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We provide regularity of solutions to a large class of evolution equations on Banach
spaces where the generator is composed of a static principal part plus a non-
autonomous perturbation. Regularity is examined with respect to the graph norm
of the iterations of the principal part. The results are applied to the Schrödinger
equation and conditions on a time-dependent scalar potential for the regularity of
the solution in higher Sobolev spaces are derived. Published by AIP Publishing.
https://doi.org/10.1063/1.5011306

I. INTRODUCTION

In this work, we study the existence and regularity of solutions to the evolution equation

∂tu(t)=G(t)u(t) with G(t)=A + B(t) (1)

for finite times t ∈ [0, T ] in a Banach space X. The generator G(t) is composed of a principal static part
A and a potentially time-dependent (non-autonomous) perturbation B(t). The conditions for existence
of an evolution system (solution operator) U(t, s) are formulated with respect to the domain D(A)
of the principal part. Since A is assumed closed, this domain is a Banach space in itself if equipped
with the graph norm ‖x‖D(A) = ‖x‖X + ‖Ax‖X . In fact we will show with Theorem IV.4 that if the
generator belongs to a (quasi)contraction semigroup and B fulfils higher-order relative bounded-
ness with respect to A (Definition III.1) and a Lipschitz property (III.4), then U(t, s) is a bounded
operator D(Am)→ D(Am). This stands in contrast to approaches that study regularity in pre-defined
classes, whereas here the respective regularity class is directly yielded by the generator’s principal
part.

This result in the setting of an N-particle Hilbert space X = L2(ΩN ) and Schrödinger-type equa-
tions leads to the regularity of propagated wave functions in terms of the graph norm of the iterated
Laplacian. The perturbation B(t) can be considered as consisting of external or inter-particle potentials
of a certain Kato-perturbation type (Definition V.7). Since the graph norm of D(∆m) is equivalent to the
usual Sobolev space norm, an important result considering the regularity of Schrödinger solutions with
respect to Sobolev spaces is achieved (see final Theorem V.9). The growth estimate for the Sobolev
norm over time is of exponential type (38). In the case of potentials that can be assumed smooth
in space and time and periodic in space, notable results concerning the (linear) growth of Sobolev
norms have been achieved by Bourgain (1999) and more recently by Delort (2010). A very nice
recent work aimed at studying the time regularity of solutions to facilitate the Runge–Gross proof of
time-dependent density functional theory (Ruggenthaler–Penz–van Leeuwen, 2015) can be found in
Fournais et al. (2016).

The existence part of the proof of our main Theorem IV.4 is similar to the original treatment of
Kato (1953), the usual reference point is Reed–Simon II (1975, Theorem X.70), but we give more
general conditions that are also easier to check. This is in the spirit of a recent effort by Schmid and
Griesemer (2014) to simplify and standardise the classical existence results for (1) to the simple con-
dition that t 7→G(t)x is continuously differentiable for all x ∈ D(G). This was followed in Schmid and
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Griesemer (2016) by a generalization to Lipschitz continuity which already bears some similarities
to this work but includes no higher regularity estimates. Furthermore Schmid and Griesemer (2016)
built their argument around uniformly convex spaces which is, to our understanding, not necessary,
since the more general notion of reflexivity is sufficient. Reflexivity is especially convenient because
it is conserved when switching to equivalent norms, which is heavily used throughout this work,
while uniform convexity is not.

A more comprehensive version of this article that includes detailed explanations, additional
proofs, and further references can be found as a preprint at arXiv:1801.03361.

II. GRAPH-NORM SPACES

The setting is always a Banach space X with norm ‖x‖ = ‖x‖X . The domain and range (image)
of an operator will be denoted as D(A) and R(A), respectively. We define the graph norm for a linear
operator A: X→X, generally unbounded, and x ∈D(A) as ‖x‖D(A) = ‖x‖ + ‖Ax‖. This definition yields
an equivalent norm to the more frequently given expression for the graph norm as a Pythagorean sum.
The inequality √

‖x‖2 + ‖Ax‖2 ≤ ‖x‖ + ‖Ax‖ ≤
√

2
√
‖x‖2 + ‖Ax‖2 (2)

is easily shown to hold by squaring it and using the inequality of arithmetic and geometric means,
i.e., ‖x‖ ‖Ax‖ ≤ 1

2 (‖x‖2 + ‖Ax‖2). The symbol “∼” will later be used to denote equivalence of
norms.

The domain D(Ak) of the iterated operator is the set of all Banach space elements x ∈ X where for
all 1 ≤ j ≤ k also Ajx ∈ X holds. [See Fournais et al. (2016) for a special emphasis on this in the context
of studying the time-regularity of solutions to the Schrödinger equation with Coulomb potentials.]
Note that D(A0) = D(I) = X. Since the main tool of analysis will be higher-order graph-norm spaces
D(Ak), we adopt a shorthand notation for their norms and the respective operator norms,

‖x‖(k) = ‖x‖D(Ak ) = ‖x‖ + ‖Ax‖ + · · · + ‖Akx‖, (3)

‖T ‖(k,l) = ‖T ‖B(D(Ak ),D(Al)) = sup
x∈D(Ak )

x,0

‖Tx‖(l)
‖x‖(k)

. (4)

The parentheses in the subscript shall discern this notation from the usual Lp and W k ,p norms ‖ · ‖p
and ‖ · ‖k ,p. We directly note the following chain of continuous embeddings:

D(Ak) ↪→D(Ak−1) ↪→ . . . ↪→D(A) ↪→X. (5)

In correspondence with spaces equipped with the graph norm the notion of closed operators is all-
important because D(A) is a Banach space if and only if A is closed. A closed operator is clearly
always bounded as A: D(A)→ X because of ‖Ax‖ ≤ ‖x‖(1).

Lemma II.1. If A is closed with a non-empty resolvent set then all its iterations Ak , k ∈N, are
closed.

Proof. Take λ ∈ ρ(A), then the iterated resolvent operator (A � λI)�k is everywhere defined and
bounded and thus closed (closed graph theorem). Since a closed, invertible operator has a closed
inverse [Engel and Nagel, 2000, Definition B.1(e)], we also have (A � λI)k closed. This expression
expands to

(A − λI)k =

k∑
j=0

(
k
j

)
(−λ)k−jAj,

which facilitates an easy induction scheme. From I, A, (A � λI)2 closed, we arrive at A2 closed and
so on. ◽

Lemma II.2. For A: X → X closed, D(A) equipped with the graph norm is a reflexive Banach
space if X is so.

http://arxiv.org/abs/1801.03361
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Proof. Take the isometry

i : D(A)−→X × X , x 7−→ (x, Ax), (6)

where for x ∈ D(A) we have the usual graph norm ‖x‖ + ‖Ax‖ and for (x1, x2) ∈ X × X the sum
norm ‖(x1, x2)‖ = ‖x1‖ + ‖x2‖. Now i(D(A)) is closed in X × X as the image of a closed set under an
isometry and X × X is known to be reflexive if X is. But any closed subspace of a reflexive space if
reflexive itself, so D(A) is. ◽

III. RELATIVE BOUNDEDNESS AND A PREPARATORY LEMMA

A final preparatory lemma will help us to establish the desired regularity result in Sec. IV
and gives the main condition on the non-autonomous perturbation B(t) in the form of higher-order
relative boundedness with respect to A and a Lipschitz property. The assumption that all Ak are closed
is imperative to have Banach spaces D(Ak). In our main Theorem IV.4, we will then not have this
condition explicitly, but rely on Lemma II.1 to get closedness. We now define the new notion of A-
boundedness of order m, a generalization of the usual A-boundedness [Reed and Simon II (1975, X.2)
and Kato (1995, IV.1.1)] that corresponds to order k = 1.

Definition III.1. Let A, B be densely defined operators and A closed, then B is called A-bounded
of order m if

(i) D(A) ⊆ D(B) and
(ii) There are a, b ≥ 0 such that for all 1 ≤ k ≤ m and x ∈ D(Ak), it holds that ‖Bx‖(k�1) ≤ a‖Akx‖

+ b‖x‖(k�1).

The infimum of possible values for a is called the relative bound (of order m) of B with respect to A.
The relative bound can be as low as 0, the operator is then called infinitesimally small.

Note III.2. From this definition, it directly follows that if B is A-bounded of order m, then for
all 0 ≤ k ≤ m we have B: D(Ak) → D(Ak�1) bounded with respect to the ‖·‖(k ,k�1) operator norm.
Note further that the usual A-boundedness of B with relative bound strictly smaller than 1 also
means that A + B is closed if and only if A is. (Kato, 1995, Theorem IV.1.1) Another very similar
application of relative boundedness is the famous Kato–Rellich theorem that enters Theorem V.2 here.
A further consequence expressed in the following lemma is that the spaces D(Ak) and D(Gk), where
G = A + B, become equivalent.

Lemma III.3. Assume A closed with non-empty resolvent set and B to be A-bounded of order m
with relative bound < 1. Then for G = A + B, it holds D(Gk) = D(Ak) and the respective graph norms
are equivalent for all 1 ≤ k ≤ m.

Proof. We start with k = 1 and assume x ∈ D(A), then A-boundedness yields

‖Gx‖ ≤ ‖Ax‖ + ‖Bx‖ ≤ (1 + a)‖Ax‖ + b‖x‖ (7)

and thus x ∈ D(G). On the other hand, assume x ∈ D(G), then one has from A = G � B

‖Ax‖ ≤ ‖Gx‖ + ‖Bx‖ ≤ ‖Gx‖ + a‖Ax‖ + b‖x‖ (8)

and because of a < 1 by assumption

‖Ax‖ ≤
1

1 − a
‖Gx‖ +

b
1 − a

‖x‖ (9)

and thus x ∈ D(A). This establishes D(G) = D(A) and further by the inequalities (7) and (9) the
equivalence of the norms.

Next we proceed by induction and assume that the argument holds for k � 1. Let x ∈ D(Ak), then

‖Gx‖(k−1) ≤ ‖Ax‖(k−1) + ‖Bx‖(k−1) ≤ ‖Ax‖(k−1) + a‖Akx‖ + b‖x‖(k−1)

≤ (1 + a + b)‖x‖(k).
(10)
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Since we already established D(Gk�1) = D(Ak�1) with equivalent norms, the expression
‖Gx‖(k�1) + ‖x‖ corresponds to the graph norm of D(Gk) (up to a multiplicative constant). On
the other hand, let x ∈ D(Gk) then

‖Akx‖ + ‖x‖(k−1) − ‖x‖ = ‖Ax‖(k−1) ≤ ‖Gx‖(k−1) + ‖Bx‖(k−1)

≤ ‖Gx‖(k−1) + a‖Akx‖ + b‖x‖(k−1)
(11)

and after a simple manipulation

(1 − a)‖x‖(k) ≤ (1 − a)‖Akx‖ + ‖x‖(k−1) ≤ ‖Gx‖(k−1) + ‖x‖ + b‖x‖(k−1). (12)

The right-hand side corresponds again to the graph norm of D(Gk) and thus by inequalities (10) and
(12), we get D(Gk) = D(Ak) and the equivalence of the respective norms. ◽

Lemma III.4. Let G(t) = A + B(t) have 0 ∈ ρ(G(t)) at all times under consideration. Furthermore
assume Ak to be closed for all 1 ≤ k ≤ m, B(t) to always be A-bounded of order m with a maximal
relative bound strictly smaller than 1, and demand the Lipschitz condition

LmB sup
t′,t

m∑
k=1

‖B(t ′) − B(t)‖(k,k−1)

|t ′ − t |
<∞. (13)

Then G(t ′)mG(t)�m = Km(t ′, t) + I with the operator Km(t ′, t): X → X bounded by CmLm|t ′ � t| if
t ′ , t. [See (21) for a definition of the G-dependent constants Cm.]

Proof. In the whole proof, we mostly write G = G(t), G′ = G(t ′) and similarly for B for brevity.
For all 1 ≤ k ≤ m clearly A: D(Ak) → D(Ak�1) bounded by definition and B bounded equally by
assumption (Note III.2). This makes the combined operator G: D(Ak)→ D(Ak�1) bounded as well.
Because of zero in the resolvent set, we have a well-defined and bounded G�1: X → X. We continue
with the restriction of G�1 on D(Ak�1) that will still be denoted G�1. Because B is A-bounded of order
m, we get for all x ∈ D(Ak�1) = D(Gk�1), G�1x ∈ D(Gk) = D(Ak) (Lemma III.3)

‖AkG−1x‖ = ‖Ak−1(G − B)G−1x‖

≤ ‖BG−1x‖(k−1) + ‖x‖(k−1)

≤ a‖AkG−1x‖ + b‖G−1x‖(k−1) + ‖x‖(k−1)

(14)

and since a < 1 it holds

‖AkG−1x‖ ≤
b

1 − a
‖G−1x‖(k−1) +

1
1 − a

‖x‖(k−1). (15)

This result establishes an estimate

‖G−1x‖(k) = ‖G
−1x‖(k−1) + ‖AkG−1x‖

≤

(
b

1 − a
+ 1

)
‖G−1x‖(k−1) +

1
1 − a

‖x‖(k−1)
(16)

and after k � 1 further iterations yields G�1: D(Ak�1) → D(Ak) bounded. The iterated operators
Gk : D(Ak) → X, G�k : X → D(Ak) are thus bounded as well, just like Kk(t ′, t): X → X defined by
Kk(t ′, t)B G(t ′)kG(t)�k

� I. We still have to show the special bound for Km. We start with k = 1

K1 =G′G−1 − I = (G′ − G)G−1 = (B′ − B)G−1. (17)

The operator K1 has the bound

‖K1‖(0,0) = ‖(B
′ − B)G−1‖(0,0) ≤ ‖B

′ − B‖(1,0)‖G
−1‖(0,1). (18)

Now from k = 1, on we proceed by iteration,

Kk =G′kG−k − I =G′k−1(G′ − G)G−k + Kk−1 =G′k−1(B′ − B)G−k + Kk−1. (19)

The estimate is now
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‖Kk ‖(0,0) ≤ ‖G
′k−1(B′ − B)G−k ‖(0,0) + ‖Kk−1‖(0,0)

≤ ‖G′k−1‖(k−1,0)‖B
′ − B‖(k,k−1)‖G

−k ‖(0,k) + ‖Kk−1‖(0,0),
(20)

which sums up to

‖Km‖(0,0) ≤

m∑
k=1

‖G′k−1‖(k−1,0)‖B
′ − B‖(k,k−1)‖G

−k ‖(0,k)

≤ max
1≤k≤m

{
‖G′k−1‖(k−1,0)‖G

−k ‖(0,k)

}
×

m∑
k=1

‖B′ − B‖(k,k−1)

|t ′ − t |
× |t ′ − t |

≤ sup
t′,t

max
1≤k≤m

{
‖G′k−1‖(k−1,0)‖G

−k ‖(0,k)

}

︸                                          ︷︷                                          ︸
Cm

× sup
t′,t

m∑
k=1

‖B′ − B‖(k,k−1)

|t ′ − t |︸                       ︷︷                       ︸
Lm

×|t ′ − t |.

(21)

◽

IV. REGULARITY RESULT

First we will stick to a pure Banach space setting even though the strongest motivation is of
course the Schrödinger equation that will be discussed in Sec. V. The domain of the time-dependent
generator G(t) is usually assumed to remain constant in time and we write D(G(t)) = D(G). This is
true anyway by assumption following Lemma III.4 where D(G(t)) = D(A) always holds.

Definition IV.1. An evolution system belonging to an evolution equation like (1) is a two-
parameter family of bounded linear operators U(t, s), 0 ≤ s ≤ t ≤ T, on X that fulfils (Pazy, 1983,
Chap. 5, Definition 5.3)

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for all 0 ≤ s ≤ r ≤ t ≤ T,
(ii) (t, s) 7→ U(t, s) is jointly strongly continuous, i.e., limt→sU(t, s) = I strongly and equivalently

for s→ t,

and on D(G) solves
∂tU(t, s)=G(t)U(t, s),

∂sU(t, s)=−U(t, s)G(s).
(22)

Note IV.2. In the Hilbert space setting with H(t) = iG(t) self-adjoint (i.e., G(t) is skew-adjoint)
that will be discussed in Sec. V, the unitarity condition U(t,s)∗ = U(t,s)�1 = U(s, t) is added to the
properties of the evolution system.

Note IV.3. In the case of a time-independent generator G, the typical setting is that of a strongly
continuous one-parameter semigroup (Renardy and Rogers, 2004; Engel and Nagel, 2000; and Pazy,
1983). The generator of a strongly continuous semigroup is always densely defined and closed
(Renardy and Rogers, 2004, Theorem 12.12). A quasicontraction semigroup U(t) is a strongly
continuous semigroup with a constant ω > 0 such that for all x ∈ X and t ≥ 0

‖U(t)x‖ ≤ eωt ‖x‖. (23)

Clearly in the Hilbert space setting with a unitary (semi-)group, it always holds ‖U(t)x‖ ≤ ‖x‖
which makes U(t) trivially a contraction semigroup with ω = 0. The generator of a quasicontraction
semigroup is known to have all λ ∈C with Re λ > ω in the resolvent set as a corollary to the
famous Hille–Yosida generation theorem (Engel and Nagel, 2000, Corollary II.3.6). Thus G as such
a generator just needs to be shifted by ω + 1 to have 0 ∈ ρ(G) as demanded by Lemma III.4. What
follows is our main result regarding the regularity property of evolution systems.

Theorem IV.4. On X a reflexive Banach space, let G(t) = A + B(t) be the generator of a
quasicontraction semigroup for all t ∈ [0, T ] with a common contraction constant ω, let A be closed
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with a non-empty resolvent set, and let B have the properties of Lemma III.4. Then the evolution
Eq. (1) has a well-defined evolution system given by the limit of the stepwise static approximation
(24) that is bounded D(Ak)→D(Ak) for all 0 ≤ k ≤ m and thus preserves regularity of Banach space
vectors in the class D(Am).

Proof. First note that because of A closed with non-empty resolvent set we have by Lemma II.1
all Ak closed and thus can work in Banach spaces D(Ak).

Let Pk be a sequence of equidistant partitions of [0, T ] with k subintervals [ti, ti+1] with t0 = 0,
tk = T, and mesh size T /k going to zero as k → ∞. We write bsck for the largest ti in the partition
Pk smaller or equal than s ∈ [0, T ]. We define the stepwise static approximation to the evolution
system by combining the k individual evolution semigroups Uk

(i) defined by the static generators
G(ti), 0 ≤ i ≤ k � 1

Uk(t, s)=U (i)
k (t − s) if ti ≤ s ≤ t ≤ ti+1,

Uk(t, s)=Uk(t, ti)Uk(ti, s) with s < ti < t else.
(24)

We show now that for k→∞, the Uk(t, s) converges uniformly in t and preserves the desired degree
of regularity. Convergence is tested with the Cauchy property of the sequence Uk . We use ∂tUk(t, s)
= G(btck)Uk(t, s) and ∂sUk(t, s) = �Uk(t, s)G(bsck) which follows directly from the definition of Uk

above and the evolution semigroup property of Uk
(i)

Uk(t, s) − Ul(t, s)=Ul(t, r)Uk(r, s)���
t

r=s

=

∫ t

s
∂r(Ul(t, r)Uk(r, s)) dr

=

∫ t

s

(
(∂rUl(t, r))Uk(r, s) + Ul(t, r)(∂rUk(r, s))

)
dr

=−

∫ t

s
Ul(t, r)

(
G(brcl) − G(brck)

)
Uk(r, s) dr

=−

∫ t

s
Ul(t, r)

(
B(brcl) − B(brck)

)
Uk(r, s) dr.

(25)

(Note that a problem arises with the time derivative if r = ti because then the right and left derivatives
do not match. But this is just at a finite number of points that can always be omitted from the integral.)
We check the Cauchy property in the ‖·‖(m ,m�1) norm

‖Uk(t, s)−Ul(t, s)‖(m,m−1) ≤

∫ t

s
‖Ul(t, r)‖(m−1,m−1)‖B(brcl)−B(brck)‖(m,m−1)‖Uk(r, s)‖(m,m) dr. (26)

Since B(t) has the Lipschitz-property up to order m which implies continuity in theB(D(Am), D(Am−1))
norm, the difference would go to zero if k → ∞. But are ‖U l(t, r)‖(m�1,m�1) and ‖Uk(r, s)‖(m ,m)

uniformly bounded? We will test for ‖Uk(r, s)‖(m ,m) < ∞, all lower orders at all times 0 ≥ s ≥ r ≥ T
applied equally.

The idea is to switch to a shifted, auxiliary generator G̃(t)=G(t) − (ω + 1) such that 0 ∈ ρ(G̃(t))
for all t (also see Note IV.3) thus achieving accordance with the conditions of Lemma III.4. Then
we introduce the identities G̃−m(ti)G̃m(ti) in front of all the short-time evolution operators, exchange
them with the evolution operators originating from the same generator, and give an estimate for the
arising terms involving Km by Lemma III.4 applied to G̃. Let i be such that bsck = ti, i.e., i = bsk/Tc
(usual floor function brackets), and j be such that brck = tj, i.e., j = brk/Tc

Uk(r, s)=U (j)
k (r − tj)U

(j−1)
k (tj − tj−1) . . .U (i)

k (ti+1 − s)

=G̃−m(tj)U
(j)
k (r − tj)G̃

m(tj)G̃
−m(tj−1)U (j−1)

k (tj − tj−1)G̃m(tj−1) . . .

. . . G̃−m(ti+1)U (i+1)
k (ti+2 − ti+1)G̃m(ti+1)G̃−m(ti)U

(i)
k (ti+1 − s)G̃m(ti).

(27)
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We write the G̃(t ′)mG̃(t)−m encounters like in Lemma III.4 as Km(t ′, t) + I

Uk(r, s)= G̃−m(tj)U
(j)
k (r − tj)

j−1∏
l=i+1

(
Km(tl+1, tl) + I

)
U (l)

k (tl+1 − tl)(
Km(ti+1, ti) + I

)
U (i)

k (ti+1 − s)G̃m(ti).

(28)

(Note that the product is time-ordered.) Next we estimate the ‖ · ‖(m ,m) norm of this expression using
the result from Lemma III.4 and the regular mesh size ti � ti�1 = T /k. For this, we repeatedly use the
quasicontraction property that assures ‖U (l)

k (tl+1 − tl)‖(0,0) ≤ eω(tl+1−tl).

‖Uk(r, s)‖(m,m) ≤ eω(r−s)‖G̃−m(tj)‖(0,m)

j−1∏
l=i

(
‖Km(tl+1, tl)‖(0,0) + 1

)
‖G̃m(ti)‖(m,0)

≤ eω(r−s)‖G̃−m(tj)‖(0,m)‖G̃
m(ti)‖(m,0)

(
CmLmT

k
+ 1

) j−i

.

(29)

We rewrite j � i = brk/Tc�bsk/Tc ≤ 1 + b(r=s)k/Tc = 1 + kb(r − s)k/Tc/k to be able to introduce an
exponential function in the limit k →∞ while b(r − s)k/Tc/k → (r � s)/T

(
CmLmT

k
+ 1

) j−i

≤

(
CmLmT

k
+ 1

)
*
,

(
CmLmT

k
+ 1

)k
+
-

b(r−s)k/T c/k

−→ eCmLm(r−s) ≤ eCmLmT .

(30)

This means that (26) goes to zero and the Cauchy sequence (25) must converge to a well-
defined and bounded U(t, s): D(Am) → D(Am�1). In the lowest order m = 1, the operators
U(t, s): D(A) → X can then be continuously extended from the dense D(A) to the whole space
X because they are clearly bounded on X (as a combination of quasicontraction semigroup elements).
To establish U(t, s): D(Am)→ D(Am) bounded as the desired regularity result, we resort to Lemma 5
from Kato (1953) that states for reflexive Banach spaces that if a sequence xk converges weakly to
x and has {‖Axk ‖}k bounded, then x ∈ D(A) and Ax is the weak limit of Axk . [This result is actually
missing in the proof in Penz (2016, Theorem 3.41, Theorem 3.42), where the boundedness was just
directly inferred from the Uk boundedness.] For this, we take x = U(t, s)ϕ and xk = Uk(t, s)ϕ for
any ϕ ∈ D(Am) and the Banach space D(Am�1) which is a reflexive Banach space by Lemma II.2.
Then there is always a f ∈D(Am−1)∗ with dual norm 1 such that (f, Ax) = ‖Ax‖(m�1) (Hahn–Banach
theorem). This gives the estimate

|(f , Ax)| ≤ ‖Ax‖(m−1). (31)

Now the weak limit x = w � limk→∞xk clearly follows as a result of even strong convergence in
D(Am�1) and {‖Axk ‖(m−1)}k bounded follows from {‖xk ‖(m)}k bounded which was just shown in
(29) above. Then the assertion of Lemma 5 in Kato (1953) says Ax = w � limk→∞Axk from which
follows

‖Ax‖(m−1) = (f , Ax)= lim
k→∞

(f , Axk) ≤ lim sup
k→∞

‖Axk ‖(m−1). (32)

We first deal with the case m = 1 which means for the inequality above

‖AU(t, s)ϕ‖ ≤ lim sup
k→∞

‖AUk(t, s)ϕ‖ (33)

and thus by introducing the ‖·‖(1) norm
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‖U(t, s)ϕ‖(1) = ‖U(t, s)ϕ‖ + ‖AU(t, s)ϕ‖ ≤ ‖U(t, s)ϕ‖ + lim sup
k→∞

‖AUk(t, s)ϕ‖

= lim sup
k→∞

‖Uk(t, s)ϕ‖(1) + ‖U(t, s)ϕ‖ − lim sup
k→∞

‖Uk(t, s)ϕ‖.
(34)

In the limit, the last two terms cancel because we already showed that Uk(t, s)→ U(t, s) converges
on X. So using the estimates from (29) and (30), we get

‖U(t, s)‖(1,1) ≤C ′1 exp(C1L1T ), (35)

where the additional constants from (29) have been collected in C ′1. This means Uk(t, s)→ U(t, s)
converges also as a bounded operator D(A)→ D(A). The next step is already for arbitrary m and we
use (32) again

‖U(t, s)ϕ‖(m) = ‖U(t, s)ϕ‖ + ‖AmU(t, s)ϕ‖ = ‖U(t, s)ϕ‖ + ‖Am−1AU(t, s)ϕ‖

= ‖U(t, s)ϕ‖ + ‖AU(t, s)ϕ‖(m−1) − ‖AU(t, s)ϕ‖

≤ ‖U(t, s)ϕ‖ + lim sup
k→∞

‖AUk(t, s)ϕ‖(m−1) − ‖AU(t, s)ϕ‖.
(36)

Next the D(Am�1) norm gets rewritten to a D(Am) norm

‖U(t, s)ϕ‖(m) ≤ lim sup
k→∞

‖Uk(t, s)ϕ‖(m)

+ ‖U(t, s)ϕ‖ − lim sup
k→∞

‖Uk(t, s)ϕ‖

− ‖AU(t, s)ϕ‖ + lim sup
k→∞

‖AUk(t, s)ϕ‖.

(37)

This time the whole two last lines vanish in the limit because in the meantime we also estab-
lished convergence on D(A), so with the estimates from (29) and (30) we finally get boundedness
D(Am)→ D(Am)

‖U(t, s)‖(m,m) ≤C ′m exp(CmLmT ). (38)

The evolution system properties (i) and (ii) from Definition IV.1 follow directly from the semigroup
properties of the Uk

(i) and uniform convergence of Uk(t, s) in s, t which allows us to exchange limits.
Finally we have to show that the evolution semigroup is a solution to the Cauchy problem ∂tU(t, s)
= G(t)U(t, s) (the ∂s version can be handled equivalently). Again we use uniform convergence and
interchange time differentiation at t , ti ∈ Pk and the limit for the sequence Uk(t, s)

∂tU(t, s)= ∂t lim
k→∞

Uk(t, s)= lim
k→∞

∂tUk(t, s)= lim
k→∞

G(btck)Uk(t, s). (39)

On D(A), we have Uk(t, s)→U(t, s) ∈B(D(A), D(A)) as well as G(btck)→G(t) ∈B(D(A), X), so we
can establish the limits independently and get the desired evolution system for the Cauchy problem
∂tU(t, s) = G(t)U(t, s). If t = ti ∈ Pk , the right and left derivatives will differ and yield G(ti) and
G(ti�1), respectively, but in the limit k →∞ they are equal again because of the assumed continuity
of the generator G in time. ◽

Note IV.5. In Schmid and Griesemer (2016), it is assumed that G(t) is the generator of a group
instead of a semigroup to get solutions to the equation involving the time derivative ∂t instead of just
the right derivative ∂+

t .

Note IV.6. Establishing evolution systems between the different orders of graph-norm spaces
D(Ak) bears strong resemblance to the construction of the so-called “Sobolev towers” in Engel–Nagel
(2000, II.5.a), although there the construction is only for time-independent generators.

Note IV.7. A similar proof strategy can be employed to show Fréchet differentiability of the
solution to (1) in a Banach space including the time variable with respect to the perturbations B. See
Penz (2016, Theorem 4.10) for such a result and Penz and Ruggenthaler (2015) for a similar result
using the completely different proof method of “successive substitutions.”
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V. APPLICATION TO THE SCHRÖDINGER EQUATION

To treat the quantum mechanical case of particles in singular Coulombic potentials and other
unbounded potentials, we make use of the following lemma from Fourier analysis. Here the number
of dimensions of the underlying space actually plays a crucial role and we are limited to the dimen-
sion n ≤ 3 for the one-particle configuration space in all further results because of the following
lemma.

Lemma V.1 (Reed–Simon II, 1975, Theorem IX.28). Let ϕ ∈W2,2(Rn), n ≤ 3. Then for all
α > 0, there is a β > 0 independent of ϕ such that

‖ϕ‖∞ ≤ α‖∆ϕ‖2 + β‖ϕ‖2. (40)

The next theorem is then a standard application of Lemma V.1 together with the Kato–
Rellich theorem to the case of the Schrödinger Hamiltonian with zero boundary conditions; see
Reed–Simon II (1975, Theorem X.12) and Kato (1995, Theorem V.4.11). The Kato–Rellich theorem
states that if A is self-adjoint and B symmetric, then A + B is also self-adjoint whenever B is A-bounded
with the relative bound strictly smaller than 1. The critical condition is thus that the potential turns
out to be ∆-bounded. The spatial domain Ω is always assumed to be a (open and connected) subset
of Rn, n ≤ 3.

Theorem V.2 (Reed–Simon II, 1975, Theorem X.15). Given a real potential v ∈ L2(Rn)
+ L∞(Rn), n ≤ 3, the Hamiltonian �∆ + v is self-adjoint on W2,2(Ω) ∩W1,2

0 (Ω).

Definition V.3. The space of Kato perturbations L2(Rn) + L∞(Rn) is equipped with the norm

‖v ‖2+∞ = inf {‖v1‖2 + ‖v2‖∞ | v1 ∈ L2(Rn), v2 ∈ L∞(Rn), v = v1 + v2}. (41)

The following notation for the extension of potentials to multi-particle systems with N particles
is borrowed from Lammert (2018). Note that in the published version of this work that we cite along
the preprint, the respective notation has vanished again.

Definition V.4. For a one-point function v :Ω→R, we define

Γv :ΩN→R, (x1, . . . , xN ) 7→
N∑

i=1

v(xi) (42)

and similarly for a two-point function w :Ω ×Ω→R

Γw :ΩN→R, (x1, . . . , xN ) 7→
1
2

N∑
i,j=1i,j

w(xi, xj). (43)

Lemma V.5. Given the potentials v , vint ∈ L2(Rn) + L∞(Rn), n ≤ 3, and the interaction potential
w(x1, x2) = vint(x1 � x2), the multiplication operators Γv and Γw are both ∆-bounded with the
relative bound 0. There is further a constant β > 0 such that the following estimates hold for all
ϕ ∈ W2,2(ΩN )

‖(Γv)ϕ‖2 ≤N β‖v ‖2+∞‖ϕ‖2,2, (44)

‖(Γw)ϕ‖2 ≤
N(N − 1)

2
β‖vint ‖2+∞‖ϕ‖2,2. (45)

Proof. We adopt the following notation for the norm of the Hilbert space L2(Ω) where we assume
all coordinates xj,i fixed and analogously if only one coordinate xi is fixed

‖ϕ‖(i)2 =

(∫
Ω

|ϕ|2 dxi

)1/2

, ‖ϕ‖
(j,i)
2 =

(∫
Ω

|ϕ|2 dxj,i

)1/2

. (46)
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Note that it holds ‖ϕ‖2 = ‖‖ϕ‖
(i)
2 ‖

(j,i)

2 so that we have

‖(Γv)ϕ‖2 ≤
N∑

i=1

‖v(xi)ϕ‖2 =
N∑

i=1

‖‖v(xi)ϕ‖
(i)
2 ‖

(j,i)

2 . (47)

Now the inner norm is estimated with the decomposition v = v1 + v2, v1 ∈ L2, v2 ∈ L∞ as ‖v(xi)ϕ‖
(i)
2

≤ ‖v1‖2‖ϕ‖
(i)
∞ + ‖v2‖∞‖ϕ‖

(i)
2 , where we use the obvious notation of ‖ϕ‖(i)∞ as the essential supremum

of ϕ over all xi ∈ Ω. Note that ‖v1‖2 and ‖v2‖∞ are just numbers with no free variables left. It is now
time to invoke Lemma V.1 and have for arbitrarily small αi > 0

‖ϕ‖(i)∞ ≤ αi‖∆iϕ‖
(i)
2 + βi‖ϕ‖

(i)
2 . (48)

Combination of these estimates gives

‖(Γv)ϕ‖2 ≤
N∑

i=1

(
αi‖v1‖2‖∆iϕ‖2 + (βi‖v1‖2 + ‖v2‖∞)‖ϕ‖2

)
. (49)

A final trick is needed to have the full Laplacian∆ instead of∆i only involving xi. For this, we observe
that by moving to the Fourier domain with coordinates ki ∈Rn

‖∆iϕ‖2 = ‖k
2
i ϕ̂‖2 ≤





N∑

j=1

k2
j ϕ̂




2
= ‖∆ϕ‖2. (50)

Now define α = maxiαi (but still arbitrarily small) and β = max{β1, . . ., βN , α, 1} and we get

‖(Γv)ϕ‖2 ≤Nα‖v1‖2‖∆ϕ‖2 + N(β‖v1‖2 + ‖v2‖∞)‖ϕ‖2. (51)

This means Γv is ∆-bounded with the relative bound 0. If we further introduce ‖v ‖2+∞ and choose
v1 and v2 accordingly, then with β defined as above we can take it out as an upper estimate. Together
with the equivalence of the graph norm of D(∆) and the Sobolev norm ‖·‖2,2, we arrive at the desired

‖(Γv)ϕ‖2 ≤N β‖v ‖2+∞‖ϕ‖2,2. (52)

The proof for the two-point potential that is defined as an interaction potential involving vint(xi � xj)
is analogous but one first has to rotate the whole ΩN ⊆RnN so that xi � xj matches the x1 coordinate.
This is possible invariantly because the L2-norm is a rotational invariant. The rest of the proof stays
the same; we only consider N(N � 1)/2 components in the sum instead of only N. ◽

Note V.6. The Lemma V.5 above allows for an extension of Theorem V.2 to multi-particle systems
with Hamiltonian H = �∆ + Γw + Γv if the involved potentials are of type v , vint ∈ L2(Rn) + L∞(Rn)
with w(xi, xj) = vint(xi � xj). The proof structure of Lemma V.5 was inspired by a theorem with this
assertion given in Reed–Simon II (1975, Theorem X.16).

Definition V.7. We extend Definition V.3 (Kato perturbations) to Sobolev–Kato perturbations,
defined as the space of potentials

Wm,2+∞(Rn)= {v |Dαv ∈ L2(Rn) + L∞(Rn), |α | ≤m} (53)

with norm
‖v ‖m,2+∞ =

∑
|α | ≤m

‖Dαv ‖2+∞. (54)

Lemma V.8. Given the potentials v , vint ∈W2m,2+∞(Rn), n ≤ 3, and w(x1, x2) = vint(x1 � x2), the
multiplication operators Γv and Γw are both ∆-bounded of order m + 1 with the relative bound 0.
There is further a constant β > 0 such that the following estimates hold for all ϕ ∈ W2(m+1),2(ΩN ):

‖(Γv)ϕ‖2m,2 ≤N β‖v ‖2m,2+∞‖ϕ‖2(m+1),2, (55)

‖(Γw)ϕ‖2m,2 ≤
N(N − 1)

2
β‖vint ‖2m,2+∞‖ϕ‖2(m+1),2. (56)
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Proof. Lemma V.5 already shows the case m = 0 and proceeding from that we give the proof for
arbitrary orders m. We start by writing out the involved Sobolev space norm explicitly, then employ
the general Leibniz rule for multivariable calculus

‖(Γv)ϕ‖2m,2 ∼
∑
|α | ≤2m



Dα((Γv)ϕ)

2 =
∑
|α | ≤2m





∑
ν≤α

(
α

ν

)
(Dν(Γv))Dα−νϕ




2

≤

(
2m
m

) ∑
|α | ≤2m

∑
ν≤α



(Dν(Γv))Dα−νϕ

2.

(57)

The multi-index binomial coefficient is estimated by its largest possible value. Next we use the
property of Γv that makes the potential the sum of one-coordinate potentials. Thus instead of the full
Dν only Dνi acts on the individual terms of the sum in Γv. Note that these νi from ν = (ν1, . . ., νN )
are still n-tuples. In any case, we have

Dν(Γv)=
N∑

i=1

Dνi v(xi) (58)

and thus ∑
|α | ≤2m



Dα((Γv)ϕ)

2 ≤

(
2m
m

) ∑
|α | ≤2m

∑
ν≤α

N∑
i=1



(Dνi v(xi))D
α−νϕ

2

=

(
2m
m

) ∑
|α | ≤2m

∑
ν≤α

N∑
i=1







(Dνi v(xi))D

α−νϕ


(i)
2





(j,i)

2

(59)

like in (47). The proof then proceeds exactly like in Lemma V.5 since we have Dνi v(xi) ∈ L2 + L∞

due to the assumption v ∈ Wm ,2+∞. In total, we get the estimate∑
|α | ≤2m



Dα((Γv)ϕ)

2 ≤N β′
(
2m
m

)
‖v ‖2m,2+∞‖ϕ‖2(m+1),2, (60)

where the sums over the multi-indices get combined and estimated by the higher Sobolev norms. The
order of the Sobolev norm of ϕ has increased by 2 because we had to rely on Lemma V.1 again. The
constant β′ that is defined similar as in lemma V.5 before gets combined together with the binomial
coefficient to form a constant β and we arrive at the desired result. If we keep the arbitrarily small
αi that are introduced analogously to (48), then this also yields the desired ∆-boundedness of order
m + 1 with the relative bound 0. In both cases, the equivalence of the graph norm of D(∆m) and the
Sobolev norm ‖·‖2m ,m gets applied.

The way for a two-point potential is the same as before with the only difference that we have to
observe

Dν(Γw)=
1
2

∑
i,j=1
i,j

Dνi Dνj vint(xi − xj) (61)

before rotating xi � xj again so that it matches the x1 coordinate in the individual contributions of the
norm. ◽

Theorem V.9. The N-particle Schrödinger equation

i∂tψ(t)=H(t)ψ(t)= (−∆ + Γw + Γv(t))ψ(t) (62)

on the Hilbert space L2(ΩN ), Ω ⊆Rn open and connected, n ≤ 3, with

v ∈ Lip([0, T ], W2(m−1),2+∞(Rn)) (63)

and w(xi, xj) = vint(xi � xj), vint ∈W2(m−1),2+∞(Rn) has a well-defined unitary evolution system that
is bounded as a mapping
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U(t, s) : W2m,2(ΩN ) ∩Wm,2
0 (ΩN )→W2m,2(ΩN ) ∩Wm,2

0 (ΩN ), t, s ∈ [0, T ]. (64)

This effectively establishes Sobolev regularity of solutions up to order W2m,2.

Proof. We rewrite the Schrödinger equation as

∂tψ(t)=−iH(t)ψ(t)= i(∆ − Γw − Γv(t))ψ(t) (65)

and take A = i∆, G(t) = �iH(t). Both operators are generators of contraction semigroups because
of self-adjointness (Engel and Nagel, 2000, Theorem II.3.24, Stone theorem) in conjunction with
Lemma V.5 and the Kato–Rellich theorem. Lemma V.8 tells us that Γv(t) and Γw are bounded
operators W2m ,2(ΩN )→W2(m�1),2(ΩN ) as well as ∆-bounded of order m with relative bound 0. Thus
all the requirements on the non-autonomous perturbation from Lemma III.4 are fulfilled and Theorem
IV.4 becomes applicable which establishes the desired regularity result. ◽

Note V.10. A final note shall make the setting even more “physical” and turns attention towards
the standard example for external potentials and interactions, the Coulomb potential on Ω=R3.
If we take v(x) = �|x|�1 (attractive) or vint(x) = |x|�1 (repulsive) those potentials lie in the class
of Kato perturbations L2(R3) + L∞(R3). Even the more singular choice of |x|�3/2+ε for arbitrarily
small ε is permitted. Furthermore the potentials can be time-dependent under the constraint of the
introduced Lipschitz condition. But those potentials already drop out of the next higher regularity
class W1,2+∞(R3) thus Theorem V.9 only guarantees Sobolev regularity up to W2,2 for solutions to
the Schrödinger equation with Coulomb potentials.
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