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Dynamic critical behavior of the one-dimensional XY model with a long-range interaction
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We numerically study dynamic critical behavior of the one-dimensional XY model with a long-range
interaction by using the Monte Carlo method and the resistively-shunted Josephson junction model. The two
dynamic models exhibit the mean-field universality class in equilibrium as expected, but the dynamic critical
behavior is shown to sensitively depend on details of numerical simulation. In more detail, the trial angle range
in the Monte Carlo simulation is found to alter the value of the dynamic critical exponent, and the scaling of the
Monte Carlo time unit by the acceptance ratio is shown to be useful to improve the estimation of the dynamic
critical exponent. We compare the Monte Carlo result of the dynamic critical exponent with the result from the
more realistic dynamic model of the resistively-shunted junction. We conclude that the small value of the trial
angle range should be used to properly detect dynamic critical behavior.
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I. INTRODUCTION

The XY model is a well-known spin model which has
been widely studied in the research field of statistical physics
and condensed-matter physics. Unlike the Ising model, the
XY model is described by continuous variables and has a
continuous rotational symmetry. According to the Mermin-
Wagner theorem [1-3] a system with the continuous symme-
try like the XY model cannot have an ordered phase at any
nonzero temperature if the dimensionality of the system is
equal or less than two and if the interaction is short ranged.
However, in various underlying interaction structures such
as a random network [4], a small-world network [5], and a
static scale-free network [6], the Mermin-Wagner theorem is
not applicable, and the system exhibits a continuous phase
transition. The standard values of the static critical exponents
in the mean-field (MF) universality class have confirmed in
those networks [4—6]. Breaking down of the Mermin-Wagner
theorem originates from the underlying long-ranged interac-
tion structure. Since the Mermin-Wagner theorem assumes
the local interaction, the system with a long-range interaction
does not necessarily satisfy the Mermin-Wagner theorem.
Furthermore, if the interaction range becomes comparable to
the system size, the universality class of the phase transition
becomes MF class, as one can easily understand from the
globally coupled system [7]. Hence, the systems undergo the
MF phase transition even the system dimension is less than
lower critical dimension [7]. It is shown that the XY model
in the one-dimensional lattice with long-range interaction
exhibits MF phase transition [7].

Dynamic critical behavior of the XY model has also been
studied in a random and a small-world networks [8,9], with
the results consistent with the dynamic MF universality class.
The relaxation time scale 7 in a regular d-dimensional system
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scales with the correlation length & as t ~ £%. For a finite
system of the linear size ¢, the above expression reads t ~ £¢
at the critical point. It should be noted that the linear size £ in
networks is ill defined, and thus one often uses instead the
total number N of degrees of freedom to get T ~ N<. For
a regular lattice with N = ¢, we get the relation 7 = z/d
between z and Z. The standard value of the dynamic critical
exponent z = 2 for a relaxational dynamics then corresponds
to Z = 1/2 beyond the upper critical dimension four of the XY
model.

For long-range interaction, however, the dynamic critical
behavior has not been well studied in comparison to the static
critical behavior. In this paper, we focus on the dynamic crit-
ical behavior of the XY model in the one-dimensional lattice
with long-range interaction by using the Monte Carlo (MC)
simulations. We also investigate the real-time dynamics of the
resistively-shunted junction (RSJ) model which describes the
phase variable of the XY model as the phase of the Cooper
pair wave function of the superconducting array [10,11].

The present paper is organized as follows: In Sec. II we
introduce the XY model and describe the RSJ model for
dynamics. We investigate the dynamic critical behavior by
using the Monte Carlo simulations in Sec. III, by observing
dynamic fluctuation in equilibrium (Sec. Il A), and by using
the so-called the short-time relaxation method (Sec. III B).
In Sec. IV, we report numerical results of the RSJ model in
comparison to the results in Sec. III. Finally, a conclusion with
a brief summary follows in Sec. V.

II. MODEL

The XY model with the interaction range L in one-
dimensional lattice is described by the Hamiltonian given by

i+L

J N
H=-— D0 cos(@i — ). (D

i=1 j=i—L
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where J is the ferromagnetic interaction strength (J > 0),
the phase angle ¢; at the ith site is a compact continuous
variable in (—m, 7], and the periodic boundary condition
is imposed (¢;+ny = ¢;). When L = 1, we have the typical
one-dimensional XY model with the nearest-neighbor inter-
action, with no ordered phase at any nonzero temperature.
As the interaction range L becomes comparable to N, i.e.,
L/N ~ O(1), we have the XY model with a long-range
interaction. Hereafter, we use the sufficiently large interaction
range L/N = 0.4 to ensure that the model surely exhibits the
MF behavior as shown in Ref. [7].

The upper critical dimension is d, =4 for the locally
coupled XY model, and thus the MF results come out when
the dimensionality d of the system satisfies d > d,,. In this MF
regime, the local updating algorithms including the Metropo-
lis MC algorithm is well known to yield the dynamic critical
exponent z = 2 [12], which has been confirmed from nu-
merical studies [13,14]. From those existing studies, we also
expect to obtain the dynamic critical exponent z = z/d, =
1/2 in the one-dimensional XY model with a long-range
interaction. From now on, we call z the dynamic critical
exponent for convenience.

It is to be emphasized that the equilibrium Hamiltonian (1)
alone cannot dictate the temporal dynamic evolution of the
system. One can use the Metropolis MC algorithm for the
time evolution of the system, and other dynamics can also
be used: In Ref. [10], it has been shown that both the time-
dependent Ginzburg-Landau (TDGL) dynamics and the RSJ
dynamics can be used with the same equilibrium Boltzmann
distribution for a given Hamiltonian. The RSJ model describes
the time evolution of the phase variable ¢ of Cooper pair
electrons in a superconducting arrays [10,15,16]. Although
TDGL dynamics describes the time evolution of the same
phase variables as in the RSJ dynamics, the two are very
different: TDGL dynamics is phenomenologically derived
solely from the Hamiltonian and thus TDGL dynamics lacks
any justification of the time scale of relaxation dynamics.
The other difference is that the thermal noise term in TDGL
equation is defined onsite, while the thermal noise currents
in RSJ dynamics (see below) are defined as link variables
between two superconducting islands. Consequently, the tem-
poral noise correlation takes different forms in TDGL and
RSJ dynamics [10]. We note that the RSJ model is based on
the current-conservation law applied for the superconducting
array and thus can be considered realistic. Although the one-
dimensional XY model with a long-range interaction can
be very difficult to fabricate in reality by using Josephson-
coupled superconductors, one can still say that RSJ model
is more realistic than the Metropolis MC dynamics and the
TDGL dynamics.

The sum of all the currents from ith superconductor to
neighboring superconductors (j’s) in the array must be zero,
and the current-conservation law can be written as [10,15,16]

. h o d
> |resini =9+ 5 o
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where ¢; is the phase of Cooper pairs at the ith site and N(i)
is the set of neighboring superconductors Josephson coupled
to i [11]. The first (the second) term on the left-hand side

of Eq. (2) is the supercurrent (the normal resistive current)
from i to j, where I. and R are the critical current and
the normal resistance across a Josephson junction, respec-
tively. We use the conventional notation so that e(>0) and
h are the electron charge and the reduced Planck constant,
respectively. The third term (I';;) is the thermal noise current
from i to j which satisfies (I';;(¢)) = 0 and (I';; (1)['y;(0)) =
(4kpTL/R)(8;x81 — 81181 )5(t), where kp is the Boltzmann
constant, and §;; and §(¢) are the Kronecker § and the Dirac §,
respectively.
We can rewrite Eq. (2) in a dimensionless form [10],

% = Y6, Y [0 -0t 0] @
t j keN(j)

where we have rescaled time in units of 7i/(4el.RL) to make
t dimensionless, G;; is the lattice Green function for the
one-dimensional lattice with the long-range interaction, and
nij is the dimensionless thermal noise current defined by 7;;
I';;/2L1. with conditions (n;;(t)) =0 and (n;;(t)nx(0))
2T (8ix8j1 — 8i18jx)8(t). Note that the temperature 7 has also
been rescaled in units of /1. /2ekp to make it dimensionless.
The Josephson coupling strength J in Eq. (1) is related with
the critical current via J = hl./2e, and thus T is now in
units of J/kp to make the comparison to the MC results
straightforward.

The RSJ equations are the Langevin type and one can map
into the Fokker-Planck equation. It is straightforward to get
the stationary solution of the Fokker-Planck equation and the
equilibrium probability distribution function P oc e=H#/*s7T g
obtained with the XY Hamiltonian H in Eq. (1). Accordingly,
the phase variable of the XY model can be directly interpreted
as the phase of the superconducting order parameter describ-
ing the Cooper pair wave function in superconductivity.

III. RESULTS: MONTE CARLO DYNAMICS

In a strict sense, one can observe a thermodynamic phase
transition only when the system size is infinite. What we
can observe in reality in computational approach is only how
the behavior changes as the system size becomes larger. In
statistical mechanics, the use of finite sizes to understand
what happens in the thermodynamic limit has been well estab-
lished, and the methodology is often phrased “the finite-size
scaling” (FSS). In the present paper, we use two different FSS
approaches to investigate the dynamic critical behavior. We
first observe the dynamic fluctuation in equilibrium [17-19]
and apply the FSS to obtain the dynamic critical exponent.
We also use the so-called short-time relaxation method (or
the finite-time method) which uses the relaxational behavior
in early times [9,13,14]. Note that Ref. [20] has suggested the
unified framework, called “the finite-size—finite-time scaling,”
to build a two-dimensional scaling surface rather than a one-
dimensional scaling curve in the conventional FSS approach.

The XY model has a continuous U (1) symmetry related
with the continuous periodic variable ¢. In our MC simu-
lations, we use the the standard Metropolis local updating
algorithm. The important parameter in the Metropolis MC
simulations of the XY model is the trial angle range A¢: The
trial angle ¢, at the ith site is a uniform random variable

i
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in the range [¢; — A¢p, ¢; + A¢], and the trial is accepted
(¢; is updated to ¢;”) or not (¢; remains unchanged) by
using the Metropolis criterion [18]. The trial angle range A¢
affects the acceptance ratio: The smaller A¢, the larger the
acceptance ratio. The A¢ dependence of the acceptance ratio
can be important in the study of dynamic behavior, since
the acceptance ratio alters the time scale of the relaxation.
The relaxation can be extremely slow and the acceptance
ratio very close to unity if A¢ is very small. Accordingly,
dynamic MC results should be carefully analyzed with A¢
dependence of relaxation behavior taken into full account. In
our MC study, we examine the dynamics of the system at
various values of the trial angle range A¢ = n(;r/6) withn =
1,2,...,6 for the system sizes N = 50, 100, 200, 400, and
800. In all measurements in Sec. II A for equilibrium study
we perform averages over 10° MC steps with 200 different
initial configurations after equilibration for 10° MC steps. In
Sec. III B for the short-time relaxation study, averages are
made over 5 x 10* independent MC runs.

A. Dynamic fluctuation in equilibrium

We first present our results for dynamic MC simulations
in equilibrium. After a sufficiently long MC simulation for
equilibration, measurement in time ¢ is made for a quantity
A(t) of interest. We calculate the autocorrelation function
C(t) of A defined by [17,18]

(At +1)AW))r — (Al + 1)) (AW y
(A@)?)y — (A(t))?

where (- --), denotes the average over the time ¢’. At ¢t =0,
the numerator and the denominator of Eq. (4) are identical to
yield C(t = 0) = 1. In other limit of t — oo, A(t +¢") and
A(t") must become independent from each other, and thus
we have C(t — oo) = 0. The relaxation time scale related
with the autocorrelation C(¢) can be estimated either from
the curve fitting to the exponential decay form or from the
time integration of C(¢) [17,18]. We use the latter method and
obtain the average relaxation time t from

C(t) =

)

T = /oodz C(1). (@)
0

In order to estimate T more accurately, we also perform an
average over 200 independent MC runs, each of which follows
the above procedures (4) and (5). In the present study, we
measure two macroscopic quantities for A: the total energy
E in Eq. (1) and the total magnetization M = | }_; ¢'%|.

After we compute the relaxation time 7g and ty, for the
energy E and the magnetization M, we then apply the FSS
analysis. The basic idea of the standard FSS is that one can
investigate the critical behavior by a systematic observation
of simulation results obtained for finite but large-enough var-
ious system sizes [12,21-23]. Although the conventional FSS
method is based on the scaling behavior of the free energy,
one can extend the FSS for the scaling of the relaxation time
T:

T = N F[(T — T,)N'"], (6)

where 7' denotes the temperature and 7. is the critical temper-
ature. The argument (T — T.)N'/" of the scaling function F

reflects the ratio between the system size N and the correlation
volume &y ~ |T — T,.|". Exactly at the critical point, (T —
T.)N'/" vanishes, and we get T ~ N7 as explained in Sec. L.
We use the FSS form of t as follows: All curves for different
system sizes can be made collapse if we plot TN ™% versus
(T — T.)N'/? when the correct values of 7., ¥, and 7 are
chosen [17,21,22]. We use T, = 1/2 and b = 2 in Ref. [7]
and thus the only remaining parameter to adjust to achieve the
scaling collapse is Z.

If the trial angle range A¢ is very small, then the trial
angle variable is not much different from the previous value,
and thus most of the MC trials are accepted. Accordingly, the
smaller A¢, the larger the acceptance ratio, and the relaxation
becomes the slower. We thus believe that the relaxation time
scales at different trial angle ranges should not be compared
directly. To deduct the effect of time scale difference origi-
nated from the difference in the acceptance ratio, we introduce
the scaled relaxation time 7 by multiplying the acceptance
ratio to the relaxation time t. The relation between t and 7 is
not trivial, since the acceptance ratio strongly depends on the
temperature. In Fig. 1 we display the scaling collapses of both
7g [(a) and (b)] and £ [(c) and (d)] at two different values of
the trial angle range A¢ = 7 [(a) and (c)] and A¢ = 7 /6 [(b)
and (d)]. (Although not shown here, we confirm that the use
of the magnetization M yields the scaling collapse of similar
quality as well.) We observe that the value of the dynamic
critical exponent approaches the expected value of 1/2 (i) as
A¢ is decreased and (ii) if the MC time is scaled by using
the measured acceptance ratio. However, the use of 7x instead
of tx does not fully remove the gap between the observed
and the expected values of z, but the effect of trial angle
range still remains. As A¢ approaches null value, making
the relaxation extremely slow, the dynamic critical exponents
measured from both Tz and tg appear to approach 7 = 1/2 as
shown in Fig. 2.

B. Short-time relaxation

There is another way, the so-called the short-time relax-
ation method [9,13,14,20], to measure the dynamic critical
exponent by using relaxation behavior from nonequilibrium to
equilibrium. Within this framework, MC simulation at a given
temperature starts from the completely ordered phase in which
¢; = 0 for all i’s, and the system approaches equilibrium state
as time proceeds. The key quantity Q to investigate dynamic
critical behavior is defined as [9,13,14,20]

N
O, N, T) = <sgn[Zcos qb,-(t):|>, (7
i=1

where (- - - ) is the average over independent MC runs starting
from the identical initial condition [¢;(t = 0) = 0 for Vi],
and sgn(x) = £1 for x 2 0. Note that although sgn[) _ cos ¢;]
is either +1 or —1, Q(¢) can have a continuous value in
[—1, 1] after the sample average (- - - ). The value of Q starts
from Q(t = 0) = 1 and eventually approaches Q(t — 00) =
0, since sgn[)_ cos ¢;] can be either +1 or —1 without any
specific preference after a sufficiently long time. The scaling
form for Q is written as [20]

O(t,N,T)= Q[tN~*,(T — T.)N""], (8)
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FIG. 1. Finite-size scaling collapse of the relaxation time of the energy for trial angle ranges A¢ = 7 [(a) and (¢)] and A¢ = 7 /6 [(b) and
(d)] from the MC simulations. For (a) and (b), we use the MC time in simulation to measure 7z, and for (c) and (d), we use the scaled MC
time with respect to the acceptance ratio (see text) to measure the corresponding value of 7z. We observe that the dynamic critical exponent Z
increases as the smaller value of A¢ is used [compare (a) and (b) and then (c) and (d), respectively]. Furthermore, we find that if we scale the
MC time in terms of the observed acceptance ratio, then we get Z closer to the expected value of 1/2 [compare (a) and (c) and then (b) and (d),
respectively]. For (a)-(d), we have tried to make curves collapse better near 7' = T,, and T, = 1/2 and b = 2 have been used.

where the scaling variables tN~% and (T — T,)N /" are re-
lated with the finite-time (t/¢) and the finite-size (§y/N)
effects, respectively [20]. Since we are interested in the dy-
namic critical behavior, we fix the temperature at T = T.,.
The Q becomes the function of ratio of two time scales,
Q(t,N,T,) = Q(tN~%), which yields a simple one-variable

scaling form Q(t, N, T,) = Q(tN~%,0). Accordingly, if we
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FIG. 2. Dynamic critical exponent Z versus the trial angle range
A¢ for the MC simulations. The relaxation time t and the scaled
relaxation time ¥ for the energy E and the magnetization M are
estimated from the FSS method. It is clearly seen that 7 appears
to approach 1/2 (the red dashed horizontal line) as A¢ — 0. The
shaded area represents the error bar sizes.

plot Q versus tN %, then all curves must collapse to a single
curve if the proper value of Z is chosen.

We display our scaling results of the short-time relaxation
method in Fig. 3 for A¢ = 7 and /6. Similarly to Fig. 1
for equilibrium investigation, we again find that the smaller
value of A¢ gives us the dynamic critical exponent closer to
the expected one (z = 1/2). Differently from Fig. 1 where we
also present the result for the scaled relaxation time, we do not
scale the MC time for Q(#) because the acceptance ratio is not
a constant but changes in time as the MC simulation proceeds
toward equilibrium. The results of short-time relaxation are
consistent with equilibrium results in Sec. IIl A: The smaller
the trial angle range A¢, the closer the dynamic critical
exponent 7 to 1/2.

IV. RESULTS: RESISTIVELY-SHUNTED-JUNCTION
DYNAMICS

We present our simulation results from the RSJ dynamics
explained in Sec. I. It should be emphasized that both the MC
and the RSJ simulations are equivalent if we are interested
only in equilibrium property. Both dynamics in equilibrium
generate the Boltzmann distribution of the canonical ensem-
ble, i.e., the probability P({¢;}) of the microstate represented
by {¢;} is given by P ~ ¢~ H#{¢)/T with the Hamiltonian in
Eq. (1) and the temperature T in units of J/kp [10]. Although
the equilibrium properties cannot be different in principle,
dynamic critical behaviors are not guaranteed to be identical.
For example, the MC dynamics lacks any realistic time scale
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FIG. 3. Short-time relaxation of Q for trial angle ranges (a)
A¢ = and (b) A¢p = 7/6 from the MC simulations. For a suffi-
ciently small value of the trial angle range [A¢ = /6 in (b)], we
obtain 7 & 1/2.

to be compared with the real dynamics of the system, and to
make it worse, one MC time can sharply depend on the details
of the update algorithm in MC simulation. In this regard, we
claim that the RSJ dynamics applied for the XY model is more
real than the MC dynamics. The present section is devoted to
comparisons of the results in Sec. III for the Metropolis MC
simulations with the results from RSJ dynamic simulations.
We numerically integrate the RSJ equations of motion (3)
by using the second-order algorithm [10] with the integra-
tion time step Az = 0.01. We disregard the first half of the
simulation time until # = 3 x 10% is reached for equilibration,
and the data from the other half until = 6 x 10* are used
to compute the autocorrelation function (4) of the energy for
the system size up to 40. For the system sizes N = 60 and
80, total simulation time is r = 8 x 10* and the first half of
simulation time is used for equilibration and the data from
the remaining half are used. To get a better statistics, we also
perform an average over 200 independent simulations starting
from different initial conditions and different realizations of
thermal noise currents. Once the autocorrelation function (4)
is measured, we use Eq. (5) to compute tz. Although we use
the fast Fourier transformation algorithm [10] for the lattice
Green function in Eq. (3) to make the numerical integration
faster, the RSJ dynamics is much slower than the MC simu-
lation. We thus present RSJ simulation results of tg only at
T = T. in Fig. 4 for system sizes N = 10, 15, 20, 30, 40, 60,
and 80. Although the system sizes are much smaller than in
Fig. 1 for the MC dynamics, the curve fit to the data points

5, 4
4, 4
33’ 0.5 ]
[ )
2, J
()
10 15 20 30 40 60 80
N

FIG. 4. The equilibrium relaxation time 7z computed from the
autocorrelation function of the energy for the RSJ dynamics for
the system sizes N = 10, 15, 20, 30, 40, 60, and 80. We fix the
temperature to the critical temperature 7. = 0.5. We use the log scale
for both axes in the figure. The slope of the solid line is 0.5, which is
in agreement with the expected value of 7 = 0.5.

in Fig. 4 yields z = 0.50(2), which is in agreement with the
expected value 1/2 [13,14].

We next apply the short-time relaxation method in
Sec. IIIB and compute Q(f) starting from ordered phase,
¢;(t =0) =0 for all i’s. In Fig. 5, we display the scaling
of Q(t) for N =50,75,100, and 150, obtained from av-
erages over 2 x 10* independent runs. The best quality of
the collapse of curves from different sizes is obtained at
Z = 0.46, somewhat smaller but consistent with the expected
value 1/2.

V. SUMMARY AND DISCUSSION

We have numerically studied the dynamic critical behav-
ior of the one-dimensional XY model with a long-range
interaction through the use of the Metropolis Monte Carlo
simulations as well as the RSJ dynamic simulations. We
have investigated both the dynamic fluctuation in equilibrium
and the short-time relaxation from a nonequilibrium initial
state toward equilibrium. The equilibrium relaxation time
of the autocorrelation function has been measured and the

1) ‘ N
x N= 50 *
b 75
08 | %, 100 o
% 150 v
.
0.6 | % ]
] 7=0.46 o,
0.4 | ]
‘%«‘&
02| ‘
0 I I I
0 1 2 3

FIG. 5. Scaling collapse of Q(¢) at T = T, = 1/2 for system
sizes N =50, 75,100, and 150 from the RSJ dynamics. The dy-
namic critical exponent Z & (.46 is obtained.
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TABLE I. The dynamic critical exponent of the one-dimensional
XY model with a long-range interaction for the Metropolis MC
dynamics (Sec. III) and the more realistic RSJ dynamics (Sec. IV).
We have used the finite-size scaling of the relaxation time tz for
the equilibrium autocorrelation function, and the scaled T by the
acceptance ratio has also been used. The finite-time scaling of the
quantity Q(z) for the nonequilibrium relaxation toward equilibrium
has also been performed.

MC (A¢)
2n/3  w/2  7w/3  w/6  RSI

T 5t/6

e 031(1) 0.35(1) 0.38(1) 0.41(1) 0.44(1) 0.47(2) 0.50(2)
fx 039(2) 0.41(2) 043(2) 045(1) 047(2) 0.492) -
0 038(1) 0.42(2) 0.45(1) 0.47(1) 0.49(2) 0.50(1) 0.46(3)

FSS method has been applied. We have also applied the
finite-time scaling [20] method to the key quantity Q(t) for
the nonequilibrium short-time relaxation.

We report that the dynamic critical exponent Z of the model
strongly depends on the trial angle range A¢ in the Metropolis
Monte Carlo dynamics: The smaller A¢, the larger Z is
obtained. As A¢ approaches null, it appears that z approaches
1/2, the expected value for the mean-field universality class.
We have also scaled the MC time by using the measured
acceptance ratio in MC simulation. Although such scaled MC
time yields zZ closer to 1/2, it again exhibits the systematic
dependence on A¢. Similar computations have been made in
the scheme of the RSJ dynamics which is supposed to be more
realistic dynamics than the MC dynamics. We emphasize that
both the Metropolis MC dynamics and the RSJ dynamics

are equivalent for any of equilibrium quantities since both
dynamics yield the identical Boltzmann distribution in equi-
librium. Our RSJ simulations have led us to conclude that
the equilibrium relaxation time and the short-time relaxation
unanimously result in z ~ 0.5, which is consistent with the
theoretical expectation for the long-range XY model and also
with the MC results for the limit of A¢ — 0. We summarize
all the results in the present work in Table I.

We remark that we need to be cautious in the investigation
of the dynamic critical behavior via the MC dynamic simu-
lations. More reliable results can be obtained as the temporal
evolution is made slow by using a sufficiently small trial angle
range of the XY model. Other dynamics of the XY model,
called the TDGL dynamics [10,13,14], can also be used to
study dynamic critical behavior, for which the mathematical
representation is identical to the Kuramoto model with the
thermal noise. Our result Z ~ 0.5 in the present work is
also in agreement with the Kuramoto model with thermal
noise [24].

The ordered phase and the disordered phase of the XY
model on the lattice structure can be distinguished from each
other by using a suitable nonlocal order parameter [7]. The
investigation of dynamic critical behavior with the nonlocal
order parameter is a challenging problem which we plan to
study in the near future.
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