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Chapter 15

Natural Language

Michael Bottner!

The purpose of this chapter is to show how relational algebra can be applied to the
semantics of natural language. The use of relational algebra for natural language
semantics was first proposed in [Suppes 1976} under the heading of relational gram-
mar in the context of model theory. It was extended to various areas of English
such as modification of nouns by adjectives [Suppes, Macken 1978], intonation
[Suppes 1979b], rules of natural language inference [Suppes 1979a), anaphoric pro-
nouns [Boéttner 1992b] and [Bottner 1996, and coordination [Bottner 1994]. An
extension to a procedural semantics was proposed in [Bottner 1992a). Most of
Suppes’ articles have now become easily accessible in {Suppes 1991].

The organization of this chapter is as follows. In Sect. 15.1 the use of alge-
braic methods in logic and linguistics is outlined. In sections 15.2 and 15.3 an
introduction is given to relational grammar in the context of model theory, and in
Sect. 15.4 the notion of relational grammar is extended to procedural semantics.

15.1 Algebraic semantics for natural language

From the beginning of the development of algebra in mathematics there have been
attempts to apply algebra to the analysis of natural language. One goal of these
attempts was to be able to calculate with natural language expressions very much
in the same way as one could already do with numbers in arithmetic, or to put it
in modern terms, to do automated theorem-proving. Another goal was to reduce
the grammar of a language to a “rational” grammar. Both projects have usually
been attributed to Leibniz under the names of characteristica universalis and cal-
culus ratiocinator. Characteristica universalis is a language regimented to allow
to express every possible thought or concept. Calculus ratiocinator is a system
of operations that allows to check arguments and logical inferences by computing.
The main ideas for these projects had already been present in his dissertation
published in Leipzig 1666 but can also be found in many of his later works. For
a good introduction to both projects and further reference see [Parkinson 1966],
[Burkhardt 1980], or [Ishiguro 1990]. But it was not until two centuries later that
progress was made in the area of algebraic logic by Boole, De Morgan, Peirce,
and Schroder. Traditional logic was intimately connected with the structure of

lSupported by Max Planck Institute for Psycholinguistics, Nijmegen.
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natural language and this tradition was also alive in 19th century logic. With
the rise of quantifier logic, however, from the Principia Mathematica of Russell
and Whitehead onward ([Whitehead, Russell 1910]), logic became more and more
removed from natural language. But in somewhat the same way as algebraic logic
again came to the fore in the second half of this century, an algebraic approach to
language has also been re-established.

The operations of Boolean algebra have been illustrated by natural language
examples from its very beginnings. An example used by Boole (1854) is

Az +y), (15.1)

where z stands for Furopean, z stands for men, y stands for women, + stands
for and, and juxtaposition of terms stands for modifying a noun by an attributive
adjective. With this interpretation (15.1), translates into

European men and women. (15.2)
Applying the law of distributivity to (15.1) yields
zz + zy, (15.3)
and with the interpretation chosen for (15.1), (15.3) translates into
European men and European women. (15.4)

The algebraic equality between (15.1) and (15.3) then guarantees the semantic
equivalence of the expressions (15.2) and (15.4). Algebraic symbolism like (15.1),
(15.3) may thus be used as an instrument to compute inferences and equivalences
of natural language expressions. Not just phrases like (15.2) but whole sentences
can be treated in Boolean terms. Standard examples are sentences occurring in
Aristotelian syllogisms. A syllogism is an argument with two premises and a
conclusion, each of which is a sentence that has one of the following four forms:

SaP: All S are P

SiPkP: Some S are P 15.5
SelP: No S are P (15.5)
SoP: Some S are not P

A sentence exhibiting one of these forms is called categorical and is usually iden-
tified by a letter indicating whether the structure is affirmative universal (a),
affirmative particular (i), negative universal (e), or negative particular (0). A
truth condition in terms of Boolean operations can be spelt out for each of these
structures as follows:

SaP istrueiff SCP
SiP istrueiff SNP#0
SeP istrueif SCP
SoP istrueif SNP#0.

(15.6)

The semantics of a language is studied by model theory. Originally, model theory
was applied to languages of logic, but once rigorous methods had become available
for the syntax of natural language, model theory was successfully applied in this do-
main as well. A major breakthrough in natural language semantics was the work by
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NP

NP Conj NP

CA N N

European men and women

Fig. 15.1 Derivation tree for Furopean men and women

Richard Montague [Montague 1974]. He proposed to view any natural language as
a pair of two homomorphic algebras: an algebra (A, F') of expressions and an alge-
bra (B, G) of meanings. The algebra of expressions is defined as an absolutely free
algebra, cf. Sect. 1.4, with the finite lexicon of this language as its base set. Other
than requiring that it be an absolutely free algebra, not many specific constraints
on the algebraic structure of meanings were given by Montague. A first step in
defining a structure of the semantic algebra was given in [Keenan, Faltz 1978;
Keenan, Faltz 1985]. Keenan & Faltz start from the observation that the Boolean
operators and, or, not are not limited to sentences as a category of operands, but
can have operands of a variety of other syntactic categories like, e.g., common
nouns, noun phrases, determiners, verb phrases, transitive verb phrases, adjective
phrases, prepositions, prepositional phrases, and adverbial phrases. This led to a
characterization of each of these categories as a Boolean algebra, i.e. as sets of ob-
jects closed under the Boolean operations. Under this approach, there is no algebra
corresponding to the language as a whole in the sense of standard algebraizations
for languages of logic. In particular, some categories are interpreted as homo-
morphisms, i.e. as mapping from one algebra to another algebra. A much more
straightforward approach to an algebraization of a formal language was achieved
in [Suppes 1976]. In the following, our focus will be on this approach.

15.2 Relational Grammar

In this section, we give an introduction to relational grammar in the context of
model theory.

Denoting grammar

There is a tradition in linguistics to represent the structure of an expression by
a tree. The tree for expression (15.2), for instance, would appear as in Fig. 15.1.
This tree represents two kinds of information about (15.2): the grouping of its
constituents and the categorization of its constituents. The tree tells us that
European is a classificatory adjective (CA), that men and women are common
nouns (NV), and that and is a conjunction (Conj). Moreover, it tells us that the
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substring men and women forms a constituent, i.e. that the constituents men,
and, and women belong closer together than Furopean and men. Constituents of
this kind are conventionally called noun phrases ( NP).

A tree for an expression of a given language is conventionally derived by a
grammar for that language. This is usually a so-called context-free grammar. The
tree is therefore called a derivation tree. A context-free grammar which is able to
derive the tree in Fig. 15.1 is the following one:

i) NP — CA+ NP

ii) NP — NP+ Conj + NF'

W) NP — N

i) N — men (15.7)
v) N — women

vi) CA — FEuropean

vii) Conj — and

The symbol — means that any symbol of the left-hand side can be replaced by a
symbol of the right-hand side. NP is called the start symbol of the grammar, men,
women, European, and and are called terminal symbols, N, CA, and Conj as non-
terminal symbols. The important rules are ¢) and i), which allow any phrase
of category NP to be replaced by either an adjective and a phrase of category
NP, or by two strings of the same category NP combined by a conjunction of
category Conj. They are important because they are recursive, i.e. any result of
their application can be used as input to a new application.

A phrase structure grammar like (15.7) accounts only for the shape of a string
of words but not for its meaning. Meanings are taken care of by model theory.
Model theory provides semantic interpretations for a language with respect to a
model structure. A model structure for a language is a pair of some non-empty set
D and a mapping v from the terminal symbols of that language. D is called the
domain of the model structure. The mapping v is called the valuation function
of the model structure. The semantic interpretation assigns to each well-formed
expression of the language a certain object of the model structure. This object is
called the denotation of that expression with respect to that model structure. The
stock of denotations is determined by the hierarchy over the model-structure.

If we assume that each denoting word of the string has a denotation we would
then like to know the denotation for the whole string. The composition of meanings
is effected by semantic functions. Semantic functions are therefore attached to the
grammar rules. One way to attach semantic rules to our grammar (15.7) could be:

i) [NP] = [CA]IN[NP] iv) [N] = [men]
ii) [NP}] = [NPJU[NP v) [N] = [women)] (15.8)
i) [NP] = [N] vi) [CA] = [European]

The semantic functions are set-theoretical intersection in Rule i), set-theoretical
union in Rule ii), and identity in the Rules iii) through vi). There is no semantic
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NP:[CA]N [NP]

NP: [NP]U [NP]

NP: [N] Conj NP:[N]

|

CA: [European] N: [men] N: [women)
European: £ men: M and women: W

Fig. 15.2 Semantic tree for Furopean men and women

function attached to Rule vii). The reason for this is that the word introduced by
this rule does not have a denotation.

A phrase structure grammar with semantic functions attached to its produc-
tion rules is called a denoting grammar. The notion of a denoting grammar was
proposed in [Suppes 1973b]. Our denoting grammar ((15.7), (15.8)) allows us to
compute the denotation of the expression (15.2) from its component denotations
for every model structure of the grammar. As domain D we may adopt the set of
persons living on this planet in 1996. A quite different domain might have been
picked by Boole in 1854. The grammar of (15.7) has the terminal symbols men,
women, European, and and. We may then pick subsets of our domain D as valua-
tions for the words men, women, and Furopean, namely the set of all male persons
as valuation for men, the set of all female persons as valuation for women and
the set of all citizens of some European country for Furopean. No set is picked as
valuation for the word and. The hierarchy used for the grammar ((15.7), (15.8))
is therefore any subset of

P(D) (15.9)

that is closed with respect to Boolean operations.

The computation of compound expressions can be represented by a semantic
tree. The semantic tree for (15.2) is given in Fig. 15.2. If a leaf of this tree is
labelled by a denoting word it will be assigned a denotation by the valuation func-
tion of the model structure under consideration. Any mother gets its denotation
as the result of a certain semantic operation applied to the denotations of the re-
spective daughters. This operation is determined by the particular rule by which
the daughters are produced. The procedure is iterated down to the root of the
tree. Since the root dominates every leaf of the tree, the root denotation is the
denotation of the entire expression.

It should now be straightforward to write down a denoting grammar for the set
of categorical sentences of (15.5). If this grammar contains the denoting grammar
((15.7), (15.8)) as a subgrammar it will derive categorical sentences with complex
noun phrases like, e.g., No Furopean women are European men.
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Relational extension

The hierarchy (15.9) provides denotations for expressions involving absolute terms
like, e.g., dog or pregnant. Not all terms of a natural language are absolute though.
There is a large and important class of relative terms. Standard examples are
kinship terms like, e.g., sister or uncle. Another class of examples are spatial
terms like, e.g., in, above, behind. There are terms involving some order like, e.g.,
larger or louder. Although there are ternary relations and relations of even higher
degree in natural language, our focus here will be on binary relations only.

The denotation of a binary relative term is a binary relation on D. The relative
noun brother denotes the set of pairs (a, b) of objects of D such that e is a brother
of b, the preposition in denotes the set of pairs (a,b) of objects of D such that
a is in b, the adjective larger denotes the set of pairs {a, b) such that a is larger
than b, and the transitive verb hit denotes the set of pairs (a, b) such that a hits
b. It is therefore necessary to replace the set (15.9) by

P(D)UP(D x D) (15.10)

But this is not sufficient. Although we will now be able to derive a denotation
for, e.g., brothers and sisters, no denotation can be derived for John is a brother
of Mary, or London is near Paris. What is needed are operations that compute
sets or binary relations from sets and binary relations. For a list and definition of
such operations see Sect. 1.2. In the following we shall define some operations and
illustrate them by grammatical constructions from the English language.

Image
The operation image set is defined in Sect. 1.2. From this we can derive the term

U R(z) (15.11)

€A

and the term

(] R(z). (15.12)

z€A

[

[Riguet 1948] proposed to use the term (15.11) to define a binary operation
taking a binary relation R and a set A as its arguments:

R“A = | R(z). (15.13)

€A

This operation was called “coupe de premiére espece” in [Riguet 1948]. It may
be better known by the name upper image of set A under relation R. Using the
element relation the result of this operation amounts to the set

{yl(3z)(z € A A zRy)}. (15.14)

This operation can be illustrated by a certain type of relative clause in which the
relative pronoun has the role of the object. An example would be who Mary likes.
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The denotation of this clause is the set of all those human beings of the domain
D such that Mary likes them, i.e. the set

{ylmLy} , (15.15)

where L is the binary relation denoted by the transitive verb like and m is the
individual denoted by Mary. Since

L*{m} = {y|(3z)(z = m A zLy)}, (15.16)

we are able to derive the denotation for the string who Mary likes from the deno-
tations for likes and Mary by the operation defined in (15.13). The semantic tree
for the string who Mary likes would then look as follows

RC: [TV]“[PN]

Rel PN:{m} TV:L (15.17)

who  Mary likes

where RC = relative clause, Rel = relative pronoun, PN = proper noun, and
TV = transitive verb.

In Sect. 15.2 we have seen that nouns can be modified by property expressions.
The semantic operation corresponding to modification is intersection. Intersection
is therefore the operation that we have used in (15.8i). In (15.81) properties were
exhibited by adjectives. But adjectives are not the only syntactic category that
may express a property. A property can also be expressed by a relative clause
like, e.g., who Mary likes. An example would be boys who Mary likes where the
noun boys is modified by the relative clause who Mary likes. The corresponding
semantic tree would be:

NP: [NP] N [RC]

NP: [N] RC: [TV]“[PN]
(15.18)
N: B Rel PN:{m} TV:L

boys who Mary likes

In a fashion completely parallel to (15.13) [Riguet 1948] also proposed to use the
term (15.12) to define the operation

R[A] = N R(z) (15.19)

€A

called “coupe de deuxieme espéce”. In terms of the element relation the result of
this operation can be expressed by

{yl(Vz)(z € A > zRy)} . (15.20)

A nice illustration of the operation defined in (15.19) is the possessive case in
English like, e.g., Mary’s in Mary’s toys. The possessive case marker ’s can be
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thought of as denoting a binary relation P relating human beings with objects
like, e.g., Mary with a set of toys. The denotation of Mary’s can then be derived
from the singleton {m} and the binary relation P by

P[{m}] = {y|(Vz)(z € {m} — zPy)} . (15.21)

Common nouns can also be modified by possessive nouns like, e.g., John’s in John’s
toys. Let John’s denote the set of objects that belong to John. This set can be
used to restrict the denotation of the noun phrase toys, i.e. the set T of toys. The
denotation of the noun phrase John’s toys can then be derived along the following
semantic tree:

NP: [PossP] N [NP)]

PossP: P[PN] NP: [N]
(15.22)
PN: {57} Inf N:T

I

John s toys

We are now in a position to prove certain semantic facts about English. First, the
phrases John’s toys and Mary’s toys and John’s and Mary’s toys are equivalent,
since

[John's toys and Mary's toys] = (P[{7}]n T)U (P[{m}|n T). (15.23)

The equivalence of these expressions is an immediate instance of the distributive
law of Boolean algebra. Second, the phrases John and Mary’s toys and John’s and
Mary’s toys are not equivalent. In order to see this recall from Rule ii) of (15.8)
that the denotation of a phrase of two nouns combined by and is the union of the
constituent denotations. We therefore have

[John and Mary] = {j} U {m} (15.24)
and, hence,
[John and Mary's toys) = P[{j} U {m}]N T. (15.25)
By the same token, we have
[John’s and Mary's toys] = (P[{7}]U P[{m}])Nn T. (15.26)

To show that the left hand sides of (15.25) and (15.26) are not equivalent it is
sufficient to show that the respective right hand sides are not equivalent. Let us
therefore assume that the set of toys T has a teddy bear ¢ and a toy car ¢ as its
elements:

T ={t,¢} (15.27)

Let the teddy bear belong to both John and Mary and let the toy car belong only
to John, i.e. our relation P of possession is defined

P ={{j,t),(m,t),(j, ) }. (15.28)
We then have
PIj}u{m}In T = {t} (15.29)
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and
(PGHUP{mI)N T ={t,c}U{t} ={t,c} (15.30)

Since {t} # {t, c} it follows that John and Mary’s toys and John’s and Mary’s
toys have different meanings.

Peirce product
Recall from Sect. 1.2 the definition of Peirce product
R:A={z € D|(3y)(y € AAzRy)}. (15.31)

Let O be the binary relation denoted by the transitive verb own and let H be the
set of houses denoted by the noun house. Instantiating (15.31), we get

O:H = {z € D|(Jy)(y € H A z0y)}. (15.32)
Therefore, we have
t€O:H iff (Jy)(y € H A z0y). (15.33)

The right hand side is true just in case there is a house that z owns. The set O:H
can therefore serve as the denotation for the phrase own some houses.

Since the verb phrases own some houses and own no houses are contradictory,
the respective denotations should be complements of each other:

[own no houses| = O:H (15.34)

We thus have defined a semantic operation corresponding to the negative quantifier
in object position.
Since any owner of no houses is identical to a not-owner of all houses we have

[own no houses| = [not-own all houses] (15.35)
From the previous two equations we derive the equation
[not-own all houses| = O:H . (15.36)

Replacing simultaneously the binary relation O by its complement relation O and
not-own by its complement own yields

[own all houses| = O:H . (15.37)

We thus have defined a semantic operation corresponding to the universal quanti-
fier in object position by

[own all houses] = O: H. (15.38)

Converse

The converse operation has the effect of turning around the order of the elements
of a relation:

R™ = {{y,z)l(z,y) € R} (15.39)
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As had already been observed by Peirce the standard use of this operation is to
derive the meaning of a passive verb phrase from its active counterpart. Thus, if
I is the binary relation denoted by the transitive verb invite then 7~ is the binary
relation denoted by the passivized verb is invited by.

The denotation for the verb phrase invited by some philosophers is

I:p (15.40)

where I is the binary relation denoted by invite and P is the set denoted by
philosophers.

Theorem 15.2.1 For any subsets A, B of some set and any binary relation R
on that set the following holds: If BN (R™:A) # 0 then A C R:B.

The validity of the argument

Some novels are liked by all people

All people like some novels (15.41)

follows from Theorem 15.2.1. The theorem cannot be strengthened to a bicondi-
tional. Therefore the reverse argument

All people like some novels

Some novels are liked by all people (15.42)

is not valid. So premise and conclusion do not have equivalent denotations. This is
an interesting result, since it falsifies the widespread belief that passive sentences
are synonymous with their active counterparts.

Lower image

The operation
RA=RA (15.43)

was introduced in [Suppes, Zanotti 1977] by the name of lower image of set A under
relation R. This operation can be illustrated by a certain type of relative clause
with the relative pronoun playing the role of an attribute like, e.g., composers all of
whose sons are composers. The semantic tree for this expression is in Fig. 15.3 with
RC = relative clause, UQ = universal quantifier, RelPoss = relative possessive
pronoun, RN = relative noun, Cop = copula, VP = verb phrase, and P =
preposition. The denotations involved are the set C of composers and the binary
relation S of being a son of.

An element of the root denotation of the semantic tree in Fig. 15.3 is Leopold
Mozart (at least in case we restrict our domain to adult people thus excluding
Wolfgang Amadeus’ five siblings who died at infant age). Although Johann Se-
bastian Bach is known to have at least four sons who were also composers, he
does not belong in this class for the reason that he had seven more sons who are
not known to have become composers themselves. On the other hand, George
Frederick Handel and Franz Schubert certainly belong in this class although they
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NP: [NP]n[RC]
NP: [NP] RC: [RN]«[VP]
VP: [N]
N: C UQ P RelPoss RN: S Cop N: C

composers all of whose sons are composers

Fig. 15.3 Semantic tree with relative possessive pronoun

are not known to have had any children at all. This is odd but in line with the
conventional interpretation of universal quantification in modern logic.
Notice that the relative clause denotation makes essential use of the lower image

operation. Since by definition $«C = S“C and, since
§4C = {z|(Vy)[ySz — y € C]}

we can see that this set reflects exactly our intuitive understanding of the phrase.

Restriction

So far we have only considered the modification of absolute terms. But there is
also modification of relative terms. For instance, in kinship terminology the noun
brother is defined by the phrase male sibling. The head of this phrase, which is
sibling, is a relative term but the modifier of this phrase, which is male, is absolute.
Therefore sibling denotes a binary relation and male denotes a set. But sets and
binary relations cannot be intersected. The operation that is suitable for this case
is domain restriction of a binary relation R by a set A defined as follows:

R1A=Rn(Ax D). (15.44)
The relation B denoted by brother can then be defined
B=S1M, (15.45)

where S is the binary relation denoted by sibling and M is the set denoted by
male. This operation provides the correct definition for brother: z is a brother of
y iff z is a male sibling of y, and z is a male sibling of y iff z is a sibling of y
and z is male.

An analogous operation of range restriction of R by A can be defined as
follows:

RIA=Rn(D x A) (15.46)
Initial segment

In (15.84) a semantic function was given for combinations of a classifying adjective
with a noun phrase. Not all adjectives are classifying though. Consider examples



Chapter 15. Natural Language 237

like, e.g., old, high, or ugly. These adjectives differ from classifying adjectives by
deriving comparatives like older than, higher than, or uglier than. We therefore
call them comparison adjectives or intensive adjectives (I4). Since comparison
implies order, a comparison adjective denotes an ordering relation on D. But if a
comparison adjective like, e.g., high denotes an ordering relation, then an operation
is called for to derive the meaning of high mountain from the denotations for high
and mountain. The notion that turns out to be useful here is the notion of an
initial segment of a binary relation. Let A be some set, R some ordering (strict
partial) relation R on A and ¢ an element of A. Then the initial segment of A
with respect to R and criterion object ¢ is defined

IS(R, A,{c}) = (R{c}) N A. (15.47)
So the denotation of the phrase high mountain will be
(H:{m}h)nM (15.48)

where H is the relation denoted by high, M is the set denoted by mountain and
m is some element of M. If a mountain is higher than this criterion mountain m
(or at least as high as it) we call it a high mountain and if it is lower than it we
do not call it a high mountain.

This solution nicely accounts for the fact that the order of adjectives modifying
a noun sometimes matters. The expressions Dutch high mountains and high Dutch
mountains may have different denotations.

15.3 Further Refinements

In addition to the operations mentioned in the preceding section there are some
operations of a very fundamental kind that have not been mentioned yet. These
operations are composition, identity, and domain. The reason why they have not
been mentioned is that they cannot be given a direct natural language interpreta-
tion. This is all the more surprising in the case of the operations of composition
and identity. They will, however, be used to define more complicated operations
for which very natural interpretations exist. We would like to mention here only
the operations Ref, Rec, Poss, RecPoss, and Id. They are tailored specifically
to the needs of certain natural language constructions. Poss is introduced as
a counterpart for the possessive pronoun construction, Ref is intended to con-
strue the semantics of verb phrases with a reflexive pronoun, Rec is introduced
as a counterpart for the reciprocal pronoun construction, RecPoss is introduced
as a counterpart for the reciprocal in the possessive case, Id is introduced as a
counterpart for the identity pronoun construction.

Poss

From Sect. 1.2 we know that the operation domR computes the set of all elements
of D related by R to some element of D. From the preceding section recall the
definition of range restriction of a binary relation by a set. Let R be an arbitrary
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relation over D and let A be an arbitrary subset of D. Let P be the relation of
possession in all models. We are then in a position to derive the term

Poss(R, A) = dom((P | A)N R). (15.49)

The operation Poss returns a subset of the universe D as its value.
We have already considered possessive phrases in Sect. 15.2. Of more interest
is the question of how possessive anaphoric pronouns are interpreted like in, e.g.,

John likes his toys (15.50)

where the interpretation of the possessive pronoun his depends on the interpre-
tation of the subject term of the sentence. For the verb phrase likes his toys we
propose the tree

VP: Poss([TV],[N])

TV:L Poss N: T (15.51)

likes his  toys

According to this tree the denotation of the verb phrase is

dom((P | T)N'L) (15.52)

where L is the denotation for the transitive verb likes and T is the denotation for
the common noun toys. That (15.52) corresponds to the intuitive meaning of the
verb phrase follows from the fact that

ze€dom((P| T)NL) (15.53)
is true just in case the following condition holds:
(V¥)[[T(y) and P(z,y)] = L(=z,y)] (15.54)

The trees for the phrases like her toys or like their toys would look very similar to
(15.51). A proper treatment would have to introduce gender into the grammar.

One might be tempted to derive the interpretation of (15.50) by replacing his
toys by John’s toys. But that would be a mistake. For the sentence John likes
John’s toys could not be generalized to account for the contextual dependence of
the interpretation of the possessive pronoun on the referent of the subject term.
This can be seen if the subject term is replaced by a complex term like in, e.g.,
John and Mary like their toys, which is not equivalent to the sentence John and
Mary like John and Mary’s toys.

Ref

In Sect. 1.2 the notion of an identity relation Ix is defined. Let X = D, i.e. let
us consider the “full” identity Ip over D. With the help of intersection, the full
identity relation, and the domain operation we can derive the term

dom(R N Ip). (15.55)
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Let us refer to this operation by the name Ref for the reason that it corresponds
to expressions with a reflexive pronoun like, e.g.

John and Mary like themselves. (15.56)

The semantic tree for the verb phrase of this sentence looks like this:

VP: Ref(L)
TV: L Ref (15.57)

like themselves

That (15.57) corresponds to the intuitive meaning of the verb phrase follows from
the fact that = € dom(R N Ip) iff zRz.

Rec

Let R be an arbitrary relation on domain D). The operation RN R” is then the
largest symmetric subrelation of R. For reasons that we shall not go into here we
prefer to define an operation Rec by

Rec(R)=(RNR")~1 (15.58)

rather than simply by RN R”. This operation can be illustrated by the reciprocal
pronoun construction. An example would be John and Mary like each other. The
semantic tree for the verb phrase of this sentence is

ColVP: Rec(L)
TV: L Rec (15.59)

like each other

The structure of the sentence John and Mary like each other is quite similar to
the structure of the sentence Jokn and Mary like themselves: a compound subject
term is followed by a verb phrase that consists of a transitive verb and some
pronoun as object term. However, the semantic tree (15.59) is quite different: The
predicate term in (15.57) has the label VP but the predicate term in (15.59) has
the label ColVP. The purpose of different categories is to announce a difference in
semantic type: Whereas an expression of category VP denotes a set, an expression
of category ColVP denotes a binary relation.

Theorem 15.3.1 Rec(R) is a symmetrical relation.
This theorem guarantees the validity of the following argument:

John and Mary like each other

5.60
Mary and John like each other (15.60)
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The validity of the argument

John and Mary like each other

John likes Mary (15.61)

follows from the fact
H(AXxB)NR#0Dthen AN(R: B) #0,
since (AXxB)NR):BC((AxB):B)n(R:B)=AN(R:B).

RecPoss

With the composition of two relations R and S introduced in Sect. 1.2 we define

RecPoss(R, A) = Ri4;P° N PilgR"NT (15.62)

The operation RecPoss takes a binary relation and a set as its arguments and
returns a binary relation.

This operation is designed for reciprocal pronoun occurring in the possessive
case like in, e.g., John and Mary like each other’s books. The semantic tree for the
verb phrase like each other’s books would look as follows:

ColVP: RecPoss(L, B)

TV: L Rec Poss N: B (15.63)

like eachother ’s books

It has the denotation

Lilg:P N PilgL”NT. (15.64)
This is what it is supposed to denote, since

(z,y) € Llg:P~ N Pilg L~

is equivalent to
(Vz)(Br — [yPz — zLz] A [ztPz — yLz])
which is what the verb phrase like each other’s books intuitively amounts to.

Theorem 15.3.2 RecPoss(R, A) is a symmetric relation for arbitrary sets A and
relations R.

An immediate consequence of this theorem is that the argument

John and Mary like each other’s books
Mary and John like each other’s books

(15.65)

is valid.
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Id
Id is an operation that turns a relation and a set into a relation. It is defined
Id(R, A) = (RI4sR) N (RilsR™) (15.66)
It can be illustrated by the expression same like occurring in
John and Mary read the same books (15.67)

Notice that the verb phrase read the same books of this semantic tree denotes a
binary relation. The sentence (15.67) can be paraphrased by John reads the same
books as Mary, which brings out better the feature that the sentence is relational.
According to our analysis the denotation of the verb phrase read the same books
is Id(R, B). That Id(R, B) indeed exhibits the meaning denoted by (15.67) can
be seen from the fact that

(z,y) € RilgiR” N RilgiR~
holds just in case (Vz)(Bz = (zRz « yRz)) is true.
Theorem 15.3.3 Id(R, A) is symmetric.

Theorem 15.3.4 Id(R, A) is transitive.

For the definitions of the notions of symmetry and transitivity of a binary
relation see Sect. 1.2. From 15.3.3 and 15.3.4 it follows that Id(R, B) is an equiv-
alence relation on the set R : B of book readers. But if Id(R, B) is an equivalence
relation then the argument

John and Mary read the same books
Bill and Mary read the same books
John and Buill read the same books

should be valid, which is indeed the case.

15.4 Procedural Semantics

So far our denotations for English words have been given in the fashion of standard
model theory. This view is completely static: a world is conceived of as a set of
objects with certain properties and relations. Applied to actions this view leads
to certain absurdities. Consider the action described by the sentence John adds
34711 and 9263. Under this approach the verb add denotes some binary relation
between a human individual and a sequence of numbers:

{(7,(34711,9263))} (15.68)

This analysis does not account for the fact that adding numbers is an operation
that returns some result. But an account of successful addition should return the
result of the addition. It has therefore been proposed to define natural language
meanings in terms of procedures.

We now interpret the elements of the Boolean algebra as sets of states (of
some agent) and the elements of the relation algebra as sets of state-transitions.
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Following a suggestion of [Suppes 1973b), we view the agent as a machine that is
able

e to move into four directions (left, right, up, down) in a gridlike environment
® to retain representations of perceived objects
e to recognize objects as objects of a certain kind, e.g. numbers.

Let us also assume that this machine has two registers. In line with [Suppes 1973a),
we let the machine have a focus register F to keep track of the current location of
the agent in the environment and a memory register M to keep track of objects
that should be kept in memory for some time. Any state of the agent can then
be represented by an ordered pair: the first component representing an object in
visual focus and the second component representing an object in memory.

For purposes of illustration we use the case of arithmetical instructions like,
e.g., column addition that require an agent to be able to identify objects like digits
arranged in rows and columns like this

3 4
1 7 8
7 (15.69)
5 5

It should be noted that the set of symbols is not just the set of digits 0,1,2,...
together with a bar and a symbol b for blanks, but rather a set of occurrences or
tokens of those symbols: the symbol 7 of the second row has to be distinguished
from the symbol 7 in the third row. In the same way, empty spaces have to be
kept distinct. The perceptual environment for arithmetic instruction (15.69) can
then be represented as follows:

by 3 4

1 7 8

by b 7

by 5 5 (15.70)
-1 —2 =3

bs be by

Any arrangement of this kind can be identified as a finite geometry of two relations
V (“vertically below”) and H (“horizontally left of”), in the sense of [Crangle,
Suppes 1987]. So we have (7,4) € V but (1,4) ¢ V. Both V and H are strict
ordering relations, cf. Sect. 1.2 We refer to 3 as the left neighbour of 4, to 8 as the
lower neighbour of 4, to elements b,3,4 as the V-mazimal, and to elements —;, —,
—3 as the minimal elements of V.

Assume that the agent is located on the top square of the middle column.
Assume further that the agent is in an initial state. Then the state of the agent
would be (3,e) where ¢ indicates that the register is empty.

Assume now that our agent is given the command Look! The procedure ex-
pected of the agent would be that the content of the F register is changed to any
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other field, i.e. our agent would now be in state (z,e). The exact destination of
looking is given by additional wording. So the meaning of look has brought about
the following state transition: ((3,€),(z,€)) It is then plausible to see that the
meaning of the verb look can be identified with the set

{(«f, m), ' m))}

of state transitions.

Register M is the register that stores the content of the agent’s memory. Let
us assume that the agent has perceived the symbol in the first row and then gets
the command to remember that number, then the agent’s state would get changed
to (3,3). So the procedure associated with the verb remember has effected the
following state transition: ((3,¢),(3,3)) Again it is easy to see that remember can
be identified with the following transition set:

{((fym), (F,IN}

A minimal movement down can be defined by the following transition set:

{({f, m), {(f', m))|f' Vf and f' is a neighbour of f}

We let this set be the denotation for the adverb down.
A maximal movement up can be defined by the following transition set:

{{{f, m), (f', m))|fVf' and f’ is maximal}

We use this as the denotation for top.
An arbitrary movement in both up and down directions can be defined by the
following transition set:

{(f, m), (F, mMFVE'V £ VF}

We adopt this set as our denotation for the noun column.

Since the denotations of top and column are relational, we keep track of this
by assigning these words relational categories: top the category RA (= relational
adjective) or RN (= relational noun) and column the category RN . The relational
character distinguishes both top and column from a noun like number that denotes
the set of all states with a number symbol, i.e. a digit, in its first component:

{{(f,m) : f is a number}

An overview of our toy lexicon is given in Table 15.1: This lexicon could easily
be extended by adding corresponding entries for bottom, up, left, right, leftmost,
rightmost, bar etc., for details, see [Bottner 1992a).

Composition

To derive non-primitive procedures from our lexical procedures we use the familiar
operations from relation algebra. Composition of two relations R and S is no
doubt the most important operation of relational algebra. It is defined as follows:

RS = {{z, p)|(3z)(zRz A 2Sy)} (15.71)
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Category Denotation

look |4 {{((f, m), (f',m))}

remember V {({f,m), (f,fN}

top RN,RA  {{{f,m),(f', mN|fVf' and f V-maximal}
down Adv {{{(f, m),{f', m))|f' Vf and f’ neighbour of f}
column RN {{{fym), ({(f', mDIfVF' vV fVF}

number N {{f, m)|f is a number}

spot N {(f, m)If # €}

Table 15.1 Procedural Lexicon

If R and S are procedures the intuitive meaning of this operation is the sequencing
of two procedures: first doing R and then S. If the two relations R and S are
identical, i.e. if R = S we may abbreviate R; R by R?. We define R® = 1.
An example of this composition is the denotation of the phrase column to the
left:
[left]i column)]

Intuitively, this procedure first shifts the agent’s focus to the field left of the field

of the current focus and then to every state with fields of the same column in
focus.

Transitive closure

This operation can be generalized to any finite number of operands and will then
be called the nth power of R. The transitive reflezive closure R* of a binary
relation R is defined as follows:

=R (15.72)

i€l

The use of the closure operation is to define iteration operations. In the context
of computation two types of iteration are conventionally distinguished: while-
iteration and untiliteration. In while-iteration, the computation is triggered by
a certain condition. In untiliteration the computation is started and continued
until a certain condition is met to stop it. In [Bottner 1992a] we referred to these
operations by symbols I and - with the understanding that the horizontal bar
represents a process and the vertical bar represents a state. One should bear in
mind though that in general there is no symmetry involved,i.e. AF R# R+ A.

While-Iteration
While-iteration is defined as a binary operation
AFR=(R1A)%(11A4) (15.73)

This procedure can be described intuitively by the following steps:

1. Go to the top!
2. While you are on a field with no number in it, go one field down!
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The operation can be illustrated by the phrase top number. It denotes the
procedure

(top]i([number] F [down])

Assume the focus of the agent in environment (15.70) is on by. The procedure
[top] then takes the focus to b;. Since no number in this field, the triggering
condition of procedure ([number] - [down]) is met and the focus is shifted to
the next field below the current field. Since there is a number in this field, the
triggering condition of the procedure is no longer met and the procedure stops on
the field with 1 in focus.

Until-Iteration
The until iteration is defined as follows:
R4 A=R;(R] X)*; (I14) (15.74)

The procedure denoted by this expression can be phrased by the instruction Move
down to the first square with a digit in it/
An example of this operation is the expression next number down. It denotes
the procedure
[down] - [number] (15.75)

If the agent’s current focus is on 7; in (15.70), this procedure will shift the focus to
the field immediately below this field, which is b3. Since this field has no number
in it, the condition is met for iterating the procedure. After applying [down] once
more, the focus is shifted to 5,. Since this field has a number in it, the stopping
condition is met and [down] does not apply any more. The shift from 7; to 5; is
exactly what one would expect our procedure to do.

As before we have not given explicit rules of grammar. A more elaborated
grammar with a procedural semantics is given in [Bottner 1992a). It derives se-
mantic trees for instructions of considerable linguistic complexity like, e.g., Look
two numbers down! Look three spots to the left! Look down until you see a bar!
Look at the top rightmost number! Write the ones digits of the number in the next
space down! Continue looking down! An example is the semantic tree for Look at
the top number! represented in Figure 15.4.

15.5 Conclusion

In this chapter we have shown how relation algebra can be fruitfully applied to the
semantics of natural language. We have described two approaches, a static one in
the standard sense of model theory and a dynamic one in terms of states of an
agent understanding natural language.

The construction of a relational grammar for some fragment of English appears
to be straightforward and it appears that the approach can be applied to other
natural languages as well. But things may not always be as easy as they may seem
to be from the examples considered so far. This may become apparent if one tries
to express the sentences
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I:[VP]

VP : [V]N[RNP)

V:[lookl P DA RNP:[RA]([down] - [N])

RA : [top] N :[number]

Look at the top number

Fig. 15.4 Semantic Tree for Look at the top number!

i. John bought five apples
ii. John is running under a tree

in relation algebraic terms. Although i appears to be similar in structure to, e.g.,
John bought some apples, or John bought red apples, which both can be construed
in terms of relational algebra, no simple solution along these lines can be given
for cardinal expressions. The sentence ii has at least two different readings. Ac-
cording to one reading, the tree is the location of John’s running. According to
the other reading the tree is the destination of John’s running. Whereas the loca-
tional meaning can easily be achieved in our model theory, it is not clear how the
destinational meaning could be construed.

One major advantage of construing a natural language in terms of relational
algebra is that natural languages can be viewed as equational languages (see
Sect. 1.2). Equational languages are highly convenient for the purpose of com-
puting inferences. Two caveats may be appropriate, though. First, the fragments
of natural languages described by relational grammars are very small. Many im-
portant areas of natural language have not been dealt with. What is still missing,
for instance, is the extension to relations of higher than binary degree, to mass
nouns, or to adverbs. Also there has not yet been proposed a satisfactory treat-
ment of tense. Second, relation algebra will certainly not be sufficient to account
for all valid inferences in a natural language. A case in point is the semantics for
place and time adverbials: they will require an analysis of space and time. For
a first step into the analysis of space see [Crangle, Suppes 1989]. Intuitively, our
world is made up of objects, persons, matter, colours, sounds, events, states, pro-
cesses, actions. One might therefore have sincere doubts whether this abundant
variety can be captured by an ontology only of sets and binary relations.
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