0, � 4, 3, 0 with 1, 1, 1 1.569 0.356 0.035

0, 1, 3, 5 with 1, 1, 1 1.318 0.295 0.032

4th 0, � 2, � 3, � 5, � 6 with
1, 1, 1, 1

0, � 3, � 7, � 5, � 3 with
1, 1, 1, 1

1.461 0.338 0.043

0, � 4, � 2, 0, 1 with 1,
1, 1, 1

1.461 0.332 0.037

0, 1, 3, 2, 1 with 1, 1,
1, 1

1.461 0.305 0.015

0, � 3, � 2,0,1 with 1,
1, 1, 1

0, 1, 3, 2, 1 with 1, 1,
1, 1

1.362 0.301 0.027

0,� 3,� 2,2,5 with 1, 1,
1, 1

0, � 2, � 4, 0, � 2 with
1, 1, 1, 1

1.774 0.314 0.002

0, � 3, � 5, � 7, � 5 with
1, 1, 1, 1

1.774 0.335 0.005

0, � 3, � 7, � 5, � 3 with
1, 1, 1, 1

1.774 0.292 0.001

0, � 3, 2, � 1, � 5 with
1, 1, 1, 1

1.774 0.301 0.001

0, � 4, � 2, 0, 1 with 1,
1, 1, 1

1.774 0.327 0.004

0, 1, 3, 2, 1 with 1, 1,
1, 1

1.774 0.314 0.002

0, 2, 3, 5, 7 with 1, 1,
1, 1

1.376 0.297 0.022

0, 1, 5, 8,12 with 1, 1,
1, 1

0, � 2, � 4, 0, � 2 with
1, 1, 1, 1

1.664 0.38 0.038

0, � 3, � 7, � 5, � 3 with
1, 1, 1, 1

1.664 0.361 0.023

0,� 3, 2, � 1, � 5 with 1,
1, 1, 1

1.664 0.369 0.028

0, � 4, � 2, 0, 1 with 1,
1, 1, 1

1.664 0.376 0.034

0, 1, 3, 2, 1 with 1, 1,
1, 1

1.664 0.365 0.026

0, 2, 3, 5, 6 with 1, 1,
1, 1

0, � 3, � 7, � 5, � 3 with
1, 1, 1, 1

1.328 0.289 0.024

0, � 3, 2, � 1, � 5 with
1, 1, 1, 1

1.328 0.299 0.033

0, � 4, � 2, 0, 1 with 1,
1, 1, 1

1.328 0.31 0.047

5th 0, � 3, � 2, 2, 5, 9 with
1, 1, 1, 1, 1

0, � 2, � 3, � 4, � 5, � 6
with 1, 1, 1, 1, 1

1.304 0.291 0.031

0, � 2, � 4, 0, � 2, � 4
with 1, 1, 1, 1, 1

1.461 0.299 0.013

0, � 2, � 5, 0, � 2, � 5
with 1, 1, 1, 1, 1

1.461 0.299 0.013

0,� 3,� 2,0,� 1,� 2 with
1, 1, 1, 1, 1

1.461 0.312 0.02

0, � 3, � 5, � 7, � 3, � 5
with 1, 1, 1, 1, 1

1.461 0.312 0.02

0, � 3, � 7, � 5, � 3, � 7
with 1, 1, 1, 1, 1

1.461 0.312 0.02

(Continued)

TABLE 3 | Continued

Order Sequence A Sequence B A-B SE p-value

0, � 4, 3, 0, � 2, � 4
with 1, 1, 1, 1, 1

1.461 0.312 0.02

0, 1, 3, 4, 6, 7 with 1,
1, 1, 1, 1

0, � 2, � 3, � 4, � 5, � 6
with 1, 1, 1, 1, 1

1.435 0.29 0.011

0, � 2, � 4, 0, � 2, � 4
with 1, 1, 1, 1, 1

1.591 0.294 0.004

0, � 2, � 5, 0, � 2, � 5
with 1, 1, 1, 1, 1

1.591 0.294 0.004

0,� 3,� 2,0,� 1,� 2 with
1, 1, 1, 1, 1

1.591 0.308 0.007

0, � 3, � 5, � 7, � 3, � 5
with 1, 1, 1, 1, 1

1.591 0.308 0.007

0, � 3, � 7, � 5, � 3, � 7
with 1, 1, 1, 1, 1

1.591 0.308 0.007

0, � 4, 3, 0, � 2, � 4
with 1, 1, 1, 1, 1

1.591 0.308 0.007

0, 3, 0, 1, 5, 8 with 1,
1, 1, 1, 1

0, � 2, � 3, � 4, � 5, � 6
with 1, 1, 1, 1, 1

1.413 0.331 0.048

0, � 2, � 4, 0, � 2, � 4
with 1, 1, 1, 1, 1

1.569 0.335 0.019

0, � 2, � 5, 0, � 2, � 5
with 1, 1, 1, 1, 1

1.569 0.335 0.019

0, � 3, � 2, 0, � 1, � 2
with 1, 1, 1, 1, 1

1.569 0.347 0.028

0, � 3, � 5, � 7, � 3, � 5
with 1, 1, 1, 1, 1

1.569 0.347 0.028

0, � 3, � 7, � 5, � 3, � 7
with 1, 1, 1, 1, 1

1.569 0.347 0.028

0, � 4, 3, 0, � 2, � 4
with 1, 1, 1, 1, 1

1.569 0.347 0.028

6th 0, 3, 0, 1, 5, 8, 12 with
1, 1, 1, 1, 1, 1

0,� 1, � 3, � 4, � 5, � 6,
� 7 with 1, 1, 1, 1, 1, 1

1.413 0.322 0.038

0, � 2, � 4, � 7, � 2, � 4,
� 7 with 1, 1, 1, 1, 1, 1

1.413 0.331 0.048

0, � 2, � 4, 0, � 2,
� 4,� 7 with 1, 1, 1, 1,
1, 1

1.413 0.327 0.043

0, � 2, � 5,
� 7,� 3,� 5,� 7 with 1,
1, 1, 1, 1, 1

1.413 0.327 0.043

0, � 2, � 5, 0, � 2,
� 5,� 8 with 1, 1, 1, 1,
1, 1

1.413 0.322 0.038

B. M. TYNER

3rd 0, 3, 0, 1 with 1, 1, 1 0, 4, 2, 0 with 1, 1, 1 � 1.558 0.322 0.014

4th 0, � 3, � 7, � 5, � 3 with
1, 1, 1, 1

0, � 3, � 2, 0, 1 with 1,
1, 1, 1

1.413 0.327 0.044

0, � 3, � 2, 2, 5 with 1,
1, 1, 1

1.413 0.292 0.014

0, 2, 3, 5, 6 with 1, 1,
1, 1

1.413 0.289 0.013

Pitch Sequence With Rhythms
Results were shown inTable 5C. In W. J. Evans, no signi�cant
regression equation was detected in all of the hierarchicalmodels.
In H. J. Hancock, no signi�cant regression equation was detected
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TABLE 4 | The difference in TPs among rhythm sequences with pitches ineach
musician.

Order Sequence A Sequence B A-B SE p-value

A. GENERAL

1st 1, 1 with 0, 4, 6 1, 1 with 0, � 1, � 3 � 0.948 0.185 0.006

1, 1 with 0, � 2, � 3 � 0.883 0.177 0.009

1, 1 with 0, 1, 2 � 0.971 0.16 0.001

1, 1 with 0, 2, 3 � 1.114 0.176 0.001

1, 1 with 0, 3, 7 � 1.015 0.212 0.013

3rd 1, 1, 1, 1 with 0,
1, 3, 4, 6

1, 1, 1, 1 with 0, 2, 4,
6, 8

0.891 0.2 0.028

B. WJ. EVANS

1st 1, 1 with 0, 4, 6 1, 1 with 0, � 1, � 3 � 1.752 0.32 0.003

1, 1 with 0, � 2, � 3 � 1.337 0.307 0.035

1, 1 with 0, � 2, � 4 � 1.863 0.429 0.036

1, 1 with 0, � 4, � 6 � 1.791 0.331 0.004

1, 1 with 0, 1, 2 � 1.84 0.277 < 0.001

1, 1 with 0, 2, 3 � 1.945 0.305 < 0.001

1, 1 with 0, 3, 6 � 1.863 0.338 0.003

1, 1 with 0, 3, 7 � 1.716 0.367 0.017

2nd 1, 1, 1 with 0,
� 1, � 3,� 4

1, 1, 1 with 0, � 2,
� 4,� 2

2.197 0.327 < 0.001

1, 1, 1 with 0, � 3,
� 7, � 5

2.197 0.289 < 0.001

1, 1, 1 with 0, 2, 4, 6 1.569 0.359 0.028

1, 1, 1 with 0,5,3,0 2.197 0.489 0.022

1, 1, 1 with 0,
� 2, � 4,� 2

1, 1, 1 with 0,1,5,8 � 1.924 0.329 0.001

1, 1, 1 with 0, 2, 3,5 � 1.83 0.387 0.013

1, 1, 1 with 0,
� 3, � 7, � 5

1, 1, 1 with 0, � 2,
� 5, � 9

� 1.461 0.329 0.025

1, 1, 1 with 0,1,5,8 � 1.924 0.308 0.001

1, 1, 1 with
0,1,5,8

1, 1, 1 with 0,5,3,0 1.924 0.437 0.027

1, 1, 1 with
0,2,4,5

1, 1, 1 with 0, � 2,
� 4,� 2

2.197 0.413 0.004

1, 1, 1 with 0, � 3,
� 7, � 5

2.197 0.423 0.005

1, 1, 1 with 0, 2, 4, 6 1.569 0.356 0.026

3rd 1, 1, 1, 1 with 0,
� 3, � 2, 2, 5

1, 1, 1, 1 with 0, � 2,
� 4,� 7,� 2

1.883 0.314 0.001

1, 1, 1, 1 with 0, � 2,
� 5, 0, � 2

1.883 0.339 0.003

1, 1, 1, 1 with 0, � 2,
2, 0, � 2

1.883 0.285 < 0.001

1, 1, 1, 1 with 0, � 3,
2, 0, � 3

1.883 0.356 0.004

1, 1, 1, 1 with 0, 2, 4,
6, 8

1.883 0.242 < 0.001

1, 1, 1, 1 with 0,
1, 3, 4, 6

1, 1, 1, 1 with 0, � 2,
2, 0, � 2

1.696 0.373 0.022

1, 1, 1, 1 with 0, 2, 4,
6, 8

1.696 0.346 0.01

1, 1, 1, 1 with 0,
1, 5, 8, 12

1, 1, 1, 1 with 0, � 2,
� 4,� 7,� 2

1.931 0.362 0.004

1, 1, 1, 1 with 0, � 2,
� 5, 0, � 2

1.931 0.411 0.016

(Continued)

TABLE 4 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1 with 0, � 2,
2, 0, � 2

1.931 0.336 0.002

1, 1, 1, 1 with 0, � 3,
2, 0, � 3

1.931 0.425 0.023

1, 1, 1, 1 with 0, 2, 4,
6, 8

1.931 0.332 0.001

1, 1, 1, 1 with 0,
2, 3, 5, 6

1, 1, 1, 1 with 0, � 2,
� 4, � 7, � 2

1.844 0.404 0.022

1, 1, 1, 1 with 0, � 2,
2, 0, � 2

1.844 0.382 0.012

1, 1, 1, 1 with 0, 2, 4,
6, 8

1.844 0.391 0.016

4th 1, 1, 1, 1, 1 with
0, � 3, � 2, 2, 5,9

1, 1, 1, 1, 1 with 0,
� 2, � 4, � 7, � 2, � 4

1.678 0.325 0.007

1, 1, 1, 1, 1 with 0,
� 2, � 5, 0, � 2,� 5

1.678 0.325 0.007

1, 1, 1, 1, 1 with
0,� 3,0,0,� 3,0,� 1,
1.5,1.5,1, 1.5

1.678 0.269 0.001

1, 1, 1, 1, 1 with 0,
� 3,2, � 1, � 5, � 3

1.678 0.307 0.004

1, 1, 1, 1, 1 with 0,
� 4, � 7, � 2, � 5, � 9

1.678 0.307 0.004

1, 1, 1, 1, 1 with 0, 0,
� 3, 0, 0, � 3, � 1,
0.667, 1, 1, 0.667

1.678 0.269 0.001

1, 1, 1, 1, 1 with 0, 2,
4, 6, 8,10

1.678 0.269 0.001

1, 1, 1, 1, 1 with 0, 4,
2, 0, � 3, 2

1.678 0.307 0.004

1, 1, 1, 1, 1 with
0, 1, 3, 4, 6, 7

1, 1, 1, 1, 1 with 0,
� 2, � 4,� 7,� 2,� 4

1.839 0.312 0.001

1, 1, 1, 1, 1 with 0,
� 2, � 5, 0, � 2, � 5

1.839 0.312 0.001

1, 1, 1, 1, 1 with 0,
� 3, 0, 0, � 3, 0, � 1,
1.5, 1.5, 1, 1.5

1.839 0.255 < 0.001

1, 1, 1, 1, 1 with 0,
� 3,2, � 1, � 5, � 3

1.839 0.294 0.001

1, 1, 1, 1, 1 with 0,
� 4, � 7, � 2, � 5, � 9

1.839 0.294 0.001

1, 1, 1, 1, 1 with 0, 0,
� 3, 0, 0, � 3, � 1,
0.667, 1, 1, 0.667

1.839 0.255 < 0.001

1, 1, 1, 1, 1 with 0, 2,
4, 6, 8,10

1.839 0.255 < 0.001

1, 1, 1, 1, 1 with 0, 4,
2, 0, � 3, 2

1.839 0.294 0.001

1, 1, 1, 1, 1 with
0, 3, 0, 1, 5, 8

1, 1, 1, 1, 1 with 0,
� 2, � 4, � 7, � 2, � 4

1.569 0.347 0.028

1, 1, 1, 1, 1 with 0,
� 2, � 5, 0, � 2, � 5

1.569 0.347 0.028

1, 1, 1, 1, 1 with 0,
� 3, 0, 0, � 3, 0, � 1,
1.5, 1.5, 1, 1.5

1.569 0.296 0.005

1, 1, 1, 1, 1 with 0,
� 3, 2, � 1, � 5, � 3

1.569 0.331 0.017

(Continued)
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TABLE 4 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1, 1 with 0,
� 4, � 7, � 2, � 5, � 9

1.569 0.331 0.017

1, 1, 1, 1, 1 with 0, 0,
� 3, 0, 0, � 3, � 1,
0.667, 1, 1, 0.667

1.569 0.296 0.005

1, 1, 1, 1, 1 with 0, 2,
4, 6, 8,10

1.569 0.296 0.005

1, 1, 1, 1, 1 with 0, 4,
2, 0, � 3, 2

1.569 0.331 0.017

C. H. J. HANCOCK

1st 1, 1 with 0, 4, 6 1, 1 with 0, � 1, � 3 � 1.394 0.32 0.035

1, 1 with 0, � 2, � 3 � 1.327 0.307 0.038

1, 1 with 0, 1, 2 � 1.343 0.277 0.012

1, 1 with 0, 2, 3 � 1.445 0.305 0.015

1, 1 with 0, 3, 5 � 1.519 0.355 0.041

2nd 1, 1, 1 with 0,
� 1, � 3,� 4

1, 1, 1 with 0, � 2,
� 4, � 2

1.377 0.327 0.041

1, 1, 1 with 0, � 3,
� 7, � 5

1.485 0.289 0.005

3rd 1, 1, 1, 1 with 0,
� 3, � 2, 2, 5

1, 1, 1, 1 with 0, 2,
3,5,7

� 1.525 0.353 0.038

1, 1, 1, 1 with 0, 2, 4,
5, 7

� 1.501 0.357 0.048

D. M. TYNER

2nd 1, 1, 1 with 0,
� 1, � 3,� 4

1, 1, 1 with 0, � 2,
� 4,� 2

� 1.618 0.327 0.008

1, 1, 1 with 0, � 2,
� 5, � 9

� 1.774 0.368 0.011

1, 1, 1 with 0, � 3,
� 7, � 5

� 1.799 0.289 0.001

1, 1, 1 with
0,1,5,8

1, 1, 1 with 0, � 2,
� 4,� 2

� 1.618 0.329 0.009

1, 1, 1 with 0, � 2,
� 5, � 9

� 1.774 0.342 0.005

1, 1, 1 with 0, � 3,
� 7, � 5

� 1.799 0.308 0.001

3rd 1, 1, 1, 1 with 0,
� 2, � 5, 0, � 2

1, 1, 1, 1 with 0, 2, 4,
6, 8

1.038 0.223 0.018

in the �rst-, third-, forth-, �fth-, and sixth-order hierarchical
models. In the second-order hierarchical model, a signi�cant
regression equation was found [F(1, 5) D 8.33,p D 0.034], with
an adjustedR2 of 0.55. The predicted chronological order is
equal to 3.0C 10.50 (transition of [0, 4, 2] with [1, 2]). The
TPs of [0, 4, 2] with [1, 2] gradually increased consistently with
the ascending chronological order (p D 0.034). In M. Tyner,
no signi�cant regression equation was detected in the �rst-
, second-, �fth-, and sixth-order hierarchical models. In the
third-order hierarchical model, a signi�cant regression equation
was found [F(1, 5) D 12.99,p D 0.015], with an adjustedR2

of 0.67. The predicted chronological order is equal to 5.44–
3.72 (transition of [0, 0, 0, 0] with [1, 1, 1]). The TPs of [0,
0, 0, 0] with [1, 1, 1] gradually decreased consistently with the
ascending chronological order (p D 0.015). In the forth-order
hierarchical model, a signi�cant regression equation was found

[F(1, 5) D 7.35,p D 0.042], with an adjustedR2 of 0.51. The
predicted chronological order is equal to 5.67–3.33 (transition
of [0, � 3, 2, � 1, � 5] with [1, 1, 1, 1]). The TPs of [0,� 3, 2,
� 1, � 5] with [1, 1, 1, 1] gradually decreased consistently with
the ascending chronological order (p D 0.042). These TPs were
signi�cant predictors of the chronological order.

Rhythm Sequence With Pitches
Results were shown inTable 5D. In W. J. Evans, no signi�cant
regression equation was detected in the �rst-, third-,
and sixth-order hierarchical models. In the second-order
hierarchical model, a signi�cant regression equation was found
[F(2, 4) D 13.80,p D 0.016], with an adjustedR2 of 0.81. The
predicted chronological order is equal to 3.61–4.72 (transition
of [1, 1, 1] with [0, 2, 4, 6])C 2.61 (transition of [1, 1, 1]
with [0, � 2, � 5, � 9]). The TPs of [1, 1, 1] with [0, 2, 4, 6]
gradually decreased (p D 0.006) and the TPs of [1, 1, 1] with
[0, � 2, � 5, � 9] gradually increased (p D 0.049) consistently
with the ascending chronological order. In the forth-order
hierarchical model, a signi�cant regression equation was found
[F(1, 5) D 17.72,p D 0.008], with an adjustedR2 of 0.74.
The predicted chronological order is equal to 5.33–629.65
(transition of [1, 1, 1, 1, 1] with [0,� 3, � 2, 0, 1, 3]). The TPs
of [1, 1, 1, 1, 1] with [0,� 3, � 2, 0, 1, 3] gradually decreased
consistently with the ascending chronological order (p D
0.008). In the �fth-order hierarchical model, a signi�cant
regression equation was found [F(1, 5) D 8.33, p D 0.034],
with an adjustedR2 of 0.55. The predicted chronological
order is equal to 5.00–3.50 (transition of [1, 1, 1, 1, 1, 1] with
[0, � 3, � 2, 0, 1, 3, 4]). The TPs of [1, 1, 1, 1, 1, 1] with [0,
� 3, � 2, 0, 1, 3, 4] gradually decreased consistently with the
ascending chronological order (p D 0.034). In H. J. Hancock,
no signi�cant regression equation was detected in the second-,
third-, forth-, �fth-, and sixth-order hierarchical models. In the
�rst-order hierarchical model, a signi�cant regression equation
was found [F(1, 5) D 15.06,p D 0.012], with an adjustedR2 of
0.70. The predicted chronological order is equal to 12.64–11.40
(transition of [1, 1] with [0, � 2, � 3]). The TPs of [1, 1] with
[0, � 2, � 3] gradually decreased consistently with the ascending
chronological order (p D 0.012). These TPs were signi�cant
predictors of the chronological order. In M. Tyner, no signi�cant
regression equation was detected in all of the hierarchical
models.

Time-Course Variation of Entropy
Results were shown inTable 6. In the rhythm sequence with
pitches in H. J. Hancock, signi�cant regression equation was
detected in the higher- but not lower-order hierarchical models.
In the �fth-order hierarchical model, a signi�cant regression
equation was found [F(1, 5) D 10.58, p D 0.023], with an
adjustedR2 of 0.62. The predicted chronological order is equal
to 5.73–193.34. The entropies of rhythm sequence with pitches
gradually decreased (p D 0.023) consistently with the ascending
chronological order. In the sixth-order hierarchical model, a
signi�cant regression equation was found [F(1, 5) D 9.28,p D
0.029], with an adjustedR2 of 0.58. The predicted chronological
order is equal to 5.67–272.31. The entropies of rhythm sequence
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FIGURE 6 | The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in rhythm sequence with pitches.
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TABLE 5 | Regression analyses based on the stepwise method.

Model 1 Model 2

Variable B SE B � VIF CI B SE B � VIF CI

A. PITCH TRANSITION

W. J. Evans Third 0,� 3, � 7, � 5 � 16.36 5.99 � 0.77* 1.00 2.36 � 17.98 3.54 � 0.85** 1.02 2.45

0, 2, 4, 5 � 7.22 2.22 � 0.55* 1.02 8.40

R2 0.52 0.84

F 7.46* 16.19*

Fi�th 0, 2, 3, 5, 7, 8 � 5.58 1.45 � 0.86* 1.00 2.03

R2 0.70

F 14.74*

M. Tyner Second 0,� 2, � 5 31.21 7.67 0.88* 1.00 7.34 28.30 4.47 0.80** 1.04 5.18

0,2,0 10.59 3.15 0.42* 1.04 8.96

R2 0.72 0.91

F 16.56* 31.04**

B. RHYTHM TRANSITION

W. J. Evans Second 1, 2, 2 17.75 4.33 0.88** 1.00 6.19

R2 0.73

F 16.85**

H. J. Hancock First 1, 0.333 � 506.2 129.84 � 0.87* 1.00 10.04 � 471.7 76.01 � 0.81** 1.02 2.83

1, 1.5 � 40.48 12.27 � 0.43* 1.02 11.62

R2 0.70 0.90

F 15.20* 28.05**

M. Tyner Forth 1, 2, 1, 2, 1 5.37 1.78 0.80* 1.00 4.20

R2 0.57

F 9.08*

C. PITCH TRANSITION WITH RHYTHM

H. J. Hancock Second 0,4,2 with 1,2 10.50 3.64 0.79* 1.00 1.82

R2 0.55

F 8.33*

M. Tyner Third 0, 0, 0, 0 with 1, 1, 1 � 3.72 1.03 � 0.85* 1.00 2.16

R2 0.67

F 12.99*

Forth 0, � 3, 2, � 1, � 5 with 1, 1,
1, 1

� 3.33 1.23 � 0.77* 1.00 2.55

R2 0.51

F 7.35*

D. RHYTHM TRANSITION WITH PITCH

W. J. Evans Second 1, 1, 1 with 0, 2, 4, 6 � 3.50 1.21 � 0.79* 1.00 1.82 � 4.72 0.90 � 1.07** 1.30 2.20

1, 1, 1 with 0, � 2, � 5, � 9 2.61 0.93 0.57* 1.30 4.09

R2 0.55 0.81

F 8.33* 13.80*

Forth 1, 1, 1, 1, 1 with 0, � 3, � 2,
0, 1, 3

� 629.6 149.6 � 0.88** 1.00 1.00

R2 0.74

F 17.72**

Fifth 1, 1, 1, 1, 1, 1 with 0, � 3,
� 2, 0, 1, 3,4

� 3.50 1.21 � 0.79* 1.00 1.82

R2 0.55

F 8.33*

H. J. Hancock First 1, 1 with 0,� 2, � 3 � 11.40 2.94 � 0.87* 1.00 10.07

R2 0.70

F 15.06*

*p < 0.05, **p < 0.01. SE, standard error; VIF, variance in�ation factor; CI, condition index.
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TABLE 6 | Time–course variation of entropy (rhythm sequence with entropies).

Model

Hierarchy Variable B SE B � VIF CI

Fiffth Rhythm
sequence with
pitches in
Hancock

� 193.34 59.44 � 0.82* 1.00 2.50

R2 0.62

F 10.58*

Sixth Rhythm
sequence with
pitches in
Hancock

� 272.31 89.38 � 0.81* 1.00 2.47

R2 0.58

F 9.28*

*p < 0.05. SE, standard error; VIF, variance in�ation factor; CI, condition index.

with pitches gradually decreased (p D 0.029) consistently with
the ascending chronological order. No signi�cant regression
equation was detected in W.J. Evans and M.Tyner.

DISCUSSION

Interpretation of Multi-Order Hierarchical
Models for Implicit Learning
In the context of implicit-learning models on information theory
and predictive coding (Friston, 2005; Pearce and Wiggins, 2012;
Rohrmeier and Rebuschat, 2012), the TP distribution sampled
from musical improvisation based on n-order Markov models
may refer to the characteristics of a composer's super�cial-to-
deep (i.e., n-order) implicit knowledge: a tone with high TP
compared to a tone with a low TP may be one that a composer
is more likely to predict and choose based on the latest n tones.
The notion has been neurophysiologically demonstrated by our
previous studies on predictive coding (Daikoku et al., 2017b).
Using the various-order Markov stochastic models that unify
temporal and spectral features in musical improvisation, the
present study investigated the stochastic di�erence of temporal
and spectral features among musicians, and clari�ed which
information (pitch and rhythm) and depth (1st to 6th orders)
represent the individualities of improvisational creativity and
how they interact with each other.

Hierarchy
The results of principal component analysis (PCA) suggested
that the lower-order models represented general statistical
characteristics shared among musicians, whereas higher-order
models represented speci�c statistical characteristics that were
unique to each musician (Figure 1). In the 1st-order models
of any type of temporal and spectral sequences, and 2nd-order
models of sequences other than pitch sequence with rhythm,
component 1 showed general characteristics in improvisation.
These results suggest that the individuality of improvisational
creativity depends on the depth of implicit knowledge. This
hypothesis could also be underpinned by ANOVA results. To

understand the di�erences between TPs in each sequence among
musicians, only the transitional patterns with �rst to �fth highest
TPs from each musician, which showed higher predictabilities
in each musician, were analyzed using an ANOVA. In lower-
order models, universal sequences that are common among
musicians could be detected. For example, in a 1st-order model
of pitch sequence without rhythm (Figure 3, top), the extracted
sequences of [0, 0], [0,� 1], [0, 1], [0, � 2], [0, 2], [0, � 3], and
[0, 3] correspond to repetition of the same tone, and semi-tone,
whole-tone, and minor-third transitions. These sequences are
frequently exploited in many types of music (e.g., Classical,Jazz),
are easier to immediately play because of the small pitch intervals,
and lead to a smooth melody. However, in the 6th-order model
(Figure 3, bottom), the TPs for the sequences of [0, 3, 0, 1, 5,
8, 12] and [0,� 2, � 4, � 7, � 2, � 4, � 7] were di�erent among
musicians. Although the di�erence could also be detected even
in the 1st-order model, higher-order models showed a larger
di�erence of TPs among musicians, suggesting that individuality
of musical prediction and production is larger with a deeper
implicit knowledge. In summary, the results of the present study
suggest that the individuality of improvisational creativity may
be formed by deeper implicit knowledge, whereas lower-order
implicit knowledge may be shared among musicians.

Pitch and Rhythm
In the pitch sequences with and without rhythms and the
rhythm sequence with pitches (Figures 1A,C,D), W. J. Evans'
and M. Tyner's components could be detected in any-order
model. In a rhythm sequence without pitch (Figure 1B), however,
no obvious di�erence among musicians could be detected.
These results suggest that individuality of musical creativity is
shaped by spectral, rather than temporal, implicit knowledge.
However, the results also suggest that temporal knowledge at
least contributes to formation of individuality; TP distribution
of pitch sequences “with” rhythms, compared to those “without”
rhythms, showed clear individuality among three musicians
from a lower-order model (i.e., 4th-order model). Additionally,
in two types of rhythm sequences without and with pitches
(Figures 2B,D, respectively), TP distribution with, but not
without, pitches showed individuality of improvisation. This
suggests that temporal and spectral implicit knowledge interact
with each other. The ANOVA results support these PCA �ndings.
In lower-order models, the extent of the di�erence in TPs among
musicians is larger for pitch sequences with rhythms (Figure 7)
than for those without rhythm (Figure 3). Additionally, in two
types of rhythm sequences without and with pitches (Figures 5,
7, respectively), the extent of the TP di�erence among musicians
is larger in rhythm sequences with, compared to without,
pitches. Together, these results suggest that the individuality of
improvisational creativity may essentially be formed by pitch, but
not rhythm, implicit knowledge. However, implicit knowledgeof
rhythm may strengthen individuality.

Time-Course Variation of Implicit
Knowledge
In all types of spectro-temporal sequences of each hierarchy,
time-course variation of TPs in some sequences could be
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detected. There were two types of time-course variations: TPs that
gradually decrease, and those that gradually increase, consistent
with the chronological order. Thus, implicit knowledge of pitch
and rhythm could be shifted over a musician's life. However,
the �ndings suggested that the time-course variations in TPs
do not depend on hierarchy and spectro-temporal features,
while the individuality among musicians may depend on these
features. This suggests that the shifts in implicit knowledge may
occur in each musician's lifetime, regardless of spectro-temporal
features and the depth of knowledge. It may be interesting to
investigate if the �ndings of gradual shifts in TPs re�ect those of
implicit knowledge via experience and training. Learning to play
the piano enhances auditory-motor skills based on procedural
knowledge (Norgaard, 2014), which corresponds to implicit
knowledge (Clark and Squire, 1998; Ullman, 2001; Paradis,
2004; De Jong, 2005; Ellis, 2009; Müller et al., 2016). Thus,
through experience and long-term training over the player's
life, implicit knowledge that is tied to musical expression may
shift (Daikoku et al., 2012). On the other hand, the time-
course variations of the entropies, which represent uncertainly in
music (Pearce and Wiggins, 2006), could be detected in higher-
order hierarchy in one musician. Future study is needed to
investigate the relationships of time-course variation between
speci�c phrase and general uncertainty. In addition, the results
of the present study cannot completely support the hypothesis
because time-course variations among only seven pieces of
music for each musician were investigated. Further research is
needed to verify a larger number of music pieces in a musician's
lifetime, and to examine behavioral and neurophysiological
results.

General Discussion: Informatics and
Neural Aspects in Musical Creativity
In summary, the present study found three types of results
on improvisational music and implicit knowledge: hierarchy,
spectro-temporal features, and time-course variation. First, the
lower-order TP distribution represented general characteristics
shared among musicians, whereas higher-order TP distribution
detected speci�c characteristics that were unique to each
musician. Thus, the individuality of improvisational creativity
might be formed by deeper (i.e., higher-order), but not
super�cial (i.e., lower-order), implicit knowledge. Second,
the TP distribution with pitch information detected speci�c
characteristics that were unique to each musician, whereas
the TP distribution with only rhythm information could not
detect di�erences among musicians. Thus, the individuality of
improvisational creativity may essentially be formed by spectral
(i.e., pitch), but not temporal (i.e., rhythm), implicit knowledge,
whereas the rhythms may allow the individuality of pitches to
strengthen. Third, TPs of some phrase were gradually decreased,
and increased consistent with the chronological order for each
musician, regardless of hierarchy and spectro-temporal feature
in the TP distributions. Thus, time-course variation of implicit
knowledge in pitches and rhythms may occur throughout a
musician's lifetime regardless of the depth of knowledge. Onthe
other hand, the time-course variations of the entropies, which

represent uncertainly in music (Pearce and Wiggins, 2006), could
be detected in higher-order hierarchy in one musician.

It is generally considered that musical expression in
improvisation is mainly shaped by tacit knowledge (Delie`ge et al.,
1996; Koelsch et al., 2000; Delie`ge, 2001; Bigand and Poulin-
Charronnat, 2006; Ettlinger et al., 2011; Koelsch, 2011; Huron,
2012). Particularly, the expression of musical improvisation,
compared to other types of musical composition in which a
composer deliberates a composition scheme for a long time based
on musical theory, forces musicians to continually predict each
forthcoming tone, and immediately play the melody based on
intuitive decision-making and auditory-motor planning, which
are considered to tie in with procedural and implicit knowledge
(Berry and Dienes, 1993; Reber, 1993; Clark and Squire, 1998;
Ullman, 2001; Paradis, 2004; De Jong, 2005; Ellis, 2009; Norgaard,
2014; Müller et al., 2016; Perkovic and Orquin, 2017). Thus,
the musical improvisation may be more strongly related to
the implicit knowledge, compared to other types of music.
Few studies have investigated the relationship between musical
improvisation and implicit learning via computational model
(Norgaard, 2014) and neural correlate (Adhikari et al., 2016;
Lopata et al., 2017). In a series of my previous neurophysiological
studies using Markov stochastic models and other studies on
music, implicit learning of pitch, harmony, and dyad chord
could be re�ected in event-related responses (ERP/ERF) based
on predictive coding (Daikoku et al., 2014, 2015, 2016, 2017a;
Daikoku and Yumoto, 2017; Moldwin et al., 2017). Other studies
also detected neural correlates to the motor control for auditory
prediction and production when playing the piano (Bianco et al.,
2016), and to improvisational creativity of music (Pinho et al.,
2015; Adhikari et al., 2016; Lopata et al., 2017). These studies
suggest that the mental representation of a musician's knowledge
facilitates optimisation of motor actions (Daikoku et al., 2018)
in the framework of information theory on brain function. The
�ndings of the present study were based on relative but not
absolute stochastic feature of music. Thus, the results in this study
could support the previous neurophysiological and psychological
studies that suggest that human's brain learn relative rather
than absolute temporal and spectral (Daikoku et al., 2014, 2015)
patterns.

The veri�cation of computational models and the neural
correlates have also been performed in previous studies (see
review, Rohrmeier and Rebuschat, 2012). For example, the
n-gram models calculate probability of sequential patterns
by chopping them into short fragments (n-grams) up to
a size of n. This model, which is frequently veri�ed by
neural approaches, is considered to correspond to chunking
and word-segmentation processes in implicit learning (Sa�ran
et al., 1996). The online perception and production of real-
world dynamical music, however, is not the mere chopping
of sequential patterns like word segmentation, but dynamical
prediction to maintain an aesthetic melody with various temporal
and spectral features, hierarchical structure, and harmony, which
interact with each other (Lerdahl and Jackendo�, 1983; Hauser
et al., 2002; Jackendo� and Lerdahl, 2006). Musical prediction
and the representation constantly occurs with each state of
sequences during learning and playing music. In addition, they
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are not restricted to a single stream of events or hierarchy
but, rather, they interact with each parallel stream (Conklin
and Witten, 1995; Pearce and Wiggins, 2012). Given the real-
world phenomenon of music perception and prediction, various-
order Markov models may be able to express dynamical and
hierarchical creativity that occur in a musician's brain when they
play music (Pearce and Wiggins, 2012), and to interdisciplinarily
verify lower-to-deeper implicit knowledge and its representation
using one experiment via neurophyisiological and informatics
approaches. Using the models, however, future study is needed
to also investigate other aspects of music such as harmony, non-
adjacent dependency, and tree-structure nature of melody and
harmony.

In conclusion, the present study suggested that the formation
of individuality of musical creativity may depend on spectro-
temporal features and hierarchy. The present study �rst provides
the hierarchical implicit-learning model that uni�es temporal
and spectral features in musical improvisationa and creativity
and that is interdisciplinarily veri�able using neurophysiological,
behavioral, and information-thepretic approaches.
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