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REVIEW ARTICLE

M/EEG analysis of naturalistic stories: a review from speech to language
processing
Phillip M. Alday

Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands

ABSTRACT
M/EEG research using naturally spoken stories as stimuli has focused largely on speech and not
language processing. The temporal resolution of M/EEG is a two-edged sword, allowing for the
study of the fine acoustic structure of speech, yet easily overwhelmed by the temporal noise of
variation in constituent length. Recent theories on the neural encoding of linguistic structure
require the temporal resolution of M/EEG, yet suffer from confounds when studied on traditional,
heavily controlled stimuli. Recent methodological advances allow for synthesising naturalistic
designs and traditional, controlled designs into effective M/EEG research on naturalistic
language. In this review, we highlight common threads throughout the at-times distinct research
traditions of speech and language processing. We conclude by examining the tradeoffs and
successes of three M/EEG studies on fully naturalistic language paradigms and the future
directions they suggest.
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Naturalistic language processing – language processing
with non-trivial context, beyond the single-sentence
level, in a modality used in everyday language use –
has become an increasingly popular area of research in
recent years (cf. Brennan, 2016; Willems, 2015a). Auditory
stories are perhaps the most popular stimulus type for
naturalistic language experiments using neuroimaging
methods such as fMRI.1 The great challenge in examining
naturalistic input is the comparative lack of experimental
control in the stimulus. Although modern statistical tech-
niques such as mixed-effects models more easily allow
for the inclusion of potential confounding covariates,
one aspect of naturalistic input remains impossible to
control purely statistically: temporal duration or extent
of spoken language. While it is possible to control for
temporal extent during stimulus selection and construc-
tion, this is of course an inherent tradeoff on the “artifi-
cial, experimentally controlled” – “naturalistic,
experimentally variable” spectrum (cf. “controlled, sim-
plified stimuli” and “ecological laboratory” traditions in
Willems, 2015b). This tradeoff has had profound impli-
cations for research into auditory story comprehension
in terms of neuroimaging used, leading to a preference
for fMRI and a curious omission of M/EEG from most dis-
cussions of naturalistic language processing (cf. Andric &
Small, 2015; Hasson & Egidi, 2015)

In particular, fMRI’s poor temporal resolution is actu-
ally advantageous for temporally variable stimuli. In
some sense, an impulse stimulus is essentially identical
with a stimulus lasting up to about a second. Meanwhile,
M/EEG’s exceptionally high temporal resolution would
appear particularly disadvantageous. Even controlling
for frequency and morpho-syntactic or semantic
effects, many manipulations suffer from a fundamental
length confound. For example, “yellow” and “red” differ
in length by at least 100ms, which is already the
latency of the earliest ERP components for impulse
stimuli. This is part of the reason why auditory ERPs in
language studies look so different from visual ERPs –
they reflect the temporal spread of the stimulus (cf.
Wolff, Schlesewsky, Hirotani, & Bornkessel-Schlesewsky,
2008 where the same study was conducted in the audi-
tory and visual modalities, see also Dambacher et al.,
2012 for the effect of SOA in the visual modality, and
Hosemann, Herrmann, Steinbach, Bornkessel-Schle-
sewsky, & Schlesewsky, 2013; van der Brink & Hagoort,
2004 for the impact of recognition point).

This has generally resulted in a focus on speech pro-
cessing instead of language processing for M/EEG
research investigating narrative or otherwise more natur-
alistic auditory stimuli. The fine, acoustic structure of
speech has much less of the problematic temporal
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variability than language. In a particular telling use of ter-
minology, Wöstmann, Fiedler, and Obleser (2016a)’s
review of techniques in ‘speech and speech comprehen-
sion’ highlights the bias towards speech and away from
language due to methodological challenges in addres-
sing language comprehension. Moreover, Wöstmann
and colleagues emphasise that even at the level of
speech processing, the temporal variability still poses a
large challenge. However, a broad spectrum of research-
ers have slowly closed the gap between speech and
language processing such that we are now able to
begin addressing auditory story comprehension and
more generally language processing under naturalistic
stimulation with M/EEG. In the following, we show how
the two largely independent research traditions into
the electrophysiology of (1) speech and (2) language pro-
cessing of auditory stories and other naturalistic stimuli
provide a foundation for testing recent, integrative the-
ories on the neural encoding of linguistic structure
(Giraud & Poeppel, 2012) that depend on predictions
too temporally precise to be tested with fMRI.

1. Structure and overview

The present work is not intended as a tutorial, nor a
detailed review of all work on naturalistic language pro-
cessing. Instead, the goal is to highlight previous work
with M/EEG spanning the spectrum ranging from “audi-
tion” to “language processing” that researchers at one or
the other end of the spectrum may not be aware of. To
that end, we begin with a somewhat shallow overview
of previous work, showing how focus on speech vs.
language perception created two largely distinct
research literatures, compounded by methodological
differences between MEG and EEG or between ERPs
and oscillations. Although the speech tradition is some-
what more extensive than the language tradition for nat-
uralistic auditory stimuli, the language tradition is more
extensive than generally realised. In the second part,
we focus on three publications (recent as of mid-2018)
that provide the current state of the art in analysing
the electrophysiology of naturalistic language proces-
sing. Highlighting the problem of distinct research tra-
ditions, none of these three papers cite the related
work in the other two, nor of much of the previous litera-
ture. The methodological successes and tradeoffs of
these publications are therefore discussed and con-
trasted against each other in more detail than the
studies in earlier sections of this paper. We conclude
with a discussion of opportunities and open problems
in the electrophysiology of naturalistic language stimu-
lation. In particular, we return repeatedly to the inherent
difficulty in mapping temporally variable linguistic units

to temporally precise measures and discuss potential sol-
utions and promising directions for future research.

1.1. Literature search

As lack of awareness of previous literature was the motiv-
ation for the present manuscript, it is important to
specify how literature was sought out for the current
review. Several attempts were made to find appropriate
literature in a (semi-) systematic way so as not to bias the
perspective presented here too much by the author’s
own, previous “chance” exposure to the literature. In par-
ticular, we used several searches with Google Scholar
using the search terms naturalistic language,
natural language, auditory story combined
with either eeg or meg. These yielded some interesting,
recent articles but largely produced unrelated texts,
often related to the more engineering-oriented fields
of brain-computer interfaces (BCI) and natural language
processing by computers (NLP). This was followed by a
search of PubMed using the advanced search term
((MEG) OR (EEG)) and (((naturalistic) OR
(natural) language) OR (auditory story)).
The PubMed search was somewhat more successful,
yielding approximately 250 hits; however, only approxi-
mately 40 were even remotely relevant.2 Beyond the
aforementioned issues from technical fields, many
results were for “natural speech” in the sense of
“speech produced by humans”, i.e. in contrast to
“machine-generated speech” or “rapid serial visual pres-
entation”. In many cases, it became clear that the study
of language processing – modern psycho- and neurolin-
guistics as opposed to the older field of aphasiology –
has changed dramatically in what it considers “natural”.
For example, Kutas and Hillyard (1980a) used “natural
sentence processing” to describe an RSVP experiment
manipulating the typeface of single, sentence-final
words (see also Lotze, Tune, Schlesewsky, & Bornkessel-
Schlesewsky, 2011). Nonetheless, these searches
yielded a number of results from both the speech pro-
cessing and language processing traditions that pro-
vided a starting point for a less systematic “snowball”
search through the reference lists of already collected
articles.

1.2. Intentional omissions

It is critical to note that many of the results presented
here are “replications”, or more precisely, phenomena
previously observed at smaller time scales or single sen-
tences. This is a multi-edged sword. On the one hand,
this serves as a sanity check for the more naturalistic
experiments and as weak validation for the typical
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“sterile” laboratory environment: the overall pattern of
results is similar, so careful control did not distort our
picture of language processing too greatly. Nonetheless,
the naturalistic paradigms remain crucial for under-
standing speech and language processing in its full
complexity, where interactions between both local lin-
guistic and global contextual features, both linguistic
(cf. Alday, Schlesewsky, & Bornkessel-Schlesewsky,
2017) and paralinguistic (Tromp, Peeters, Meyer, &
Hagoort, 2017), matter as well as their constant, con-
tinuous overlap (cf. Steinberg, Truckenbrodt, & Jacob-
sen, 2012, who found that stimulus splicing and the
resultant misleading formant transitions impact phono-
logical processing). In the following, we present results
from our search and not the more fundamental, original
results from non-naturalistic studies. As such, this is not
a comprehensive review of any of these individual
phenomena and associated research programmes, but
rather a synthesis of research traditions. This also
implies that prominent work for our understanding of
speech and language processing under artificial con-
ditions that has not yet been extended to naturalistic
stimulation (e.g. Ding, Melloni, Zhang, Tian, & Poeppel,
2016) is not part of this review, although the hope is
that this review is useful in developing those naturalistic
extensions.

Finally, this review is focused on the electrophysiology
of naturalistic language stimulation in the auditory
modality and not on other modalities, such as free
reading, or methods, such as fMRI. The reading literature
is quite extensive and involves a spectrum from visual
perception up to language comprehension paralleling
the speech vs. language divide in audition. The fMRI lit-
erature on naturalistic language processing is much
more extensive than the M/EEG literature and more
general works on naturalistic language processing tend
to focus on fMRI research (cf. Brennan, 2016; Willems,
2015a, many of the other articles in this special issue).

2. Clues from the study of speech perception
and first attempts at naturalistic language

The temporal complexity of language embedded in the
speech signal arises at many levels: the difference in
the length of phonemes, the number of phonemes
required to realise a word, the number of words in a
phrase, the number of phrases in a sentence, etc. Note
that phonemes are not present at any instant in the
acoustic signal, so, even as the smallest unit here, pho-
nemes still encode temporally diffuse aspects of the
latent linguistic signal. The temporal variability within
each level only increases the temporal variability of all
the levels above it. Moreover, the largest levels are

much larger (seconds) than the time scale of the neural
response (milliseconds), so even if the variability were
controlled for, it can be difficult to model event-related
changes when the event is spread out in time (although
this does appear possible in certain situations with a
threshold, cf. O’Connell, Dockree, & Kelly, 2012). For
example, when does upspeak (rising intonation over
the course of a sentence) occur? When is upspeak
treated as a regional accent (as stereotyped in the Amer-
ican “valley girl” accent) or as a discourse marker for
questions?

2.1. Entrainment in and across
electrophysiological frequency bands

The first and most obvious way to avoid the temporal
complexity is to compare signals on similar time scales
such as the raw acoustic signal and raw electrophysio-
logical response.3 Especially after suitable filtering and
downsampling, the envelope of speech has been repeat-
edly shown to be coupled to various aspects of the elec-
trophysiological signal (see below). This coupling is often
expressed as the electrophysiological signal being
entrained or phase-locked to the auditory signal. Note
that this phase-locking may be lagged and does not
imply phase synchrony/identity, but rather that the
phases co-vary.

Focusing on speech processing, Gross et al. (2013)
showed that the speech envelope in a 7-minute-long
continuous story entrains the phase of low-frequency
bands (theta, delta) and the amplitude of gamma in
MEG, with a larger effect for intelligible, forward speech
compared to unintelligible, backward speech. Riecke,
Formisano, Sorger, Bașkent, and Gaudrain (2018) have
recently suggested a causal role for this entrainment
via transcranial stimulation with a waveform matching
the speech envelope enhancing speech intelligibility
and a mismatched waveform damaging intelligibility. In
a subsequent EEG study, Kayser, Ince, Gross, and Kayser
(2015) manipulated speech rates of 6-minute-long
speech samples and found overall similar results. They
additionally observed an alpha-delta correspondence,
which they interpret as a top-down regulatory mechan-
ism. Park, Ince, Schyns, Thut, and Gross (2015) re-ana-
lysed this data using transfer entropy4 to perform
causal connectivity analysis that supported Kayser and
colleagues’ conclusion of the regulatory role of alpha
on delta. Using the same 7-minute story and MEG,
Keitel, Ince, Gross, and Kayser (2017) provided additional
converging evidence for the role of alpha in central areas
in regulating delta in left Heschl’s Gyrus and anterior STG,
in addition to delta-beta and delta-theta entrainment in
other, distinct networks. In brief, entrainment occurs at
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multiple scales, both between the brain and the external
stimulus and within different signals in the brain.

Entrainment has been suggested to play an important
role in attention or more precisely the attending to
salient stimuli. Horton, D’Zmura, and Srinivasan (2013)
demonstrated entrainment in an EEG study for both
attended and unattended stimuli via correlation ana-
lyses; however, the direction of the correlation was
reversed for unattended stimuli. Whether the weak
entrainment of unattended stimuli reflects a failure to
completely suppress the unattended stimuli or some
measure of non-suppressible automatic processing (or
a mixture thereof) is not clear, although this remains an
important question both in naturalistic and traditional
experiments (Zion Golumbic, Poeppel, & Schroeder,
2012). This study also highlights the necessity of more
naturalistic paradigms as the stimuli consisted of inde-
pendent sentences from an audio corpus that had
been concatenated together to exceed 22 seconds in
length and thus lacked the overall coherence and
shared context of natural language use, which may
impact language processing. Regularity in the speech
signal was also not achieved by prosodic rhythms but
rather by convolution with a carefully controlled modu-
lation function with the stimulus envelope.

Attentional effects have also been demonstrated in
truly naturalistic stimulation. Using more explicit statisti-
cal modelling of the time course, Ding and Simon (2012)
demonstrated that evoked spectral power was sensitive
to manipulations of the attended but not the unattended
speaker in 1-minute narratives in MEG (see also Ding &
Simon, 2013). Using dynamic imaging of coherent
sources (DICS, Gross et al., 2001) in MEG, Bourguignon
et al. (2012) found that prosodic rhythms (as measured
by the envelope of F0) entrain the delta band, even in
hummed speech or speech in an unknown language,
but theta coherence was only present for speech in a
known (here: native) language, which can be thought
of as a form of automatic linguistic attention. Moreover,
the delta-band modulation was stronger in the pSTS and
pSTG for linguistic than non-linguistic stimulation; with
the latter showing its peak coherence in the auditory
cortex. Wöstmann, Herrmann, Maess, and Obleser
(2016b) found the previously reported regulation of
delta via alpha in a cocktail party setting; in particular,
alpha power and its lateralisation was modulated by
delta phase coherence and its lateralisation (cf. Kayser
et al., 2015). Taken together, these results start to separ-
ate the processing of speech as complex auditory stimu-
lus from the processing of speech as the physical
medium of language.

We can also consider language proficiency as related
to the ability to attend to speech. Reiterer and colleagues

show that the attenuation of the expected spectro-tem-
poral response pattern correlates inversely with L2 profi-
ciency (Reiterer, Hemmelmann, Rappelsberger, & Berger,
2005; Reiterer, Pereda, & Bhattacharya, 2011). The
absence of entrainment under appropriate stimulation
has also been proposed as a diagnostic and assessment
tool for clinical research (Liberto & Lalor, 2017) and the
development of appropriate prosthetics in hearing loss
(Vanthornhout, Decruy, Wouters, Simon, & Francart,
2018; see also Peelle & Wingfield, 2016; Petersen, Wöst-
mann, Obleser, & Lunner, 2017, for more general com-
ments on the neural impacts of hearing loss across the
lifespan).

More recently, cross-modal studies have shown that
visual information aligned with speech enhances
entrainment. Prosodically timed emphatic hand gestures
in speeches (Biau, Torralba, Fuentemilla, de Diego Bala-
guer, & Soto-Faraco, 2015) enhance entrainment, as do
lip movements (stimuli approximately 8 minutes in
both Giordano et al., 2017; Park, Kayser, Thut, & Gross,
2016). Using EEG and short cartoon clips (161 seconds
on average), Cohen and Parra (2016) found that memor-
able scenes (approximately 18 seconds) were better
remembered when there was higher neural synchrony
during the scene and that this effect was in the multisen-
sory scenes compared to the audio-only condition. Fur-
thermore, Dikker et al. (2017) showed that this type of
synchrony is predictive of group dynamics in a classroom
setting.

2.1.1. Statistical models of the temporal response
The majority of work thus far has focused on inference or
testing of hypotheses about the relationship between
the electrophysiological signal and the stimulus.
However, it is also possible to take a more generative
or predictive approach to data analysis (Yarkoni & West-
fall, 2017); the rise in the popularity of so-called
“decoder” methods in cognitive neuroscience captures
some aspects of this perspective (Holdgraf et al., 2017).
In speech processing, Koskinen et al. (2012) used a
similar decoding approach with canonical correlation
analysis (a functional connectivity measure, cf. Carbonell,
Worsley, Trujillo-Barreto, & Sotero, 2009, for M/EEG) to
have the model learn the MEG “fingerprints” of short seg-
ments of speech (2–3 s) taken from an hour-long news
broadcast. They demonstrated that their decoder could
generalise from the observed data to have a reliable
association between the spectro-temporal form of the
auditory stimulus and of the resultant MEG signal. This
parallels some work in the fMRI tradition such as Haxby
et al. (2011), although full inter-subject alignment via
an abstract representation has not yet been demon-
strated for the electrophysiology of language.
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Hypotheses about the role of the various frequency
bands in language processing and more general cogni-
tive function, such as those put forth by Giraud and
Poeppel (2012) and more recently tested in an artificial
context by Ding and colleagues (Ding, Melloni, Tian, &
Poeppel, 2017; Ding et al., 2016) are a first step, but
more work is needed to establish stronger hypotheses
linking language to its implementation in the brain (cf.
Poeppel & Embick, 2005, see also Section 3.4 below).

Beyond decoding models, another way to start estab-
lishing such linking hypotheses are generative models.
Ding and Simon (2012) and Ding and Simon (2013) for-
mulated their analysis as “(spectro-)temporal response
functions” or (S)TRF, which can essentially be thought
of as a generalisation of the event-related potential to
a complex stimulus (see below). In particular, the
“spectro” portion of the name refers not to the electro-
physiological response but to the stimulus, with “the”
TRF as a whole resulting from the summing of piecewise
TRFs to individual portions of the frequency spectrum of
the stimulus. In defining TRFs, it is also possible to
include additional covariates, such as linguistic infor-
mation. Di Liberto and colleagues (DiLiberto, O’Sullivan,
& Lalor, 2015; Liberto & Lalor, 2016) took a model-
based approach to entrainment and found that the
inclusion of phonemic labels in addition to the speech
envelope improve the model’s ability to predict EEG
data in all frequency bands. Note phonemes are not
present at any instant in the acoustic signal, so phonemic
labels encode temporally diffuse aspects of the latent lin-
guistic signal. This suggests that such linguistic labels
capture some part of the response not directly captured
by the acoustic properties of the stimulus. As such, this
model provides evidence for the hypothesis that the
abstract entity “phoneme” from linguistic theory cap-
tures something that is relevant for the processing of
language in the brain.

2.2. The temporal response as an impulse
response through embedded probes

In addition to the previously discussed time-frequency
based entrainment analyses, Kayser et al. (2015) also
examined the evoked potential. Here, they applied the
second common trick to avoid the temporal complexity
of natural speech: they inserted sharply defined events
into the continuous speech stream. Their speech rate
manipulation consisted of manipulating the gaps
between syllables, which effectively creates an impulse-
like aspect to the onset of the next syllables. This again
has its parallel in the traditional ERP literature, where
the usual exogenous components – N1, etc. – are
visible at the start of the auditory stimulation, even if

that is rarely a critical position. This type of “gap splicing”
can be somewhat problematic (Steinberg et al., 2012)
when studying phonological processing because it
removes co-articulation; however, here it is less proble-
matic as the speech envelope and not the role of any
particular phoneme or higher processing was the
object of interest. Kayser and colleagues found no
effect of the speech rate manipulation, although the
amplitude of the evoked potential did increase with
the duration of pause, regardless of overall speech rate.

In such contexts, it becomes clearer that the classical,
peaky evoked potential is essentially an impulse
response, although the “impulse” may be at a more
abstract level. In traditional rapid serial visual presen-
tation, the impulse is simultaneous at several levels.
The early exogenous components reflect the impulse
response at the level of visual processing, while the
N400 reflects impulse responses at more abstract linguis-
tic levels such as words. A useful metaphor is that of a
ringing bell. The impulse response reflects the sound,
including the continued ringing of the bell, when it is
struck once. Note, however, that if we strike the bell
again, the second strike also produces an impulse
response, albeit convolved with the first impulse
response. From this perspective, the sharp shape of com-
ponents in traditional experiments reflects the relative
separation of the various impulses. Introducing a
longer pause as Kayser et al. (2015) did, reduces the
amount of convolution and provides a clearer perspec-
tive of the impulse response. Nonetheless, speech and
language rarely occur as a series of sharply defined
impulses, but rather as more continuous stimulation.

In continuous, naturalistic stimulation, the evoked
potential is viewed slightly differently than in the tra-
ditional ERP literature and is often described as the tem-
poral response function or temporal receptive field
(both abbreviated TRF), as it shows the time course of
the neural sensitivity, when distinct receptive fields are
estimated across sensors.5 Although the TRF perspective
was originally developed for low-level perceptual exper-
iments in psychophysics, its potential for application to
language was quickly realised (where it is called Auditory
Evoked Spread Spectrum Analysis (AESPA) in parallel to
the auditory evoked potential (AEP); Lalor & Foxe, 2010).
The TRF is often amore abstract perspective, using predic-
tions frommore complicatedmodels than “mere” (grand)
averaging,6 such as explicitly convolution-based perspec-
tives (see below) or linear model-based perspectives (e.g.
the rERP framework; Smith & Kutas, 2015a, 2015b).

The TRF thus reflects the impulse response at the level
of the manipulation, but not necessarily at the level of
physical realisation of the stimulus in sound or light,
because the impulse may be more abstract than the
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physical stimulus at an instant in time. In particular, lin-
guistic impulses such as words are not acoustic impulses,
and this is exactly why embedded probes are useful to
extract ERPs or more generally TRFs. By embedding
targets constrained to be acoustically similar and/or tem-
porally compact, the linguistic impulse becomes more
consistent across trials and it becomes easier to extract
away its distinct time course, i.e. its impulse response.
In these terms, analysing the TRF is an issue of ways to
isolate the correct abstract impulse and its response.
This illuminates the contrast to fMRI: due to its poor tem-
poral resolution, physical and linguistic impulses are
forced onto the same time scale.

Perhaps the most temporally precise application of
the evoked TRF to date is isolating the auditory brain-
stem response (ABR) by Maddox and Lee (2018) who
used 64-second clips of an audiobook and EEG
sampled at 10kHz. The high sampling rate and minimal
filtering is necessary to determine the extremely low
latencies characteristic of ABRs and stands in stark con-
trast to nearly all of the other studies here, which often
downsampled their stimulus to around 100 Hz and
applied extremely strong bandpass filters, although
there is no shortage of literature discussing problems
with filtering (see below for further discussion on the
role of filtering in naturalistic stimulation; Acunzo, MacK-
enzie, & van Rossum, 2012; Maess, Schröger, & Widmann,
2016; Tanner, Morgan-Short, & Luck, 2015; Tanner,
Norton, Morgan-Short, & Luck, 2016; Van Rullen, 2011).

A number of studies have investigated the response to
probes inserted at various levels along the sound-speech-
language continuum using classical ERP techniques. In
the simplest cases, either linguistic (such as minimal syl-
lables like /da/) or non-linguistic sounds (such as short
buzzes) are inserted into the audio stream and serve as
time-locking events. While these stimuli are short and
uniform in length, their presence dramatically reduces
the naturalness of the stimulus. Nonetheless, such
stimuli do occur in real life situations, e.g. poor telephone
connections or a babbling baby in the background. These
stimuli are often used in conjunction with a cocktail-party
task that additionally manipulates attention (cf. da Rocha,
Foz, & Pereira, 2015; Karns, Isbell, Giuliano, & Neville, 2015;
Nager, Dethlefsen, & Münte, 2008; Sanders, Stevens,
Coch, & Neville, 2006; Stevens, Sanders, & Neville, 2006;
see Table 1 for more details).

As a concrete example of probes in a cocktail party
situation, Getzmann and Falkenstein (2011) had partici-
pants listen for the stock price of a particular company
in a stock-price-ticker cocktail party situation. They
found that age did not have a large behavioural
impact, but did influence several classical attention and
target related components such as the P3a and P3b.

These attention manipulations and associated behav-
ioural tasks, although in many ways somewhat artificial,
span parts of the gap from speech perception towards
linguistic processing. Categorising and responding to lin-
guistic features of the acoustic-speech signal requires
some of level of language processing. However, tra-
ditional topics of psycholinguistic research – syntax
and semantics in their broadest sense – remain unmani-
pulated and uncontrolled for in these studies, and the
linguistic nature of the stimulus is ignored, instead treat-
ing the speech signal as just another acoustic signal
which humans have particular expertise on. In other
words, the linguistic content of the stimulus largely did
not matter and language was just a carrier for a
complex perceptual categorisation task. Nonetheless,
these studies provided insights into how to deal with
the complexity of continuous, naturalistic stimulation.
Oscillatory entrainment, full modelling of the time
course with covariates (TRFs), and the use of sharply
defined probes provide the basic toolkit for studying
the brain’s response to temporally diffuse stimuli. And
so we now shift our focus to language processing,
where language exists as a complex system shaping
and shaped by its acoustic realisation as speech.

3. From speech to language

Classical ERP research on sentence processing was
quickly extended to accommodate contexts, both in
the visual and auditory domains (cf. e.g. Kutas & Feder-
meier, 2011, for a review of the N400, including contex-
tual effects). In both modalities, this was generally
done with a deliberately constructed context and a care-
fully controlled critical word or even entire sentence. This
was done for all levels of linguistic processing, e.g. proso-
dic processing (Dimitrova, Stowe, Redeker, & Hoeks,
2012) and the interaction of syntax and semantics
(Nieuwland & Berkum, 2006). More recently, this has
been attempted in cross-modal contexts, including
virtual reality (e.g. Tromp et al., 2017, for an N400 elicited
by mismatch to the virtual context). In all these cases, the
context was directly, intentionally part of the manipu-
lation and not part of a truly more naturalistic paradigm
with e.g. long contexts, variability in speech, and without
tasks and related effects (such as modulation of late posi-
tivities, cf. Haupt, Schlesewsky, Roehm, Friederici, & Born-
kessel-Schlesewsky, 2008).

3.1. First steps: probes and parsers

The highly artificial nature of language in the laboratory
and resultant issues of ecological validity were cause for
concern, even before fully naturalistic language in the

462 P. M. ALDAY



laboratory was conceivable. Quite early in the character-
isation and study of the electrophysiology of language,
O’Halloran, Isenhart, Sandman, and Larkey (1988) used
a standard semantic-anomaly N400-elicitation manipu-
lation with less acoustic-phonological control to
examine many of the concerns that we are now trying
to address with naturalistic stimuli. Two tasks were
used (content question following a block and judgement
task), and co-articulation effects were avoided without
splicing by careful selection of the preceding word to
have a terminal voiceless stop. In modern terminology,
they found a biphasic N400-P600 pattern (similar to the
one in Kutas & Hillyard, 1980b), with an enhanced posi-
tivity for the judgement task (cf. Haupt et al., 2008). More-
over, it appears that they allowed for natural volume
variation, stating “none of the stimulus words was elec-
tronically altered in any way” (p. 245). This was taken
as support for the use of similar, but non-identical
targets across conditions in the auditory modality. As
such, this study provided a critical result for more natur-
alistic designs, namely that linguistic effects can still be
detected in acoustically variable stimuli, despite its use
of single sentences as stimuli.

Until relatively recently, restricted contexts with
controlled critical sentences and O’Halloran and col-
leagues’ single-sentence study without volume normal-
isation were the limits of naturalistic language
processing as studied in EEG. One notable exception
used a technique similar to the linguistic probe meth-
odology in the cocktail-party literature (above). Shafer,
Kessler, Schwartz, Morr, and Kurtzberg (2005) used an
audio rendition of a children’s story in which all the
instances of the definite article the were replaced by
a single exemplar. This was repeated for a nonsense
(jabberwocky) condition, and the articles in the two
conditions were compared. Using a single, short word
(76ms) with a single acoustic realisation elicited clear
ERPs, including the early exogenous components;
however, even with an additional task manipulation in
a follow-up experiment, it is hard to interpret this exper-
iment beyond something akin to “context impacts the
processing of a single function word”. This study does
however provide a very precisely estimated TRF for a
particular linguistic impulse, including how the embed-
ding context changes its appearance. In addition, the
clear waveforms here for a short, frequent word
suggest an alternative approach to analysing naturalistic
data – focus on a few frequent, short tokens such as
personal pronouns and many confounds (acoustics,
frequency, etc.) will resolve themselves to a level
approaching a controlled experiment (see Brilmayer,
Werner, Primus, Bornkessel-Schlesewsky, & Schlesewsky,
2018, for more with this approach).

Even with appropriate linking hypotheses for estimat-
ing the time scale of the linguistic impulse, the aggregate
noise and drift in the time-domain electrophysiological
signal over multi-second time scales makes extraction of
the associated response impossible with current tech-
niques. Meanwhile, in fMRI, a number of methods and
approaches blossomed (see the rest of this issue for
some examples and additional literature review).
Haxby’s hyperalignment approach, based onmultivariate
pattern analysis, proved particularly fruitful for audiovi-
sual scenes (cf. Guntupalli et al., 2016; Haxby et al.,
2011). Huth, de Heer, Griffiths, Theunissen, and Gallant
(2016) were able to create a semantic map of the cortex
from language input. For auditory stories, Whitney et al.
(2009) examined narrative shifts, while Hasson and collab-
orators used the temporal hierarchical organisation of
speech (e.g words within sentences within “paragraphs”)
to examine the hierarchy of temporal processing within
perisylvian cortex (Hasson, Yang, Vallines, Heeger, &
Rubin, 2008; Lerner, Honey, Katkov, & Hasson, 2014;
Lerner, Honey, Silbert, & Hasson, 2011; Stephens, Honey,
& Hasson, 2013). Narrative shifts and multiword organis-
ational units are on a time scale simply incompatible
with event-related electrophysiology.

One fMRI technique, however, can be transferred to
methods with high temporal resolution: the use of
parser metrics as regressors. Brennan et al. (2012) used
the current node-count from a context-free parser at a
givenword in a sentence as a proxy regressor for syntactic
structure building. They found that node count correlated
with activity in the left anterior temporal lobe, not with
activity in inferior frontal areas, i.e. Broca’s area, commonly
associated with syntax, and attributed this difference to
the naturalistic environment without tasks or violations.
Willems, Frank, Nijhof, Hagoort, and van den Bosch
(2015) expanded this to use a “syntax-free” trigram and
entropy-based parser to model data without assuming
any traditional theory of syntax. Building on the work of
Hale (2001) and Levy (2008), who proposed mappings
from natural language processing methods (parsers and
Shannon entropy), the use of NLP models as regressors
has expanded in fMRI research (cf. Brennan, Stabler, Van
Wagenen, Luh, & Hale, 2016) and is slowly making the
transition towards M/EEG (see Armeni, Willems, & Frank,
2017; Brennan, 2016 for review, as well as van Schijndel,
Murphy, & Schuler, 2015 for an early attempt in the
time-frequency domain with only three participants).

The state of the art of this approach as of mid-2018 is
the use of probabilistic grammars with beam search.
Beam search keeps a ranked collection (“beam”) of
parser states compatible with the current input that
may be pruned when presented with future, incompati-
ble input. Hale, Dyer, Kuncoro, and Brennan (2018) used
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recurrent neural network grammars (RNNG) combined
with word-synchronous beam search to model not just
a single, deterministic partial parse, but also local (syntac-
tic) ambiguity. Both RNNG and beam search are
advances compared to previous parsing-based models.
RNNGs are generative models of both deep and
surface structure, in that they generate both an observa-
ble word string and a hidden tree structure. This dis-
tinguishes them from traditional parsers, which derive
trees from a given word string. Meanwhile, the state of
the beam is both a measure of the local syntactic ambi-
guity and a model of parallelism in human sentence
processing.

In their study, Hale and colleagues recorded EEG data
at 500 Hz from subjects listening to the first chapter of
Alice’s Adventures in Wonderland and bandpass filtered
from 0.5–40 Hz. The authors used both sample-wise
(timepoint-wise) regression within subjects and electro-
des as well as mixed-effects models within time
windows and topographical regions of interests to
compare different incremental complexity metrics
derived from the RNNG. They found that their complexity
models captured activity corresponding to an early
anterior component as well as the P600, but not activity
corresponding to the N400. Moreover, they found that
the early activity was attributable to syntactic compo-
sition, while the later P600-like activity was attributable
to the overall syntactic effort (“distance” in their language).
In brief, using innovations from computational linguistics,
Hale and colleaguesquantitatively demonstrate the expla-
natory power of purely syntactic models and discern
between aspects of syntactic processing. This stands in
contrast to the other approaches that appeared at
roughly the same time, which focused more on semantics
and word-level phenomena, as shown in the next section.

3.2. Scaling up: using modern statistical and
computational approaches

At the end of 2017 and the beginning of 2018, three
closely related approaches have emerged that build
upon different aspects of ERP and fMRI traditions to audi-
tory story comprehension. Although the surface
methods appear quite distinct, all of these methods
depend to a greater or lesser extent on general linear
model-based convolution, a method which has found
success in other areas of EEG research, e.g. removing
eye-movement artefacts (cf. Dimigen, Sommer, Hohlfeld,
Jacobs, & Kliegl, 2011).

3.2.1. Estimating full TRFs via filtering
Broderick, Anderson, Liberto, Crosse, and Lalor (2018)
linearly regressed EEG data onto (dis)similarity measures

for distributional semantics derived from the Word2Vec
tool in NLP (Mikolov, Chen, Corrado, & Dean, 2013).7 EEG
data were recorded from subjects listening to 20 3-
minute audiobook snippets, downsampled to 128 Hz
and bandpass filtered from 1–8 Hz. The authors used
ridge regression to calculate the TRF and found a nega-
tivity with a latency and distribution corresponding to a
traditional N400. Broderick and colleagues hesitated to
use the N400 label, however, as they had no cloze prob-
ability manipulation; nonetheless, in light of more recent
N400 perspectives (Kutas & Federmeier, 2011) beyond
discrete components (Alday et al., 2017), the resulting
component can safely be classified as an N400. Further-
more, noise and cocktail-party attention manipulations
attenuated this response. In brief, Broderick and col-
leagues found a classic N400 response in a rich
context, lacking explicit violations.

Brodbeck, Presacco, and Simon (2018) used linear
kernel estimation (a form of convolution) combined
with minimum norm source localisation to model the
electrophysiological response in an MEG experiment
using 1-minute-long segments from an audiobook. The
MEG data were downsampled to 100 Hz and bandpassed
filtered from1 to 40Hz. They clearly place theirwork in the
Lalor temporal response function tradition and used con-
tinuous signals of the type often used in Lalor and col-
leagues’ previous TRF work (see Section 2.2 above).
Beyond the standard acoustic envelope, they also
created continuous signals corresponding to word fre-
quency and semantic composition. For both word fre-
quency and semantic composition, the signal was taken
to maintain a constant value over the duration of the rel-
evant critical word. In the case of semantic composition,
the variable was simply a binary indicator of semantic
composition, following the definition given by Wester-
lund, Kastner, Kaabi, andPylkkänen (2015), who examined
single sentences and essentially used “composition” to
indicate that two adjacent words belong to the same
phrase. Although these predictor signals were fit in a
linear kernel (convolution) model via boosting, Brodbeck
and colleagues note that there is no reason why other
fitting techniques such as ridge regression could not be
used. This is a clear parallel to the work of Lalor and
Foxe (2010) who suggest both standard ordinary least
squares and ridge regression. The big innovation here is
a model of the electrophysiological response in source
and not sensor space. Even beyond the differing predic-
tors, the description in terms of scalp components vs.
source time courses makes Brodbeck’s and Broderick’s
(and respective colleagues) approaches as much comp-
lementary as overlapping.

Both of these studies used filtering to constrain the
electrophysiological response to time scales of interest.
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The 1–8 Hz filter used by Broderick et al. (2018) captures
events at the scale of language (syllables, words and
some phrases), but does not capture events at speech
scale. The 1-40 Hz filter used by Brodbeck et al. (2018)
includes time scales at the level of speech in its pass-
band. These filters remove the signal drift common in
electrophysiological signals at the cost of potentially
introducing artefacts (Acunzo et al., 2012; Maess et al.,
2016; Tanner et al., 2015, 2016; Van Rullen, 2011).
However, they are computationally simpler than using
temporal offset across the entire recording and not just
within epochs when modelling the full time courses
within epochs.

3.2.2. Estimating peak TRF via temporal constraints
In contrast to the above, Alday et al. (2017) used a more
traditional ERP analysis, focusing on mean EEG voltage in
a fixed time window (300–500 ms), time locked to word
onset. Although basic results were presented for an rERP-
perspective on TRF (no autocorrelation, regression coeffi-
cients interpreted as response), the core focus was
complex interactions in a longer (23 minute) narrative
in German. Instead of an explicit convolution model,
linear mixed-effects models were used (as is increasingly
the case in the ERP literature on language processing)
and as many interactions of linguistic features (e.g. fre-
quency, morphological case, word order, animacy) as
possible as well as position within the story were mod-
elled. Mixed-effects models can pool information from
every trial from every subject (and item) to simul-
taneously capture both subject and population level
effects. This partial pooling of information between sub-
jects improves inference at both the participant and
population level. In contrast to the other two naturalistic
M/EEG studies in this section, filtering was comparatively
mild (0.3 Hz highpass, with line-noise removal via sine
wave fitting), albeit with artefact correction via ICA. Pos-
ition within the story (“index”) was included as a
regression covariate, which served to model both the
impact of context and overall signal drift. Modelling
was performed in a unified hierarchical step accommo-
dating inter- and intra-subject variability without the
need for the two-stage approach often used in
machine-learning based procedures, such as those
used in the M/EEG studies above.

The key finding of this study also highlights the
importance of naturalistic stimuli. Experimental control
in traditional psycholinguistic experiments not only elim-
inates confounds, but introduces them, especially in
terms of timing and co-occurrence. Despite the fixed
offset to onsets of words of vastly different lengths
embedded in phrases of different lengths in a morpho-
logical rich language – i.e. capturing different amounts

of a given word or noun phrase – we found the usual
pattern of N400 results. This suggests that the electro-
physiological response observed at the usual N400
latency is not tied to words per se, but rather information
units at a time scale that corresponds to individual words
in more carefully controlled experiments. In other words,
the linguistic impulse may not be words per se. Instead,
word-level phenomena in traditional, controlled designs
may reflect a confound between the time scale of words
and the time scale of the linguistic impulse.

3.3. The way forward

Ultimately, these approaches highlight the way forward.
All of them are based essentially on linear models. Alday
et al. (2017) and Hale et al. (2018) both used a straightfor-
ward application of contemporary single-trial ERP analy-
sis with mixed-effects (and two-stage) regression models
to accommodate the covariates outside of experimental
control (cf. Sassenhagen & Alday, 2016). Broderick et al.
(2018) and Brodbeck et al. (2018) both used linear
kernel models that are equivalent to linear regression
with lags included in the predictors, although they
used different fitting methods.8 These all represent a
different take on what is perhaps most widely known
in the ERP literature as rERP (Smith & Kutas, 2015a,
2015b). Each of these approaches addresses individually
the first challenge set forth in Wöstmann et al. (2016a)
(“how to assess event-related responses to temporally
varying speech stimuli?”) and presents a solution for
assessing event-related responses to linguistic infor-
mation within a continuous speech stream.

As of now, entrainment phenomena at the level of
language have not been examined under naturalistic
stimulation (see below for speculation as to why). From
a methodological perspective, we need similar hierarch-
ical models as extensions to methods currently available
to research entrainment phenomena, such as DICS.
Driven auto-regressive models (la Tour et al., 2017) are
currently formulated in a manner applicable to single
subjects, but it is relatively straightforward to reformulate
them as a hierarchical model capable of being fit in the
mixed-effects framework. The “regression” framework
underlies the majority of our modern statistical tech-
nique and this could serve a lingua franca for researchers
from different areas.

The different perspectives from deeply related tech-
niques are not per se problematic and indeed may
even be helpful, just as frequency domain and temporal
domain analyses reveal different aspects about
fundamentally the same information (at least at the
single-trial level; averaging of course loses information).
Ultimately, it is useful to be able to combine different

LANGUAGE, COGNITION AND NEUROSCIENCE 465



tools to study the full, complex nature of language pro-
cessing (da Rocha et al., 2015). The important thing is
that we do not allow the development of multiple paral-
lel research traditions with little exchange as happened
previously for MEG and EEG (cf. Salmelin & Baillet,
2009). With competing measurement techniques (MEG,
EEG), modelling techniques (convolution, regression,
etc.) and objects of interest (speech vs. language),
there are already enough hurdles to overcome in com-
munication assuming fully collaborative research tra-
ditions. Neither Broderick, Brodbeck nor Alday cited
each other or seemed aware of each other’s work
before publication. Moreover, Smith’s rERP papers
never mention any of Lalor’s work, although the ideas
are extremely closely related, and the only connection
to convolution is a brief reference to the hemodynamic
response function in fMRI. This suggests a dangerous
disconnect amongst subfields.

3.4. Methodological issues are theoretical issues

The lack of coordination between research traditions –
whether speech vs. language or MEG vs. EEG – also
reflects a lack of a coherent, integrative theory of
language processing from perception to comprehen-
sion.9 The speech signal is physically or “surface” obser-
vable; its impulse is the rapid changes in air pressure
that the human ear is sensitive to. There are agreed-
upon methods for measuring acoustics, based on more
general work in signal processing and physics, and the
temporal properties of sound are well understood. The
language signal meanwhile is largely latent. Even basic,
relatively well-accepted units such as words are not
clearly defined cross-linguistically nor are they apparent
from the raw speech signal, as the difficulty of forced
alignment shows. Moreover, linguistic features are
often strongly correlated and confounded in natural
language use, which undermines efforts to find linguistic
primitives. In other words, we lack not just linking
hypotheses between linguistic computations/represen-
tations and neural computations/representations (cf.
Embick & Poeppel, 2014; Martin, 2016; Poeppel &
Embick, 2005), but even conclusive evidence that the
postulated linguistic representations have neurobiologi-
cal reality. This has a parallel in the history of psycholin-
guistics. While the wug test was initially taken to
demonstrate the psychological reality of linguistic rules
(cf. Berko, 1958), the rise of connectionism and the sub-
sequent past-tense debate showed that experimental
explanatory power is necessary but not sufficient to
demonstrate the psychological existence of a latent con-
struct such as morphological rules (cf. Rumelhart &
McClelland, 1986).

We can address this issue by using neurobiology to
inform linguistic theory (cf. Duncan, Tune, & Small,
2016) instead of just looking for correlates of linguistic
theory in brain activity. As a complementary approach,
we can take George Box’s aphorism “All models are
wrong, but some models are useful” to heart when
looking for correlates of linguistic structure in the brain.
As an example, both the differences and the similarities
in how well the performance of different parsers maps
to neurophysiological signals provides insight into
which proposed constructs from linguistic theory may
be utilised by the brain (cf. Brennan, 2016). This compre-
hensive methodology – comparing and contrasting neu-
robiologically informed linguistic models – must also be
applied to language in its full complexity, which means
that integrative, naturalistic paradigms are an absolute
requirement (cf. Small & Nusbaum, 2004).

The difficulty in comparing “red” and “yellow” in audi-
tory EEG lies not in any individual level (acoustic, phono-
logical, lexical, etc.), but in mapping between those
levels. We can easily compare these two words at the
level of speech and phonemes; we can also easily
compare them when speech and its temporal dimension
is removed in rapid serial visual presentation. The chal-
lenge comes then in the temporal mapping of the
series of acoustic impulses to a series of linguistic ones.
This in turn requires better linking hypotheses of how lin-
guistic levels map onto time and space in the brain.

In brief, a core challenge for developing sufficient
linking hypotheses lies in addressing both temporal
regularity and temporal variation. This is ultimately
what separates electrophysiology from methods with a
lower temporal resolution such as fMRI: we cannot
ignore the temporal variation. Combining analysis of
methods spanning the range of space and time will
show where the granularity of our linking hypotheses
fail (cf. Haufe et al., 2018).

4. Conclusion

In this brief review, we have looked at two parallel tra-
ditions in studying the electrophysiology of naturalistic
auditory linguistic stimulation. The first, “speech proces-
sing”, has focused largely on oscillatory responses to
acoustic aspects of the stimulus. The second, “language
comprehension”, has largely focused on the evoked,
temporal response to carefully controlled manipulations
embedded in larger, less controlled contexts. Recent
work has however demonstrated the feasibility of exam-
ining language comprehension in fully naturalistic
environments. This opens up a new frontier for testing
combined theories of speech and language comprehen-
sion spanning the range from milliseconds to seconds
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such as the AST and its descendants (Giraud & Poeppel,
2012; Poeppel, 2003). The full temporal complexity of
natural speech eliminates rhythmic confounds in short,
isochronous speech (cf. Ding et al., 2016; Frank & Yang,
2018, and the broader debate about the origins of the
observed rhythms) and is a challenge we can now take
on. The necessary statistical and signal-processing
methods have come of age; electronic recordings of
longer auditory stimuli are more widespread than ever
in the form of audiobooks and podcasts; and NLP
advancements (parsers, forced-alignment systems)
make annotating them easier than ever. Controlled lab-
oratory experiments remain invaluable, but only by
embracing naturalistic designs as part of a comprehen-
sive examination of language will we begin to under-
stand language processing in its full natural complexity.

Notes

1. An obvious exception is co-registration of EEG and/or
fMRI with eye movements for examining the dynamics
of natural reading, see e.g. Kretzschmar et al. (2013).

2. Only approximate numbers are given as these results are
of course subject to change, even on short notice; more-
over many entries were duplicates.

3. Throughout the text “electrophysiological response” is
used to describe the underlying signal measured by
both MEG and EEG, as the magnetic fields measured
by MEG are secondary to the electrical fields used in
neural computation – the underlying physiology is elec-
trical, even if we sometimes measure the magnetic
portion of the resulting change in the electromagnetic
field.

4. Very roughly, this is internal unpredictability in one signal
appearing at a constant temporal lead to unpredictability
in another signal, which by the same logic as Granger
causality is assumed to reflect the transfer of (Shannon)
entropy between signals and thus causal coupling.

5. While these concepts are slightly different formulations
of the same idea, there are some differences in their ter-
minological use. In general, the temporal response func-
tion perspective focuses on the impact of the stimulus
on the electrophysiological response, while the tem-
poral receptive field focuses on the portions of the elec-
trophysiological response that are sensitive to the
stimulus. This is often a distinction without a difference,
but it has some impact on other parts of the terminol-
ogy. In particular, the prefix “spectro” can somewhat
confusingly refer either to the stimulus or to the electro-
physiological response, although there does seem to be
tendency for “spectro-temporal response function” to
refer to the stimulus spectrum and its mapping to elec-
trophysiology, while “spectro-temporal receptive field”
emphasises the portions of the electrophysiological
response actually impacted. Fundamentally, all of
these perspectives refer to the same general phenom-
ena, namely the time course of the electrophysiological
modulation driven by the stimulus, and this is the
abstraction we use here.

6. Although often not viewed as such, averaging is a model
of the “expected value” of a variable. Indeed, “expected
value” is a technical term in statistics, which can be con-
ceived of as an abstract generalisation of the average/
arithmetic mean.

7. Word2Vec can be thought of as a generalisation of co-
occurrence statistics and a successor to techniques
such as latent semantic analysis (LSA).

8. A similar model could also be made using an appropriate
autoregressive covariance structure instead of explicitly
including lags in the predictors.

9. We would like to thank an anonymous reviewer for
encouraging us to include such a section in the manu-
script and for raising some interesting discussion points.
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Appendix. Tabular summary of reviewed
literature

Table A1. Summary of relevant electrophysiology literature, as based on the search procedure described in the Section 1.1. Note this is
not simply all literature cited or mentioned in this review (for that, see the bibliography), but rather an overview of the literature
actually reviewed, including some articles mentioned in passing. The primary criterion speech from language in the table is
whether the participants actually had to comprehend the meaning conveyed by speech to achieve the experiment’s goals. This
stands in contrast to a task related to the categorization of the speech signal as a complex perceptual stimulus, as in probe tasks
where subjects press a button in response to a particular word. This distinction is course not completely clear for all studies.

Reference Speech/language
M/
EEG Method Stimulus

Alday et al. (2017) language EEG fixed-window regression (ERP) 23-minute story
Biau et al. (2015) speech EEG phase-locking value 17-minute video of politician’s speech
Boudewyn and Carter
(2018)

speech aiming for
language

EEG alpha power at probe and its
relationship to behavioral indices

two stories of about 36 minutes each for a total of 72.8
minutes

Bourguignon et al.
(2012)

speech MEG dynamic imaging of coherent sources
(DICS)

5 minutes of text read by a live speaker

Brennan and Pylkkänen
(2012)

language MEG sample-wise mixed-effects regression Sleeping Beauty (82 sentences and 1404 words total),
presented RSVP

Brodbeck et al. (2018) language MEG linear kernel estimation of
convolution resulting from stimulus
(TRF)

Two one- minute samples of an audio book repeated
three times (6 minutes total)

Broderick et al. (2018) language EEG ridge-regression based estimation of
the evoked potential over time
(TRF)

20 trials of 180s long audiobook clips

Cohen and Parra (2016) language EEG spectral power, intersubject
correlation

cartoon clips of approximately 161 seconds

Dikker et al. (2017) language EEG inter-subject coherence classroom setting
Ding and Simon (2012) speech MEG evoked potential as a function of time

and stimulus spectrum (STRF)
1 minute audiobook excerpts

Ding and Simon (2013) speech MEG evoked potential as a function of time
(TRF)

50 second audiobook excerpts

Getzmann and
Falkenstein (2011)

speech EEG fixed-window ANOVA (ERP) Cocktail-party task with a stock ticker

Giordano et al. (2017) speech MEG directed functional connectivity,
mutual information

6 minute videos

Gross et al. (2013) speech MEG mutual information 7-minute-long story
Hale et al. (2018) language EEG Sample-wise by-participant regression first chapter of Alice’s Adventures in Wonderland
Haufe et al. (2018) as analysed, speech EEG Subset dependent. 325s long movie clip, multiple 7

minute audio clips for EEG. Study aggregates across
multiple fMRI, EcoG and EEG studies

Horton et al. (2013) speech EEG cross correlation cocktail party with sentence-length trials
Karns et al. (2015) speech EEG ANOVA of peak latency to probes

(single syllables or buzzes)
dichotic cocktail party with two stories, length unclear

Kayser et al. (2015) speech EEG mutual information, ITC 6 minute speeches derived from TED talks
Keitel et al. (2017) speech MEG mutual information 7 minute “real life” story
Koskinen et al. (2012) speech MEG canonical correlation analysis collection of short news articles totalling 58 minutes
Koskinen and Seppä
(2014)

speech MEG canonical correlation analysis repetitions of a 1-minute-long audiobook passage

Lalor and Foxe (2010) speech MEG auditory evoked epread spectrum
analysis (AESPA / TRF)

181s clips from an audio book, each two of the three
test subjects listened to over 46 or 47 segments,
while the final subject only listened to 16

Lauteslager, O’Sullivan,
Reilly, and Lalor (2014)

speech EEG decoder model discriminating
between the response for attended
and unattended speech

60 second audiobook clips, presented dichotically in a
cocktail-party paradigm

Di Liberto et al. (2015) speech aiming towards
language

EEG TRF models augmented by phonemic
labels

28 trials of 155s samples from an audiobook

Liberto and Lalor (2016) speech aiming towards
language

EEG TRF models to the speech envelope,
spectrogram, phonetics, and
phonemes

short speech segments, each presented in a vocoded-
original-vocode sequence

Liberto and Lalor (2017) speech EEG evoked potential as a function of time
(TRF)

2.5 minute audiobook clips

Maddox and Lee (2018) speech EEG auditory brainstem response (ABR) to
complex stimuli (TRF)

64-second clips of an audiobook

Nager et al. (2008) speech EEG fixed-window ANOVA (ERP) to an
overlaid probe syllable

a complex cocktail party task (3 simultaneous
audiobooks presented in 8 3-minute chunks)

O’Halloran et al. (1988) language EEG fixed-window regression (ERP) 7-8 word sentences without any volume normalization
or other acoustic control

O’Sullivan et al. (2014) speech EEG decoder model discriminating
between the response for attended
and unattended speech

60 seconds of an audiobook for each trial

Park et al. (2015) speech MEG transfer entropy 7 minute “real life” story
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Table A1. Continued.
Reference Speech/language M/

EEG
Method Stimulus

Park et al. (2016) speech MEG dynamic imaging of coherent sources
(DICS)

7–9 minute video clips of a professional male speaker

Reiterer et al. (2005) speech? (ability to
attend to speech in a
foreign language)

EEG coherence 2–3 minute video clips of television news

Reiterer et al. (2011) speech? (ability to
attend to speech in a
foreign language)

EEG coarse-graining of Markov chains,
coherence, phase-lag index

2–3 minute video clips of television news

Sanders et al. (2006) speech EEG fixed-window ANOVA (ERP) to a probe children’s stories of about 2.5 to 3.5 minutes in length
van Schijndel et al.
(2015)

language MEG coherence between one anterior and
one posterior sensor, focused on
alpha band

80 minute audiobook of Heart of Darkness

Shafer et al. (2005) Speech-to-language EEG fixed-window ANOVA (ERP) to a probe
word, current source density (CSD)

children’s story and a jabberwocky / nonsense syllable
control, presented with pauses between sentences

Stevens et al. (2006) speech EEG fixed-window ANOVA (ERP) to a probe
word, current source density (CSD)

Tromp et al. (2017) language EEG fixed-window ANOVA (ERP) single sentences embedded in virtual reality context
Vanthornhout et al.
(2018)

speech EEG evoked potential as a function of time
(TRF)

15 minute story, list of single sentences

Wöstmann et al. (2016b) speech MEG intertrial phase coherence cocktail party task of digit sequences
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