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Take nothing on its looks;
take everything on evidence.

There’s no better rule.

Charles Dickens, Great Expectations
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1 | Introduction

1.1 Speech, a variable signal

How do we learn to make sense of a world that is chaotic, noisy, and ever-
changing? This question is prominent across domains, but especially in the
language sciences and the study of language acquisition it is gaining impor-
tance. Speech is the physical realisation of language, a medium humans use to
communicate with each other. Speech is also the signal that provides infants
with their first window into language. Unlike printed words the speech signal
is continuous, which means that there are no clear pauses between words or
sounds within an utterance. To extract words, the continuous signal needs to
be segmented into its constituent units, a task that adults perform seemingly
without effort in their native language. However, when listening to an un-
known language, the difficulty of segmentation becomes clear, because it is
often not possible to state how many words were spoken and where one word
begins and the other ends. In addition, the speech signal can be variable,
for example when different speakers pronounce the word “cup” (e.g., Magnu-
son & Nusbaum, 2007; Dorman, Studdert-Kennedy, & Raphael, 1977). The
acoustic realisations across speakers differ due to physiological properties of
the speaker’s throat and mouth as well as the specific dialect. These differ-
ences between words spoken by different speakers do not change the meaning
of a word.

In short, the speech signal is variable along many dimensions that include
numerous aspects of the signal. Some of these aspects are linguistically rele-
vant, and they are a necessary part of a speaker’s representation of a word.
Other aspects, in contrast, are usually considered linguistically irrelevant.
Examples of the latter include the speaker’s mood, voice height (pitch), and
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Chapter 1. Introduction

the environment, such as the presence of background noise. Many of these
characteristics fall under the label of non-linguistic information.1 To effi-
ciently understand the speaker’s intended message, a listener should not be
deterred by the variable nature of the speech signal when it does not change
the meaning of a word.

To account for the efficiency and ease with which adults can decode the
speech signal and extract the speaker’s intended message, it has been a long-
held view that the variable non-linguistic aspects of the speech stream can
be ignored. When removing all non-linguistic information, a more or less
constant signal would remain. This signal can be described using a finite set
of symbols.2 Such an account for language processing is called abstractionist,
since the speech stream is described in terms of abstract units that do not
fully capture the variable acoustic signal. Abstractionist views, long a domi-
nant standpoint within language sciences, assume that understanding speech
relies on a small set of symbols that need to be combined and modified. This
view provides powerful tools to describe written and spoken utterances across
languages. Whether these symbols are available to infants is far from clear.
Some researchers have proposed that the speech signal contains landmarks
which can universally be used to perceive the difference between sounds, but
few if any have argued that infants are born with an innate set of discrete
sound categories. Results of some research into young infants’ sound discrim-
ination abilities have been taken as evidence that infants already perceive
the speech signal in terms of discrete categories (Eimas, Siqueland, Jusczyk,
& Vigorito, 1971; Kuhl, 1979). This view is not uncontroversial given that
infants as well as adults are able to perceive differences within one sound
category and can even adjust their category boundaries (McMurray & Aslin,
2005; Maye, Werker, & Gerken, 2002; Miller & Eimas, 1996).

It has become clear that listeners – both infants and adults – do not al-
ways ignore non-linguistic information (Goldinger, 1998; Apfelbaum, Bullock-
Rest, Rhone, Jongman, & McMurray, 2013). This is a useful strategy, since
knowing the identity and emotional state of a speaker can add crucial in-
formation regarding the meaning. During early language acquisition, infants
are sensitive to non-linguistic information. In short experiments they react
to changes of the speaker or in the emotion conveyed in the speech sig-
nal in the same way they treat linguistically relevant differences, such as
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1.2. Possible starting points

changing “cup” to “tup” (Jusczyk & Aslin, 1995; Houston & Jusczyk, 2000,
2003; Singh, 2008). In addition, variability along non-linguistic dimensions
impacts infants’ ability to perceive linguistically relevant distinctions (see
section 1.2.1 and Singh, 2008; Rost & McMurray, 2009; Seidl, Onishi, &
Cristia, 2013). In a purely abstractionist view such phenomena should not
occur, because perceiving speech as a sequence of sounds which is stripped
of any variable information that is not necessary to understand the linguistic
message leaves no room for spoken word comprehension to be affected by
non-linguistic variability.

To explain how information that is not present when processing speech
in terms of phones and phonemes can impact language processing, exem-
plar accounts have emerged, which propose that most, if not all, details of
the speech signal are part of mental representations that play a role during
language comprehension. Linguistically irrelevant features of the signal are
processed and stored along with linguistically important features, as borne
out by the experiments referred to above which showed that infants’ speech
processing was affected by variation that is considered both linguistically
relevant and irrelevant (see also section 1.2.1). Between the two extreme ac-
counts falls a variety of intermediate and hybrid models of speech processing
which propose the existence of both exemplars and abstract representations
(Pierrehumbert, 2003; Schmale, Cristia, Seidl, & Johnson, 2010; Werker &
Curtin, 2005).

1.2 Infant language acquisition:

Possible starting points

Existing theories of speech comprehension usually do not offer accounts for
infants’ first steps into language. How do sound categories, discrete words,
and eventually abstract symbols emerge based on the exposure to speech?
This remains an open question since most theories assume some form of
abstraction as their starting point. This means that the continuous and
variable speech signal is represented in the form of a sequence of discrete
symbols which have lost most of the non-linguistic variation (e.g., Kuhl,
2004; Pierrehumbert, 2003).

3



Chapter 1. Introduction

At the beginning of language acquisition, infants have to detect recurrent
structure in the variable and continuous speech signal. To learn a language,
they also have to discover that the variable speech signal contains a commu-
nicative intent. It is an ongoing debate whether meaning, the communicative
intent, serves as a starting point for language acquisition or whether recur-
rent structure is detected first. It is also possible that both processes operate
in parallel; young infants show both the ability to link well-known objects
with their spoken label (Bergelson & Swingley, 2012; Tincoff & Jusczyk,
1999, 2012; Parise & Csibra, 2012) and can detect frequent speech patterns
(Ngon et al., 2013), most prominently their own name (Mandel, Jusczyk,
& Pisoni, 1995; Mandel-Emer & Jusczyk, 2003). In the present thesis, both
detecting structure in a speech signal in the absence of meaning information
as well as using the presence of an object as a cue to the presence of a word
are investigated.

To learn that stretches of speech can be linked to observable entities or
events in the environment, infants must be able to group different instances of
objects into one category, an ability they display long before they are able to
separate native from non-native speech sounds or detect words in continuous
speech (Mareschal & Quinn, 2001; Madole & Oakes, 1999; Westermann &
Mareschal, 2014).3 By noting the presence of a cylindrical object with a
handle, infants might be able to discover that the stretch of speech signals
corresponding to “cup” in both “Thisisanicecup” and “Thecupisempty” refers
to a type of object in their visual environment, thereby segmenting the word
from the longer speech sequence. By linking sound to meaning, which can
either occur when words are discovered or later during development when
the meaning of a known word form is detected (e.g., Swingley, 2007), infants
start building a lexicon.

1.2.1 Infants’ early word representations:
The role of variable speech

Infants are sensitive to linguistically relevant changes in the speech signal,
such as mispronouncing “cup” as “tup” (Jusczyk & Aslin, 1995). Studies sug-
gest that introducing non-linguistic variation impairs infants’ word detection
and recognition abilities to the same extent linguistic changes do: infants are
sensitive to hearing words spoken by an unknown speaker, in an unknown
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1.2. Possible starting points

accent, in the presence of ambient noise, and in a different affect than they
heard earlier (Newman, 2005; Houston & Jusczyk, 2000, 2003; Singh, 2008).
Later in their language development, between the age of ten months and
two years, infants learn to distinguish between linguistically relevant and
irrelevant variation in the speech signal. Infants are thus developing a form
of “phonological constancy” (Mulak, Best, Tyler, Kitamura, & Irwin, 2013)
that might be founded on abstract representations, but they show no such
abilities when beginning to learn words.

During learning, variability might not only be disruptive and hindering,
but also useful. Through experiencing variability along non-linguistic dimen-
sions, infants can learn which aspects of the signal carry information about
the speaker’s message, and which parts indicate for example the speaker’s
identity and emotional state. When infants hear the same word spoken by
multiple speakers or in variable ways in short experimental tasks, they seem
to build representations that are more robust to the experienced variability
(Singh, 2008; Rost & McMurray, 2009; Seidl et al., 2013). During language
acquisition, similar mechanisms to the ones observed in short experimental
tasks on the impact of variability might aid infants in discovering which
aspects of the speech signal determine meaning, and which carry other in-
formation (Newman, 2008). It could be these processes that help infants
overcome their sensitivity to changes in the speech signal that do not alter
meaning so they can develop phonological constancy.

1.2.2 Methods in language acquisition research

The main insights on infants’ speech perception abilities stem from a limited
set of experimental methods. Before infants learn to say words, an ability
which usually appears around the first birthday, infants tune into the acoustic
properties of their native language – detecting recurrent stretches of speech,
the typical stress pattern, and so forth – and learn the first words (reviewed
e.g., by Gervain & Werker, 2008).

Looking at interesting visual stimuli is a typical behaviour that infants
readily perform in their daily lives. Experimental procedures can tap into
infants’ speech processing abilities by exploiting this behaviour. Infants’ at-
tention to acoustic stimuli can be operationalised as the amount of time they
show an overall interest in a visual stimulus while some acoustic stimulus is
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Chapter 1. Introduction

played for them. The amount of time an infant spends looking to the visual
stimulus is assumed to directly reflect listening with interest to the acoustic
input they receive in parallel, and is thus termed listening time.

Experiments that tap into infants’ speech processing abilities can be
roughly categorised into uni-modal and cross-modal studies. Uni-modal stud-
ies aim to measure how infants process speech in the absence of corresponding
visual cues. To this end, uni-modal studies expose infants to acoustic input
in the presence of an unchanging visual stimulus to measure infants’ speech
processing abilities in isolation. To gain access to infants’ capability to link
sound and meaning, cross-modal studies present speech along with visual
referents, usually drawings or photographs of objects that are named.4

An example of a uni-modal study that aims to assess the knowledge in-
fants acquire before their visit to the lab is the following: to test whether
infants recognise their own name, researchers play recordings that either con-
tain the infant’s own name or another name of comparable length (Mandel
et al., 1995; Mandel-Emer & Jusczyk, 2003; Newman, 2005). Looking time,
presumably indicating attentive listening, to an unrelated visual stimulus
(e.g., a blinking lamp) constitutes the dependent measure across the two
conditions (own name versus other name). A significant difference between
the two conditions typically is interpreted as evidence that infants can indeed
recognise their own name.

The above example relies on knowledge that the infants acquired outside
the lab. To control the input each child received in an experiment, a learning
phase is added that directly precedes the test. The learning phase repeatedly
exposes infants for example to a presumably unknown word. During test,
the same word or a new word is presented. If infants show behaviour that
differentiates between the learned and the novel stimuli they seem to have
stored and recognised this word.5

To test whether infants can link sound and meaning in cross-modal stud-
ies, researchers show infants for example two objects, for example a ball
and a cup, while playing a sentence, such as “Look at the ball” (Swingley
& Fernald, 2002; Swingley & Aslin, 2000). If infants look at the named ob-
jects more than at the distractor, in this example the ball, they are thought
to have recognised the word. To tap into word-learning abilities, a short
learning phase exposes infants to novel object-label pairs (Stager & Werker,
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1997; Werker, Cohen, Lloyd, Casasola, & Stager, 1998). The newly learned
link between the object and its label can be tested by either naming the
object correctly or using a different label. If infants’ interest differs between
trials where label and object match versus mismatched trials, they seem to
have noticed that the object was named correctly or incorrectly across trials.
All of the above described methods were used in infant studies that inform
this thesis.

1.2.2.1 Limitations of infant experiments

Experimental studies also have shortcomings that should be taken into ac-
count when interpreting reported outcomes. The vast majority of studies
relies on results that are averages over a group of infants. The size of these
groups varies, for example between 12 to 36 in a very similar task and in the
same language (Houston & Jusczyk, 2000; Shi, Cutler, Werker, & Cruick-
shank, 2006). Experiments measuring vocabulary size at a later age have
found that individual differences in infants’ experimental performance across
tasks is correlated to some extent with later language development (reviewed
in Cristia, Seidl, Junge, Soderstrom, & Hagoort, 2013), implicating that dif-
ferences between the test results of individual infants are in fact meaningful
and should not be averaged out.

Behavioural studies interpret differences in infant behaviour across test
conditions as a direct reflection of differences in internal processes and ac-
tivations of representations. However, the link between internal processes
and overt behaviour is far from clear, as a number of steps are necessary to
transform the results of internal processes and activations into observable
behaviour. The absence of a behavioural indicator that infants can distin-
guish two conditions, which for example present known and unknown words,
does not imply that there were no differences in their internal processes and
activations when they encountered the words (Aslin, 2007). Comparisons of
behavioural and neuroscientific studies on various topics, such as word seg-
mentation, underline that overt behaviour does not always reflect underlying
abilities (Junge, Cutler, & Hagoort, 2012).

A final issue with many experimental studies is the dependence on a
few stimulus items. It is possible that specific stimulus properties crucially
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influence experimental results, especially since infants are sensitive to non-
linguistic changes, as reviewed above. Current trends towards the sharing of
stimulus materials are only beginning to gain traction. The available data
do not yet suffice for an analysis of the link between experimental stimuli
and infant performance. Future work that aggregates experimental stimuli
along with detailed data on infant behaviour might shed light on whether
there is an influence of different stimuli and how large this influence is.

1.3 The role of modelling in

language acquisition research

Computational modelling has emerged over the past decades as a method to
study language acquisition. Models are closely linked to experimental data as
well as theories and frameworks that aim to explain language acquisition. To
explore language acquisition, computational studies can be conducted on a
number of levels. The power and scope of simple learning mechanisms, such
as computing statistics over a given input sequence (e.g., Daland & Pier-
rehumbert, 2011; McMurray, Aslin, & Toscano, 2009; Thiessen & Pavlik,
2013), can demonstrate to what extent discrimination and identification
tasks can be performed without invoking meta-level concepts and processes.
Models of more complex interactions of different factors or mechanisms, such
as learning sound categories and words in parallel (Martin, Peperkamp, &
Dupoux, 2013; Feldman, Myers, White, Griffiths, & Morgan, 2013), illumi-
nate in which way processes that are usually studied in isolation can influence
each other.

Modelling has a number of benefits over experimental research: the lack
of human participants and the costs that come with experimental studies
enable modelling studies to cover far more conditions than would be feasible
in experimental work. Furthermore, a computational model is, by necessity,
an explicit account of all processes that take place in response to a specific
input. This property of models makes it possible to inspect what is essen-
tially a “black box” when it comes to infants’ internal processes and abilities,
both during language acquisition in general and in specific experiments. As
mentioned above, all knowledge about cognitive processes in infants – and to
some extent also in adults – is inferred from indirect data, mostly observable
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1.3. The role of modelling in language acquisition research

behaviour in response to specifically manipulated stimuli. In a computational
model, in contrast, the underlying abilities must be precisely defined since
all processing steps must be accounted for.

Computational models can test candidate mechanisms that might un-
derlie infant behaviour in experiments and during language acquisition over
many weeks and months. For example, it is possible to let a model and
human participants learn a small language that consists of a few syllables,
such as “la”, “ti”, and “bu” in a short experiment. This artificial language
only allows a few combinations of these syllables, making “latibu” a possi-
ble word, but “tilabu” illegal. Infants can detect the difference between the
two words (Saffran, Aslin, & Newport, 1996). If a model can do the same
(e.g., Perruchet & Vinter, 1998), the implemented mechanism in the model
might be analogous to what infants did in the same task. To show that a
similar mechanism can be useful during language acquisition, large corpora
that represent to some extent infants’ daily experience must be employed,
such as excerpts from CHILDES (Child language data exchange system,
MacWhinney, 2000). If on this scale a model can also can discover words,
the process that was measured that was simulated by the model, is indeed a
candidate mechanism that possibly helps infants acquire language (see e.g.,
Daland & Pierrehumbert, 2011). In modelling it is possible to explore yet
untested conditions, so models can yield predictions for future experiments.
In testing these predictions, models can be confirmed or adjusted.

Model comparison is important because much of the available infant data
can be explained by multiple models (Benders, 2013). Comparing mecha-
nisms and specifications within different models that take the same input and
are assessed in the same way can provide insight into the factors that influ-
ence processing outcomes, especially where model results diverge. Through
making predictions for infant studies and comparing modelling outcomes to
behavioural data, and by continuous consideration of the larger implications
of modelled processes and observed behaviour, modelling takes place in close
interaction with both experimental research and theory building.

Research using computational modelling also suffers from limitations. To
obtain a model, researchers need to make simplifications since it is (so far)
not possible to implement a complete simulated infant learner embedded
in a realistically rich and multi-faceted environment. By necessity, models

9



Chapter 1. Introduction

must make simplifying assumptions about aspects of the infant learner and
the environment in and from which learning takes place. Processes that are
assumed to be irrelevant for the simulated tasks are omitted, for example
smell is usually not simulated when addressing language acquisition. Pro-
cesses that are implemented can only rarely claim plausibility on the physio-
logical level, as there are many more neurons involved than can realistically
be simulated even on a supercomputer. In consequence, models focus on
specific aspects of learning and language acquisition. Choices regarding the
representation of the environment and the input, and implemented inter-
nal processing steps show which aspects of the overall learning problem the
researcher considered relevant for the task and which were omitted.

Most models aim to be realistic to some extent by implementing processes
that are based on existing knowledge about cognitive functions. A prominent
example of plausibility is the distinction between incremental learners and
batch processing models. The latter type of model requires that all input,
sometimes amounting to what infants experience over days or even weeks,
is present at the same time and analysed in a batch by the model, possibly
even several times. Incremental learners in contrast process the input as it
comes in without placing a large load on the short term memory. Incremental
learning is thus a better approximation of infants’ learning process.

In summary, computational modelling, together with experimental infant
research, can advance our understanding of the underlying mechanisms and
processes that enable infants to acquire their native language with apparent
ease and remarkable speed. But it has to be noted that opinions diverge
concerning hard criteria for assessing computational models of language ac-
quisition (e.g., Schlesinger & McMurray, 2012; Mareschal & Thomas, 2007).
Therefore, it remains difficult to assess single computational models in ab-
solute terms. In addition, only models that address the same task can be
compared, for example in the realism of implemented processes and repre-
sentations.

1.4 The present thesis

When considering existing theories and computational models of language
acquisition one thing stands out: most theories do not describe how language
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acquisition can take place in the face of the variable and noisy speech sig-
nal. Frameworks and theories exist to account for infants’ learning of native
sound categories when they already know a few words based on “lexical boot-
strapping”, which means that the acquisition of sound categories is aided by
word-level knowledge (Swingley, 2009). However, little research has focused
on the emergence of early words without possessing the ability to perceive
the speech signal as a sequence of distinct sounds. Most theories, and in
consequence computational models that build on these theories, assume the
presence of discrete sounds that just have to be categorised. The present
thesis lays the groundwork for a stronger version of lexical bootstrapping
where speech can be represented as a holistic chunk and not a sequence
of smaller units. Holistic chunks can be re-analysed into their constituting
sounds once knowledge about the sound structure of the native language is
acquired (Werker & Curtin, 2005).

As mentioned above, models and theories usually start from the assump-
tion that speech signals can be represented as unique and unambiguous se-
quences of sound symbols. Models that take acoustic features, such as the for-
mants of vowels, as input also effectively presume that linguistically relevant
aspects of the signal can be separated from non-linguistic aspects, such as for
example speaker-dependent features. In the modelling work of Apfelbaum
and McMurray (2011) for example, one phonetic cue (Voice Onset Time;
VOT) distinguished voiced and voiceless stops, such as /p/ and /b/. To in-
dicate the presence of multiple speakers in some learning conditions, pitch
varied independently. The goal of these experiments was to simulate experi-
ments in which hearing multiple speakers seemed to improve infants’ abilities
to distinguish minimal word pairs (Rost & McMurray, 2009). However, the
work by Dorman et al. (1977), among others, indicates that phonetic infor-
mation co-varies with the speaker and that the two can therefore not be
separated as assumed in the study by Apfelbaum and McMurray (2011). To
illustrate how phonetic cues interact with the identity of the speaker, con-
sider the following: stop consonants, including /b/ and /g/, are characterised
by a short silence that occurs with the closing of the vocal tract, vibration
of the vocal chords, and a burst when the pressure is released. Dorman and
colleagues showed that speakers differ in their realisation of sounds, for ex-
ample in their reliance on the burst as a cue to a stop consonant (see also
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Ananthapadmanabha, Prathosh, & Ramakrishnan, 2014, and examples cited
therein for the cue trading in stop consonants).

Models that take discrete sound symbols or acoustic features as input
assume that infants can segment the speech signal into discrete phone-sized
units and extract precise measurements from each unit to determine its cat-
egory (phoneme) label. However, assigning unique labels to speech segments
using only features extracted from the signal is impossible. The first prob-
lem lies in the continuity of the speech signal, which leads to co-articulation
effects. Since sounds blend into each other and are adjusted to their sur-
rounding sounds, it becomes difficult – even for highly trained listeners – to
segment the speech signal into discrete chunks (see e.g., Bayerl & Paul, 2011,
for the lack of agreement among trained coders). The second problem stems
from the fact that the identity of a phone can be determined by a large num-
ber of acoustic features, as mentioned above in relation to stop consonants.
Many features must actually be extracted from surrounding phones. Slis and
Cohen (1969) identified 11 features that are implied in the voiced-voiceless
distinction in Dutch.

Computational models that rely on the presence of abstract symbols or
invariant features underestimate the variable nature of the speech signal and
have been shown to not work well when limited variability is artificially re-
introduced (Rytting, Brew, & Fosler-Lussier, 2010). Because they assume
discrete segmental input, existing models can only focus on later stages of
language development. Despite the fact that these models do not realistically
reflect the nature of input representations in infants, they yield important
insights as they examine and compare possible processes during language
acquisition.

The first steps into language, which by necessity are taken based on the
continuous, noisy, and variable speech signal (either paired with meaning
information or not), have so far not been carefully considered using compu-
tational models. The present thesis aims to rectify this situation. None of
the modelling work reported here is based on segmented input. Instead, the
models operate on real speech, which cannot be described as a sequence of
abstract symbols. The focus of this thesis lies on word learning since words
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seem to constitute one way towards learning the native language, either cou-
pled with meaning or in the form of frequently occurring stretches of speech
alone.

The present thesis takes an “emergentist” approach to very early language
acquisition. Most current models that implement emergentist ideas focus
on the acquisition of syntax, but the same principles, namely starting from
unanalysed chunks of the input and only employing general-purpose learning
mechanisms, can be applied to the continuous and variable speech stream. To
demonstrate that an emergentist viewpoint is feasible and worthwhile is one
of the over-arching goals of the present thesis. A central question throughout
this thesis is how the presence of realistic variability in the signal influences
early language acquisition and processing. One main source of variability in
the speech signal is the difference between speakers. Therefore, each chapter
employs speech material from different speakers.

1.4.1 Chapter overview

Chapter 2. To assess which conclusions about infants’ abilities can ac-
tually be drawn based on a frequently used behavioural testing paradigm,
chapter 2 introduces a model of the Headturn Preference Procedure (HPP).
This chapter carefully examines several assumptions that have been implied
in interpreting infant data. As discussed in section 1.2.2.1, infant experi-
ments assume overt behaviour to be direct reflections of unobservable un-
derlying processes. The model simulates both internal word detection based
on matching previously heard speech material to test stimuli and overt be-
haviour in the form of simulated headturns. Importantly, the conversion of
an internal match into an overt headturn is explicitly modelled. By doing so,
it becomes clear that the infant’s attention span and the experimenters’ as-
sessment criteria can have a crucial impact on the outcomes of a simulation.
Both parameters are necessary to model and assess overt behaviour in HPP
studies and are usually not thought to influence the result of an experiment.
In addition, chapter 2 shows that specific stimulus material has an impact
on the outcome, since this material determines how well the acoustic match
is between speech stimuli that have to be compared. These factors – infant
attention span, assessment criteria, and stimulus material – are seldom con-
sidered important in HPP studies and only recently are beginning to receive
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consideration. This chapter thus helps understand which factors can lead to
infants either showing the expected behaviour or not.

Chapter 2 also illuminates which linguistic processes are at stake in HPP
studies. The HPP model does not implement procedures frequently assumed
to be necessary to succeed at HPP experiments, such as segmenting the
speech stream into discrete, symbolic representations and extracting indi-
vidual words from utterances. Despite the absence of these procedures, the
model can successfully simulate infant behaviour. The main contribution of
this chapter to the present knowledge of infants’ abilities is that an explicit
and symbolic segmentation mechanism is not necessary to perform the task
in HPP experiments.

Chapter 3. The third chapter presents a model that uses real speech to
simulate early word learning in infants based on the detection of recurrent
stretches of speech that occur in the presence of meaning (such as an object in
the visual environment). The chapter examines under which noise conditions
the modelled infant can still recognise learned words. To this end, background
noise is added to the test material to investigate how robust the model’s word
representations are. A second test of robustness lies in changing whether
a known or an unknown speaker provides the test material. To deal with
speaker changes between learning and testing, the model has to overcome a
different source of variation in the signal.

Based on suggestions in the literature on language acquisition (e.g., New-
man, 2008, 2005), the model is exposed to different learning situations. These
learning situations either increase the frequency of one specific word while
one speaker provides all input or multiple speakers utter a specific word. Ex-
perimental work has suggested that increased frequency and added between-
speaker variability increase robustness to changes in the speech signal that
do not change the meaning of a word.

The experiments in chapter 3 assess how a model’s internal representa-
tions and word recognition abilities are affected by the different learning sit-
uations. This chapter shows first that a non-symbolic model can efficiently
learn words with only little experience. While the emerging word repre-
sentations are not yet very robust to noise and speaker change, increasing
word frequency and additional between-speaker variability can improve the
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model’s performance. To trace the impact of the different learning scenar-
ios on the internal representations, the content of the models’ memory was
also examined. The inspection of internal representations in comparison to
simulated behaviour in the form of listening preferences led to a second im-
portant insight: the test material crucially determines how robust internal
representations appear in this specific test situation.

Chapter 4. The fourth chapter explores the role of between-speaker vari-
ability during word learning further. Chapter 4 addresses the impact of hear-
ing one versus several speakers during learning. The interaction of the num-
ber of speakers in the input with whether the representations of words are
speaker-dependent or not and whether multiple speakers are presented inter-
mixed or separated in blocks, is additionally investigated. Between-speaker
variability has been suggested to aid infants’ linguistic development in sev-
eral studies using multiple methods and age groups. In the previous chapter,
between-speaker variability was either present in the input or absent.

Chapter 4 examines between-speaker variability in isolation and takes a
more fine-grained approach than the previous chapter by letting the model
learn from one, two, or three speakers. As before, the model’s recognition
and generalisation abilities are tested by exposing it to test material from
either a known or an unknown speaker. The model in this chapter allows for
two different processing strategies: one that leads to a single representation
for each word in the lexicon that captures between-speaker variability, and
one in which multiple speaker-dependent representations for the words are
stored in the lexicon. Current theories and experimental results fit both
processing strategies, but the model’s performance differs depending on how
the input from multiple speakers is treated during during learning. Finally,
the speakers in the model’s input can be presented in two different ways: one
in which different speakers are intermixed and another in which the input is
blocked by speaker.

This chapter demonstrates that experiencing variable input is beneficial,
especially for the model’s ability to generalise word knowledge to previously
unknown speakers. The difference between hearing two or three speakers was
small in comparison to the positive impact of going from no variability, that
is one speaker in the input, to variability, two or three speakers in the input.
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An additional finding in this chapter is the impact of presenting multiple
speakers either intermixed or in blocks. Across processing strategies, a mixed
presentation led to high learning success. When, in contrast, one speaker
first provides all input, then a second speaker, and so on, learning success is
lower for all speakers, except the one that is currently being presented. The
model thus showed an adaptation away from previous experience that was no
longer relevant. The adaptation away from previous experience is especially
pronounced when building separate, speaker-dependent word representations
for each speaker in the input. This finding led to the proposal that parts of the
memory might be protected from possibly harmful changes during learning in
specific situations. A first model of situation-dependent learning that builds
different lexical entries for each speaker and which prevents interference when
perceiving speakers in blocks shows high recognition performance.

Chapter 5. The fifth and final chapter ties together the contributions of
the experiments reported in this thesis to the knowledge on infants’ early
language development. After discussing the implications of each chapter’s re-
sults, this concluding chapter provides suggestions for further steps in build-
ing theories of language development and carrying out experimental work
inspired by the work presented here.

I would like to end the introduction with a final conclusion of the the-
sis. Taken together the chapters provide evidence that representations that
retain detail of the speech signals are sufficient to model infants’ early abil-
ities to learn and recognise words. Sophisticated abilities, such as building
abstract segmental representations of the speech signal and representing the
input in terms of discrete symbols, are not necessary to explain infants’ first
steps into language. This means that learning to perceive speech in terms of
its constituting segments, phones or phonemes, does not have to be the first
problem infants need to solve during language learning. Thus, the present
thesis adds to the experimental evidence that infants start learning their
language from the signal at multiple levels at the same time using rich and
detailed representations.
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Notes

Notes
1Definitions vary, in the present thesis non-linguistic information will be used to refer

to variability in the speech signal that is not signalling a change in meaning. Aspects of
the speech signal that depend on the person are called indexical. In written language, such
information has to be conveyed separately, for example when reporting the content and
character of a conversation.

2Speech sounds are usually described in terms of phones. A useful guide for this purpose
are the IPA, International Phonetic Association, charts. Sound systems are described
in terms of phonemes, i.e., the subset of the phones relevant in a specific language to
distinguish word meaning. Letters in written language provide a useful analogy, but should
not be confused with phonemes or phones.

3During later development, spoken labels can influence and guide object categorisa-
tion (Westermann & Mareschal, 2014; Althaus & Mareschal, 2013), but the present thesis
focuses on learning the labels for unambiguously categorised objects in the infant’s en-
vironment from continuous speech. In this way, the impact of acoustic variability can be
explored independently and without introducing too many variables and parameters.

4See Stager and Werker (1997) for a study that reports both measurements.
5See Jusczyk & Aslin, 1995 and subsequent studies, as well as chapter 2, which provides

an in-depth discussion of the link between underlying recognition and overt behaviour.
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2 | Modelling infants in the
Headturn Preference Procedure

This chapter is an adapted version of the article
“A computational model to investigate assumptions

in the headturn preference procedure”
by C. Bergmann, L.F.M. ten Bosch, P. Fikkert, & L. Boves

published in Frontiers of Psychology
DOI: 10.3389/fpsyg.2013.00676

2.1 Introduction

Infants begin to acquire what will become their native language long be-
fore they produce meaningful speech themselves. The last decades have seen
a substantial growth in experimental studies that explore this pre-verbal
phase of language acquisition, with a particular focus on how infants pro-
cess speech input. The advent of behavioural research paradigms that tap
into infants’ underlying cognitive abilities made this line of research possi-
ble. The paradigms recruit actions infants can readily perform in their daily
lives. The prime example of such a paradigm is the Headturn Preference Pro-
cedure (HPP), which uses the eponymous headturns to investigate speech
processing.

The HPP is based on the observation that infants tend to turn their
heads towards interesting events. The time this headturn is maintained is
interpreted as infants’ amount of interest. Jusczyk and Aslin (1995) demon-
strated how the HPP can be used to investigate infants’ ability to memorise
and recognise speech (for a detailed description of the HPP, see section 2.2).
A common version of the HPP, as used by Jusczyk and Aslin, typically has
two phases. In an initial familiarisation phase, infants are exposed to words
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spoken in isolation. In the test phase that immediately follows familiari-
sation, infants listen to sentences that contain either one of the previously
heard words or an unfamiliar word. Differences in the time the head is turned
towards each of the two types of test stimuli indicate that infants process test
stimuli with and without familiar words differently. Jusczyk and Aslin inter-
preted such listening time differences as the ability of the infants to discover
that the familiarised words are present in some of the test sentences.

Following the seminal work of Jusczyk and Aslin (1995), many studies
have utilised the HPP to investigate infants’ emerging speech processing abil-
ities. Almost invariably, HPP studies use the familiarisation-followed-by-test
design briefly outlined above, where listening time during the test phase is the
behavioural measure (see section 2.2 for further details). Subsequent stud-
ies have replicated the original finding with infants learning French (Nazzi,
Mersad, Sundara, Iakimova, & Polka, 2014), Spanish (Bosch, Figueras, Teix-
idó, & Ramon-Casas, 2013), and many other languages. Others have used
the HPP to shed light on the influence of various extra-linguistic factors in
the processing of speech signals. A number of studies showed that infants
cannot readily detect the familiarised words in the test sentences if there are
large acoustic differences between familiarisation and test phase, for exam-
ple, when they differ in mood, accent, and gender of the speaker (Houston
& Jusczyk, 2000, 2003; Schmale & Seidl, 2009; Schmale et al., 2010; Singh,
Morgan, & White, 2004).6

Although there are few published reports of null-results, failures to repli-
cate the outcome of published HPP experiments are not uncommon (see
Ferguson & Heene, 2012; for the bias against publishing papers that report
failures to replicate). Furthermore, seemingly comparable studies can yield
results that support contradicting interpretations. For example, Houston
and Jusczyk (2000) tested infants’ ability to detect words spoken by one
speaker during familiarisation in test passages that were spoken by a differ-
ent speaker. Therefore, the authors were investigating infants’ ability to gen-
eralise across speakers. The results showed that infants only listened longer
to test stimuli containing familiarised words than to test stimuli with novel
words if the speakers’ gender matched between familiarisation and test phase.
In a seemingly comparable study, van Heugten and Johnson (2012) found
that gender differences do not seem to matter for infants of the same age
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as tested by Houston and Jusczyk. In addition, the infants in the study by
van Heugten and Johnson showed a novelty preference, where infants lis-
tened longer to test stimuli without the familiarised words, while Houston
and Jusczyk found a familiarity preference.

It is not yet entirely clear which factors exactly determine the behaviour
of infants in HPP studies (Aslin, 2007; Houston-Price & Nakai, 2004; Nazzi
et al., 2014; van Heugten & Johnson, 2012). Studies using the HPP vary in
several aspects, including the stimulus material and implementation details.
For example, different speakers are used to record stimuli across experiments,
and potentially relevant properties of the stimuli (such as voice characteris-
tics) are difficult to report in a meaningful way. Sharing stimulus material
among research groups would be an improvement, but is often not feasible
unless infants are acquiring the same language (see Nazzi et al.). Differ-
ences in implementation are exemplified by seemingly varying criteria for a
sufficient headturn, ranging from “at least 30◦in the direction of the loud-
speaker” (Jusczyk & Aslin, 1995, p. 8) to “at least 70◦towards the flashing
light” (Hollich, 2006, p. 7). It is possible that such differences in assessment
criteria, even if used systematically and accurately, can cause conflicting
results.

In addition to these practical issues with HPP studies, there is a more
fundamental question that urgently needs attention. In behavioural para-
digms, including the HPP, the cognitive processes of interest must be in-
ferred from observable behaviour, and these inferences rely on numerous as-
sumptions about the link between overt behaviour and cognitive processes.
Most behavioural data are compatible with different – even conflicting –
assumptions and interpretations (Frank & Tenenbaum, 2011). This chapter
addresses these practical and fundamental issues by using a computational
model that simulates the test situation of the HPP. The use of a computa-
tional model allows for the investigation of fundamental issues, because the
implementation of the procedure makes crucial assumptions explicit, and
model simulations make it possible to assess whether these assumptions are
necessary to simulate infant behaviour. At the same time simulations allow
us to study the impact of differences in stimulus material and in the practical
implementation of the HPP. Although the model is – by necessity – a sim-
plified analogue of an infant (or a group of infants) in an HPP experiment,
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we aim for its operations and representations to be as cognitively plausi-
ble as possible. In consequence, the model simulations can help to better
understand the outcome of HPP experiments.

The remainder of the chapter is organised as follows: In section 2.2 we first
describe the HPP along with the assumptions that are commonly made when
interpreting results of HPP studies before we introduce our computational
model in section 2.3. We explain how the model makes it possible to test the
assumptions discussed in section 2.2.1. In addition, we outline how the model
is built to maximise cognitive plausibility. The design of the experiments that
allow us to investigate the impact of the stimulus material and details of
how HPP experiments are conducted is further elaborated on in section 2.4.
Section 2.5 presents the results of our experiments. The chapter concludes
with a general discussion and outlines the implications of the modelling
results for interpreting infant studies.

2.2 The headturn

preference procedure

HPP experiments typically consist of two consecutive phases, as figure 2.1
illustrates using an example from the experiments by Jusczyk and Aslin
(1995). In the first phase an infant is familiarised with a specific audio(-
visual) phenomenon (here: spoken words and the accompanying flashing
lamp). The criterion for familiarisation is usually a cumulative listening time
of at least 30 seconds for each word. When the familiarisation criterion is
met the second phase immediately commences. In this phase the infant’s
reaction to test stimuli is measured that either contain the two familiarised
words or two novel words.7

In the study of Jusczyk and Aslin (1995), infants were familiarised with
two words spoken in isolation (either “cup” and “dog”, or “feet” and “bike”). In
the test phase passages of six sentences containing one of the four words were
presented in each trial.8 The infants listened longer to passages containing
words with which they were familiarised, as indicated by their maintained
headturns (see below for details). Hence, infants showed sufficient memory
and processing abilities to store and detect words and to overcome an acous-
tic difference between embedded and isolated words. Based on their results
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Figure 2.1: Exemplary outline of a two-phase headturn experiment, where infants
first hear words spoken in isolation and then listen to sentences that do or do not
contain these words.

Jusczyk and Aslin concluded that infants have segmented the passages into
smaller chunks and detected the embedded words.

The rationale behind the HPP is that the time an infant spends with
the head turned towards a side lamp while presumably listening to speech
stimuli coming from that same side indicates the infant’s interest in the
stimuli. The experimental set-up based on this rationale is depicted in fig-
ure 2.2. Infants are placed in a three-sided booth with lamps on each wall,
one in front of the infant and one on each side. A loudspeaker is mounted
beneath each side lamp. Through a video camera facing the infant, the ex-
perimenter observes the infant’s movements and controls the experiment. A
trial starts with the centre lamp flashing. As soon as the infant attends to
that lamp by turning towards it, one of the side lamps begins to flash, and
the central lamp turns off. When the infant turns her head to the side lamp
by a pre-determined angle off-center, speech stimuli begin to play from the
loudspeaker beneath the flashing side lamp. As long as the head is turned
towards the side lamp, the trial continues. Turning the head away for more
than two consecutive seconds ends the trial prematurely. If the infant turns
her head back towards the lamp before two seconds have elapsed the trial
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Figure 2.2: Schematic outline of the experimental set-up in headturn studies. The
infant is placed in a three-sided booth with lamps on each side and loudspeakers
to the left and right. Through a frontal camera, the headturns are observed by the
experimenter.

is not ended. The time during which the head was turned away is not mea-
sured as listening time. Importantly, while head turn angle is a continuous
variable, it is converted into a binary criterion by the experimenter: the head
is, or is not, turned sufficiently towards the side lamp and the loudspeaker
at any moment throughout the trial. The side of the flashing lamp and of
presenting the speech stimuli is counterbalanced and bears no relation to the
type of trial.

2.2.1 Assumptions in the headturn
preference procedure

The HPP aims to tap into infants’ linguistic abilities by inferring cogni-
tive processes (in particular speech processing) from observable behaviour.
Linking overt behaviour in HPP experiments to infants’ underlying cognitive
processes is based on at least four main (implicit) assumptions, which are
not straightforward to test experimentally.

First, a listening preference for one type of test stimulus stems from
some form of underlying recognition of recently heard words. In their seminal
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work, Jusczyk and Aslin (1995) equate recognition with the detection of a
sufficiently high degree of similarity between perceived sound patterns. In
a two-phase HPP experiment, presumably unknown words are presented to
the infant during familiarisation, and then two sets of previously unknown
words are compared in testing (one familiarised and one novel). The HPP
thus measures how infants react to words that were recently presented in
comparison to entirely novel words.

Second, systematic differences in listening time to passages containing
familiar or novel words are due to systematic internal processing differences.
Infants’ behaviour in HPP studies is assumed to result from several process-
ing steps: infants have to internally process speech input and match it to
representations stored in internal memory. The memory contains represen-
tations of experience before the lab visit as well as representations stored
during the familiarisation phase, whereas the focus lies on the memorisation
of familiarised items.

Third, recognition of words in passages, while those words were presented
in isolation during familiarisation, requires infants to be able to segment
words from continuous speech prior to matching. Segmentation entails the
chunking of speech into smaller parts and representing those constituents
independently.

Fourth, differences between individual infants do not affect the outcome
of an experiment, as the main comparison (listening to novel or familiar test
stimuli) takes place within participants. This assumption mainly concerns
infant-specific factors independent of their linguistic abilities.

2.3 Modelling the headturn

preference procedure

First we outline how the model architecture and the simulations aim to ad-
dress the assumptions discussed in section 2.2.1. The model subscribes to
the first two assumptions. Following the first assumption, recognition is im-
plemented in the model in the form of a matching process which compares
test items to the familiarised stimuli along with a form of past experience.
The contents of the memory that the matching process works on are de-
scribed in section 2.3.3, the matching process that operates on the memory
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is explained in detail in section 2.3.4. Section 2.3.5 lays out how recognition
can be implemented. In accordance with the second assumption, the match-
ing procedure should yield systematically different outcomes that signify the
model’s internal ability to distinguish novel and familiar test items. Based
on the outcome of the matching procedure, headturns are simulated. The
conversion of internal recognition into overt behaviour is discussed in sec-
tion 2.3.6. The third assumption will be assessed by our model. The claim
that infants are able to segment words from continuous speech utterances
seems unnecessarily strong. A strong segmentation procedure is difficult to
implement without assuming that the model decodes and memorises speech
in the form of sequences of discrete linguistic units (such as syllables and
phonemes), an ability that infants are still in the process of acquiring (Kuhl,
2004; Newman, 2008). Therefore, we follow the proposal that infants are able
to divide a passage consisting of a sequence of six naturally spoken utter-
ances, separated by clear pauses, into the constituting sentences (Jusczyk,
1998; Hirsh-Pasek et al., 1987). The model thus receives its test input in
the form of complete sentences, as sections 2.3.2 and 2.3.3 describe. If the
model is able to distinguish familiar from novel test items, we show that
segmentation is not necessary in the two-phase HPP studies simulated in
this chapter. We will investigate the fourth assumption that differences be-
tween individual infants do not affect the outcome of an experiment. The
role of an infant-dependent parameter that transforms internal recognition
into overt headturns will be investigated to this end (see section 2.3.6 for
further details).

Simulations with varying criteria for a sufficient degree of headturn assess
the impact of implementation details. Furthermore, we use speech produced
by four speakers to address the role of the stimulus material in HPP experi-
ments and the model’s ability to generalise across speakers. These issues will
be explained in more detail in sections 2.3.7 and 2.4.

2.3.1 The model architecture

We developed a computational model that, despite the necessary simplifi-
cations, is as cognitively plausible as possible. The model contains general
purpose processing skills which infants would also need for other tasks. The
architecture of the model during the familiarisation phase is shown in figure
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2.3. All input consists of real speech that proceeds through a sequence of
processing steps, which are explained in detail in the following sections. In
the model, the familiarisation phase is simulated by storing the stimuli in an
internal model memory that is already populated by episodic representations
of speech (and sounds) that the modelled infant heard before the lab visit
(Goldinger, 1998). The details of the model memory are described in section
2.3.3.

Familiarisation

words

External Input

Internal Memory 

Past Experience

Familiar Past Experience

Acoustic

Preprocessing

•
•
•

Figure 2.3: The memory structure of the model, which contains both the famil-
iarised items and past experience. Acoustic preprocessing is uniformly applied to
all contents of the memory.

The focus in this chapter lies on applying the model to the test situation,
as depicted in figure 2.4. During the test, the model hears test sentences,
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which are processed and encoded in the same way as the contents of the
internal memory (see section 2.3.2). Using the matching procedure described
in section 2.3.4, weights for the complete memory content are generated,
which correspond to the strength of the contribution of every episode stored
in the memory to processing a test stimulus. Based on the weights of the
familiarisation episodes and the past experience (figure 2.3), a measure of
recognition is computed (section 2.3.5). An independent process transforms
the internal familiarity score into overt behaviour, as explained in section
2.3.6. This allows for a direct comparison of the model output to the results
of infant experiments. In the following sections we describe the model in
detail.

2.3.2 Acoustic preprocessing

The processing of the acoustic speech signals starts with representing the
continuous wave form in terms of its frequency and power at a given mo-
ment and the change of these properties of the speech signal over time. From
the literature it appears that infant auditory processing is compatible with
this form of signal processing (Saffran, Werker, & Werner, 2007). The con-
tinuous speech signal is divided into windows with a duration of 20 ms, and
for each such window a short-time spectrum is computed (Coleman, 2005).
Adjacent windows overlap by 10 ms, we thus obtain 100 short-time spec-
tra per second. The short-time spectra are converted to vectors of 13 real
numbers, the Mel-Frequency Cepstral Coefficients (MFCCs), a representa-
tion that is based on knowledge about human auditory processing (Gold &
Morgan, 2000). Because the auditory system is more sensitive to the rate of
change in the spectrum than to static spectral features, we add the difference
between adjacent MFCC vectors (known as ∆ coefficients in the automatic
speech processing literature) as well as the differences between adjacent ∆s
(known as ∆∆s). ∆s and ∆∆s are vectors comprising 13 real numbers. The
resulting MFCC, ∆, and ∆∆ vectors corresponding to successive windows of
a speech signal, are used to learn a limited number of acoustic phenomena,
or prototypes. In our model we use 150 prototypes for static MFCC vectors,
150 prototypes for the ∆ vectors, and 100 prototypes for the ∆∆ vectors.9

These prototypes are used to condense the information in the MFCC, ∆

and ∆∆ vectors, by representing each MFCC vector by its best matching
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prototype (and doing the same for all ∆ and ∆∆ vectors). This converts
a representation in the form of 3 × 13 = 39 real numbers to a set of three
labels from a set of 150+150+100 prototypes. The conversion of the infinite
number of possible MFCC, ∆, and ∆∆ vectors to sets of three labels corre-
sponds to the – admittedly unproven but plausible – assumption that audio
signals are represented in the brain as sequences of acoustic prototypes.

Variable-length sequences of prototypes corresponding to an utterance
must be converted to a fixed-length representation to be used in a matching
procedure. For this purpose we count the number of occurrences and co-
occurrences of prototypes. This results in a so called Histogram of Acoustic
Co-occurrences (HAC, Van hamme, 2008). The histogram keeps a count of
the number of times each of the 150+150+100 acoustic prototypes co-occurs
with any prototype in its own class (including itself) at distances of 20 and
50 ms. Including co-occurrences at lags of 20 and 50 ms allows HAC vectors
to capture some information about the temporal structure of an utterance.
In total, a HAC vector has slightly more than 100,000 entries for all possible
prototype co-occurrences. As a result, an utterance of arbitrary length, be
it a single word or a complete sentence, is represented by a HAC vector of a
fixed dimension. The fixed dimensionality is a requirement for most matching
procedures.

2.3.3 Internal memory

Infants in HPP experiments have been exposed to speech prior to their lab
visit. Therefore, the model’s memory should contain some acoustic repre-
sentations of past experience. Specifically, the memory contains HAC repre-
sentations of a number of previously heard utterances. During the familiari-
sation phase the acoustic HAC representations of the familiarisation words
are added to the memory. Therefore, the collection of HAC vectors in the
memory during the test phase comprises two types of entries: the experience
before the start of the HPP experiment, and the episodes the infant has
stored during the familiarisation phase.

The infant’s experience with speech input before the lab visit is modelled
by randomly selecting utterances from a corpus of infant-directed speech
(Altosaar et al., 2010). Familiarisation consists of adding HAC representa-
tions of tokens of two words to the memory. Although technically the model
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uses one single homogeneous memory, we assume that infants are able to
distinguish the familiarisation entries in the test from the entries from pre-
vious experience. A compelling justification for this distinction would be to
assume that the familiarisation utterances are stored as episodes in the hip-
pocampus, while the previous experience is stored in the cortex (Kumaran
& McClelland, 2012).

2.3.4 Matching procedure

In the test phase, depicted in figure 2.4, a matching procedure is necessary
to compare an input stimulus to the contents of the model’s memory. This
matching procedure should yield scores that can be transformed into a score
that corresponds to how well the representations in the memory match any
particular unknown input. Episodic representations of a small number of
stimuli, such as the ones the model stored during familiarisation, are not
straightforwardly compatible with conventional Neural Networks and simi-
lar types of Parallel Distributed Processing. Therefore, the model contains
a matching procedure that is based on the assumption that the brain pro-
cesses complex inputs as a non-negative weighted sum of a limited number
of simpler units stored in memory. This assumption is inspired by studies
on visual processing, which found that complex visual patterns are repre-
sented in primary visual cortex in the form of lines, directions, colors, and
so forth (see Lee & Seung, 1999; and citations therein).

Non-negative Matrix Factorization (NMF, Lee & Seung, 1999) approxi-
mates a given input (in the present simulations a HAC vector) as a weighted
sum of all stored representations (here also HAC vectors) in the internal
memory. Usually, NMF learns the representations from a set of stimuli be-
fore it can be used for ‘recognising’ unknown input, but in simulating HPP
experiments we skip the NMF learning phase, and use only the decomposi-
tion mechanism. NMF can be phrased in the same terms as activation and
inhibition in neural networks (Van hamme, 2011). This makes NMF, espe-
cially in the implementation that enables incremental learning (Driesen, ten
Bosch, & Van hamme, 2009), a potentially interesting alternative to conven-
tional Artificial Neural Net and Parallel Distributed Processing techniques
for simulating language acquisition.
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Figure 2.4: The Headturn Preference Procedure model during the test phase,
with processing stages and flow of information from external input (top) to overt
behaviour (bottom).

The variant of NMF used in the present work minimises the Kullback-
Leibler divergence between a HAC-encoded test stimulus and its approxima-
tion as a positive weighted sum of all representations stored in the memory.
Decoding of an unknown utterance results in a set of non-negative weights
for each representation stored in the memory. The higher the weight assigned
to a representation, the larger its contribution to explaining the unknown
input. These weights become available immediately after the end of a test
utterance.10

2.3.5 Recognition and familiarity scores

The matching procedure described in the previous section yields weights for
all entries of the memory. The model converts these weights into a famil-
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iarity score that describes how well the test stimulus was recognised. The
familiarity scores drive observable behaviour (see the next sections). We com-
pare two possible ways to compute familiarity scores and thereby simulate
recognition.

In the first method, the familiarity score represents how much the sin-
gle best-matching episode stored in memory during the familiarisation phase
contributes to approximating an unknown utterance in the test phase (in the
presence of all other entries in the memory). This form of recognition will
therefore be called single episode activation. In cognitive terms, single episode
activation corresponds to the proposal that an infant treats the tokens of the
familiarisation stimuli as independent episodes that are not related to each
other. This is motivated by the large acoustic differences between familiari-
sation tokens of the same word that can be observed in the stimuli used in
some HPP experiments. The second method, in which the familiarity score
accumulates the weights of all familiarisation entries, corresponds to the idea
that the infant treats all episodes stored during familiarisation as a cluster
of tokens that all relate to one type of experience. This implementation of
recognition will be termed cluster activation throughout the chapter.

The scores are computed as follows: In the first implementation, the famil-
iarity score is set equal to the maximum of the weights of all familiarisation
entries, while in the second method the familiarisation score is defined by the
sum of the weights of the familiarisation entries. Both implementations of
recognition yield familiarity scores that can be considered as a measure of the
activation of memory representations resulting from the acoustic processing
and matching procedures in the model. The familiarity score is computed
independently for each test sentence. In the model we have access to the
familiarity scores of each test utterance, which is evidently not possible in
infants. To investigate whether familiarity scores corresponding to sentences
containing a familiarised word are treated systematically differently from
sentences without a familiarised word we subject the scores to independent
statistical tests.

2.3.6 Behaviour generation

In HPP studies, the time an infant maintains a headturn towards a flashing
side lamp is measured as an overt sign of underlying attention to the speech

32



2.3. The model

stimuli presented via a loudspeaker on the same side. Attention is in turn
driven by internal recognition. Familiarity scores, which represent cognitive
processing, cannot be observed directly in infant experiments. To convert a
sequence of familiarity scores to a headturn angle that varies continuously
over time, our model transforms the discrete-time familiarity scores that be-
come available at the end of each sentence in a test passage into a continuous
attention function which directly drives headturns. The attention function’s
value at a particular time point can be interpreted as the degree to which
the head is turned towards the flashing lamp and the loudspeaker. While
the function value is high, the infant’s head is completely turned towards
the flashing lamp. As the attention value decreases, the head is more likely
to be turned away from the lamp.

In the module that converts familiarity scores into the continuous atten-
tion function, we assume that attention is renewed whenever a new familiar-
ity score is computed (at the end of a test sentence) and that attention wanes
exponentially during the course of the next sentence. The discrete-time fa-
miliarity scores are converted to discrete pulses ai.δ(ti) with an amplitude
ai equal to the familiarity score of the ith test utterance, separated by the
duration of the utterances (see figure 2.5, top panel, for an illustration). The
sequence of pulses ai.δ(ti) is converted into a continuous function by ap-
plying an exponential decay. The resulting attention function for a passage
with N sentences is defined as

∑N
i=0 ai · δ(ti) · e−αt. In this function α is

a (positive) parameter specifying the decay rate, and t denotes time. The
value of a0, the value of the attention function at the moment that the test
passage starts playing depends on the value of a separate parameter ρ (see
section 2.3.7 for details). Figure 2.5 illustrates the link between pulses ai.δ(t)
based on the familiarity scores (top panel) and the corresponding attention
function with different values for α (bottom panel).

The decay rate α can be interpreted as the attention span of an infant.
Small values of α correspond to a long attention span, while larger values
of α cause the attention function to decrease more rapidly, which leads to
shorter attention spans. A fixed exponential decay rate, which corresponds
to an attention span that is constant for the complete duration of an ex-
periment, is undoubtedly a strong simplification of the cognitive processes
involved in converting the results of perceptual processing into observable
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behaviour. However, there are no behavioural data that can be used to im-
plement more complex procedures. The parameter α makes it possible to
investigate whether differences in attention span between individual infants
can affect the outcomes of an HPP experiment.

It should be noted that restricting a possible impact of attention span
to the test phase implies that we do not model differences between infants
during the familiarisation phase of an HPP experiment. Effectively, the way
in which we construct the memory after familiarisation corresponds to the
assumption that an infant pays full attention and that there are no errors
in the perceptual processing. Again, this is a simplification that can only be
justified by quoting a complete absence of behavioural data that would allow
creating a more realistic model.

2.3.7 Simulating the test situation

In simulating the test situation, an experimenter’s evaluation of infants’ re-
sponses to a sequence of sentences in a test passage has to be modelled. To
this end, the attention function for a passage consisting of several test sen-
tences is assessed in a way comparable to HPP studies. In an infant study,
the experimenter interprets the angle of the head relative to the center and
side lamps in terms of discrete states throughout a test trial (see figure 2.2).
The criterion that an experimenter uses to determine whether the head is
turned sufficiently towards a side lamp is modelled by a threshold θ that is
applied to the attention function. As long as attention exceeds θ, the head
is considered to be turned sufficiently in the direction of the flashing lamp.
As soon as the attention level drops below θ, the experimenter decides that
the head is turned away from the lamp to such a degree that presumably
the infant is no longer listening to the speech stimuli. If the value of the
attention function stays below θ for more than two consecutive seconds, the
trial is terminated (as in HPP studies).

The parameter ρ > 0 models the initial attention level above the thresh-
old θ at the start of a test trial. It can be conceptualised as the initial degree
of interest in the flashing lamp at trial onset. The value of a0, the value
of the attention function at trial onset (time t = 0), is defined as θ + ρ,
which guarantees that the infant’s head is turned towards the flashing lamp
sufficiently to be considered interested. In the simulations presented below,
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Figure 2.5: Familiarity scores, separated by sentence duration (top panel), and
exemplary corresponding attention functions (bottom panel) using grouped activa-
tions. All material was spoken by Speaker M1. The threshold θ is set to 0.4 (dashed
line), resulting listening times (LT) across exemplary values for α are annotated.
In all cases the initial attention level is 0.8, which exceeds the threshold θ. The
decay parameter α is independent of the familiarity scores.

this parameter (interest at trial onset beyond threshold) was kept constant.
Previous research showed that the parameter ρ does not affect the simula-
tion results in a cognitively interesting manner (Bergmann, Boves, & ten
Bosch, 2012). It appeared that a fixed value ρ = 0.4 was representative for
the explored range of values and consequently was chosen for the present
work.11 In figure 2.5, θ and the resulting listening times obtained with two
exemplary attention functions are shown. The functions are derived from
the same sequence of familiarity scores (top panel); the difference between
depicted attention functions and resulting listening times is due to changes
in the value of α. The attention function for α = 0.25 is shown for the total
duration of a test six-sentence passage. In a HPP experiment the trial would
be aborted during the third sentence, because the head was turned away
from the loudspeaker for more than two consecutive seconds.
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2.4 Experiments

In this chapter, we test assumptions underlying the interpretation of HPP
studies (see section 2.2.1), as well as two using a computational model. We
briefly recall the four assumptions and explain how these are addressed in
the experiments. Subsequently, we explain how the simulations address the
implementation issues.

Initially, we test whether the model conforms to the assumption that test
passages containing familiar and novel words yields systematic differences in
internal processing and resulting listening times in two stages. In the first
stage we investigate whether familiar passages yield significantly higher fa-
miliarisation scores than unfamiliar passages. Thereby, we assess the model’s
internal ability to discriminate the two types of test stimuli. In the second
stage it is tested whether the procedure that converts internal familiarisa-
tion scores into overt headturns and listening times can enhance or obscure
significantly different familiarisation scores.

We investigate the relation between listening preference and internal
recognition of the test passages by comparing two definitions of recogni-
tion (see section 2.3.5). In single episode activation the familiarity scores
are based on the familiarised token in the model’s memory that receives the
highest weight. In cluster activation the familiarity scores are based on the
sum of the weights of the ten familiarisation tokens in the memory. From the
explanation of the model in section 2.3 it will be clear that neither definition
of recognition involves explicit word segmentation. If the simulations yield
significant differences between test passages with familiar and with novel
words, it would seem to call into question the claim that word segmentation
is necessary for infants to show the observed behaviour in HPP experiments.
The fourth assumption that differences between individual infants do not
affect the outcome of an HPP experiment will be investigated by running
simulations with different values of the attention span parameter α (see sec-
tion 2.3.6.)

In addition to the fundamental assumptions in interpreting the outcomes
of HPP experiments our simulations address two implementation issues: the
effects of stimulus materials and the impact of varying criteria for a sufficient
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degree of headturn. We run simulations with four speakers, and we will in-
vestigate familiarity scores and listening times for all combinations of these
speakers in familiarisation and test. By doing so, we aim to contribute to clar-
ifying the seemingly contradicting results of previous HPP experiments on
infants’ generalisation abilities (e.g., Houston & Jusczyk, 2000; van Heugten
& Johnson, 2012). The effect of the experimenter decision criterion for a suf-
ficient degree of headturn will be investigated by simulations with a range
of values for the parameter θ (see section 2.3.7).

From simulations with previous versions of the computational model it
became clear that many of the issues addressed above are not independent
(e.g., Bergmann et al., 2012). That makes it impossible to design experiments
that address one single issue in isolation. We will mitigate this problem by
coming back to the individual issues in the general discussion.

2.4.1 Speech material

Our computational model requires three types of acoustic stimuli to simulate
HPP studies: words spoken in isolation for familiarisation, the same words
embedded in continuous sentences for creating test passages, and utterances
that do not contain the target words to model past language experience.
All speech material stems from a corpus of words and sentences spoken by
native speakers of British English (Altosaar et al., 2010).12 The recordings
were made in a virtually noise-free environment.

The target words in our study were frog and doll or duck and ball. These
were the words in the corpus that were most similar to the original stimuli of
Jusczyk and Aslin (1995) who used monosyllabic words containing various
vowels and at least one stop consonant. For each target word, five tokens spo-
ken in isolation were available. To build the corresponding test passages, we
randomly selected 24 short sentences for each of the four words. These sen-
tences were identical for all four speakers who were available for the present
study (two female). With these sentences a large number of distinct six-
sentence test passages can be constructed by random selection.

Duration differences must be caused by different speech rates between
speakers, as the sentences were identical. The mean sentence durations are
between 2.69 s (standard deviation 0.33 s) for Speaker F1 and 3.0 s (0.39
s) for Speaker F2. The two male speakers show intermediate speech rates
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with 2.88 s (0.42 s) for Speaker M1 and 2.79 s (0.33 s) for Speaker M2.
The range of speech rates indicates that the four speakers pronounce the
same sentences at a different pace. Through the fixed time lags used to
encode the acoustic input (see section 2.3.2), each speaker will yield different
HAC encoded vectors based on the diverging speech rates alone. We do not
compensate for this source of speaker differences since there is little evidence
that infants before their first birthday apply such speaker normalisation
(Houston & Jusczyk, 2000).

In all simulations, the internal memory consisted of 111 HAC vectors, 10

containing the two familiarised words (5 tokens for each) and 100 sentences
comprising the past experience spoken by the same speaker. One additional
HAC vector contained background noise (silence obtained during the record-
ing session). The choice of 100 HAC vectors to model previous experience
was motivated by exploratory simulations in which we investigated familiar-
ity scores with memory sizes ranging from 50 to 1000 utterances to represent
previous experience. Although the weights assigned to the familiarisation to-
kens may decrease as the number of previous experience tokens increases,
the relative difference between the weights of the familiarisation tokens for
familiar and novel test sentences is hardly affected. The NMF approximation
of a test sentence will use the complete memory contents. If a familiarisation
token in memory is a good match for a test sentence, this is hardly changed
by the number of other tokens in memory. The decision to use 100 entries
for previous experience is in a sense arbitrary, but it does not crucially affect
the results.

2.5 Results

The description of the results is split into two parts: first we describe the
outcome of internal speech processing in the model in terms of familiarity
scores. Thereby we assess the model’s underlying ability to recognise famil-
iar words in the test sentences. Subsequently, we simulate listening times
and assess how the transformation of familiarity scores into overt behaviour
affects our results.
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2.5.1 Familiarity scores

We first assess whether internal speech processing outcomes in the model
can distinguish test sentences that contain familiarised words from sentences
with novel words. To this end we investigate whether the familiarity scores
for all 96 test sentences per speaker, used once as familiar and once as novel
test item, are significantly different. For this purpose we apply the non-
parametric Mann-Whitney U Test. We chose this test because its efficiency
is comparable to the t-Test with normally distributed data, while it is more
robust when the data contain unequal variances or outliers.

All test sentences were recognised twice by models that were familiarised
with speech from each of the four speakers. In the first recognition run the
keyword in the sentence was familiar, in the second run it was novel. The
whole experiment is conducted twice, once with the single episode activation
and once with the cluster activation definition of recognition. Familiarity
scores are computed in the manner described in section 2.3.5 and are reported
in percent for clarity.

2.5.1.1 Single episode activation

Computing familiarity scores based on the single episode that receives the
maximum activation yields a mixed pattern of results. The descriptive values
for familiarity scores corresponding to familiar and novel test sentences can
be found in table 2.1. The table shows the average (and standard deviation)
of the familiarity scores for all speaker pairs. Each cell contains data for the
sentences in the familiar (‘f’) and novel (‘n’) condition. It can be seen that
the mean values and standard deviations differ between speaker pairs. The
familiarity scores are expressed in terms of the percentage of the weights of
the 111 memory entries assigned to the single highest-scoring familiarisation
token stored in the model’s memory.

We find statistically significant higher scores for familiar than for novel
test items in five of 16 speaker pairs. Except for Speaker F2, the distinction
between test conditions is statistically significant when the speaker does not
change between familiarisation and test.

Next to the cases where the speaker did not change between familiarisa-
tion and test, we see two pairs in which the test speaker was different from
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Table 2.1: Mean (and standard deviation) of the familiarity scores for familiar (f)
and novel (n) test sentences across speaker combinations in % with single episode
activation. Values that differ significantly between test stimulus types are marked
in bold. Significance level markers are: ∗ p < .05,∗∗ p < .01.

Test Speaker
M1 F1 M2 F2

Fa
m
il
ia
r
S
p
ea
ke
r

M
1 f 5.03 (2.73) ∗∗ 6.26 (3.23) ∗∗ 8.43 (6.28) 6.35 (3.99) ∗

n 4.11 (2.70) ∗∗ 5.06 (2.32) ∗∗ 8.19 (5.87) 5.70 (4.49) ∗

F
1 f 8.61 (3.73) 5.76 (2.90) ∗∗ 16.60 (7.30) 15.20 (8.50)

n 9.21 (4.34) 4.75 (3.06) ∗∗ 15.87 (5.48) 15.10 (8.00)

M
2 f 7.40 (3.94) 11.67 (5.80) 8.60 (4.26) ∗ 16.58 (6.43)

n 7.75 (4.34) 12.14 (6.32) 7.41 (3.43) ∗ 15.57 (5.62)

F
2 f 8.15 (4.29) 6.89 (4.83) 9.62 (4.94) 8.32 (5.26)

n 7.91 (4.42) 6.18 (4.27) 10.00 (4.76) 7.46 (4.44)

the familiarisation speaker that yield statistically significant distinctions of
familiar and novel test items. When the model has stored familiarisation
words spoken by Speaker M1 in memory, test sentences spoken by Speaker
F1 and Speaker F2 yield significantly different familiarity scores. Interest-
ingly, the results do not show an advantage of same-sex pairs over mixed-sex
pairs.

2.5.1.2 Cluster activation

Taking the sum of the weights for all familiarised items in memory yields
statistically significant differences between familiar and novel test sentences
for the four cases where familiarisation and test speaker are identical, as
shown in table 2.2. The table is formatted in the same way as table 2.1,
and the values displayed refer to the percentage assigned to all 10 memory
representations of the familiarised tokens. The mixed-gender speaker pairs
{M1, F1} and {M1, F2} show significant differences between familiar and
novel test sentences (as was the case with single episode activation). Again,
we do not observe a clear advantage of same-sex pairs over mixed-sex pairs.
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Table 2.2: Mean (and standard deviation) of the familiarity scores for familiar
(f) and novel (n) sentences across speaker combinations in % with cluster activa-
tion. Values that differ significantly across test stimulus types are marked in bold.
Significance level markers are: † p < .1,∗ p < .05,∗∗ p < .01,∗∗∗ p < .001.

Test Speaker
M1 F1 M2 F2

Fa
m
il
ia
r
S
p
ea
ke
r

M
1 f 15.30 (7.97) ∗∗ 14.56 (4.51) ∗∗ 22.31 (11.90) 16.23 (7.44) ∗

n 12.69 (7.96) ∗∗ 12.63 (4.89) ∗∗ 21.11 (11.98) 14.39 (7.27) ∗

F
1 f 24.72 (7.92) 15.93 (5.18) ∗∗∗ 37.37 (9.96) 27.40 (10.78) †

n 24.05 (8.68) 12.08 (5.23) ∗∗∗ 36.10 (9.61) 24.92 (10.13) †

M
2 f 21.19 (8.52) 24.46 (7.80) 23.10 (7.25) ∗∗∗ 35.88 (8.02) †

n 20.74 (8.06) 23.64 (8.52) 19.20 (6.77) ∗∗∗ 34.00 (7.72) †

F
2 f 21.80 (8.99) 16.54 (8.66) † 29.14 (10.84) 21.96 (9.51) ∗∗∗

n 20.52 (7.90) 14.51 (8.03) † 27.52 (9.10) 17.93 (9.27) ∗∗∗

2.5.1.3 Discussion

Overall, the model implements the assumption that processing sentences
with familiar words yields higher familiarity scores than sentences with novel
words, which is confirmed by the results of the simulations. The differences
between familiarity scores for familiar and novel test items are larger when
the speakers in familiarisation and test are identical, but there is no clear
effect of the sex of the speaker. The differences between the absolute val-
ues of the familiarisation scores in the single episode and cluster activation
runs were to be expected: sums of a set of positive numbers will always be
larger than the largest individual member of a set. Perhaps the most in-
triguing difference between single episode and cluster activation is present
when Speaker F2 utters all speech material: in the single episode activation,
familiar sentences yielded no statistically significant higher familiarity scores
than novel sentences, while the difference is highly significant with cluster
activation.

2.5.2 Simulated listening times

In the previous section we found that our model tends to assign higher
internal familiarity scores to test sentences with a familiar word than to
comparable sentences with a novel word. We used all 24 available sentences
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to create 30 six-sentence test passages for each of the four words (frog, doll,
duck, ball) that could be used during familiarisation. Sentences were selected
randomly, with replacement. Each passage contained one of the four words,
which could, depending on the familiarisation words, be familiar or novel.
This was done for all 16 possible speaker pairs, and for the two definitions
of recognition. All sequences were converted to attention functions using the
procedure explained in section 2.3.6, whereby we explore a range of values
of the attention span parameter α. Figure 2.5 shows an example of one
sequence, with two values of α. The value of α varied between 0.01 and
0.3, in steps of 0.01. Previous experiments with the model have shown that
this range covers all cognitively relevant phenomena (Bergmann et al., 2012;
Bergmann, Boves, & ten Bosch, 2014).

In our model, we treat the continuous attention function as identical to
the headturn angle. The higher the attention function, the more the head
is turned towards the side lamp (see figure 2.5). To compute listening times
given an attention function, we need an additional parameter to model the
experimenter’s decision whether the head is turned sufficiently towards the
side. For that purpose we use the parameter θ explained in section 2.3.7. The
total listening time corresponding to a passage is the cumulated time during
which the value of the attention function is above θ (counting up to the
moment when the attention function is below θ for more than two consecutive
seconds). In the simulations we varied the value of θ between 0.1 and 1.5 in
steps of 0.01. Although we cannot quantify the relation between θ and the
headturn angle in an infant experiment, we can say that higher values of θ
correspond to stricter criteria imposed by the experimenter. Values of θ > 1.5

make the criterion so strict that most listening times become effectively zero.
Very small values of θ yield listening times that are almost invariably equal
to the duration of the passages.

To obtain an overview of the listening time differences as a function of α
and θ we depict the results in the form of Hinton plots (figures 2.6 and 2.7).
The figures show the α, θ combinations for which the listening time differ-
ence between familiar and novel passages was significant with p < .05. The
size of the rectangles in the figures corresponds to the significance level. If
the listening time is longer for the familiar passages, the rectangles are black.
Grey rectangles correspond to α, θ combinations in which there was a signif-
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icantly longer listening time for the novel passages. p-values were computed
using a two-sample t-test in which two sets of 120 passages were compared:
30 for each of the two words, which were used twice (as familiar and as
novel) to remove biases caused by the fact that sentences corresponding to
the words were of unequal length. We did not apply a correction for multi-
ple comparisons for two reasons. First, it is not completely clear how many
α, θ combinations must be included in a full comparison. For a substantial
proportion of the combinations, the listening time difference is exactly zero,
due to reasons that are independent of the goals of this chapter. When both
α and θ are large, the attention function drops below the threshold θ more
than two seconds before the end of the first sentence in a passage.13 If both
parameters have very small values, the attention function will stay above θ
for the full duration of the passage. The α, θ pairs for which this happens
might have to be excluded. One can take the position that listening time
differences caused by the last sentence in a passage should also be discarded.
The second reason for not adjusting the p-values is inspired by the shapes
of the trajectories in the α, θ plane that can be seen in the figures. It is
highly unlikely that continuous trajectories would emerge if there was no
underlying process that causes the listening time differences. This procedure
is similar to the procedures used in brain imaging, where the large number
of comparisons between voxels would lose much of the relevant information
if a straightforward adjustment would be applied, ignoring the underlying
physical processes (Forman et al., 1995).

2.5.2.1 Single episode activation

Significant listening time differences based on internal single episode activa-
tion are displayed in figure 2.6 for all speaker pairings. The first thing that
strikes the eye is the large difference between the four speakers. While three
out of the four same-speaker pairs show a trajectory in the α, θ plane with
a significant familiarity preference, it is also evident that the trajectory for
Speaker F1 is much more robust than for the other speakers. For Speaker
M2 we see a very thin trajectory. Interestingly, Speaker F2 appears to give
rise to a novelty preference, despite the fact that we designed the model to
yield a familiarity preference. It can also be seen that the trajectories are
not always at the same area in the α, θ plane.
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Figure 2.6: Listening time differences for all speaker pairings based on single
episode activation. The section of the parameter space displayed corresponds to
0.1 to 1.5 for θ and 0.01 to 0.3 for α. Rectangle size corresponds to the p-value in
a two-sample t-test. Black rectangles correspond to a familiarity preference, grey
rectangles to a novelty preference.

In addition to the same-speaker pairs, there are also between-speaker
pairs that yield trajectories with significant differences. There is no unam-
biguous gender effect. The pair {M1, M2} shows no significance at all, but
there are some pairings that show significant listening preferences. The pat-
terns are not symmetric, as can be seen best for the pair M1 and F2. Fa-
miliarisation with M1 gives no significant listening preferences when testing
with F2, vice versa, there are substantial significant trajectories for M1 as
test speaker. The lack of symmetry is perhaps most striking in the case of the
two female speakers. When Speaker F1 utters the familiarisation stimuli and
Speaker F2 the test material, we see a novelty preference. However, when
the roles are reversed between speakers a familiarity preference emerges. We
also see a novelty preference in the {F2, M2} pair.
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Attention span and experimenter decision criterion In figure 2.6
it can be seen that significant listening time differences are obtained for a
wide range of values for α (on the horizontal axis), except for speaker M2.
The absence of significant differences between listening times to familiar and
novel passages for speaker M2 for small values of α (long attention span)
is caused by the fact that the attention function never drops below the θ
threshold.

Figure 2.6 shows an effect of the strictness with which the experimenter
interprets the headturn angle, modelled by the parameter θ. For high values
of θ significant listening time differences are only obtained in combination
with long attention spans (lower values for α). As the value of θ decreases,
significant listening time differences (both familiarity and novelty prefer-
ences) can be obtained with shorter attention spans (higher values for α).
At this point we refrain from interpreting the parabolic shapes of the trajec-
tories in the figure because a different quantisation of α and θ would yield
other shapes.

Familiarity or novelty preference A comparison of the data in table 2.1
and the patterns in figure 2.6 shows that there is no straightforward relation
between familiarity scores for individual sentences and listening preference.
Apparently, the way in which sentences are concatenated to form a passage
has an effect on the simulated listening time. If a sentence that yields a
relatively small familiarity score is followed by a relatively long sentence, the
next reset of the attention function, at the end of that sentence, may come
too late to avoid the cut-off of the two-seconds rule.

For some speaker pairs we see a novelty preference. Perhaps the most
striking example is when the speaker F2 utters all speech material, the more
so because the familiarity scores for this speaker in table 2.1 suggests a
familiarity preference with slightly higher values for familiar than for novel
test items. However, when we base the attention function on the familiarity
score of a single memory entry, it cannot be ruled out that the maximum
value of a novel utterance is higher than the maximum of a familiar sentence.
This can give rise to a novelty preference.
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2.5.2.2 Cluster activation

The significantly different listening times as a function of the two parameters
α and θ for the cluster activation definition of recognition can be seen in fig-
ure 2.7. This definition corresponds to the assumption that infants treat all
familiarisation stimuli as referring to a single concept and that they aim to
detect references to that concept in the test passages. Numerically, summing
over the activations of all ten familiarisation entries in the memory to com-
pute a familiarity score should make that score less sensitive to seemingly
random effects.
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Figure 2.7: Listening time differences for all speaker pairings based on cluster
activation. The section of the parameter space displayed corresponds to 0.1 to 1.5
for θ and 0.01 to 0.3 for α. Rectangle size corresponds to the p-value in a two-sample
t-test. Black rectangles correspond to a familiarity preference; grey rectangles to a
novelty preference.

In figure 2.7 we see a strong familiarity preference in all same-speaker
pairs, even for speaker F2, for whom we found a novelty preference in the
single episode activation case. Again, there is no unambiguous gender effect.

46



2.5. Results

The male speakers M1 and M2 share no pattern, while the relation between
the two female speakers is quite complex. Perhaps the most striking effect is
the clear familiarity preference for M2 as test speaker, if the familiarisation
speaker is F1. Again, we see that there is no straightforward relation between
the sentence-based familiarity score data in table 2.2 and the significant
listening time differences in figure 2.7.

Attention span and experimenter decision criterion In the α, θ
plane we again see parabola-shaped patterns of significant differences. As α
becomes larger, the decay of the attention function becomes more rapid, and
a lower value of θ is needed to keep the attention function above threshold.
As mentioned in the previous section, we refrain from interpreting those
shapes since they depend on the quantisation of the explored parameters.

Familiarity or novelty preference All same-speaker pairs now show a
clear familiarity preference. Apparently, reducing the impact of individual
memory entries leads to overall more homogeneous familiarity scores. These
scores in turn lead to a familiarity preference in listening times across all
four speakers.

When Speaker F1 provides the familiarisation stimuli and Speaker F2
is used as the test speaker, we see a familiarity preference for some α, θ
combinations, and a novelty preference for other combinations. This suggests
that minor variations in attention span in combination with small changes
in the strictness of the experimenter can cause the result of an experiment to
switch from a familiarity preference to a novelty preference. While this might
indeed happen in infant studies, it cannot be ruled out that the switch seen
in figure 2.7 is, at least in part, due to a property of the behaviour generating
module that is exaggerated by small changes in the decision threshold. The
effect can be illustrated with the attention function for α = 0.25 in figure
2.5. If the first familiarity score would have been slightly larger, the duration
of the time interval where the function is below the threshold θ might have
become less than two seconds. If the familiarity score for the second sentence
would have been higher, listening time would increase (even if the two-second
rule would have cut off the experiment during the course of the third sentence
in the passage). The same effect can be caused by small changes in the
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threshold θ. This can be observed in the simulations with familiarisation
stimuli from Speaker F1 and test passages from Speaker M2.

Figures 2.8 and 2.9 provide additional support for the observation that
small differences in familiarity scores, combined with specific values of α
and θ, can result in switches between familiarity and novelty preference in
our model. Figure 2.8 shows the cumulative distributions of the familiarity
scores of the sentences spoken by Speaker M2 if the familiarisation Speaker
was M2 himself (left panel) or F2 (right panel). It can be seen that when
all stimuli stem from Speaker M2, the familiarity scores are slightly but sys-
tematically higher for familiar test sentences. This is different when F1 is
the familiarisation speaker. As long as the familiarity scores are low, the
scores for novel sentences are slightly higher than the scores for familiarised
sentences. When the familiarity scores get higher, we see a cross-over point,
where the familiarity scores for the familiarised utterances become larger
than the corresponding scores for the sentences in the novel condition. Fig-
ure 2.9 depicts listening times to familiar and novel test sentences for two
example speaker pairs (the same as in figure 2.8) as a function of α with the
assessment threshold θ set to 0.3. It can be seen in the left panel that the
systematically lower scores for the novel sentences yield accordingly longer
listening times in the familiar test condition for the whole range of values for
α where listening time is not identical to the full duration of a passage. The
right panel of the plot shows a novelty preference for longer attention spans,
which switches to a familiarity preference as the value for α increases.

Figure 2.9 furthermore illustrates the general effect of α on the total
listening time to novel and familiar passages. For small values of α, where
the attention span is long and the attention function decays slowly, the
total listening time is equal to the average total duration of the passages
(six sentences with an average duration of slightly less than three seconds).
As the value of α increases, which means that the attention span shortens,
listening times decline. This is caused by a shift of the time point when the
attention function drops below θ.
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Figure 2.8: Familiarity scores for familiar and novel test sentences, sorted by
rank. The left panel depicts a clear familiarity preference. In the right panel, the
preferences cross, with lower ranks showing a novelty preference.
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when Speaker F1 utters the familiarisation stimuli and Speaker M2 the test items.
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2.6 General discussion

In the present work, we investigated four assumptions in the interpretation
of experiments that use the Headturn Preference Procedure (HPP), a be-
havioural method to tap into infants’ speech processing abilities. In addition,
we investigated two implementation issues that may affect the outcomes of
such experiments. Because the four assumptions are difficult to address in
infant studies, we took recourse to computational modelling. To this end, we
built a computational model that can simulate infant behaviour (headturns)
observed in HPP studies. The simulations address infant studies which inves-
tigated whether infants process test passages that contain words with which
the infants were familiarised differently than similar passages that contain
novel words (Jusczyk & Aslin, 1995).

Our model comprises several modules that operate in sequence, in a strict
feed-forward architecture. We opted for this modular architecture because
it enables us to investigate several processes that have been implicated in
the interpretation of HPP studies in isolation. Most importantly, our model
makes a distinction between the perceptual processing of the speech stimuli
and the process that converts the result of perceptual processing into overt
behaviour. In addition, the model contains a component that simulates the
decisions of the experimenter in HPP studies. Perhaps with the exception
of the strict modularity and feed-forward architecture, we put a strong em-
phasis on making the model as cognitively plausible as possible. It processes
real speech that is represented in a way we believe is neurally and cognitively
defendable. The implemented matching procedure also can claim cognitive
plausibility, if only because it can be combined with learning procedures that
can operate in a strictly incremental and causal procedure, in which each in-
put stimulus is used once (instead of iterating multiple times over a corpus
of training stimuli).

The basic assumption in HPP studies is that different behaviours are
caused by different results of processing the test stimuli. A second assumption
in interpreting HPP experiments is that a listening preference for familiar
(or novel) passages reflects some form of recognition. We defined recognition
in two ways, corresponding to different hypotheses of how infants store and
access familiarisation stimuli during the test phase. The first definition of
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recognition proposes that an infant treats the familiarisation stimuli as in-
dependent phenomena. In that interpretation, termed single episode activa-
tion, recognition was based on the single familiarisation entry in the model’s
memory that matched a test sentence best. The alternative interpretation,
cluster activation, corresponds to the hypothesis that the infant treats all
familiarisation stimuli as referring to a single phenomenon. Both definitions
of recognition yielded systematic differences in the familiarity scores corre-
sponding to familiar and novel test sentences. With cluster activation, more
familiarity score differences were significant than when single episode activa-
tions were used. We believe that the larger number of statistically significant
differences in the cluster activation case is, at least to a large extent, due to
the fact that the sum of ten activations is less susceptible to random varia-
tion than the maximum of a set of ten values. Therefore, our simulations do
not allow to compare the cognitive plausibility of the two interpretations of
the concept of recognition.

A third assumption is that recognition of words embedded in test pas-
sages, which were heard in isolation during familiarisation, implies infants’
ability to segment words from continuous speech. Our model does not rely
on segmentation – the division of the speech stream into smaller units, such
as words. We found differences between the results of processing sentences
with familiarised and novel words and we could replicate infant listening
preferences using a representation of the familiarisation words and test sen-
tences that have the exact same interpretation: as a bag of acoustic events.
Therefore, our model has no need for segmentation procedures. Of course,
the simulations do not prove that infants do not segment the speech input,
but the experiments show that segmentation skills are not necessary to solve
the task posed in the type of HPP studies modelled here following the work
by Jusczyk and Aslin (1995).

We do not address studies in which passages were used for familiarisation,
such as the work by van Heugten and Johnson (2012). However, Jusczyk
and Aslin (1995) propose that the two types of experiments are equivalent,
while the work by Nazzi et al. (2014) indicates that there might be different
processes at stake. Addressing this issue is beyond the scope of this chapter
and requires further modelling work in conjunction with a careful analysis
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of the outcome of infant studies that use either words or passages during
familiarisation.

A fourth assumption in HPP studies is that differences between individual
infants do not affect the outcome of an experiment, as the main comparison
(listening to novel or familiar test stimuli) takes place within participants. In
our model, we simulated differences between infants in the form of varying
attention spans. It appeared that if internal familiarity scores distinguish the
two types of test stimuli, listening time differences can emerge for a fairly
wide range of attention spans. Still, the simulations show that a very short
attention span can obscure different familiarity scores in the overt behaviour.

We deliberately kept the module that converts the results of internal pro-
cessing into overt behaviour very simple, and probably even overly simplistic.
We did so because there are no observation data that would allow us to con-
struct a more plausible model. Yet, our simulations show convincingly that
the relation between internal processing and externally observable behaviour
can be complex. Behaviour generation can both obscure and enhance differ-
ences in the results of internal processing and recognition. In summary, our
simulations suggest that the assumption that differences between infants do
not affect the results of HPP experiments should be called into question.

We explicitly modelled the experimenter’s categorisation of infant be-
haviour. Our simulations show that the criterion the experimenter applies
can mask listening preferences or enhance them. In addition, there is a strong
interaction between the strictness of the experimenter and the attention span
of the infant participants. It appeared that slightly different combinations of
the factors α (attention span) and θ (experimenter strictness) can enhance
or obscure listening preference and may even lead to switches between famil-
iarity and novelty preference for some combinations of familiarisation and
test speakers.

We biased our model towards a familiarity preference by focusing on
the parts of memory that contain the previously familiarised speech stimuli.
However, in various experiments using the HPP, novelty preferences have
been observed. Several suggestions regarding the cause of such a prefer-
ence have been made that implicate developmental or methodological factors
(Hunter & Ames, 1988). It has been suggested that individual infants differ
in their general input processing strategy (Houston-Price & Nakai, 2004).
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Novelty preferences might arise from a focus on aspects of the input that are
not captured by what has been heard most recently. In our model, different
processing strategies can be implemented by changing how familiarity scores
are computed from the activations of the memory contents, or from how the
familiarity scores are converted to observable behaviour. For example, we
could discard familiarity scores that exceed an upper bound, treating the
corresponding sentences as “more of the same” and therefore uninteresting.
In a similar vein, we could assume that attention is aroused by new experi-
ences, rather than by recognising known things. In such a setting an infant
would pay attention to novel stimuli, perhaps not to recognise, but rather to
extend the memory by attending to and storing the representations of novel
sentences. Alternatively, if we assume that an infant switches from learning
mode during familiarisation to recognition mode during test, we might de-
emphasise the activations of the familiarisation entries in the Hippocampus
in favour of the background utterances in the cortex.

The exact source of the novelty preferences generated by our model war-
rants further investigation into the details of the implementation of the in-
dividual modules. The simulations reported in this chapter uncovered inter-
actions between the attention function derived from the familiarity scores
and the experimenter’s decision criterion. This interaction is strengthened
by the way in which we compute the familiarity scores. In our model these
scores are the result of a sentence-based recognition process. The result is
only available after the sentence is complete. Technically, it is possible to
change the HAC-based sentence recognition into a continuous-time process
(Versteegh & ten Bosch, 2013), but doing so would require the assumption
that the memory contains word-like representations.

The voices of four different speakers were used in the present experiments
to explore whether non-linguistic properties of the signal can influence the
presence of listening preferences. When the speakers did not change between
familiarisation and test, most familiarity scores were statistically different.
Depending on the definition of recognition, the difference for Speaker F2 was
or was not statistically significant. In our model it is possible to investigate
the voice characteristics that can affect the familiarity scores in great detail.
Characteristics that can have an effect depend on the representation of the
speech signals in the model. For example, the MFCC representations used in

53



Chapter 2. Modelling infants in the Headturn Preference Procedure

our simulations do not explicitly represent voice pitch, which is reflected in
a lack of clear gender-specific effects in our simulations. The co-occurrence
statistics in the HAC-representation (see section 2.3.2) are sensitive to dif-
ferences in speaking rate, since they operate with fixed time lags between
acoustic events. In this context it is interesting to note that speaker F2 had
a slightly lower speaking rate than the other speakers. In addition, HAC-
representations can be sensitive to individual differences in pronunciation.
The impact of pronunciation variation depends on the choice of words and
passages, an issue that warrants further investigation. Pronunciation vari-
ation is a possible factor in infant studies as well. When different speakers
are compared according to their accent, an extreme case of pronunciation
variation, infants cannot detect words that recur between familiarisation and
test (Schmale & Seidl, 2009; Schmale et al., 2010). Both differences in speech
rate and the possibility of pronunciation variants can also account for the
model’s mixed abilities to generalise across speakers.

Based on our investigation of the HPP, we can make a number of predic-
tions and recommendations for infant research. First, to faithfully measure
infants’ underlying speech processing abilities, it is helpful to consider their
individual attention span. Attention span in the visual domain has been
found to positively correlate with language development (Colombo, 2002;
Colombo et al., 2008). Measuring individual attentional capabilities can thus
at the same time shed light on infants’ linguistic development and on an indi-
vidual factor influencing their performance in HPP studies. Second, carefully
defined testing procedures are necessary to allow for consistent and compa-
rable assessments. While it is common practice within labs to have standard-
ised procedures, there is only little exchange of precise assessment criteria
across infant laboratories. For greater comparability of published results, a
common assessment standard seems to be crucial. Third, an exchange of
stimulus material to disentangle the properties of the speakers’ voices from
language-specific developmental pathways can help shed light on the factors
in the stimulus material that can determine the outcome of HPP studies
(Nazzi et al., 2014). Existing results using only one or a few speakers do not
allow for general statements about the influence of speaker characteristics in
HPP studies (see e.g., Houston & Jusczyk, 2000; van Heugten & Johnson,
2012).
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In summary, modelling the HPP illuminated the role of numerous factors
that can determine the outcome of studies utilising this method. The present
work exemplifies how modelling the task can help linking simulation results
of presumed underlying cognitive abilities to overt infant behaviour that can
be measured experimentally.
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Notes

Notes
6The HPP has also been used to investigate infants’ ability to discover regularities in

auditory input (see Frank & Tenenbaum, 2011; for a summary of studies in that field).
However, these studies generally use artificial speech and require monitoring of a contin-
uous monotone speech stream, arguably a different task from the segmentation studies
conducted following the work of Jusczyk and Aslin (1995).

7Some HPP studies familiarise with paragraphs of continuous sentences and test with
words in isolation, but in this chapter we focus on the predominant set-up.

8Jusczyk and Aslin (1995), Experiments 1-3 of 4.
9We used about 30 minutes of speech produced by two female and two male speakers

of Dutch to learn the prototypes.
10To allow for comparisons between the decoding of different utterances, the weights

obtained after each stimulus are normalised to sum to one.
11Increasing or decreasing the initial interest modelled in ρ shifts the overall outcome

within the parameter space of α, θ but does not impact the general outcome.
12The speech material is available upon request via The Language Archive at tla.mpi.nl.
13Up to the end of the first sentence in a passage the attention function depends only

on the decay parameter α. The familiarity scores only take effect after the end of an
utterance.
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3 | Robustness and generalisabil-
ity of word representations:
The role of previous experi-
ence

This chapter is an adapted version of the scientific manuscript
“Modelling the noise-robustness of infants’ word representations:

The impact of previous experience”
by C. Bergmann, L.F.M. ten Bosch, P. Fikkert, & L. Boves

3.1 Introduction

From the moment they are born, and probably even before that, infants are
exposed to acoustic signals that are generated by a mix of sources, such as
a mother speaking to her infant with the television running in the back-
ground. It seems plausible that the fact that infants hardly ever hear com-
pletely noise-free speech (B. A. Barker & Newman, 2004) has a substantial
impact on the language acquisition process. Given the pervasive presence of
a somewhat noisy acoustic ‘scene’ in which infants (and adults) are living,
it is surprising that relatively little research has been conducted that in-
vestigates infants’ speech processing in noisy environments. Understanding
the impact of noise on language acquisition is all the more important be-
cause very noisy environments appear to cause a disadvantage in language
acquisition (Wachs, 1986).

A small number of experimental studies have investigated how infants
process speech in the presence of competing speakers or background noise.
Some experiments used words as target units (e.g., B. A. Barker & Newman,
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2004; Newman & Jusczyk, 1996; Newman, 2005, 2009) while others inves-
tigated the detection of different sounds (phonetic contrasts, e.g., Polka,
Rvachew, & Molnar, 2008). Perhaps the most salient message from those
studies is the large number of different factors that may be relevant: whether
the disturbing sound is speech or not; if it is speech, whether the compet-
ing speech stems from one or multiple speakers, if one speaker provides the
disturbing sound, whether the target and the competing speaker have the
same gender (female speakers usually provide the material in such experi-
ments) and whether the infants are familiar with the target speaker. If the
competing sound is not speech, it is relevant whether the frequency spec-
trum of the disturbing signal overlaps with the frequency band covered by
speech, and whether or not the disturbing signal has amplitude modulation
similar (or not) to speech. One conclusion that is reported in almost all ex-
perimental research is that infants are substantially worse than adults at
processing speech in adverse acoustic conditions. Infants seemingly fail to
recognise words at noise levels which do not severely affect adults. Another
common finding is that the between-infant differences observed in these ex-
periments are much larger than between-listener differences in experiments
with adult participants.

Given this state of affairs, it is difficult to propose a detailed theory about
the processes that infants can employ to process speech in noisy environ-
ments. Computational modelling offers the possibility to investigate which
processes are necessary and sufficient to simulate infants’ abilities attested
in experimental studies. At the same time, model simulations can guide the
interpretation of experimental findings and suggest additional experiments
that can distinguish between alternative interpretations.

One of the first studies that aimed to address the robustness of infants’
early word representations against the presence of a competing speaker was
conducted by Newman and Jusczyk (1996). The authors found that 7.5-
month-olds can detect and recognise words with which they were famil-
iarised, spoken by a female speaker, despite the presence of a distracting
male voice that was 10 and 5 decibel (dB) less loud (expressed as signal-to-
noise ratios, SNRs, of 10 and 5 dB, respectively). This work was extended by
B. A. Barker and Newman (2004) who used female speakers as target and
distractors. They found that infants were only able to detect words spoken by
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a well-known target speaker, i.e., the infant’s own mother. If the target was
an unknown female speaker, infants failed to detect the familiarised words,
even at an SNR of 10 dB. One explanation for the difference with the finding
of Newman and Jusczyk (1996) is that it is easier to separate a female voice
from a male voice than to separate two female voices. In a follow-up study
Newman (2005) found that very young infants can detect their own name,
one of the earliest words in their vocabulary (Mandel et al., 1995), in the
presence of babble noise at 10 dB SNR. Around their first birthday infants
can detect their name even in 5 dB SNR.

Polka et al. (2008) found that about half of the 6- to 8-month-old infants
in their experiment were not able to discover the difference between /bu/
and /gu/ syllables when the speech signals were mixed with cricket noise or
bird song during the habituation phase. There was no difference between a
group of infants that heard the noisy signals both during habituation and
test and a group that was habituated with the noisy stimuli and tested with
noise-free speech. Of the infants habituated and tested with noise-free speech
all but one succeeded at the task. The mixed speech and background signals
were constructed such that there was no speech information in the frequency
band above 6 kHz, and no cricket-bird sounds in the frequency band below 6
kHz. Therefore, the speech stimuli were not affected by any kind of energetic
masking; this leaves some form of informational masking as the most likely
explanation for the difficulty encountered by the infants. This finding was at
least partly confirmed by Newman, Morini, and Chatterjee (2013), but the
more recent study used white noise instead of cricket-bird song as competing
sound, and the name of the infants as target speech.

Countering the effects of energetic and informational masking requires
some form of auditory stream segregation. Stream segregation comes seem-
ingly effortless to an adult listener in moderately noisy conditions: it is pos-
sible to attend to a conversation partner in a busy restaurant or at the
often-cited cocktail party. Adult listeners appear to combine a variety of
processes to understand speech in noise. Directional hearing is made possi-
ble by the fact that we have two ears and that the signal arrives at different
time points at each ear depending on the origin. The ability to identify the
location of acoustic input is among the most powerful strategies, as testified
by the difficulties that we encounter during cocktail parties when one ear is
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blocked. Attending to the speakers’ lip movements is another powerful help
which can provide visual information when noise masks the acoustic signal.
Finally, there are numerous features of acoustic signals that differ between
sources, for example pitch, rhythm, and voice quality for different speakers.
Non-speech noise possesses qualities different from speech and can be sepa-
rated from it accordingly using differences in continuity and the presence of
periodicity in the signals. Exactly how stream segregation is accomplished
in specific acoustic context is not yet completely understood, but it is likely
that adults combine strategies based on bottom-up signal processing, such
as directional hearing and acoustic analysis, and top-down processing, such
as focusing attention and predicting missing parts of the signal based on
linguistic knowledge (Snyder & Alain, 2007).

The complexity of auditory stream segregation is borne out by the fact
that computational auditory scene analysis (Bregman, 1994), that is the
automatic segregation of the sources in real-world audio signals, is largely
an unsolved problem (J. Barker & Cooke, 2007; Vincent et al., 2013). In
the infant experiments summarised above the two most powerful processes
that can be invoked in stream segregation, directional hearing and observing
lip movements, were unavailable. Instead, infants listened to a mix of voices
or to one voice and added non-speech noise that was played over a single
loudspeaker in the absence of visual cues.14 Given these restrictions only
processes remain that require substantial top-down prediction and active
focusing of attention on detailed features of the speech signal. Such features
are difficult to extract and to harness for the purpose of stream segregation,
even by state-of-the-art automatic systems (J. Barker, Ma, Coy, & Cooke,
2010). We therefore presume that infants do not rely on the analysis of
detailed features or employ top-town prediction and we do not equip our
model with such abilities.

While there seems to be agreement in the field that infants lack most of
the information and processes that adults employ for countering energetic
and informational masking in speech comprehension, behavioural experi-
ments provide convincing evidence that at least some 6- to 8-month-olds
can handle speech in noise, even in the extremely adverse conditions cre-
ated in conventional behavioural experiments. This raises the question what
alternative procedures and resources infants might recruit in headturn or
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listening preference experiments with speech corrupted by other signals. In
addressing this question two issues seem to be relevant: how are the acoustic
patterns that must be detected in the experiments represented in the infants’
brains, and what exactly does it mean when infants detect or recognise these
patterns? The first issue, the representation of acoustic patterns that would
allow for detecting new tokens of these patterns that are acoustically dif-
ferent, is linked to other issues that are being investigated in the language
acquisition literature. One such issue is the preference for – and the better
performance with – familiar voices (Parise & Csibra, 2012; B. A. Barker &
Newman, 2004). What is it that characterises representations of ‘familiar
voices’? At the same time, there are suggestions that experience with multi-
ple voices can result in representations that are more resilient to competing
sounds (Newman, 2005; Newman & Jusczyk, 1996). Experimental data indi-
cate that multiple voices in the input, opposed to a single voice, can lead to
representations that support the discrimination between speech stimuli that
differ only in a single phonetic feature (Rost & McMurray, 2009).

The second issue is that we do not precisely know which perceptual and
cognitive processes infants use in reacting to stimuli in behavioural experi-
ments (Aslin, 2007). Especially in experiments that use the familiarisation-
followed-by-test protocol it is possible that the responses are based on some
kind of superficial acoustic match of integral exemplars, rather than on a
form of analysis of the test utterances that would result in what could
genuinely be called recognition (see chapter 2). Recognition can be oper-
ationalised in modelling as activating the intended word that was presented
(e.g., Norris, 2008). General acoustic matching, in contrast, can take place
independently of the consideration which word was intended. The degree
to which the best candidate matches then becomes important. Such a no-
tion of acoustic match is important in situations where no obvious referent
is present, which is the case in many infant studies on speech processing.
Acoustic matches are also important when considering the possible percep-
tual errors in noisy environments, because not recognising the target word is
different from mistakenly detecting another known word. Even in Newman’s
experiments (Newman, 2005, 2009; Newman et al., 2013), where the task
is to detect the own name in the test stimuli, it cannot be excluded that
superficial acoustic matching is sufficient to explain infant behaviour.
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Chapter 3. Robust word learning

We use a computational model to investigate whether the behaviour of
infants in experiments with speech in the presence of a competing signal can
be simulated without taking recourse to auditory stream segregation. The
focus of our simulations is whether the robustness of the acoustic represen-
tations depends on the number of learning tokens and whether they were
produced by multiple speakers. Effects of hearing multiple speakers or an in-
creased number of the learning tokens might differ when a familiar versus an
unknown speaker is presented in the test. We will perform the simulations
using two different interpretations of what it means to detect familiarised
words in a test. One interpretation is based on a superficial acoustic match,
while the alternative interpretation is based on detecting a specific word and
thus more akin to recognition.

In the next section we will present a computational model of an infant
in a behavioural experiment in which speech is mixed with a competing
audio signal. In designing that model we have emphasised cognitive and
neurophysiological plausibility. We will explain how this sets our model apart
from other computational models of early language acquisition.

3.2 The present model

3.2.1 Background

PRIMIR, a developmental framework for Processing Rich Information from
Multidimensional Interactive Representations (Werker & Curtin, 2005) is
at once a functional specification of a comprehensive theory of language
acquisition and a reference for interpreting computational models of pro-
cesses that aim to investigate a specific part of this comprehensive theory.
PRIMIR starts from the observation that speech signals carry linguistic,
para-linguistic and extra-linguistic information. To acquire the native lan-
guage a child must pick up and organise the information in the signal along
a number of multidimensional interactive planes. The interactions between
the representations on these planes are implemented by three dynamic filters
that help to reorganise the representations during the acquisition process.
The lowest level in PRIMIR is the General Perceptual plane that represents
the raw speech signal and that forms the interface to higher-level planes that
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3.2. The present model

develop throughout language acquisition. On the higher planes the contin-
uously varying acoustic signals are reorganised into representations in the
form of discrete, symbolic units, such as phonemes, in short representations
that are similar to what linguists usually assume as basic units.

The immensely complex process of the onset of language acquisition has
not yet been described in detail and current theories are not taking into ac-
count most of the environmental conditions infants face. Therefore, there are
no comprehensive computational models simulating early language acquisi-
tion in realistic conditions. Almost all existing computational models related
to language acquisition have relatively modest goals: they aim to investigate
to what extent a specific learning strategy can succeed in distinguishing be-
tween the syllables, such as /bu/ and /gu/ (Polka et al., 2008), in associating
monosyllabic non-words (e.g., /lif/ or /neem/) with pictures of different ob-
jects (Werker et al., 1998; Apfelbaum & McMurray, 2011), or in segmenting
a syllable stream into a sequence of words (Saffran et al., 1996). Existing
models share an important characteristic: they all start from representations
that consist of discrete units, which may be symbols (words or phonemes),
or putatively sub-symbolic units such as phonetic feature vectors (that may
also be interpreted as richly-featured re-codings of phonemes). Thus, all ex-
isting models assume that there is a black box operating that can convert
speech signals (General Perceptual plane in PRIMIR) into sequences of the
type of units that the model assumes as input representations (Thiessen &
Pavlik, 2013). In practice, this means that the input for the model simula-
tions is usually hand-crafted. While it is already difficult enough to construct
discrete representations of clean speech, constructing credible discrete rep-
resentations from speech in noise is virtually impossible. Therefore, it is not
surprising that there are no computational models of infants’ language pro-
cessing in noisy speech.

Another feature that all existing computational models of language ac-
quisition have in common is that they learn from data and are thus based on
some form of statistical learning, or machine learning. There are many ways
to classify machine learning methods. Thiessen and Pavlik (2013) propose a
classification on the basis of the modelled task, such as segmenting a string
of symbols into units (called conditional learning) or classifying tokens (for
example vowel sounds) in a continuous space into discrete categories (called
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distributional learning). Another classification that is more commonly used
in the machine learning field is into unsupervised learning, supervised learn-
ing, and – in between the two – reinforcement learning. Infants learn by
trial and error; therefore, reinforcement learning is probably the most accu-
rate model of infant learning. Reinforcement learning requires some kind of
feedback from the environment about the effectiveness of an interpretation
of an acoustic signal. To simplify simulation experiments that feedback can
be made rather systematic, which then turns reinforcement learning into
supervised learning.

The most common approach to supervised learning is the one in which
the learning tokens are in a way multi-modal, in that they are represented
as tuples of physical features and a discrete label. The task of the model is
then to learn a classifier that can put newly observed tokens into the most
appropriate (or ‘correct’) category. In language acquisition this corresponds
to learning associations between a visual presentation and a sound pattern
(such as the spoken word “cookie” in the presence of an edible object). While
in real-world learning both the physical signal and the referent (label) can
be ambiguous, learning is faster and easier if the referent is unambiguous
(Gleitman, 1994; Smith, Yu, & Pereira, 2011; Pereira, Smith, & Yu, 2013).
Unambiguous referents also support learning with fewer tokens; and the
number of tokens an infant encounters in the first months of life is limited
(van de Weijer, 1998). For the simulations in this chapter we have taken
the short-cut of using unambiguous labels, so that we use strictly supervised
learning. Still, it has been shown that the model employed in the present
study can also learn when the feedback is not as systematic and error-free,
albeit at a slower pace (Versteegh, ten Bosch, & Boves, 2010).

Contrary to all other models of language acquisition, the model we pro-
pose simulates early language acquisition and is inspired by the General
Perceptual plane of PRIMIR, along with recent findings on infants’ abilities.
The model takes real speech, noise-free as well as noisy, as input, creates
sub-symbolic representations that can exist on the General Perceptual plane
and that can in turn be associated with labels that represent meaning, and
matches new input tokens with learned associations. One other model of
language acquisition that takes speech as input and links it to cross-modal
information is the Cross-channel Early Lexical Learning (CELL) model (Roy
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& Pentland, 2002), but CELL encodes the speech signal in the form of a lat-
tice of phone symbols, which requires knowledge about the phonemic system
of a language, knowledge that young infants are unlikely to have. Räsänen
(2011) presents a model of distributional learning that takes real speech as
input, but it aims to discover phone-like units in the speech stream alone,
and thus arguably performs a very different task compared to the present
model. Thus, there are few models that operate on real speech and no other
model that we are aware of can deal with noisy and variable input to in-
vestigate the impact of different experience on the robustness of internal
representations.

External Input
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put

InternalInternal 

Memory HAC-Vector
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Figure 3.1: The model in learning mode. Input is presented as speech-meaning
pair. After acoustic preprocessing, the memory is adapted to better accommodate
the new learning experience.
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3.2.2 Speech material

We first present the speech material that provided all auditory input to
the model in the present simulations. While it might seem more ecologi-
cally convincing to base simulations on real caregiver-infant interactions, for
instance by using the parts of CHILDES (Child language data exchange
system; MacWhinney, 2001) that contain audio recordings, simulating the
behaviour of an infant in a laboratory experiment requires more controlled
speech data. In addition, the available naturalistic recordings are not com-
parable to clean laboratory recordings and do not allow for complete con-
trol over the presence and level of background noise. Therefore, we used a
dedicated speech corpus for the simulations in this paper. This corpus was
recorded as part of the ACORNS (ACquisition Of Recognition and com-
municatioN Skills) project, labelled “Year 2" (Altosaar et al., 2010).15 The
recordings were made in a virtually noise-free environment and the speakers
were asked to speak as if they were addressing a young infant.

The corpus consists of short English sentences that contain keywords
embedded at various positions in various carrier sentences (e.g., “This is
a nice ... .”, “... looks at the big lion.”, “Where is the happy ... ?”). Each
sentence contains one keyword. We selected 15 words (‘animal’, ‘apple’, ‘ba-
nana’, ‘baby’, ‘bird’, ‘bottle’, ‘car’, ‘cat’, ‘cookie’, ‘daddy’, ‘dog’, ‘mummy’,
‘telephone’, ‘toy’, ‘truck’) as keywords for the simulations. The words were
chosen because the data from the MacArthur Communicative Development
Inventories (CDI; Dale & Fenson, 1996) suggest that infants growing up in
English-speaking countries are familiar with these words already in the first
year of their life. The corpus contains ten speakers (half of which are female),
labelled Speaker 01-10 in the corpus. Four of the ten speakers (two female)
produced a number of utterances that was large enough to provide a suffi-
cient amount of speech for learning and testing. One female speaker (Speaker
02 in the corpus) was selected as the ‘primary caregiver’, the speaker from
which the model receives all, or most, learning utterances. The other female
speaker was used as an unknown test speaker (Speaker 04 in the corpus). Of
the remaining eight speakers three males and three females were selected to
provide additional speech material in some of the experimental conditions.

In addition to the words that were used for learning, the corpus contains
similar sentences with unknown words. A subset of these sentences were
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used in the simulations that aimed to investigate the response of the model
to words that were not previously learned, so-called foils.

3.2.3 Input representations

3.2.3.1 Acoustic input

The model takes real acoustic signals as input; therefore, we need a simula-
tion of the auditory system that is as cognitively plausible as possible. From
the survey by Saffran et al. (2007) it can be concluded that infants’ auditory
processing system is very similar to the one of adults and that they perceive
acoustic signals in terms of their temporal and spectral properties with es-
sentially the same resolution as found in adults. The continuously changing
audio signal is divided into short overlapping slices of 20 ms, shifted in steps
of 10 ms, so that we obtain 100 spectral envelopes per second. For the spec-
trum we use a Mel-frequency resolution, which corresponds to the frequency
resolution in the human auditory system. We apply a cosine transform to the
Mel-spectra to obtain a representation in terms of Mel-frequency Cepstral
Coefficients (MFCC; Davis & Mermelstein, 1980). Because most informa-
tion in speech signals is present in dynamic changes over time, we add first
(speed) and second order (acceleration) differences, the so-called ∆ and ∆∆

coefficients, to the static MFCCs. This results in the representation of a
spectral slice in the form of a vector of 39 real numbers.16

The representations of acoustic signals in the brain are unlikely to retain
all the detail present in vectors of 39 real numbers. It is safe to assume that
some kind of clustering operation helps compressing the information, so that
spectral envelopes can be represented by the centroids of a small number of
clusters. This idea is supported by the fact that the tonotopical representa-
tions that are formed in the inner ear can also be found in the auditory cortex
(Skoe & Kraus, 2010; Moerel, De Martino, & Formisano, 2012). Therefore,
we employ vector quantisation17 to form 150 code book labels for spectral
envelopes and speed of change values, while the acceleration is quantised
in 100 code book labels. From a neuro-physiological perspective it seems
likely that the way in which spectral envelopes are clustered is determined
to a large extent by the wiring of the brain cells (Eichenbaum, 2011, section
IV.), which should be language-independent. This suggests that – at least
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in a first-order approximation – the vector quantisation labels are language-
independent. We experimented with sets of labels obtained from different
languages, and found no differences. For practical reasons we used the result
of vector quantisation on the speech of ten adult speakers of Dutch, who
read short sentences in a lively, adult-directed register. In our simulations
the vector quantisation was performed once, so that the clusters did not
adapt to optimise some form of speech processing. The criterion for forming
clusters was purely mathematical; it did not take into account the fact that
relatively small spectral differences in part of the acoustic space are more
important for distinguishing between words than larger differences in other
parts of the acoustic space. Presumably, infants adapt the clustering dur-
ing the first year of life, such that clusters are optimised for distinguishing
between relevant sound contrast in their native language (e.g., Perceptual
Magnet Effect; Kuhl, 2004). Such a learning vector quantisation (Kohonen,
1995) might explain the adaptation towards native sound categories. The
vector quantisation operation converts vectors of 39 real numbers into tu-
ples of three code book labels.

It has been shown that complex visible objects are neurally represented
as combinations of primitives, such as lines and colours (Wade & Swanston,
2012). Recent findings about cortical representation of audio signals (Skoe &
Kraus, 2010; Moerel et al., 2012) strongly suggests that a similar procedure
operates in auditory perception, which means that complex auditory stimuli
are represented as combinations of auditory primitives. We assume that these
auditory primitives consist of dynamic changes in the spectral envelope, and
that we can represent the primitives in the form of co-occurrences of the
tuples that encode the spectra at short time distances. Such co-occurrences,
which we will refer to as acoustic events, can be used to represent all audio
signals, be it speech, background noise, music, or a combination of multiple
sound sources. How meaningful auditory signals are composed of sequences of
acoustic events is one of the things that needs to be learned during language
acquisition. In the simulations in this chapter we use time distances of 20 and
50 ms between tuples. This allows us to represent the dynamic information
that is needed for distinguishing between speech sounds (Pols, Wang, & ten
Bosch, 1996).
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A spoken utterance, be it an isolated word, a phrase or a complete sen-
tence, is represented as an ordered sequence of spectral envelopes. It is not
completely clear how long and to what extent the detailed temporal order
can be represented at the cortical level. A string of acoustic events encodes
substantial detail about the dynamic changes in the signal; it may be that
the exact temporal order of the events is not essential for a global under-
standing of the meaning of an utterance. Although metaphors are always
dangerous, it is interesting to note that for the purpose of information re-
trieval or automatic question answering surprisingly little information is lost
if a text is represented as a bag of words (Verberne, Boves, Oostdijk, & Cop-
pen, 2010). Versteegh and ten Bosch (2013) showed that a bag of acoustic
events contains sufficient detail to detect words.

It has been suggested that six-month-olds can detect utterance bound-
aries (Gout, Christophe, & Morgan, 2004; Johnson & Seidl, 2008). There-
fore, it is cognitively defendable to represent complete utterances as bags
of acoustic events: counts of the number of times that each of the acous-
tic events occurs in the utterance. This representation is also known as a
Histogram of Acoustic Co-occurrences (HAC; Van hamme, 2008). Since all
150 + 150 + 100 code book labels may co-occur with all other labels at
20 and 50 ms intervals, HAC representations are vectors with a length of
(1502 +1502 +1002)∗2 = 110, 000. Because a one second duration utterance
yields 100 acoustic events, HAC vectors are extremely sparse. An important
advantage of the HAC representation is that it converts utterances of arbi-
trary durations into a fixed-length vector (again reminiscent of vector space
representations of text in information retrieval).

3.2.3.2 Meaning representation

We use a supervised learning approach. For that purpose we assign a unique
and unambiguous label to each utterance in the acoustic material that we
will use for learning. All utterances in the simulations are simple sentences,
and each sentence contains one of 15 different keywords. In behavioural terms
the model will need to learn that a sentence is about a cat, about mummy,
or about the telephone (chosen from the set of words that infants appear to
acquire in the first 12 months; Dale & Fenson, 1996). In many constrained
communication contexts this is probably sufficient to understand the gist
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of an utterance. The use of complete sentences, instead of isolated words, is
motivated by the observation that infants typically are exposed to multi-word
utterances (van de Weijer, 1998). Technically, the keyword is represented by
extending the acoustic HAC vectors with a number of entries equal to the
number of acoustic-meaning correspondences that must be learned. Each
element of the extension corresponds to a single keyword; if the keyword is
present in the sentence this entry is set to one; otherwise this entry is set to
zero (see figure 3.1).

3.2.4 Learning

Infants learn from experience, which consists of processing acoustic signals
that are perceived in some context. As mentioned above, we assume that
complex perceptual phenomena are represented as a sum of the represen-
tations of primitives. We also assume that the primitives are not innate;
rather, they must be learned from processing meaningful input. Simultane-
ously learning a set of primitives and the way in which meaningful complex
percepts can be decomposed into the primitives might seem to be more diffi-
cult than learning how to decompose complex phenomena as a combination
of pre-defined primitives. However, experience in machine learning shows
that this is not the case. Research in machine learning has shown that learn-
ing is compromised if pre-defined primitives do not match very well with the
actual physical structure of the phenomena that we perceive and must learn
to understand. This is an argument against the assumptions that infants are
born with an innate set of primitives for all possible percepts in all senses.

There is mounting evidence that sensory inputs are represented in the
brain as sparse vectors in a very high-dimensional space (e.g., Olshausen
& Field, 2004; Ness, Walters, & Lyon, 2012). HAC vectors are an example
of such a representation. For sparse representations there are several meth-
ods that can be used for simultaneously learning primitives and the way
in which complex phenomena are constructed as a sum of the primitives.
In our model we chose Non-Negative Matrix Factorization (NMF; Lee &
Seung, 1999) as a computational analogue of a cognitive process that up-
dates and modifies internal memory representations based on the experience
with presented stimuli. First of all, NMF explicitly refers to the assumption
that complex physical phenomena are represented as a sum of primitives.
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And while NMF was originally developed as a batch learning procedure,
a procedure that must repeatedly go over a large database of learning to-
kens, Driesen et al. (2009) developed a version of NMF that can be used
for incremental and causal learning. Therefore, our model encounters each
utterance in the database of learning materials exactly once, and the inter-
nal representations of the model, that is the primitives and consequently the
way in which specific complex phenomena are represented as a sum of the
primitives, is updated after each training utterance.

HAC vectors are also reminiscent of distributed representations: the counts
in a vector can be interpreted as connection strength between cells in the
brain. The fact that our HAC vectors are composed of two sub-vectors can
be interpreted as representing connections between quite different regions
in the brain. In this light, it is interesting that NMF learning applied to
HAC vectors can be linked to the type of learning that is going on in multi-
layer perceptrons (Van hamme, 2011). Having said this, it must be added
that the representations that are formed by NMF learning applied to HAC
vectors cannot be equated to nodes in a neural network. For this reason it
is premature to speculate about possible relations between the distributed
representations in our model and the distributed cohort model proposed by
Gaskell and Marslen-Wilson (1997) that uses a recurrent neural network to
learn associations between phonetic features, phonemes and words.

While NMF will learn the primitives and the composition of complex
phenomena as sums of these primitives, the algorithms for NMF learning that
are available do not allow to learn how many primitives are necessary from
the data. Therefore, the number of primitives must be specified in advance.
It is our experience that this number is not a very important parameter,
as long as it is sufficiently larger (four to five times) than the number of
acoustic-keyword associations that must be learned. Increasing the number
of potential primitives has only marginal effects on the eventual outcome of
a learning process. In the simulations for this chapter the model needed to
learn associations between acoustic signals and 15 keywords. We settled for
a model with 70 primitives, which is close to the lower bound of necessary
primitives. Thus, the memory in figures 3.1 and 3.2 contains 70 slots. When a
learning process starts, the contents of the memory are initialised with small
random positive numbers. After processing an utterance from the learning
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material, all numbers are updated. The amount of each update depends
on the contribution of the particular memory entry to accommodating new
learning material within the complete memory (Lee & Seung, 1999). To avoid
overly strong adaptation to the last learning stimulus, the size of adaptations
is limited. However, it is important to say that each additional learning epoch
can affect all primitives, not only those that are most strongly associated to
the keyword in the input sentence.

In the simulations in this chapter the model learns a single representation
for a keyword. This is enforced by the fact that all sentences that contain a
specific keyword have the exact same visual label in the training material,
irrespective of the carrier sentence or the speaker who produced the sentence.
This implies that the representations for a keyword must accommodate all
the variation that is present in the learning material, be it due to the phonetic
and prosodic context, the position of a word in a sentence, the amount of
stress put on the word, and so on. This allows us to investigate the impact
of the amount of variation in the learning material on the resilience of the
representations that are being learned against noise in the input signals.

While we believe that the learning processes and the representations in
our model are compatible with current knowledge about and interpretation of
findings in neurocognitive research, we do not suggest that the human brain
performs non-negative matrix factorisation, similar to the way in which the
process is implemented in our algorithms. Neither do we claim that spoken
utterances are always encoded in the form of HAC vectors. We believe, how-
ever, that representations in the form of acoustic events are likely to be close
to what actually happens in the brain, albeit that the number of clusters
and the optimal form of the clusters are likely to evolve during the first year
of the life of an infant (Kohonen, 1995). Having said this, we do believe that
our model is a credible proposal for the processes that take place during
early language acquisition (General Perceptual plane in PRIMIR, Werker &
Curtin, 2005). Importantly, neither the way in which the acoustic represen-
tations in the form of HAC vectors are formed nor the NMF procedure for
learning primitives implements acoustic stream segregation.
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3.2.5 Matching & recognition

In test mode, depicted in figure 3.2, the representations in the internal mem-
ory cannot adapt. The model only hears the acoustic signal of an utterance
(represented as a HAC vector) without the additional meaning information.
The NMF algorithm described in the previous section is used to find the
weights of the acoustic parts of the 70 primitives in the memory that opti-
mally reconstruct the HAC vector of the test utterance. The same weights
are then applied to the meaning part of the 70 primitives in the memory.
This results in activations for all 15 keywords that are being learned. These
activations are a measure of the likelihood that the test utterance contains
the corresponding keyword. The activation of the presented keyword in the
sentence will be larger than the activations of competing words if the model
has successfully learned the associations between the acoustic representa-
tions and the keywords. For all test sentences, the (normalised) activations
are recorded.

Behaviour in experiments with infants is often measured in the form
of listening preferences. When infants listen longer (or shorter) to words
that they are assumed to know than to unknown words, the difference is
attributed to different perceptual and cognitive processing. What precisely
drives the overt, measurable behaviour of infants who participate in speech
perception studies is unclear (Aslin, 2007). The usual interpretation of lis-
tening preferences is that infants recognise the known stimulus (Newman,
2005, 2009; Newman et al., 2013), and it is suggested that recognition is
equivalent to what we mean if we say that an adult recognises or under-
stands a spoken utterance. Especially in experiments in which infants are
familiarised with a small number of words, and then tested with familiar or
novel words, it is not clear whether an interpretation of the behaviour in
terms reminiscent of adult behaviour is warranted. It is quite possible that
observable behaviour in this situation is based on some form of matching of
acoustic representations that do not have any link to meaning representa-
tions. In concrete terms: if an infant is familiarised with words such as /cup/
and hears passages during the test that contain the familiarised word /cup/
or the unknown word /dog/, behavioural responses leave open whether this
infant recognised the word form /cup/, or whether the behaviour is based
on a match with an uninterpreted acoustic pattern (see chapter 2).
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Figure 3.2: The model in test mode. Input (top left) is presented without meaning
information, which has to be reconstructed using the fixed internal memory. The
resulting activations are transformed into listening preferences.

In our simulations we implemented both the matching and the recogni-
tion interpretations of the perceptual and cognitive processes that are as-
sumed to drive observable behaviour. For both interpretations we derive a
measure of listening preference for known words versus foils from the activa-
tions of the primitives. In the matching interpretation listening preference is
based on the difference between the highest activation for a known word and
the highest activation for a foil, irrespective of the keyword with which the
primitive with the highest activation is associated. In the recognition inter-
pretation the listening preference is based on the activation of the primitives
that are associated with a specific target word. The activation is measured
both when the word is actually present in the test sentence and when foils
are used for testing.
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Listening preference is the behavioural manifestation of putative differ-
ences in perceptual and cognitive processing of test sentences. Most authors
seem to assume that the behavioural manifestation is a direct measure of
the differences in internal processing. Chapter 2 demonstrated that this as-
sumption is debatable; the conversion of the result of the processing of the
speech stimuli into observable behaviour is not completely deterministic. For
the purpose of the simulations in this chapter we can safely ignore this ad-
ditional source of variation between infants and between test stimuli within
an infant. However, it should be clear that ignoring this source of variation
may lead to over-estimating the level of statistical significance of differences
in listening preference. It should also be mentioned that differences between
infants in the way in which they make internal processing manifest may ex-
plain part of the variation between infants in experiments with noisy speech
that has been addressed in section 3.1.

3.2.6 Design of the simulation experiments

The design of the simulation experiments is inspired by the experiments
conducted by Newman and her colleagues (Newman et al., 2013; Newman,
2005, 2009) in which infants were tested to see if they could recognise their
name when it was spoken repeatedly in the presence of a competing sound
source. In the experiments Newman and her colleagues aimed to investigate
the robustness of representations that infants have formed ‘in the wild’, be-
fore they come to the laboratory and the name, as one of the most frequent
words that infants react to very early in noise-free speech (Mandel et al.,
1995) is a word that most infants will recognise. In a computational simu-
lation experiment it is not possible to reproduce the pre-lab-visit learning
faithfully. However, it is possible to manipulate the two factors that are likely
to have the largest impact on the internal representations of words, namely
the number of times infants have heard the target word spoken, and whether
or not multiple speakers spoke the target word. It is also possible to inves-
tigate the impact of the familiarity with the speaker who recorded the test
utterances. Manipulating the SNR is (deceptively) easy. It is also possible
to investigate the impact of different words, but it should be noted that is
not in focus here and thus we limit the present experiments to three words.
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Finally, in a model it is possible to implement matching and recognition. In
summary, the simulation experiments investigate six main factors:

1. learning condition (3 levels: equal number of occurrences of all key-
words (Baseline), additional occurrences of keywords spoken by the
primary caregiver (Increased Frequency), additional occurrences of
keywords spoken by other speakers (Multiple Voices));

2. noise level in the test (3 levels: noise-free, 10 dB SNR, 5 dB SNR);
3. test speaker (2 levels: known and unknown);
4. singled-out word (3 levels: ‘cat’, ‘mummy’, and ‘banana’);
5. sampling point of an observation within an experiment (10 levels, cor-

responding to 10 subsequent measurement points during learning);
6. behavioural measure (2 levels: matching and recognition).

The most important issue that we want to address in the simulations is
the robustness of the internal representations that are the result of different
ecologically realistic learning conditions. Therefore, we must decide which
learning conditions to simulate. Ideally, one would want to experiment with
learning in noisy environments. However, in section 3.1 we have already
alluded to the fact that noise is a very complex issue: it can be a single
competing speaker, many persons speaking at the same time, stationary or
non-stationary non-speech noise, covering frequency bands that do or do
not overlap with the frequency band that is relevant for speech. Last but
not least, the signal-to-noise ratio must be controlled. To make simulation
experiments feasible, we decided to restrict the learning conditions to two
factors: the frequency of a singled-out word and whether it was spoken by
one or multiple speakers in a noise-free environment, and only add noise to
the stimuli during the test.

In the simulations in this chapter we used multi-talker babble noise.18

We produced test stimuli with SNRs of 10 dB and 5 dB, similar to the
SNR values used in Newman’s experiments (Newman, 2005, 2009; Newman
et al., 2013). To be able to determine the effect of the added noise, we
also measured the performance of the model with clean (noise-free) versions
of the test sentences. The noisy test stimuli were produced by adding the
babble noise to the clean speech recordings. The SNR was determined by
computing the average Root-Mean-Square power of each of the sentences
in the test material, scaling the amplitude of a noise signal of the same
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duration as the speech signal such that its average Root-Mean-Square power
was 10 or 5 dB lower than the speech power, and then adding the two signals.
Short-time power variations in the speech signals are much larger than the
short-time variation in the babble noise. Therefore, the resulting local SNR
in the louder intervals in the speech signals will be larger than the average
value, while the softer intervals will have a lower local SNR.

Table 3.1: Overview of learning conditions. The first column denotes the exper-
iment, the second the number of word tokens the learner heard at the point of
testing, the third column shows the overall number of utterances the learner max-
imally heard for all keywords, the fourth shows the number of speakers observed
during learning.

Experiment Word Token # Total Speakers
1. Baseline 21 to 30 450 1: Primary Caregiver
2. Increased Freq. 42 to 60 480 1: Primary Caregiver
3. Variability 21 to 30 480 7: Primary Caregiver

Multiple Voices 21 to 30 plus six Speakers

To let the model learn a lexicon of 15 acoustic-meaning associations, we
constructed a baseline corpus of 450 sentences (see table 3.1). In the baseline
corpus 30 utterances are available for each of the 15 keywords to be learned.
These utterances are ordered such that every keyword occurs exactly once
before a new block of 15 utterances begins. For the remaining experiments,
the baseline corpus is extended by adding 30 additional utterances containing
one of three singled-out keywords, namely ‘cat’, ‘mummy’ and ‘banana’. We
chose to investigate three words in a fixed corpus of 15 words in total to
not depend on incidental effects that are due to a specific word. However,
the present study does not focus on the role of specific words in the type of
experiments reported here. A careful investigation would require experiments
with many more words, different lexicon sizes, and ideally also using speech
material from multiple languages. Such an investigation could examine the
importance of specific words, of word-combinations in the lexicon, and of
language systems that differ on levels which are likely to influence speech
processing, including acoustics, phonetics, and phonotactics. To limit the
scope of this paper, research into the role of specific words and languages
must be subject to future work.
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To simulate increased frequency of a singled-out keyword spoken by the
primary caregiver, the extended corpus for that word contains additional
utterances with this word spoken by the same speaker as in the baseline
corpus. To model the presence of multiple voices the corpus is augmented by
inserting 30 additional utterances containing the singled-out keyword spoken
by six different speakers (five utterances from each of the six additional
speakers labelled Speaker 05-10 in the corpus, of which three were female).
For both sets of extended corpora, the additional utterances are inserted into
the baseline corpus in such a way that each block of 15 utterances is extended
by an additional utterance, positioned such that a word never occurs in two
subsequent utterances. Each block now contains 16 utterances, two for the
singled-out word, and one for the other 14 keywords.

The test corpora consist of sentences that contain either one of the
singled-out words or a matched foil. The concept of matched foil is taken
from the design of Newman’s experiments (Newman, 2005, 2009), who tested
infants who listened to their own name, or to other names with a similar pho-
netic structure (matching number of syllables for all foils and stress pattern
for one). In our experiments we selected foils from the part of the ACORNS
corpus that was not used for learning. The word ‘cat’ was matched with
the words ‘ball’, ‘cow’, and ‘red’; ‘mummy’ was matched with the words
‘woman’, ‘robin’, and ‘airplane’; ‘banana’ was matched with the words ‘ed-
ible’, ‘robin’, and ‘airplane’. Obviously, the matches for ‘banana’ are rather
poor in terms of number of syllables and stress pattern, but the ACORNS
corpus was not designed with the experiments presented in this chapter in
mind, so that better matches were not available. The ‘robin’ and ‘airplane’
sentences used in the test with ‘mummy’ were the same as the sentences
used in the tests with ‘banana’.

Two test corpora were created, one with 20 sentences for the singled-out
keyword and 20 sentences with each of the three foils for that word, spoken
by the same female speaker who produced the learning corpus. A second test
corpus contained the same sentences as in the first corpus, but spoken by a
second female speaker. This speaker is also different from the three female
speakers who contributed utterances to the extended learning corpus. Using
the first test corpus corresponds to a situation in which infants listen to
words spoken by their primary caregiver; using the second corpus simulates
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the situation in which infants hear speech produced by an unknown speaker
(the test situation in many experimental studies).

During testing, the model listens to the 20 sentences for the singled-out
keyword and to the three sets of 20 sentences that contain one of the foils.
For example, when the representation of ‘banana’ is tested, the model hears
the 20 test sentences that contain the word ‘banana’, 20 sentences with the
foil ‘edible’, and so forth. For each of the three keywords a single listening
preference is computed. For that purpose we sum of the activations for the
20 test sentences containing ‘banana’ and for each of the three sets of 20
foils. Then, the average of the activations for the utterances with foils is
subtracted from the activations of the utterances with ‘banana’. The same
procedure is used when computing listening preferences based on matching
or on recognition. Collapsing all test sentences in a single preference mea-
sure ignores the variation between the activations resulting from individual
sentences, which we consider as random (Newman, 2005).

Finally, the test procedure is repeated ten times for each of the three
words, first with the model that learned from 21 blocks of utterances, then
for the model that learned from 22 blocks, and so forth. This procedure
yields ten listening preference scores per word in each experiment. The ten
measurement points represent yet another manipulation of the number of
tokens of a singled-out word that infants have encountered prior to a test.

3.3 Results

In the simulation experiments six fixed factors are relevant. While it would
have been possible to analyse the results of the simulations with a single
linear model, we find it more insight-lending to present the results from
four models obtained using different parts of the data. For that purpose,
we built different models for the two cognitive processes that might drive
listening preference, matching and recognition. It is generally not advisable
to compare different measurements in one linear model. For both matching
and recognition we built models for the known and for the unknown test
speaker, since this change in test speaker was expected to lead to an over-
all lower performance (Bergmann, Gubian, & Boves, 2010). The models are
summarised in tables in section 3.4, describing the linear model built based
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on our expectations that the experimental manipulations during learning
(frequency and the presence of between-speaker variability) interact with
the test condition (noise level) and that the two factors sampling point and
the singled-out word introduce variation independent of the targeted manip-
ulations (see also section 3.2.6). Here, we confine ourselves to a verbal and
visual presentation of the results.

It appeared that the factor sampling point, the point at which the model’s
performance was probed with test items, was almost never significant.19

Therefore, we will not discuss this factor in what follows. Rather, all pre-
sentations are based on the average values of the listening preferences in the
ten measurement points.

In experiments with infants it is not possible to access the internal repre-
sentations for a detailed analysis. In a computational model these representa-
tions are accessible. Therefore, we complement the analysis of the simulated
behavioural measures, listening preferences, with an in-depth analysis of the
internal representations in the different learning scenarios (see table 3.1).

3.3.1 Simulated listening preferences

3.3.1.1 Known test speaker

We first present the results for the known speaker which are summarised
in figure 3.3. The left hand panel shows the results for listening preferences
based on matching; the right hand panel shows the same results for recog-
nition. Both panels contain three sets of listening preference measures, from
left to right: the baseline condition, the increased frequency condition and
the multiple speakers condition. Each set, in its turn, contains the results
for (from left to right) tests in clean speech, 10 dB and 5 dB SNR. The
three bars represent the listening preference averaged over the three words.
For the corresponding numeric values, see tables 3.6 and 3.7 in section 3.4.
While overall the patterns in the left hand and right hand panels are similar,
it is obvious that the simulated listening preferences are much larger when
they are based on recognition in comparison to matching.

In the baseline condition, where the three words occur equally often in the
learning material as the other words, there is only a clear listening preference
based on matching in clean speech. In 10 dB SNR there is still a small
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listening preference, especially for the words ‘mummy’ and ‘banana’; in 5 dB
SNR this only holds for ‘banana’. In the increased frequency condition we see
substantially larger listening preferences compared to the baseline and these
preferences remain even in 5 dB SNR. In the multiple speaker condition we
see a decrease of the listening preference in comparison to the baseline. In
10 dB and 5 dB SNR only the word ‘banana’ shows a preference based on
matching.

When listening preferences are computed based on recognition we also
see larger values in the increased frequency condition and a smaller listening
preference in the multiple speakers condition, but the relative differences are
smaller than what we have seen in the results based on matching. Preferences
always decrease with decreasing SNR, but they stay well above zero in all
cases.
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Figure 3.3: Simulated listening preferences for experiments 1, 2, and 3 where
the test speaker is known. The two different assessment criteria, general matching-
based preference of target word over foils and word recognition-based preference
are depicted separately. In all panels and for each experiment the left bar depicts
listening preferences without added noise, the middle bar corresponds to 10 dB
SNR and the right bar to 5 dB SNR. Error bars indicate 1 SD over all tests.

Discussion The finding that the listening preferences are always larger
based on recognition compared to matching is easy to explain. When com-
puting the recognition listening preferences we only look at the activation for
one specific target word. Chances that this activation value is large when the
test sentence contains that word, and that the activation value is small(er)
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when that word is not contained in the test sentence are high. This situation
is different for matching. In this case, any word can obtain a large activation
value, irrespective of the contents of the test sentence. It may happen that
a test sentence with an unknown keyword causes a larger activation of an
arbitrary word than a test sentence that contains one of the three singled-out
words.

The finding that introducing six additional speakers in the learning ma-
terial affects the listening preference values when testing with the primary
caregiver can be explained as follows: learning from other speakers will intro-
duce data in the internal representations that are at best irrelevant for pro-
cessing speech of the primary caregiver, but that may be harmful. Indeed, the
results show that the variation introduced by the additional speakers lowers
performance for the primary caregiver, both for matching and recognition.

Adding babble noise had the expected detrimental effect on listening
preference. This too is easy to explain. The added noise affects the HAC
representations of the test sentences in ways that are difficult to predict,
but that are likely to decrease the match with the representations that were
based on clean speech. The impact of the added noise is stronger in 5 dB
than in 10 dB SNR.

It is less clear why ‘cat’ performed worse than ‘banana’. The outstanding
performance of ‘banana’ may be related to the fact that it is a long word,
meaning that it corresponds to a relatively large number of entries in the
HAC vector. However, it should also be remembered that the foils for ‘ba-
nana’ were not very close matches. The weak performance of ‘cat’ may be
due to the short duration of that word, in combination with possible overlap
in acoustic features between ‘cat’ and other words in the carrier sentences.
Future work will have to explore this issue in an in-depth investigation on
the role of specific words.

3.3.1.2 Unknown test speaker

It might be suggested that the results of the simulations with the known
speaker in the test overestimate the robustness of the representations that
resulted from the learning, because infants in experiments usually listen to
speech produced by an unknown speaker. To investigate the robustness of
the representations learned in the baseline, increased frequency, and multiple
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speaker conditions when testing with speech of an unknown speaker, we
computed listening preferences with the exact same sentences as used in the
experiments described above, but spoken by a different female speaker. The
results of these simulations are summarised in figure 3.4;20 the corresponding
numerical values and linear models can be found in tables in section 3.4.
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Figure 3.4: Simulated listening preferences for experiments 4, 5, and 6 where the
test speaker is unknown. The two different assessment criteria, general matching-
based preference of target word over foils and word recognition-based preference,
are depicted separately. In all panels and for each experiment the left bar depicts
listening preferences without added noise, the middle bar corresponds to 10 dB
SNR and the right bar to 5 dB SNR. Error bars indicate 1 SD over all tests.

As could be expected, the listening preferences with the unknown speaker
are overall smaller than with the known speaker. The internal representations
are the same as in the tests with the known speaker, since they stem from
the same model and were exposed to the same learning material. The only
difference is that now the test material is produced by an unknown female
speaker. All changes in listening preferences must therefore be due to the fact
that the test material now matches less with the representations that were
learned from the speech of other speakers. Although the difference is much
smaller than for the known test speaker, the listening preferences obtained
with recognition are larger than with matching. When the results are based
on matching (left panel) the baseline condition, in which all words were
presented equally often, did not show an overall listening preference for the
known words over the foils. Only ‘banana’ seems to generate a slightly higher
preference in noise-free test sentences and at a noise-level of 10 dB SNR. The
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effect of the added noise is small for this word (if it is present at all).
In the increased frequency and multiple speaker conditions the detrimen-

tal effect of the added babble noise is evident: listening preferences in 10 dB
SNR are lower than with clean speech, and in 5 dB SNR the preferences
are even lower. However, it is also clear that the effect of the noise is much
smaller than with the known test speaker. This finding can be interpreted
in two ways: either the effect of the noise on the listening preference for the
known speaker is exaggerated, because every manipulation of the speech of
the known speaker should result in a worse match with her speech in the
test. Or the finding shows that the representations of the three singled-out
words are fairly robust since they are adequate for an unknown speaker, and
only weakly affected by the added noise.

In the test with the unknown speaker the effect of adding additional
learning tokens from the primary caregiver is the same as of adding addi-
tional tokens from six other speakers. Both conditions increase the relative
amount of learning material for the singled-out words. Still, it is reasonable
to assume that the amount of variation contributed by the additional tokens
of the primary caregiver is smaller than the variation added by the six other
speakers. The additional variation contributed by multiple speakers does not
increase the listening preference with the unknown speaker. This suggests
that adding variation to the learning material is not very effective if it does
not correspond to the idiosyncratic properties of the test speaker.

The most striking difference between matching and recognition with the
unknown speaker is in the baseline condition. Apparently, the representations
of the singled-out words – and by implication the representations of all words
– are already sufficiently powerful and robust against speaker change after
processing 21 to 30 learning tokens per word to distinguish sentences that
contain a target word from sentences that contain foils.

3.3.2 Inspecting internal representations

From the behavioural experiments, as reviewed in section 3.1, it is clear
that hearing a word spoken by the same or by different speakers has an
effect on the way in which test stimuli are processed. It also appeared that
different tests yielded different estimates of the robustness of infants’ internal
representations. Thus, different behavioural measures of the robustness of
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the same representations may yield different outcomes. This makes it all the
more important to understand the characteristics of the representations.

In our experiments we singled out three words (‘cat’, ‘mummy’ and ‘ba-
nana’) by adding additional tokens of these words for learning. In a specific
simulation run only one of those words was treated differently; in that run
the remaining two words were treated in the same way as the 12 remain-
ing keywords that are not singled out. The treatment of the target word
included adding additional learning tokens; however, the learning procedure
proper was not aware of the presence of singled-out words. All primitives in
the internal memory are updated after each learning stimulus. Therefore, at
each learning epoch the representations of all 15 words are updated. This
complicates the analysis of the internal representations. However, it should
be added that it is quite likely that infants in the first stages of language
acquisition act similarly: until the stage is reached where it is possible to
decide that a new experience cannot possibly relate to some of the words in
the emerging mental lexicon, so that the representations of those words can
be protected against updates, all representations will be updated to some
extent all the time.

We analysed the evolution of single word representations during the learn-
ing process, as well as the complete set of representations at the end of the
learning process. For that purpose we stored the complete content of the
internal memory after processing each individual learning sentence. Since
there is not a unique association between a slot in the memory and a word,
we first created 15 internal representations by means of a weighted sum of
the acoustic HAC vectors, using the score in the meaning-encoding part of
the vectors in each of the 70 slots as the weight. We computed the 15 × 15

symmetric distance matrix between these representations. The average value
of the distance of a word to the 14 other words was taken as the measure
of the degree to which the representation of that word is different from the
representations of all other words. We assume that larger differences would
imply more robustness. For the acoustic part we used the mean of the pair-
wise symmetrised Kullback-Leibler divergence between the representation of
one word and all other words. For the meaning encoding part of the slots we
used the Euclidean distance.
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Plots of the average distance of each word to all other words after each
learning epoch showed that these distances keep increasing until the very
last epoch. This is perhaps surprising, given the behavioural finding that
listening preference does not change significantly during the last 10 blocks of
learning stimuli. It could also be seen that the distance for a word got a boost
immediately after a learning sentence that included that word, but already
the next learning sentence took away most of the boosting effect. It could
also be seen that the average distance to all competing words was not larger
for the singled-out word than for the other words. This is a first indication
that robustness of a representation does not correspond in a simple way
to some objective distance between that representation and the competing
representations.

The average distance between one word and 14 other words does not pro-
vide insight into the overall structure of the representations in the internal
memory. For this purpose we computed the symmetrical 15 × 15 distance
matrix after all learning sentences had been processed. We then projected
the distances onto a two-dimensional plane using Multi-dimensional Scaling
(e.g., Borg, Groenen, &Mair, 2013). The analysis of the stress values, indicat-
ing how well the projection reflects the original data, showed that in all cases
a two-dimensional representation was adequate. For each of the three words
it appeared that the location of the representations in the two-dimensional
space was clearly different for the baseline condition, the increased frequency
condition and the multiple speaker condition. However, again no clear pat-
tern emerged that would suggest that the representation of the word in the
increased frequency and multiple speaker conditions was moved to a marginal
position in the space, where the distance to the representations of the other
words was very large.

We could have defined other distance measures in the high-dimensional
space in which the HAC vectors live. The results of Versteegh and ten Bosch
(2013) suggest that it should be possible to find a linear separation between
the representations, and then it might appear that the distance to the op-
timal separating hyperplane is larger for the singled-out words than for the
other words. However, we believe that the seeming discrepancy between the
behavioural finding that the representations of the singled-out words become
more robust and the failure of the analysis of the representations to show
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larger distances brings to light the fact that, inevitably, the results of a be-
havioural measure do not only depend on the representations, but also –
and possibly even more – on the characteristics of the stimuli that are used
to probe the representations. The differences between the tests of the exact
same representations with speech from the known and the unknown speaker
in the present experiment demonstrate this effect. To clarify this, consider
a very different task, in which representations must be learned of objects
that differ in size, colour and shape. Irrespective of the distance between the
representations, if these would be tested with stimuli that happen to differ
more in shape than in size or colour, the behavioural estimate of the distance
between the representations would be dominated by their shape dimension,
and large distances along the two other dimensions would remain almost
invisible.

3.4 General discussion

We employed a computational model to investigate the impact of background
noise on infants’ speech processing during early language acquisition. In the
introduction, we argued that the results of virtually all published laboratory
experiments cannot be explained by invoking auditory stream segregation,
mainly because the two most powerful mechanisms in stream segregation
(directional hearing and the face of the speaker) are not available to the
infants in most experiments (e.g., Newman, 2005; B. A. Barker & Newman,
2004; but see Hollich, Newman, & Jusczyk, 2005). In addition, we explicitly
aim to model the processes that take place during early language acquisition
(Werker & Curtin, 2005). In our simulations we focused on two issues. The
first issue is related to the question whether internal representations of some
words become more robust compared to others as more tokens of that word
are processed and whether there is a difference if the additional tokens are
provided by the primary caregiver or by other speakers. The second issue
addresses the cognitive processes which underlie the behaviours displayed
by infants in listening preference experiments: are these processes similar to
what is called recognition in adults, or is it more accurate to assume some
form of acoustic matching (Newman, 2009; Aslin, 2007)?
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Our computational model takes real speech as input. The way in which
the speech signals are represented (sparse vectors in a very high-dimensional
space) and the way in which associations are learned between acoustic and
meaning representations (by means of sparse coding, implemented by means
of Non-negative Matrix Factorisation) are strongly supported by recent find-
ings in neurobiology and neurocognition (e.g., Olshausen & Field, 2004; Ness
et al., 2012; Wade & Swanston, 2012). Importantly, the model allows for both
a matching and a recognition interpretation during a test. The stimuli for
learning and for testing consisted of short sentences. Neither during learning,
nor during processing in a test an attempt was made to segment words from
the sentences.

The results of the simulations in this chapter showed that it is possible
to distinguish between test sentences that contain a known word and test
sentences that contain unknown words (foils) in most test conditions. An
important implication of this finding, that to our knowledge is seldom dis-
cussed in the literature on language acquisition, is that infants might react
appropriately to spoken utterances well before they are able to perform lin-
guistic operations on the speech signal, such as segmenting it and identifying
words (see also chapter 2). This skill would make for a powerful scaffolding
structure to bootstrap into language and acquire more abstract, symbolic
representations. Equally important, the distinctions between sentences con-
taining known and those containing unknown words could be made without
applying any form of stream segregation to deal with noise during the test,
which suggests that infants do not need to crucially rely on segregation capa-
bilities that might be beyond their means during early language acquisition.
Interestingly, there was a systematic difference between the matching and
the recognition interpretation of the perceptual and cognitive processing un-
derlying the observable behaviour (the simulated listening preference). With
the recognition interpretation the listening preferences that we found in tests
with 10 dB and 5 dB SNR seem to exceed the abilities shown by young in-
fants in laboratory experiments (Newman, 2005; B. A. Barker & Newman,
2004). This suggests that at least part of the behaviour observed in these
experiments could be attributed to general acoustic matching, rather than
to recognition of the meaning of specific test stimuli.
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To disentangle whether infants perform a form of specific word recog-
nition or general acoustic matching to all known words, we suggest to ma-
nipulate not the target word but the foils. When infants have to recognise
a target word, such as their own name or a word that has previously been
familiarised, the distracting non-target words can be manipulated in their
similarity to other known words, such as “mommy”. We expect that if a
general match to a known word is sufficient to generate the behaviour of
interest, preferences decrease when the foils behave more like known words.
However, recognition of a specific word that is under investigation should
not be hampered by such an experimental manipulation.

Our simulations showed that hearing more tokens of a word helps in
distinguishing that word from foils. In the tests with the known speaker it
appeared that hearing the additional tokens spoken by unknown speakers
has a negative effect on the discriminability. In the tests with the unknown
speaker there was no difference between the effect of additional tokens from
the same or from other speakers. This suggests that while variation in the
learning material is relevant, the effect of the variation on some behavioural
measure is not straightforward.

Detailed analyses of the evolution of the internal representations during
the learning process revealed that these representations keep changing even
after the moment when an apparent ceiling in behavioural ‘accuracy’ has
been reached. In addition, these analyses showed that additional learning
tokens of one word did not move the representation of that word away from
all competing words. Combined with the finding that the exact same rep-
resentations yielded different listening preference results when tested with
the known and the unknown speaker, these findings strongly suggest that
extreme caution should be exercised in interpreting observed behaviour in
infant experiments as reliable indicators of the properties of internal repre-
sentations of words. Quite likely, these behaviours are as strongly determined
by the characteristics of the test stimuli as by the internal representations.
An important consequence of this is that it is extremely difficult, if not sim-
ply impossible, to compare the results of various infant experiments if these
are based on the use of different stimuli. This underlines the importance
of making the stimuli used in infant experiments available to the research
community.
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In the present work only three words from a fixed lexicon of 15 words
were investigated as singled-out words. As both the results based on simu-
lated listening preferences and the inspection of the internal representations
showed, both the singled-out word and the overall lexicon can influence out-
comes. A detailed investigation requires the use of multiple words, different
lexicon sizes and word combinations, and ideally also the use of multiple
languages to avoid a bias towards one linguistic system. We expect that the
overall results presented here can be replicated, but it is premature to specu-
late about the origin of the differences between the shortest word, ‘cat’, and
the longest word, ‘banana’.

This first attempt to simulate speech processing in noisy conditions has
many limitations that need to be addressed in future research. Although the
representation of speech spectra in the form of Mel-Frequency Cepstral Co-
efficients makes it possible to distinguish female and male speakers, a more
explicit representation of voice pitch might help in separating competing
speakers. However, it is quite possible that this mechanism in stream segrega-
tion only becomes effective if other mechanisms, especially those that require
some form of understanding and prediction, become available. Future simu-
lations should take into account potential differences between infants in the
way in which they manifest the results of perceptual and cognitive process-
ing. In addition, it might be useful to investigate the impact of other sources
of variation in the behavioural data that we have ignored in the simulations
in this paper. Specifically, we limited learning to noise-free speech; future
work should investigate the impact of noise in the learning material, since
infants are exposed to noisy language input in their daily lives (B. A. Barker
& Newman, 2004). On a more technical level, it would also be interesting
to investigate the impact of learning vector quantisation (Kohonen, 1995)
instead of using fixed labels on the internal representations. The biggest
challenge in future research is to extend the representations in such a way
that processes built on more abstract and symbolic input that are thought
to take place during language development can be incorporated.

In summary, this chapter shows that it is possible to simulate early lan-
guage acquisition based on real speech. To simulate infants’ behaviour in
several experiments it was not necessary to introduce abstract, symbolic
representations, an explicit segmentation procedure, and a stream segrega-
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tion mechanism. Nonetheless, the simulations showed noise-robustness that
can be compared to infants around their first birthday. We also discovered
that the test determines which aspects of internal representations are rele-
vant in a given task. General statements about abstractness and robustness
are thus difficult to make based on specific test instances.
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Additional material

Table 3.2: Results for the linear model based on matching when the speaker is
known. Significance indicators (uncorrected): ∗ p < .05,∗∗ p < .01,∗∗∗ p < .001

Residuals:
Min 1Q Median 3Q Max
-1.19 -0.21 -0.02 0.20 1.48
Coefficients:

Estim. Std.E. t value Pr(>t)
(Intercept) 0.62 0.08 7.16 <.001 ∗∗∗
Experiment: Increased Freq. 1.30 0.09 13.47 <.001 ∗∗∗
Experiment: Multiple Voices -0.26 0.09 -2.69 .007 ∗∗
Noise Level: 5 dB SNR noise -0.23 0.09 -2.44 .015 ∗
Noise Level: noise-free 2.08 0.09 21.53 <.001 ∗∗∗
Name: Cat -0.70 0.05 -12.54 <.001 ∗∗∗
Name: Mummy -0.49 0.05 -8.90 <.001 ∗∗∗
Sample point 0.01 0.007 1.77 .07
Increased Freq.:5 dB SNR noise -0.23 0.13 -1.68 .09
Multiple Voices:5 dB SNR noise 0.41 0.13 3.05 .002 ∗∗
Increased Freq.:noise-free 1.41 0.13 10.30 <.001 ∗∗∗
Multiple Voices:noise-free -0.91 0.13 -6.64 <.001 ∗∗∗
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Table 3.3: Results for the linear model based on recognition when the speaker is
known. Significance indicators (uncorrected): ∗ p < .05,∗∗ p < .01,∗∗∗ p < .001

Residuals:
Min 1Q Median 3Q Max
-1.65 -0.39 0.01 0.33 2.15
Coefficients:

Estim. Std.E. t value Pr(>t)
(Intercept) 2.21 0.13 16.44 <.001 ∗∗∗
Experiment: Increased Freq. .00 0.14 6.73 <.001 ∗∗∗
Experiment: Multiple Voices -2.36 0.14 -15.89 <.001 ∗∗∗
Noise Level: 5 dB SNR noise -0.84 0.14 -5.64 <.001 ∗∗∗
Noise Level: noise-free 3.00 0.14 20.18 <.001 ∗∗∗
Name: Cat 0.01 0.08 0.19 .84
Name: Mummy -0.58 0.08 -6.80 <.001 ∗∗∗
Sample point 0.03 0.01 2.87 .004 ∗∗
Increased Freq.:5 dB SNR noise -0.19 0.21 -0.93 .34
Multiple Voices:5 dB SNR noise 1.32 0.21 6.30 <.001 ∗∗∗
Increased Freq.:noise-free 1.52 0.21 7.23 <.001 ∗∗∗
Multiple Voices:noise-free -1.76 0.21 -8.36 <.001 ∗∗∗

Table 3.4: Results for the linear model based on matching when the speaker is
unknown. Significance indicators (uncorrected): ∗ p < .05,∗∗ p < .01,∗∗∗ p < .001

Residuals:
Min 1Q Median 3Q Max
-1.15 -0.25 -0.007 0.21 1.22
Coefficients:

Estim. Std.E. t value Pr(>t)
(Intercept) 0.74 0.08 8.45 <.001 ∗∗∗
Experiment: Increased Freq. 0.84 0.09 8.70 <.001 ∗∗∗
Experiment: Multiple Voices 0.68 0.09 7.07 <.001 ∗∗∗
Noise Level: 5 dB SNR noise -0.28 0.09 -2.90 .004 ∗∗
Noise Level: noise-free -0.02 0.09 -0.28 .77
Name: Cat -1.30 0.05 -23.24 <.001 ∗∗∗
Name: Mummy -0.72 0.05 -12.85 <.001 ∗∗∗
Sample point 0.006 0.007 0.82 .40
Increased Freq.:5 dB SNR noise -0.08 0.13 -0.61 .53
Multiple Voices:5 dB SNR noise -0.11 0.13 -0.85 .39
Increased Freq.:noise-free 1.10 0.13 8.04 <.001 ∗∗∗
Multiple Voices:noise-free 1.09 0.13 7.92 <.001 ∗∗∗
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Table 3.5: Results for the linear model based on recognition when the speaker is
unknown. Significance indicators (uncorrected): ∗ p < .05,∗∗ p < .01,∗∗∗ p < .001

Residuals:
Min 1Q Median 3Q Max
-1.09 -0.19 0.01 0.22 1.19
Coefficients:

Estim. Std.E. t value Pr(> t)
(Intercept) 1.90 0.09 20.81 <.001 ∗∗∗
Experiment: Increased Freq. 0.51 0.10 5.11 <.001 ∗∗∗
Experiment: Multiple Voices -0.25 0.10 -2.53 .011 ∗
Noise Level: 5 dB SNR noise -0.37 0.10 -3.65 <.001 ∗∗∗
Noise Level: noise-free 0.58 0.10 5.80 <.001 ∗∗∗
Name: Cat -1.30 0.05 -22.35 <.001 ∗∗∗
Name: Mummy -1.22 0.05 -20.95 <.001 ∗∗∗
Sample point 0.004 0.008 0.59 .55
Increased Freq.:5 dB SNR noise -0.12 0.14 -0.85 .39
Multiple Voices:5 dB SNR noise -0.06 0.14 -0.46 .64
Increased Freq.:noise-free 0.89 0.14 6.22 <.001 ∗∗∗
Multiple Voices:noise-free 0.81 0.14 5.70 <.001 ∗∗∗
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Table 3.6: Simulated listening preferences based on matching (mean and standard
deviation) for all conditions. Listening preferences that are significantly above 0 are
indicated (based on an uncorrected one-sided t-Test): ∗ p < .05,∗∗ p < .01,∗∗∗ p <
.001

Experiment Word SNR
noise-free 10 dB 5 dB

Known speaker during testing
1. Baseline

cat 2.76 (0.53) ∗∗∗ -0.15 (0.32) -0.38 (0.09)
mummy 2.14 (0.11) ∗∗∗ 0.34 (0.21) ∗∗∗ 0.13 (0.22)
banana 2.28 (0.38) ∗∗∗ 0.72 (0.15) ∗∗∗ 0.46 (0.11) ∗∗∗

2. Increased
Frequency cat 5.07 (0.15) ∗∗∗ 1.10 (0.12) ∗∗∗ 0.49 (0.14) ∗∗∗

mummy 5.13 (0.19) ∗∗∗ 1.09 (0.25) ∗∗∗ 0.91 (0.29) ∗∗∗
banana 5.35 (0.20) ∗∗∗ 2.40 (0.26) ∗∗∗ 1.68 (0.35) ∗∗∗

3. Multiple
Voices cat 0.91 (0.25) ∗∗∗ -0.24 (0.15) -0.13 (0.09)

mummy 1.83 (0.21) ∗∗∗ -0.26 (0.25) -0.07 (0.22)
banana 1.15 (0.15) ∗∗∗ 0.60 (0.13) ∗∗∗ 0.77 (0.15) ∗∗∗

Unknown speaker during testing
4. Baseline

cat -0.71 (0.13) -0.29 (0.19) -0.37 (0.10)
mummy 0.11 (0.16) 0.17 (0.15) ∗∗ -0.38 (0.09)
banana 0.82 (0.84) ∗ 0.43 (0.14) ∗∗∗ 0.21 (0.15) ∗∗

5. Increased
Frequency cat 0.61 (0.52) ∗∗ -0.02 (0.10) -0.39 (0.08)

mummy 1.97 (0.37) ∗∗∗ 0.86 (0.15) ∗∗∗ 0.43 (0.25) ∗∗∗
banana 2.80 (1.00) ∗∗∗ 1.67 (0.24) ∗∗∗ 1.39 (0.29) ∗∗∗

6. Multiple
Voices cat 1.41 (0.39) ∗∗∗ 0.29 (0.14) ∗∗∗ -0.23 (0.10)

mummy 0.93 (0.61) ∗∗ 0.78 (0.14) ∗∗∗ 0.48 (0.15) ∗∗∗
banana 2.97 (0.85) ∗∗∗ 1.04 (0.15) ∗∗∗ 0.68 (0.21) ∗∗∗
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Table 3.7: Simulated listening preferences based on recognition (mean and stan-
dard deviation) for all conditions. Listening preferences that are significantly above
0 are indicated (based on an uncorrected one-sided t-Test): ∗ p < .05,∗∗ p <
.01,∗∗∗ p < .001

Experiment Word SNR
noise-free 10 dB 5 dB

Known speaker during testing
1. Baseline

cat 5.98 (0.66) ∗∗∗ 2.16 (0.27) ∗∗∗ 1.33 (0.21) ∗∗∗
mummy 4.74 (0.17) ∗∗∗ 2.31 (0.12) ∗∗∗ 1.75 (0.12) ∗∗∗
banana 4.87 (0.47) ∗∗∗ 1.82 (0.23) ∗∗∗ 1.05 (0.17) ∗∗∗

2. Increased
Frequency cat 7.90 (0.21) ∗∗∗ 3.03 (0.17) ∗∗∗ 1.83 (0.15) ∗∗∗

mummy 7.29 (0.28) ∗∗∗ 2.48 (0.23) ∗∗∗ 1.95 (0.27) ∗∗∗
banana 7.62 (0.20) ∗∗∗ 2.70 (0.29) ∗∗∗ 2.70 (0.29) ∗∗∗

3. Multiple
Voices cat 4.40 (0.53) ∗∗∗ 1.51 (0.21) ∗∗∗ 0.82 (0.17) ∗∗∗

mummy 4.40 (0.28) ∗∗∗ 1.65 (0.24) ∗∗∗ 1.01 (0.23) ∗∗∗
banana 4.31 (0.22) ∗∗∗ 1.81 (0.22) ∗∗∗ 1.07 (0.27) ∗∗∗

Unknown speaker during testing
4. Baseline

cat 0.68 (0.10) ∗∗∗ 0.62 (0.09) ∗∗∗ 0.28 (0.05) ∗∗∗
mummy 1.51 (0.27) ∗∗∗ 0.90 (0.11) ∗∗∗ 0.53 (0.08) ∗∗∗
banana 2.39 (0.44) ∗∗∗ 1.19 (0.15) ∗∗∗ 0.89 (0.13) ∗∗∗

5. Increased
Frequency cat 0.76 (0.48) ∗∗ 0.49 (0.11) ∗∗∗ -0.08 (0.07)

mummy 2.26 (0.42) ∗∗∗ 1.03 (0.16) ∗∗∗ 0.55 (0.21) ∗∗∗
banana 3.28 (0.98) ∗∗∗ 1.78 (0.26) ∗∗∗ 1.46 (0.28) ∗∗∗

6. Multiple
Voices cat 2.35 (0.43) ∗∗∗ 0.55 (0.14) ∗∗∗ -0.01 (0.12)

mummy 1.06 (0.60) ∗∗∗ 0.93 (0.19) ∗∗∗ 0.67 (0.16) ∗∗∗
banana 3.62 (0.74) ∗∗∗ 1.14 (0.23) ∗∗∗ 0.61 (0.28) ∗∗∗
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Notes
14If visual cues are available, infants seem to harness them: Hollich et al. (2005) showed

that the presence of synchronised visual cues supports infants in word detection even at
0 dB SNR.

15The corpus is available upon request at The Language Archive of the Max Planck
Institute for Psycholinguistics, via TLA.mpi.nl.

16This is very similar to the way in which speech is represented in mobile telephony. It
is also the preferred representation in speech technology (Coleman, 2005).

17Vector quantisation replaces multidimensional observations by the mean of the cluster
to which they belong. This makes it possible to represent an infinite number of multidi-
mensional observations as a small number of cluster labels.

18The noise stems from the NOISE-ROM-0, produced in the FP4 ESPRIT Project No.
2589-SAM (Varga & Steeneken, 1993).

19The one exception is the experiments with the same speaker during learning and
testing when using the recognition-based assessment. Closer inspection of the estimate
and the standard deviation reveal that the effect, while statistically significant and thus
implying a systematic increase, is very small. In addition, the same underlying model
assessed based on matching did not yield such an outcome.

20For the details of what is displayed in the figure, see the explanation of figure 3.3.
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4 | Between-speaker variability and
its impact on word learning
and generalisation

This chapter is an adapted version of the scientific manuscript
“A computational modelling study on the impact of between-speaker

variability on word learning and generalisation.”
by C. Bergmann, L.F.M. ten Bosch, P. Fikkert, & L. Boves

Under review

4.1 Introduction

In language acquisition research we are only beginning to understand the
strategies and representations infants employ to process and represent speech.
We use computational modelling to advance our knowledge about how in-
fants can cope with between-speaker variation. Before we describe the model
and our experiments in detail, we first discuss state-of-the-art knowledge of
infants’ processing of the variation caused by the presence of multiple speak-
ers in speech signals.

In the second half of their first year, infants start discovering associations
between objects and speech labels (Jusczyk, 1997; Tincoff & Jusczyk, 1999;
Bergelson & Swingley, 2012). By storing the associations between visually
perceived objects and acoustic labels infants begin to build a lexicon. In this
process infants are exposed to ambiguity both in the visual and in the acous-
tic domain. Here, we focus on acoustic variation: infants must discover which
aspects of the variation in the acoustic signal are used to distinguish different
objects and which are due to other factors, such as between-speaker varia-
tion. Thus, the words ‘cap’ (pronounced as [kæp]) and ‘cup’ ([k2p]) could
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refer to two different objects, in this case the difference between the vowels is
a meaningful linguistic contrast, but they could also be instantiations of the
word ‘cup’ spoken by two different speakers. In the latter case the acoustic
variation does not coincide with different word meanings and is thus not
phonemic.

The exact nature of the representations in infants’ early lexicon is yet
unknown (Werker & Yeung, 2005; Newman, 2008; Swingley, 2009; Fikkert,
2010; Feldman et al., 2013; Martin et al., 2013). There are at least two possi-
ble strategies with which infants that are beginning to build a lexicon might
process and store between-speaker variability.21 In the first strategy, which is
termed speaker-general throughout this chapter, infants recognise that differ-
ent acoustic signals produced by various speakers all refer to the same object
so that a single lexical entry is formed which captures the between-speaker
variation. In the second speaker-specific strategy, infants may consider the
acoustic differences between speakers large enough to warrant storing multi-
ple lexical entries for what adults consider to be one concept (e.g., Johnson,
Westrek, Nazzi, & Cutler, 2011). Both processing strategies are compatible
with recent experimental findings in the infant language acquisition litera-
ture.

We assume that infants start building their lexicon by associating speech
information to concepts or objects. This association is based continuous
stretches of speech that are not analysed in terms of phonetic symbols (dis-
crete representations of the above described vowels that might distinguish
between speakers, meaning, or both). Representations in the form of ab-
stract, discrete segments such as phonemes (e.g., the vowels determining
different word meaning in the above example) will emerge only later in lan-
guage development (Werker & Curtin, 2005; Feldman et al., 2013). This
assumption is supported by the finding that infants are sensitive to within-
category variation (McMurray & Aslin, 2005; Maye et al., 2002; Miller &
Eimas, 1996). Furthermore, infants seem to store acoustic details that are
not linguistically discriminative, such as idiosyncratic characteristics of sin-
gle speakers (Houston & Jusczyk, 2000, 2003).

Several experiments have shown that infants seem to form associations
between spoken words and visual objects that preserve information on who
spoke them. Parise and Csibra (2012) let infants listen to spoken words

100



4.1. Introduction

followed by a visual presentation of a presumably known object which either
corresponded with the spoken word or mismatched. When the word was
spoken by a familiar speaker infants could detect whether there was a match
between the spoken label and the object. This was not the case when they
heard an unknown speaker (see also Bergelson & Swingley, 2012; for infants’
ability to recognise objects when their caregiver names them).

Infants’ lexical representations can be investigated in controlled lab stud-
ies by repeatedly presenting new words along with a visual display of an un-
known object. In a following test, the link between the label and its referent
is examined. When the words are very similar, such as ‘bih’ and ‘dih’ spoken
by a single speaker, infants do not notice mismatches between the presented
object and the spoken label, although more distinct words such as ‘lif’ and
‘neem’ allow infants of the same age to succeed in this task (Stager &Werker,
1997). However, if infants hear minimal pairs spoken by 18 different speak-
ers they are able to distinguish the two word-object associations (Rost &
McMurray, 2009). The authors conclude from their study that hearing sub-
stantial between-speaker variability helps infants build representations that
rely on the linguistically relevant aspects of the speech signal, and not on
characteristics of a specific voice (see also Apfelbaum & McMurray, 2011).

Studies on how infants process words in the face of between-speaker vari-
ability have so far focused on two extreme cases where learning either took
place with one or with very many speakers (e.g., Rost & McMurray, 2009).
We take a more fine-grained approach with one, two, or three speakers dur-
ing learning. By doing so, we aim to investigate how much between-speaker
variation is necessary to observe a beneficial effect.

Infants learn from processing a series of stimuli that occur sequentially.
Therefore, it is reasonable to expect that the order in which the stimuli
are presented will affect the learning outcome (Mather & Plunkett, 2011;
Chandrasekaran, Yi, & Maddox, 2013). That the ordering of the stimuli
is important has also been shown in many machine learning experiments.
For this reason, it is useful – and perhaps necessary – to experiment with
different orders of learning stimuli. In our simulations we either present all
speakers (if multiple are present) intermixed so the model can learn from
them at virtually the same time, or we let the model experience one speaker
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first, then a second, then a third. Through this experimental manipulation
we will explore the impact of memory plasticity and the interference between
existing memory representations and novel experiences (e.g., Dewar, Cowan,
& Sala, 2007).

The simulation experiments in this chapter investigate the model’s abil-
ity to generalise to new speakers when it uses the speaker-general or the
speaker-specific processing strategy, and when learning from stimuli where
the speakers are presented blocked or mixed. In all experiments we will com-
pare the performance of the model when it has to recognise words spoken by
known speakers with its performance when confronted with unknown speak-
ers. The goal of the experiments reported in this chapter is to shed light on
a number of representations and procedures that must be accounted for in
any comprehensive theory of language acquisition. In addition, we aim to
outline future behavioural and simulation experiments that are needed to
fill gaps in our present knowledge and data.

The remainder of the chapter is organised as follows. We first review
related computational models of language acquisition to outline the back-
ground (section 4.2.1) against which we then describe our model in detail.
All decisions made while building the model will be discussed in light of their
cognitive plausibility throughout section 4.2. In section 4.3, we describe the
experiments we conducted and present the results. In section 4.4 we discuss
the implications of the simulations. The chapter concludes with suggestions
for future experimental work.

4.2 Methods

4.2.1 Background

The research in this thesis focuses on the very first stages of language ac-
quisition and it is founded on the assumption that infants start building a
lexicon that consists of associations between stretches of speech and objects
(or events) in the environment. These stretches are not necessarily identical
to words within a given language (see also Ngon et al., 2013). Stretches that
correspond to multiple words, such as “a_bottle” or “the_teddy”, will also
qualify, as will stretches that correspond to parts of a polysyllabic word, such
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as “nana” for ‘banana’ or “fone” for ‘telephone’. We assume that whole-word
representations can later be reorganised into sequences of smaller units, for
example (demi-)syllables or phonemes. The reorganisation process is not ad-
dressed in this thesis as the focus here lies on the very early processes in
language acquisition.

The framework PRIMIR (“Processing Rich Information from Multidi-
mensional Interactive Representation”; Werker & Curtin, 2005) describes
various levels and processes in early language acquisition. Due to its gener-
ality, PRIMIR cannot be implemented as a computational model. As in the
present model, PRIMIR proposes that infants begin to discover their native
language by processing the perceptual input in unanalysed form (General
Perceptual plane in PRIMIR). Discrete and abstract representations that
are language-specific emerge only at a later stage of development.

All computational models have in common is that they learn from data,
in consequence they can be considered statistical learners (in the broad sense
that they compute some form of statistics over their input). The computa-
tional models that we are aware of all cover later stages of language ac-
quisition since their input representations consist of a discrete sequence of
symbols (words, syllables, phonemes). As observed by Thiessen and Pavlik
(2013), models that operate on features such as Voice Onset Time (VOT, dis-
tinguishing between the first sounds in the words ‘back’ and ‘pack’), and the
feature representations in the model employed by Mayor and Plunkett (2014)
also assume a string of discrete input elements, even if these elements may be
characterised by real number values. The symbol strings that form the input
for computational models have lost most, if not all, of the speaker-dependent
acoustic information. Arguably, models that operate on purely symbolic in-
put implicitly assume speaker-general representations whereas feature-based
models can re-introduce indexical information (e.g., Apfelbaum & McMur-
ray, 2011).

Thiessen and Pavlik (2013) distinguish between models that learn how
to segment strings of symbols into recurrent patterns (possible ‘words’), so-
called conditional learners (e.g., Saffran et al., 1996), and models that learn
to distinguish two or more categories, so-called distributional learners (e.g.,
Apfelbaum & McMurray, 2011; Feldman et al., 2013). In this thesis we take
the position that explicit segmentation is not a requirement for learning
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associations between recurrent acoustic patterns and objects or events in the
non-linguistic world. In the interest of brevity, we will not review conditional
learning models further.

Some experiments in distributional learning focus on the question how a
learner can decide whether a given set of feature values, for example VOT
values along a continuum between /b/ and /p/, represents one, two, three, or
more categories that are linguistically relevant (e.g., McMurray et al., 2009).
A number of distributional learning models take two sets of input data that
must be associated, namely the speech features and reference categories, such
as pictures. Apfelbaum and McMurray (2011) used a computational model
to explain the finding of Rost and McMurray (2009) that infants are able to
learn the distinction between words that differ in a single phonetic feature
when the tokens are produced by 18 different speakers as opposed to a single
speaker. In their simulations, Apfelbaum and McMurray (2011) augmented
the input of the learner by adding linguistically non-contrastive speaker-
dependent features, voice pitch (f0), to the VOT feature in the learner’s
input. Thiessen and Pavlik (2013) extend this line of modelling by showing
that a weighted combination of linguistically relevant and irrelevant features
allows making ‘correct’ distinctions in the limited world created in the exper-
iment. The input representations of Apfelbaum and McMurray (2011) are
compatible with both speaker-specific and speaker-general processing. The
exemplar representations in Thiessen and Pavlik (2013) are by definition
speaker-specific although they may lose some speaker-related information in
the course of time. Neither Apfelbaum and McMurray (2011) nor Thiessen
and Pavlik (2013) address the issue how infants manage to tell linguistically
relevant features apart from linguistically irrelevant ones in later learning
which might co-vary (Magnuson & Nusbaum, 2007).

The CELL (Cross-channel Early Lexical Learning; Roy & Pentland, 2002)
model is different from the models discussed above in that it takes real speech
as input. The speech input is transformed into probability vectors over a set
of 40 phones using an automatic speech recognition system based on Hidden
Markov Models. The use of phone representations positions CELL in one
of the later stages of language acquisition (see PRIMIR; Werker & Curtin,
2005). The phone lattices (at each point in time multiple phones have a non-
negligible probability, so speech cannot be represented as a linear sequence
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of phones) are used to discover words. Importantly, Roy and Pentland (2002)
used the TIMIT corpus (Garofolo, 1988), which contains phonetically tran-
scribed speech from over 600 speakers, for learning the 40 phone models.
Therefore, CELL (implicitly) assumes speaker-general acoustic representa-
tions.

In summary, most insightful and informative computational models ex-
plicitly address later stages of language development (according to PRIMIR)
by presuming the presence of a process that converts continuous, variable
speech into discrete symbols (feature vectors, phones, syllables). It is not
yet completely clear when and how infants arrive at this stage. Further-
more, many models make implicit assumptions about the status of speaker-
dependent variation in the signal and the strategy infants employ in the
presence of such variation. In this chapter, we aim to investigate the impact
of variability when learning speaker-general versus speaker-specific represen-
tations.

4.2.2 The present model

The model we propose is different from all previous models that we are
aware of in that it aims to account for the first stage of language acqui-
sition (see Werker & Curtin, 2005). The present model forms associations
between unanalysed acoustic representations and extra-linguistic referents.
Our model operates on real speech signals and no between-speaker variation
is discarded upfront. Therefore, it becomes possible to address the difference
between speaker-general and speaker-specific representations.

The model discovers recurrent acoustic patterns in continuous speech
that co-occur with some meaning representation. These associations between
patterns in the speech signal and meaning representations will eventually
grow into a lexicon. The model makes only few assumptions about infants’
early learning skills. First, we assume that infants can detect similarities
between what they hear and representations of what they have heard be-
fore that are stored in their memory. We assume that infants can learn
through a process that adjusts internal representations. The only speech-
specific assumption that we make is that infants can distinguish speech from
non-speech so that they can discover the boundaries of utterances that are
separated by clear pauses. Evidence for this assumption is provided by the
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studies of Gout et al. (2004) and Johnson and Seidl (2008). Importantly, the
model foregoes the assumption that infants have acquired discrete or even
language-specific sound categories that might be used for processing speech
signals. Instead, the model operates on ‘raw’ speech signals.

The architecture of the model in learning mode is shown in figure 4.1.
In the following sections 4.2.3 to 4.2.6 we describe the processes and the
representations in the model in detail. At the same time, we motivate all
decisions made in designing the model and we argue that our model is as
cognitively plausible as possible given current knowledge about the early
stages of language acquisition.

Modelled Learner
Internal 

Memory 

I t lInternal 

Memory HAC-Vector

Meaning  

Update 

Memory

(NMF)

Speech

Meaning  

Acoustic 

Information  

Figure 4.1: The model during learning. It receives real speech as input, which
is converted into a discrete HAC vector expanded with supplementary meaning
information (see text). The entries in the memory have the same form of repre-
sentation as the input: an acoustic HAC vector extended with a meaning vector.
The entries are updated through the learning mechanism, NMF, after every input
utterance in the learning material.
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4.2.3 Acoustic preprocessing

Adults process continuous speech in terms of its temporal and spectral prop-
erties and it is likely that the infant auditory processing system is functioning
in a comparable way (Saffran et al., 2007). To simulate human speech pro-
cessing in the model we represent acoustic signals in the form of its spectro-
temporal properties. The continuously changing speech signal is analysed
by using short overlapping slices of 20 ms, updated every 10 ms, so that
we obtain 100 slices per second. In our model the spectral content of a
slice is represented as spectral envelopes using Mel-frequency cepstrum co-
efficients (MFCC; Davis & Mermelstein, 1980) which are augmented with
the speed (∆) and the acceleration (∆∆) of the spectral envelopes’ change
over time.22 Thus, speech signals, shown as oscillograms in the middle-left
of figure 4.1 and 4.2 are represented as sequences of vectors that comprise
13 static MFCC, 13 ∆, and 13 ∆∆ coefficients. This is a defendable approx-
imation of the representation of acoustic signals at the lowest level of the
auditory cortex (Moerel et al., 2012; Skoe & Kraus, 2010).

The next processing steps are, by necessity, based on analogous reason-
ing, because only little is known about representations of auditory signals in
higher levels of the cortical hierarchy. We take a cue from findings on neural
representations of visual stimuli where complex visual phenomena are rep-
resented as perceptual primitives, such as lines, orientations, and colours at
lower levels and are integrated into more complex representations on higher
levels (Hardt, Nader, & Nadel, 2013; Wade & Swanston, 2012). We assume
that a similar procedure operates during auditory processing, which means
that complex acoustic stimuli are represented as combinations of auditory
primitives. Moerel et al. (2012) showed that acoustic signals are represented
in the cortex by cells that code for frequency: some cells are tuned to a
narrow, others to a wide frequency range. Links between cells can repre-
sent spectral envelopes. This suggests that sound signals can be represented
by a limited number of so-called basic acoustic events formed by different
spectral envelopes and the change of these envelopes over time. These acous-
tic events allow us to represent speech without taking recourse to symbolic
representations such as phonetic features or phonemes.

To obtain a limited number of basic acoustic events we convert the 39-
dimensional MFCC vectors to a representation in the form of a finite number
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of discrete elements. For this purpose we use Vector Quantisation (VQ; see
Holmes & Holmes, 2001, section 9.6). It has been shown that speech signals
can be represented with sufficient accuracy using 150 discrete elements for
both the static MFCCs and the speed ∆ coefficients and 100 such elements
for the acceleration ∆∆ coefficients (Driesen, 2012). VQ is a member of the
family of unsupervised learning techniques. Therefore, the MFCC vectors
from which the VQ elements are learned have no labels that refer to the
language or the gender of the speakers. For the experiments in this thesis
we performed VQ on a corpus of speech in Dutch with an equal number
of male and female speakers. After the VQ operation a spoken utterance is
represented as a sequence of triples (one element for each of the static MFCC,
the speed ∆, and the acceleration ∆∆ coefficients). On the cognitive level,
this can be interpreted as a sequence of basic acoustic events. We assume that
infants start learning a set of acoustic events, similar to the ones employed in
the present model, from processing acoustic signals already before they are
born; that set is likely to be updated for a substantial period after birth when
context information becomes available to guide the clustering (Kohonen,
1995).

A representation of speech signals in the form of sequences of triples, the
length of which is determined by the duration of an utterance, is not very
well suited as an input for most procedures that aim to discover recurrent
patterns. Since it has been shown that infants can determine the boundaries
of utterances (Gout et al., 2004; Skoe & Kraus, 2010), we apply a final
procedure to the speech input, aimed at creating a representation that is
independent of the duration of an utterance. We do this by counting the
number of times that triples occur in an utterance. In addition, we count
the number of times triples co-occur at a time distance of 20 and 50 ms. These
temporal distances were chosen to capture rapid changes in the speech signal
instead of randomly sampling completely unrelated aspects of the signal (see
e.g., Pols et al., 1996; for research showing that average phone duration is
about 70 ms). The resulting representation is a Histogram of Acoustic Co-
occurrences (HAC; Van hamme, 2008). Since the acoustic elements may co-
occur with all other elements of the same type (statics, speed ∆s, acceleration
∆∆s), the HAC vectors have a very high dimensionality of 1502 + 1502 +

1002 = 55, 000 for each of the two time lags of 20 and 50 ms, yielding 110,000-
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dimensional vectors. In neural terms a HAC representation corresponds to
a (temporary) connection between the cortical representations of the basic
acoustic elements that occurred in the utterance.

4.2.4 Meaning information

The model acquires a lexicon which associates recurring patterns in the
speech signals to some form of meaning representation within its memory.
To this end, each HAC vector representing the acoustic information of an
utterance that is processed during learning is extended with meaning infor-
mation: a reference to an object or phenomenon in the environment which is
mentioned in the spoken utterance. For example, a caregiver could say “Look
at the ball!”, while a round object is in the infant’s visual field. Here, all ut-
terances refer to precisely one object and each sentence is paired with exactly
one concept or keyword, such as “ball”. We will use unambiguous references
in the experiments to focus on the differences between speaker-general and
speaker-specific learning. In daily life, the correspondence between a spoken
utterance and the intended meaning can be ambiguous and unreliable (Roy
& Pentland, 2002; Fazly, Alishahi, & Stevenson, 2010). However, young chil-
dren seem to learn best from the unambiguous type of situation modelled
in the present work (Pereira et al., 2013). Since the number of learning sen-
tences the model is exposed to is comparatively low, it is possible that infants
receive and can learn from a comparable amount of unambiguous correspon-
dences between speech and meaning (van de Weijer, 1998). In addition, pre-
vious research has shown that the model also can learn associations between
speech and meaning when the latter is ambiguous and that learning will be
slower (Versteegh et al., 2010). The meaning information is encoded by a
vector that has as many entries as there are speech-meaning associations
that must be learned. Each vector element corresponds to one keyword; the
value is set to one if the keyword is present in the corresponding utterance;
all other vector elements are set to zero.

The meaning encoding determines whether the model uses either a speaker-
general or a speaker-specific processing strategy. In the speaker-general strat-
egy, for a given meaning the same vector element is set to one for all speak-
ers. Utterances of speaker X that contain a keyword (e.g., ball) have the
exact same meaning representation as utterances containing that same word
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by speaker Y . This forces the model to accommodate all speaker-dependent
variation in the acoustic signal in a single acoustic-meaning association. This
is equivalent to assuming that infants are aware that ball always refers to the
same concept, regardless of the speaker who does not have to be encoded.

In the speaker-specific strategy there are as many different representa-
tions of a concept as there are speakers. Thus, the concept ball from the
speaker-general experiments is turned into a set of representations ballX ,
ballY , · · · , ballZ . Importantly, there are no links that tell the model that
ballX and ballY are semantically more closely related than ballX and another
meaning, for example carX for speaker X. The model thus learns separate
acoustic-meaning associations for every speaker, despite the fact that the
sentences refer to the same object. This corresponds to the assumption that
infants notice the presence of a different speaker and encode this changed
situation (Goldinger, 1998).

The acoustic HAC vector and the meaning vector pertaining to an utter-
ance are combined to form one vector which ties together the auditory and
meaning information. The dimension of the audio part is 110, 000, while the
dimension of the meaning part is much smaller. In the simulations in the
present chapter we use nine keywords, so that the meaning vector contains
nine elements in case of speaker-general learning. We will use four different
speakers, thus in speaker-specific learning the dimension of the meaning vec-
tor is 36, independent of the actual number of speakers involved in learning.
The different dimensions of the acoustic and meaning sub-vectors might re-
quire that the two sub-vectors are given different weights during learning.
These weights were the same as in previous experiments with a predecessor of
the present model for comparability across different studies (e.g., Bergmann
et al., 2012).

4.2.5 Memory & learning

Learning consists of updating initial speech-meaning associations that are
stored in the memory to increase their efficiency in matching new utterances
heard in the presence of the same object. It is unlikely that infants (or adults)
can store highly detailed veridical representations of large amounts of speech
and concurrent referents to concepts. Learning mechanisms that need many
iterations over a large database of observations must therefore be considered
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cognitively implausible. Our model learns incrementally and causally. That
is, each input token (a HAC vector extended with a meaning vector) is
processed only once. At the start of the learning the memory that will store
the speech-meaning associations is initialised with small random positive
numbers, which is equivalent to weak and random connections between brain
cells. Processing of a token during learning causes a small update of the
emerging speech-meaning associations.

Entries in the memory have the same structure as the input tokens (a
110,000-dimensional vector for storing acoustic information, extended by a
meaning vector of the same length as in the input, i.e., nine or 36 dimensions,
depending on the learning strategy). However, the values of the elements in
the meaning vector are now real numbers ≥ 0. This implies that the entries in
the memory do not represent unambiguous associations between speech and
meaning. In terms of infant learning this means that the memory contains
acoustic representations that can occur in multiple different contexts. For
example, words such as ‘cat’ and ‘car’ or ‘ball’ and ‘all’ share substantial
amounts of acoustic information.

The speech-meaning associations in the memory are ambiguous, hence
the memory must contain more entries than there are concepts to be learned.
The ambiguity is only aggravated by the fact that in our experiment the key-
words are embedded in several different carrier sentences, which increases
the degree of acoustic variation. Previous experiments with the model have
shown that 70 entries suffice for learning up to 20 keywords when using the
speaker-general strategy. The memory will need to accommodate a lexicon
with more entries with speaker-specific learning than with speaker-general
learning. A priori, it is not obvious how many entries are needed exactly
because we do not know to what extent representations for different speak-
ers can be shared. To facilitate comparisons between speaker-general and
speaker-specific learning we start with 70 memory slots in both speaker-
general and speaker-specific learning. We do, however, leave open the possi-
bility that the memory might have to be enlarged.

There are only few learning algorithms learn incrementally and causally
and allow for variable memory size. Non-negative Matrix Factorization (NMF),
an algorithm based on the assumption that complex phenomena can be ap-
proximated as a weighted sum of simpler parts, can do this. NMF was origi-
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nally introduced as a batch processing algorithm (Lee & Seung, 1999), that
is an algorithm that operates on a matrix that contains all learning stim-
uli. Driesen et al. (2009) showed that learning can be made incremental and
causal. Incremental learning is likely to result in suboptimal representations
of the total collection of utterances in the learning database compared to the
batch implementation. As long as the incrementally learned representations
are “good enough” for the purpose they need to serve, we prefer cognitive
plausibility over a purely mathematical optimality criterion. Similarity be-
tween an optimal representation of an utterance as a positive weighted sum of
previously learned representations and the new utterance itself is measured
by means of the symmetrical Kullback-Leibler divergence. Conceptually, a
learner using NMF discovers recurrent patterns in the input tokens that form
the simpler units which can then be used to decompose future input tokens
in terms of what has been learned in the past. These simpler units might
very well correspond to sub-word units, like the overlapping parts of ‘cat’
and ‘car’.

4.2.5.1 Memory interference

The conventional NMF algorithm updates all entries in the memory after
each learning stimulus. Research on memory plasticity in learning and on
forgetting suggests that new learning stimuli may cause interference with rep-
resentations that are already in the memory (Hardt et al., 2013). This raises
the question whether in speaker-specific simulations the acoustic-meaning
associations for speaker X should be open to updates when processing an
utterance spoken by speaker Y . In a similar vein, one might ask whether the
representations for all acoustic-meaning associations must always be open
for update, irrespective of the contents of a new utterance. How important
this issue is may depend on the order in which utterances are presented
and processed. If the model processes utterances from multiple speakers in
a rapid succession protecting the representations in the memory may be less
important than when the model processes a large number of utterances from
one speaker before processing utterances from another speaker. The update
procedure in incremental NMF makes it possible to exempt parts of the
memory from being updated at the cost of introducing an additional mech-
anism that can protect a number of entries. When using the speaker-specific
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learning strategy such a mechanism could be triggered by a speaker change.
This procedure is reminiscent of building situation-specific representations,
as suggested by Goldinger (1998). Being exposed to a new speaker with a
different face and possibly in a different environment, in short being in a new
situation, would then lead to new representations that are built alongside
and independently of previously learned representations.

Adding mechanisms to the learning procedure requires the introduction
of new parameters and thresholds, with no experimental data available to
determine their values. Therefore, additional mechanisms should only be
introduced if the results of simulations with a simpler version of the model
show that a more complex version is necessary.

4.2.6 Recognition & evaluation

The operation of the model during a test is illustrated in figure 4.2. In test
mode, the model’s memory is fixed and can thus not change to accommodate
the test input. In a test the model is presented with an utterance without the
corresponding meaning vector. The model approximates the acoustic repre-
sentation of the test utterance using a positive weighted sum of the acoustic
parts of all entries in the memory. For computing the optimal weights we
again employ NMF with the symmetrical Kullback-Leibler divergence as the
cost function. To identify the concept with which the utterance was associ-
ated, we apply the weights obtained for the acoustic vector to the part of
the memory that encodes meaning information. This yields activation values
for all nine or 36 concepts that are being learned. The higher the resulting
activation of an element in the meaning part, the more likely it is, accord-
ing to the model, that the corresponding concept was referred to in the test
utterance.

To evaluate the model’s performance in terms of its ability to recognise
the meaning intended by a speaker we take the meaning representation that
received the highest activation as the meaning that was recognised. If that
meaning is identical to what was actually expressed in the utterance, we
consider the utterance to be recognised correctly. This allows us to compute
accuracy as the proportion of utterances in a test that were recognised cor-
rectly. This procedure is straightforward in speaker-general learning where
the meaning of an utterance has a unique interpretation. In speaker-specific
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Figure 4.2: The model during recognition. Speech is presented without meaning
information, which has to be reconstructed internally using the learning procedure
NMF. If the highest activated meaning is the intended one, the test item is counted
as correctly recognised.

learning we need to decide how to assess cases in which the correct meaning
was activated for a wrong speaker. In the simulations in this chapter we
always gave precedence to the meaning: if an utterance containing the word
“ball” spoken by speaker X was recognised as “ball” spoken by speaker Y ,
the utterance is considered as correctly recognised. This allows for the use
of the same assessment procedure when known and unknown speakers are
presented to the model.

The procedure described above implements a winner-takes-all assessment
which ignores potentially relevant information about the difference between
the activation of the winner and the activation of one or more runner-ups,
which can be considered as a measure for the confidence of the recognition.
Bergmann, Boves, and ten Bosch (2011) showed that evaluations based on
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winner-takes-all and on more graded evaluations give very similar insights
in the operations of the model. In the present chapter we thus focus on
an assessment procedure that is widely used in computational modelling of
language acquisition (see e.g., Roy & Pentland, 2002).

There is some correspondence with the measurements of infant exper-
iments: the winner-takes-all strategy simulates experiments in which overt
behaviours of the infants are classified as correct (such as looking at the
intended picture on a screen) or wrong (looking at another picture than the
one mentioned in a spoken prompt). Each correct or wrong response of the
model would thus mirror responses of infants in a single trial.

4.3 Experiments

4.3.1 Speech material

All speech material used stems from a corpus of pre-recorded short sentences
spoken by four native speakers of British English (two female; Altosaar et
al., 2010; “Year 1”).23 The sentences were recorded in a noise-free environ-
ment and the speakers were instructed to speak in a lively manner as if
talking to an infant. Every sentence contains one of nine keywords: ‘nappy’,
‘shoe, ‘book’, ‘telephone’, ‘mommy’, ‘daddy’, ‘book’, ‘car’, and ‘bottle’. Each
keyword is embedded in eight to ten different carrier sentences.

For every combination of the four speakers and nine keywords, 80 sen-
tences are available. All speakers recorded the same sentences. The corpus is
split into a learning set (60 sentences for each speaker and keyword, identical
across speakers) and a test set (20 sentences for each speaker and keyword,
identical across speakers). The carrier sentences in the test set also occur
in the learning set. Both sets are kept constant in all experiments, so that
the model is always exposed to the same learning and test material. Per
speaker, we let the model thus learn from 540 sentences (60 utterances for
nine keywords).
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4.3.2 Design of the experiments

This chapter explores the impact of two strategies for coping with between-
speaker variation on the generalisability of the resulting speech-meaning
associations. In the speaker-general strategy all between-speaker variation
must be captured by a single acoustic representation that is associated with
a concept in the memory. In the speaker-specific strategy the model learns
different acoustic-meaning associations for each speaker. This gives rise to
a larger number of speech-meaning associations in the memory, presumably
with less variation captured in the acoustic part of each entry.

For both learning strategies, we conduct experiments with one, two, or
three speakers during the learning stage to investigate whether learning from
multiple speakers affects recognition accuracy for known and unknown speak-
ers. When learning from one speaker there were three unknown speakers,
and when learning from three speakers there was one unknown speaker. To
account for potential speaker-dependent effects we used all possible combi-
nations of the four available speakers. If no speaker-dependent effects arise,
we will limit the presentation of simulation results averages and standard
deviations for learning with one, two, or three speakers.

Learning in our model is incremental and causal, so the order in which
sentences are presented during learning will always have some effect. We ex-
plore how the order of the stimuli affects learning (see e.g., Chandrasekaran
et al., 2013; Mather & Plunkett, 2011). In the mixed presentation, the utter-
ances from all speakers are randomly intermixed, and the model is exposed
to all speakers in short succession. In the blocked presentation, all learning
utterances from one speaker are presented to the model, after which all ut-
terances from the second speaker follow, and so forth. In this presentation,
the model learns from one speaker at a time.

The order in which stimuli are presented is even important when learning
from a single speaker: it is possible to first present all sentences with “car”,
then all sentences with “mommy”, etc., or to randomly mix the sentences.
We decided to do the latter because it seemed ecologically more plausible.
When the model was learning from one speaker at a time, the order of
the sentences was randomised under the constraint that each set of nine
sentences contained all nine keywords. When the model was learning from
multiple speakers at the same time, the order of sentences and speakers is
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completely random.We repeated all simulations with several randomisations,
all presented results are based on averages over repeated simulations and
single simulation outcomes will only be presented if specific effects occur
that would be masked by averages.

We are not only interested in a single performance measure when the
model has processed all learning stimuli, but also in the learning curves
during learning. To allow for both assessments, we present the results in two
ways. In all experiments the model was tested after each set of nine learning
sentences. We tested the model in very short intervals of learning sentences
to be able to track the time course of learning in great detail. In addition,
we present word recognition accuracies at the end of learning.

We always used all possible combinations of the four speakers for learning
and testing, and it can be argued that an experiment in which the model
learns from two speakers is part of an experiment in which it learns from three
speakers, and that an experiment in which the model learns from one speaker
is part of an experiment in which it learns from two speakers. However, the
impact of learning with one, two, or three speakers on the model’s recognition
performance will be clearer by presenting the results as the outcome of three
sub-experiments, one with learning from a single speaker, one with learning
from two speakers, and one with learning from three speakers.

In accordance with the position that one should start with the simplest
possible model we first present the results of a set of experiments in which
the memory of the model comprises 70 entries that are always open for
update after each new stimulus. The results obtained with speaker-blocked
presentation made us decide to also investigate the effect of increasing the
number of entries in the memory or the weight of the semantic sub-vector,
and of protecting part of the memory against updates (see section 4.3.5.4).

4.3.3 Experiment 1:
Learning from one speaker

In the first experiment the model learns from one speaker, and it is tested
with all four speakers. Since only one speaker is present in the learning mate-
rial there is no difference between blocked and mixed presentation. However,
there is a slight, but potentially relevant, difference between speaker-general
and speaker-specific encoding since the meaning vector is nine-dimensional in
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the speaker-general case whereas it is 36-dimensional in the speaker-specific
case, although only nine elements in the meaning vector of the learning
sentences will be non-zero in every simulation. Recall that the memory is
initialised with small random numbers which might lead to adaptations to
larger numbers of the elements reserved for other speakers, even if the corre-
sponding elements in the learning sentences will always be zero. The learning
material in this experiment comprises 540 sentences per simulation with one
speaker.
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Figure 4.3: Time course of recognition accuracy when the model learns from ut-
terances from one speaker and tested with all four speakers independently using
speaker-general encoding. The black lines depict mean performance, measured ev-
ery 9th utterance, the grey lines in the same line style indicate standard deviation
(see text).

4.3.3.1 Speaker-general learning

Figure 4.3 shows the learning curves of the model for known and unknown
speakers for speaker-general learning. At each test moment the proportion
of correctly recognised keywords in the 20× 9 test sentences is obtained for
each pair of learning and testing speakers. The curve for the known speaker
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Table 4.1: Accuracy in mean % correct (and standard deviation) at the end of
learning for all experiments. In experiments with blocked presentation order, each
speaker is presented separately.

Experiment Condition Known Unknown
Speaker Speaker

1. Learning from one speaker
1.1 Speaker-general 99.58 (0.72) 61.34 (10.07)
1.2 Speaker-specific 99.17 (0.92) 60.53 (10.57)
1.3 Protected memory 99.14 (0.91) 60.44 (11.12)

2. Learning from two speakers
2.1 Speaker-general Mixed 98.70 (1.37) 74.26 (8.60)

Blocked: 1st 90.23 (4.81) 68.36 (9.95)
Blocked: 2nd 99.63 (0.41)

2.2 Speaker-specific Mixed 98.71 (1.05) 69.72 (7.03)
Blocked: 1st 47.38 (9.15) 56.99 (11.56)
Blocked: 2nd 97.57 (3.94)

2.3 Protected memory Blocked: 1st 99.14 (0.51) 65.44 (7.38)
Blocked: 2nd 99.10 (0.85)

3. Learning from three speakers
3.1 Speaker-general Mixed 97.45 (1.76) 78.47 (4.55)

Blocked: 1st 83.13 (5.56) 70.76 (8.71)
Blocked: 2nd 90.74 (4.17)
Blocked: 3rd 99.56 (0.56)

3.2 Speaker-specific Mixed 95.07 (4.73) 71.18 (6.32)
Blocked: 1st 52.73 (9.95) 58.91 (11.36)
Blocked: 2nd 50.39 (7.83)
Blocked: 3rd 97.94 (3.53)

3.3 Protected memory Blocked: 1st 99.05 (0.61) 67.59 (6.99)
Blocked: 2nd 98.84 (0.99)
Blocked: 3rd 97.82 (3.28)
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shows the average of the four pairs in which learning and test speakers are
identical. The standard deviation in this set of four numbers is indicated by
the grey lines above and below the dark line. The dark dotted line and the
grey dotted lines show the mean and standard deviation in the 4 × 3 pairs
in which learning and test speakers were different.

Figure 4.3 shows that the model achieves near ceiling recognition ac-
curacy for the known speaker within about 10 occurrences of one keyword
(that is, after about 90 utterances). From the small standard deviations it
can be seen that this holds for all four speakers individually. The unknown
speakers show a substantially reduced recognition accuracy. In addition, the
standard deviations show that the performance for unknown speakers differs
substantially between speakers. The ceiling effect in the accuracy for the
known speakers hides the fact that the memory continues to be updated.
While these updates do not affect the accuracy for known speakers contin-
ued learning appears to be beneficial for the unknown speakers.

4.3.3.2 Speaker-specific learning

We do not show the learning curve for speaker-specific learning since it is
nearly identical to the speaker-general strategy, both for the known and for
the unknown speakers. This is confirmed by the mean and standard deviation
accuracies shown in table 4.1. Inspection of the entries in the memory during
the learning process showed that the values of the 36 − 9 elements in the
meaning vector that never correspond to a non-zero element in the learning
sentences very quickly become zero, although there were initialised with
small random values.

4.3.3.3 Absence of a gender effect

The presentation in terms of averages over all 12 learning-testing speaker
pairs in table 4.1 might hide a gender effect. The accuracy for all-female or
all-male pairings might be better than for mixed-gender pairings. Detailed
analysis of the results showed that this is not the case. We believe that the
absence of a gender effect is related to relatively gender-independent acoustic
representations (specifically the MFCC-based VQ elements, see section 4.2).
Previous research into gender effects in behavioural experiments focused on
voice pitch as the most salient feature that distinguishes male and female
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voices (Houston & Jusczyk, 2000). Adults can process pitch independently
of spectral envelope, which is demonstrated by the fact that a melody can be
recognised when it is sung either sung by a soprano or a bass, or played on
some instrument. Infants can also process pitch independently (Saffran et al.,
2007). Therefore, it may be necessary to add an independent representation
of voice pitch to the acoustic HAC vectors to bring gender effects to light.
Since the HAC vectors do not contain such pitch information we will not
discuss gender effects in the following experiments.

4.3.4 Experiment 2:
Learning from two speakers

In the second experiment, the model learns from two speakers for a total of
up to 1080 learning sentences. Both for speaker-general and speaker-specific
learning the speakers are offered mixed and blocked.

4.3.4.1 Speaker-general learning

Mixed presentation Figure 4.4 shows the time course of recognition ac-
curacies for the model with speaker-general learning when speakers are pre-
sented intermixed. Known speakers achieve near-ceiling performance after
about 300 learning sentences. Compared to learning from a single speaker,
where ceiling performance was reached after about 90 sentences, this is de-
layed. The standard deviation is larger than when learning from a single
speaker, both during learning and after learning is completed (see table 4.1).
The mean and standard deviation for the unknown speakers (i.e., the two
speakers who were not presented during learning in a given simulation) show
that the performance at the end of learning is higher than when learning
from a single speaker (see also table 4.1). The performance for the unknown
speakers continues to improve after the performance for the known speakers
has reached ceiling, as observed in the previous experiment.
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Figure 4.4: Time course of recognition accuracy when the model learns from
two speakers intermixed and is tested with all four speakers independently using
speaker-general learning. The black lines depict mean accuracy, measured every
9th utterance, the grey lines in the same line style indicate the standard deviation.

Blocked presentation Figure 4.5 shows the average accuracy and stan-
dard deviations for the first and second speaker when they are presented
sequentially. The time point when the speaker changes is indicated with a
vertical line. Up to that point the curves are identical to those in figure 4.3.
While the model is processing the first 100 sentences of the second speaker
the performance for the this speaker increases rapidly towards ceiling level.
At the same time the performance for the unknown speakers increases. The
performance for the first speaker seems unaffected.

When more than the first 100 sentences of the second speaker have been
processed the performance for the currently presented speaker stays at ceiling
level. However, the performance for the first speaker starts deteriorating
and the performance for the unknown speakers no longer improves. From
table 4.1 it can be seen that the accuracy of the first learning speaker after
processing all 1080 sentences is below the accuracy of the second speaker.
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Figure 4.5: Time course of recognition accuracy when the model learns from
two speakers sequentially and is tested with all four speakers independently using
speaker-general learning. The vertical line indicates the onset of the second speaker.
The black lines depict mean performance, measured every 9th utterance, the grey
lines in the same line style indicate the standard deviation.

4.3.4.2 Speaker-specific learning

With speaker-specific learning the model must learn twice as many acoustic-
meaning associations than with speaker-general learning. At the same time,
less acoustic variation must be captured in these associations.

Mixed presentation Figure 4.6 shows model performance when learning
from two speakers at the same time. The known speakers reach ceiling perfor-
mance, but this takes longer than with speaker-general learning. Moreover,
the standard deviation during the first 400 sentences is larger than observed
in speaker-general learning. After all learning sentences have been processed
the standard deviation has decreased to the same level as with speaker-
general learning (see table 4.1). Near-ceiling performance can be observed
for both known speakers from around utterance 400 onwards. The accuracy
for the unknown speakers exceeds the results obtained with learning from
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a single speaker, but it is slightly lower than after speaker-general learning
from two speakers.
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Figure 4.6: Time course of recognition accuracy when the model learns from
two speakers intermixed and is tested with all four speakers independently using
speaker-specific learning. The black lines represent mean accuracy, measured every
9th utterance, the grey lines in the same line style indicate the standard deviation.

Blocked presentation The learning curves when presenting the speakers
blocked are shown in figure 4.7. As in the previous blocked simulation with
speaker-general learning the performance is identical to learning from one
speaker up to learning sentence 540. The speaker change is indicated by a
vertical line. Figure 4.7 shows a rapid increase of the recognition accuracy for
the second speaker, albeit with a slight delay. There is no improvement for
the unknown speakers. Performance for the first speaker remains at ceiling
level for the first 150 learning utterances of the second speaker, but it rapidly
drops afterwards, back to the level of, or even below, an unknown speaker.
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Figure 4.7: Time course of recognition accuracy when the model learns from
two speakers sequentially and is tested with all four speakers independently using
speaker-specific learning. The vertical line indicates the onset of the second speaker.
The black lines depict mean accuracy, measured every 9th utterance, the grey lines
in the same line style indicate the standard deviation.

4.3.4.3 Comparing learning strategies

Figure 4.8 is a graphical representation of the numbers in table 4.1 related
to learning from two speakers. The filled grey bars show performance for
known speakers and the white bars depict performance for unknown speak-
ers. In the blocked experiments two filled bars a shown, the left bar depicting
recognition accuracy for the speaker that was observed first and the right
one showing accuracy for the second speaker. The left panel depicts accuracy
for speaker-general learning and the right panel for speaker-specific learning.

Mixed presentation From table 4.1 and figure 4.8 it can be seen that
speaker-general and speaker-specific learning with two speakers presented in-
termixed yields a performance for known speakers that is slightly lower than
when learning from a single speaker. However, the learning curves (figure 4.4
and 4.6) show that reaching ceiling with two speakers requires more learning
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Figure 4.8: Recognition accuracy at the end of learning when the models learn
from two speakers. Indicated values are means and standard deviations across all
simulations.

sentences than with a single speaker (see figure 4.3), and that this effect is
larger for speaker-specific learning. The accuracy for unknown speakers at
the end of learning is substantially higher when learning from two speakers
in comparison to learning from a single speaker. The comparison between
learning from one or two speakers is not straightforward because the final
result with two speakers is obtained with twice as many learning sentences.
However, our results show that the model can harness the additional amount
of variation in the speech of two speakers to better generalise to unknown
speakers.

Blocked presentation The results are different when the model first
learns from one speaker and then from a second. For speaker-general learning
the results for the known speakers are in line with previous findings which
suggest that blocked presentation is harmful for all but the last speaker
(Bergmann et al., 2011). This is caused by the fact that the incremental
learning procedure updates all memory entries to optimise them for the
most recent learning stimuli. As a consequence, the acoustic representations
in the memory adapt towards the specific properties of the last speaker that
was observed. Intuitively, it could be expected that this adapting-away ef-
fect would be less severe with speaker-specific learning and that the learning
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updates would not affect the associations learned for the first speaker when
starting to learn from the second speaker because the entries in the mean-
ing vectors for the two speakers do not overlap. However, for speaker-specific
learning with a single speaker the elements in the meaning vector for the first
speaker are reduced to practically zero after processing several hundreds of
learning sentences that had zero values for all meaning elements correspond-
ing to the associations learned for the first speaker. This appears to turn
speaker-specific learning in our model effectively into learning from a single
speaker (the last one from whom the model learns): after experiencing a suf-
ficient number of learning sentences that are not associated with a specific
speaker this speaker regains the status of an unknown speaker. The accuracy
for unknown speakers in speaker-specific learning from two speakers is not
higher than when learning from a single speaker for the same reasons.

4.3.5 Experiment 3:
Learning from three speakers

The third experiment exposes the model to three speakers and thus to up to
1620 utterances to examine the impact of speaker variation on word recog-
nition from known speakers and generalisation to unknown speakers.

4.3.5.1 Speaker-general learning

Mixed presentation When three speakers are presented intermixed the
accuracy for the known speakers approaches ceiling before the end of learning
(see figure 4.9). However, compared to learning from one or two speakers
reaching the ceiling takes longer and the standard deviation is slightly larger.
Accuracy for the unknown speakers continues to increase until the end of
learning. The final accuracy for the unknown speakers (table 4.1) is higher
than when learning from two speakers. Thus, it seems that the model can
harness the between-speaker variation to improve generalisation to unknown
speakers, be it at the cost of a slight decrease of the accuracy for known
speakers.
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Figure 4.9: Time course of recognition accuracy when the model learns from
three speakers intermixed and is tested with all four speakers independently using
speaker-general learning. The black lines depict mean accuracy, measured every
9th utterance, the grey lines in the same line style indicate the standard deviation.

Blocked presentation Presenting three speakers after each other yields
the same pattern as with blocked presentation of two speakers (see figure
4.10). Shortly after the second speaker comes in, accuracy for the first speaker
begins to decrease. For a brief period after the entrance of the third speaker
the accuracy for the first speaker seems to recover slightly, but with addi-
tional utterances of the third speaker the decrease continues. Accuracy for
the second speaker starts decreasing after about 100 utterances after the
speaker change. The final accuracy for the third speaker is indistinguishable
from the accuracy when learning from a single speaker.

Accuracy for the unknown speakers reaches a maximum after the en-
trance of the third speaker, but with additional utterances of the last speaker
accuracy for the unknown speakers drops slightly. Nevertheless, the acous-
tic representations that are fully adapted to the last speaker retain suffi-
cient information about previous speakers to increase accuracy for unknown
speakers compared to learning from one or two speakers in the previous two
experiments.
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Figure 4.10: Time course of recognition accuracy when the model learns from
three speakers sequentially and is tested with all four speakers independently us-
ing speaker-general learning. The vertical lines indicate the onset of the second
and third speaker. The black lines depict mean performance, measured every 9th

utterance, the grey lines in the same line style indicate the standard deviation.

4.3.5.2 Speaker-specific learning

Mixed presentation Modelling speaker-specific learning from three speak-
ers at the same time results in a continuous increase of the accuracy for
known speakers until a ceiling value is reached that is slightly lower than
what was obtained with one or two speakers (see figure 4.11 and table 4.1).
This is most likely due to the fact that now 27 (of 36) different acoustic-
meaning associations must be learned instead of 9 or 18 (of 36) when learn-
ing from one or two speakers. Unknown speakers benefit from the presence
of three different representations for all nine words, but less so than with
speaker-general learning (see table 4.1). This too is may be due to the fact
that choosing the correct representation from 27 learned speech-meaning
associations is more error-prone than selecting from nine.

Blocked presentation Figure 4.12 shows the learning curves for speaker-
specific learning in blocked presentation of the learning stimuli. The sharp
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Figure 4.11: Time course of recognition accuracy when the model learns from
three speakers intermixed and is tested with all four speakers independently using
speaker-specific learning. The black lines depict mean accuracy, measured every
9th utterance, the grey lines in the same line style indicate the standard deviation.

decrease of the accuracy for the second speaker after the entrance of the third
one confirms the pattern that we observed with the blocked presentation of
two speakers. Although the model was exposed to 27 representations it effec-
tively learned only nine acoustic-meaning associations which were adapted to
the third speaker (see table 4.1). Recognition accuracy for unknown speakers
does not benefit from the presence of three speakers, which seems to be due
to the same reason: blocked presentation results in representations that are
only adapted to the last speaker.

4.3.5.3 Comparing learning situations

Figure 4.13 compares how mixed and blocked presentation affects accuracy
for known and unknown speakers when using the speaker-general and the
speaker-specific learning strategies. The corresponding numeric values can
be found in table 4.1. Performance is measured at the end of learning, that
is, after observing 1620 utterances. The filled bars correspond to known
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Figure 4.12: Time course of recognition accuracy when the model learns from
three speakers sequentially and is tested with all four speakers independently using
speaker-specific learning. The vertical lines indicate the onset of the second and
third speaker. The black lines depict mean accuracy, measured every 9th utterance,
the grey lines in the same line style indicate the standard deviation.

speakers, while the white bars refer to unknown speakers. For the blocked
speaker-presentation three filled bars are shown, indicating from left to right
accuracies for the first, second, and third speaker presented during learn-
ing. When the model learns from three speakers at the same time (mixed
presentation) there is a slight advantage for speaker-general learning over
speaker-specific learning. This holds both for known and unknown speakers.
It is not clear whether this advantage must be attributed to a more effective
use of between-speaker variation in the speaker-general strategy. The result
may also be an artefact of the difference between learning nine versus learn-
ing 27 associations (and the need for choosing one out of nine or one out of
27 during test).

Figure 4.13 illustrates the difference between blocked and mixed presen-
tation of the learning stimuli. While a small detrimental effect of blocked pre-
sentation for speaker-general learning has been reported before (Bergmann
et al., 2011), the catastrophic impact of blocked presentation on speaker-
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Figure 4.13: Recognition accuracy at the end of learning when the models learn
from three speakers. Indicated values are means and standard deviations across all
simulations.

specific learning has not been observed in previous experiments with similar
models.

4.3.5.4 Learning with protected memory

The fact that our model is not able to harness between-speaker variability
when it uses speaker-specific learning and the learning material is presented
in blocks shows a limitation of the model. At the same time it can be argued
that the blocked presentation in our experiments is not ecologically realistic,
and that the model does not need to be able to cope with unrealistic situa-
tions. However, this argument is too simplistic, if only because we have also
seen some deterioration of accuracy in speaker-general learning when the
learning material is offered blocked by speaker. Therefore, we carried out an
in-depth analysis of the causes of the detrimental effect observed in blocked
presentation.

We identified two technical issues that might have hindered the model
in retaining associations learned for one speaker in memory while learning
from a new speaker. The first issue relates to the number of entries in the
memory. An analysis of the contents of the memory after learning from a
single speaker showed that the number of entries with a substantial value in
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the meaning sub-vector was much larger than nine, the number of acoustic-
meaning associations that must be learned. This is due to the fact that
the acoustic representations must not only account for the nine keywords
but also for the carrier sentences. Therefore, we experimented with much
larger memories, up to 700 entries for speaker-specific learning, the tenfold
of the standard setting in the present experiments. Increasing the number
of memory entries did not prevent the non-zero entries in the meaning sub-
vectors from deterioration to near zero after processing a number of learning
sentences in which the corresponding elements were always zero.

The second issue relates to the very different dimensions of the acoustic
and meaning sub-vectors in our representations of the learning sentences.
The dimension of the acoustic sub-vector is 110,000, compared to a dimension
of 36 for the meaning sub-vectors in speaker-specific learning. Therefore,
the contribution of the smaller meaning sub-vector must be given a higher
weight than the contribution of the acoustic sub-vector in approximating a
new learning sentence as a sum of memory entries. Here, too, increasing the
weight of the meaning sub-vector relative to the acoustic sub-vector could
not solve the problem.

The lack of improvement to the model where all memory representations
are open for updates all the time shows that the simple version of the model
is not entirely adequate in the speaker-specific learning strategy and in the
face of blocked input. To avoid catastrophic interference it is necessary to
introduce a mechanism that can protect some memory locations from be-
ing updated if updates are likely to be detrimental. Such a mechanism can
operate in many different ways which warrant future research. Here, we fo-
cus on showing that such a mechanism can in principle improve the model’s
performance.

We added a basic mechanism to the model that is founded on the assump-
tion that an infant can detect a speaker change when employing speaker-
specific learning. Such an ability is especially useful in the extreme situation
that we simulated in our experiments: hearing sentences from one speaker
and then hearing the same number of sentences from another speaker with-
out ever hearing the first speaker again. When a speaker change is detected
in speaker-specific learning through the drastic change in the meaning repre-
sentations (which only takes place in blocked presentation) the model decides
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that it should protect effective speech-meaning associations learned for the
previous speaker for future use. We define effective entries as the top 20%
of all representations in the memory that encode meaning information. To
allow further learning while some part of the memory will no longer be open
to updates we increase the number of entries in the memory by as many new
entries as we want to protect. From then onward, we apply the update algo-
rithm only to the entries that are unprotected. Thus, the number of memory
entries that are open for being updated is always equal to 70 (even if the
total number of entries increases every time a new speaker is presented).
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Figure 4.14: Time course of recognition accuracy when the model learns from
three speakers sequentially when using speaker-specific encoding. Parts of the mem-
ory are protected as new speakers are observed, the size of the memory during
testing thus grows with each speaker change.

Figure 4.14 shows the result for simulations using speaker-specific learn-
ing with three speakers in blocked presentation. The results for learning from
one or two speakers can also be inferred from figure 4.14. Table 4.1 contains
the numeric outcomes for these simulations, presented in the same way as
for the previous experiments. It can be seen that learning in protected mode
is highly effective. Speakers that have reached ceiling performance while the
model learns from them remain at ceiling while the model learns from other
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speakers. Therefore, it appears that a simple protection mechanism is an
effective method for preventing that the meaning part of existing lexical en-
tries is reduced to zero due to the occurrence of a long sequence of learning
experiences that are not relevant for those entries.

In addition to the persistent ceiling performance for known speakers the
improved generalisation to unknown speakers stands out. Accuracy for un-
known speakers (67.59%) is slightly lower than the best performance ob-
served in all simulations (71.18%, see table 4.1) and this difference may be
attributed to choosing from nine or from 27 options.

4.4 General discussion

We used computational modelling to investigate different ways in which in-
fants could handle and even harness between-speaker variation in the first
stages of building a lexicon. We compared two strategies within the model:
either all input across speakers was processed and stored within a single lex-
ical entry, termed the speaker-general strategy, or a new lexical entry was
created for each speaker the model encountered, the speaker-general strategy.

The model simulates processes that operate on the earliest stage of lan-
guage acquisition (Werker & Curtin, 2005), which is not addressed by almost
any other computational models of language acquisition (Thiessen & Pavlik,
2013). Very little language-specific knowledge is available in this stage, and
our model only uses general-purpose perceptual representations and learn-
ing procedures to avoid unwarranted assumptions. The model takes real
speech as input that is encoded in the form of a limited number of spectral
envelopes and their dynamic changes over time. In the model speech is rep-
resented in a form that is physiologically plausible (Moerel et al., 2012), as
well as language- and gender-independent. Perhaps most importantly, the
model learns in an incremental and causal manner. Consequently, the order
in which learning sentences are experienced is a factor that might have an
impact on the time course of learning and on the eventual results.

Although our model simulations do not aim to reproduce the results of
specific behavioural experiments, the simulations still address issues that
emerged from a range of infant experiments. In many of these experiments
infants learned from a single speaker and were tested either with speech from
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the same speaker or from a different speaker. The general finding seems to
be that young infants can recognise words when the speaker is the same
during learning and test, but that they fail when the speaker in the test is
different from the speaker they heard during the learning phase (Houston &
Jusczyk, 2000, 2003). However, van Heugten and Johnson (2012) did not find
a detrimental effect when changing the speaker between learning and test,
which is attributed to more exposure to one speaker in the learning phase
of their experiment. In a different task and with slightly older infants Rost
and McMurray (2009) found a beneficial effect of using 18 different speakers
in the learning phase. Similar mechanisms that can harness variable input
seem to be in place in younger infants, as indicated by comparable findings
(Singh, 2008) with infants of the same age group as used by Houston and
Jusczyk (2000). Taken together, these results led to the suggestion that while
generalisation to new stimuli and speakers is still difficult for infants, experi-
encing variability is beneficial in such a task (Newman, 2008). To investigate
the benefit of learning from multiple speakers in a fine-grained manner we
let the model learn from one, two, or three speakers and tested it both with
known and unknown speakers. Thus, we could examine whether an advan-
tage based on between-speaker variability is already present when hearing
two speakers and how this compares to learning from three speakers.

When the model learns from one speaker (section 4.3.3), there cannot
be a difference between speaker-general and speaker-specific representations
in the emerging lexicon. The simulations with a single speaker for learning
confirmed previous findings (Bergmann et al., 2011): recognition accuracy
for known speakers reached ceiling performance near 100% after exposure to
about 10 tokens of a word (always embedded in carrier sentences). For the
unknown speakers an accuracy level of about 60% was obtained, which is
substantially above chance level but also markedly below the accuracy levels
for known speakers. Accuracy for unknown speakers increased throughout
learning, indicating that the representations in the memory continue to be
adapted, even if that cannot yield better than perfect accuracy for the known
speaker. Apparently, capturing additional within-speaker variation in the
lexical representations is beneficial for generalisation to unknown speakers
(see also, van Heugten & Johnson, 2012 for a similar observation in a short-
term laboratory experiment).
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Simulations with learning from multiple speakers reported in section 4.3.4
and section 4.3.5 showed that the effect of the learning strategy was strongly
dependent on the order of the learning stimuli. With mixed presentation,
when the model effectively learns from all speakers at the same time, the
accuracy for the known speakers always reached a ceiling. This happened
when learning from two or three speakers and during speaker-general as well
as speaker-specific learning. The number of learning stimuli needed to reach
the ceiling was larger for speaker-specific learning. In addition, the ceiling
was slightly lower in speaker-specific learning. Most probably, these differ-
ences must be attributed to the fact that the number of acoustic-meaning
associations that must be learned is larger, which increases the difficulty of
the learning and recognition task.

The difference between speaker-general and speaker-specific learning was
more apparent in the degree to which the acoustic-meaning associations that
are learned generalise to other speakers. As we have already discussed for
learning from a single speaker, it appears that in speaker-general learning
the model is able to harness all variation in the learning stimuli. Even if
that cannot lead to higher accuracy for the known speakers it improves the
accuracy for unknown speakers. However, the advantage of adding more vari-
ation by increasing the number of speakers in learning appears to diminish
rapidly. The gain from adding a second speaker is much larger than the gain
of adding a third speaker. This implies that the presence of multiple speakers
is sufficient to observe a beneficial effect and that increasing the number of
speakers might not substantially change such beneficial effects.

In speaker-specific learning between-speaker variation leads to the for-
mation of as many acoustic-meaning associations as there are speakers. As
with learning from a single speaker, these representations change until the
end of learning, with the same beneficial effect for the unknown speakers as
when learning from a single speaker. However, the combined use of repre-
sentations for multiple speakers yields no larger recognition accuracies for
unknown speakers than those when learning from a single speaker. Thus, the
model could not harness between-speaker variability in these simulations.

When the model first learns from one speaker, next from a second, and
then from a third, the speaker-general strategy leads to very different results
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compared to the speaker-specific strategy. In the experiments with speaker-
general learning the model tended to adapt the acoustic representations to
the last speaker from whom it learns. This adaptation is due to the way
in which the model updates the representations in the memory. Intuitively,
one might expect that speaker-specific learning should suffer less from this
adaptation effect because the representations that are being learned for the
second speaker are largely independent from the representations for the first
one. In contrast, the present results show that the model’s update procedure
destroyed the representations of previously observed speakers leading to word
recognition accuracy levels that were on the level of unknown speakers.

The low results for past speakers in speaker-specific learning in blocked
presentation might be seen as indication that the assumption that speaker-
specific representations could be learned must be rejected. However, this
conclusion might be premature given the success of this strategy with mixed
presentation. One might also claim that this failure proves that the model
presented in this chapter is flawed, but again we believe that the performance
with mixed presentation can refute that objection. Finally, the outcomes
of the simulations with blocked presentation might be considered evidence
for the model’s inadequacy. But it should be noted that these simulations
are based on a condition that will never happen in real life. Even if the
blocked presentation is not ecologically realistic, these simulations allowed
to test the model in an extreme, and somewhat simplified, situation (see
also Schlesinger & McMurray, 2012). Thus, they brought to light a problem
that every comprehensive model of language acquisition will have to address,
namely the possible interference between what has been learned previously
and what is currently experienced or being learned. This interference is a
central issue in the literature on memory, learning, and forgetting (Hardt et
al., 2013).

Interference between previously learned representations and new input
can only be prevented by introducing a mechanism to protect those parts of
the memory that are unrelated to the new input. We are not aware of pro-
posals of how such a mechanism could operate that are sufficiently concrete
that they could be implemented in a computational model. Therefore, we
designed a very simple mechanism that used speaker change as the trigger
to protect parts of the memory, future learning no longer affects the repre-
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sentations in that part of the memory. Memory protection mechanisms in
infants and adults will be much more complex, if only because detecting
the need for activating the mechanisms in realistic situations has to rely on
various different cues and thresholds compared to our implementation. With
the protection mechanism in place the difference between speaker-general
and speaker-specific learning decreased, both in terms of the accuracy for
the known speakers and the generalisation to unknown speakers.

A direct comparison of our model with other models of language acquisi-
tion is not possible, if only because our model operates on a stage of language
acquisition that is not addressed by other models. Still, there are several in-
teresting connections. Our model falls within the group of models that per-
form association learning, similar to the models proposed by Apfelbaum and
McMurray (2011) and Thiessen and Pavlik (2013). Contrary to those models
our model takes real speech as input. Although our simulations were based
on (strictly) supervised learning, the update procedure does not perform
discriminative learning, in contrast to the neural net models such as used
by Apfelbaum and McMurray (2011). When we introduced speaker-specific
learning in section 4.2.4 episodic representations were referenced, but it must
be emphasised that the speaker-specific representations in our model are not
bona fide exemplars. On the contrary, there is usually only a single acoustic
representation which captures all the variation in all tokens associated to a
concept.

One of the goals of this chapter was to outline future experiments that
could shed light on the question whether infants form speaker-general or
speaker-specific representations during the first stage of building a lexicon.
Our simulations showed that learning from multiple speakers can only be
advantageous for generalisation to unknown speakers independent of the
strategy to build lexical representations. When the model is extended to
comprise a memory protection mechanism the differences between the out-
comes of simulations of the two learning strategies are so small that it seems
questionable whether it will be possible to design behavioural experiments
that could give a conclusive answer. Yet, we can suggest a number of issues
that behavioural experiments could address.

The large difference between simulations presenting speakers either mixed
or blocked showed that stimulus order can have a substantial impact on per-
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formance. While this effect has not been researched in infants, experiments
in the visual domain (Mather & Plunkett, 2011) and studies testing adults
(Chandrasekaran et al., 2013) show that the order of presentation can have a
tremendous impact and further research into this issue is necessary in labora-
tory studies, which so far focused on intermixed presentation. The ecological
plausibility of each learning situation requires a careful assessment of infants’
typical input, where existing corpora might not yield a sufficiently large and
natural sample. To assess the impact of presentation order, we suggest to
present multiple voices in blocks or intermixed to infants. We predict that
a mixed presentation is overall more beneficial for recognition and gener-
alisation, but only if exposure is sufficiently long as initial learning might
be slower. During a blocked presentation, and without an explicit cue to
situation changes, we expect adaptations to the most recent speaker. How
strong this effect is and whether previously heard speakers are recognised
well might point to infants building one or several representations for mul-
tiple speakers in the input. A second cue lies in the generalisation abilities,
which should be compared across experiments with few and many speak-
ers presented either blocked or mixed. We expect to see a similar pattern
as in our results with improved generalisation for more speakers if infants
use a similar process as the present speaker-general strategy. If infants em-
ploy some form of speaker-specific encoding we expect a strong adaptation
away from previous speakers and towards new ones with no improvement in
generalisation when more speakers were heard. Infant experiments have so
far only shown that generalisation improves when all voices are presented
in close succession (e.g., Rost & McMurray, 2009). The comparison both
between mixed and blocked presentation and between hearing few versus
many voices is, according to our results, essential to further understanding
how infants process and store speaker-variability.

In simulations with speaker-specific processing we have made the rather
extreme assumption that a ball referred to by the first speaker is encoded as
a different concept than a ball referred to by the second speaker, and that it
is always completely clear who is speaking. This seems to be different from
what happened in experiments in which infants had to learn the difference
between a ‘puk’ and a ‘buk’. In their experiments Rost and McMurray (2009)
played speech from 18 voices that were completely disembodied, so that it
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is not clear to what extent the infants were aware that there were many
different speakers. It would be interesting to see if it is possible to design
an experiment in which the voices are given more of a persona, for example
by using portraits of the speakers or cartoons. It would certainly be possible
to introduce variation in the images of the ‘puk’ and ‘buk’, and to co-vary
the voices that name the images with the view of the objects. The feasibility
of using multiple exemplars of object images has convincingly been demon-
strated by Junge (2011). Thereby, it would become possible to investigate
whether cues to changes in the specific situation alter infants’ abilities to
harness between-speaker variability.

On a completely different note, it would be tremendously useful to have
access to the raw audio files of the stimuli that are used in headturn pref-
erence and switch experiments, so that these signals could be used to drive
future simulations instead of symbolic representations that could only be
produced by virtue of expert speech knowledge. Without access to the stim-
uli, integrating the outcomes of research that investigates the processes in
early language acquisition is considerably more difficult. Importantly, many
assumptions regarding the specific stimuli have to be made, and it is for
example difficult to compare the speakers used in the present experiments
to those used in infant studies (e.g., Houston & Jusczyk, 2000; Rost & Mc-
Murray, 2009).

There are numerous ways in which the model presented here can be
refined and extended. Arguably the most interesting outcome with respect to
the model is the possible need to comprise some mechanism that can prevent
interference between old and new representations. Although we have shown
that a very simple mechanism already performs well, much additional work
is necessary to design a protection mechanism that is entirely physiologically
and cognitively plausible. On a more technical level many issues remain to
be investigated, such as the effect of incorporating voice pitch in the basic
acoustic events to introduce stronger gender effects.

4.4.1 Conclusion

This chapter presented a computational model of an early stage in language
acquisition (Werker & Curtin, 2005). Simulations with the model investi-
gated implications of a speaker-general versus a speaker-specific processing
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strategy. Our simulations suggest that speaker-general representations may
have an advantage over speaker-specific ones. The simulations also showed
that an effective model of word learning might need to implement a mecha-
nism that can determine whether a new utterance should lead to updating
entries that are already present in a growing lexicon, and if so, which ones
should be updated and which ones should remain unaffected, and when it is
necessary to initiate an additional lexical entry. In addition, the simulations
illustrated that stimulus order can play a crucial role during learning from
variable input. Future work will shed light on the extent to which infants
show patterns similar to the model and whether for them mixed stimulus
presentation is indeed more beneficial than blocked stimulus presentation,
as suggested by the present modelling results.
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Notes
21The same speaker will also produce the same word very differently, e.g., when mood

or addressee (infant or adult) changes. In this work we focus on the typically larger vari-
ability between two different speakers. By extension, it is possible that infants use similar
strategies when they encounter variability within a single speaker’s different utterances.

22This is very similar to the way in which speech is represented in mobile telephony. It is
also the preferred representation in automatic speech and speaker recognition (Coleman,
2005).

23The corpus is available upon request via The Language Archive of the Max Planck
Institute for Psycholinguistics, Nijmegen, The Netherlands, at tla.mpi.nl.
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5 | Summary and conclusion

The present thesis provides a starting point for new directions in developing
models and theories of early language acquisition. Virtually all existing the-
ories and models are based on the assumption that infants perceive speech
in the form of a sequence of discrete units, such as speech sounds or feature
vectors (see e.g., Thiessen & Pavlik, 2013; Rytting et al., 2010; Goldwa-
ter, Griffiths, & Johnson, 2009). This would mean that infants first have to
acquire knowledge about sounds, be able to extract them from the speech
signal, and also overcome some, if not all, of the variability present in the
speech signal. Converting the continuous and variable signal into discrete,
abstract, and invariant symbols is not trivial, and not even adults are able
to perform speech recognition in such a way (Goldinger, 1998; Pierrehum-
bert, 2003). The present thesis, in contrast, assumes that the first words are
represented as chunks of continuous and variable speech. Acoustic matching
based on whole utterances is the core process that all models in this the-
sis employ. The models combine rich representations that are close to the
source signal, continuous and variable speech, with a general-purpose learn-
ing and recognition mechanism that was initially designed to process visual
input (Lee & Seung, 1999). All models presented in this thesis succeeded at
learning and recognising words, albeit not in every situation. Each chapter
of this dissertation explored word learning and recognition abilities in differ-
ent circumstances and therefore contributed in a specific and unique way to
the overall goals of this thesis, which is to investigate whether words can be
learned from variable and continuous speech.

This chapter first summarises the experiments reported in chapters 2, 3,
and 4 and their main findings. Subsequently, the implications of the chapters’
findings for the role of variability in language acquisition and the importance
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of generalisation are discussed in section 5.2. The present thesis is grounded
in data from infant research and all chapters address the mechanisms and
representations that might be at stake during early language acquisition and
that experiments with young infants aim to tap into. Section 5.3 discusses
how the findings reported in this thesis can affect the way in which results
of infant studies can be interpreted. The limitations of this thesis, questions
that arose based on the chapters’ results, and future work to follow up on
both the computational modelling work and on the predictions for infant
studies, are in focus in section 5.4. This chapter ends with a short conclusion
that places this thesis in the context of language acquisition research.

5.1 Summary of the chapters

Chapter 2 modelled the Headturn Preference Procedure (HPP) and demon-
strated that there is a complex link between infants’ underlying abilities
and the overt behaviour measured by HPP studies. The chapter presents
an end-to-end model of the HPP: the model simulates an infant in the test
situation of a HPP experiment, based on having heard real speech input,
matching it to familiar words, and generating observable behaviour that can
be measured by an experimenter. Without segmenting the target word from
the test utterances the model successfully simulated infant behaviour in a
typical HPP experiment. The chapter showed that infants do not need to
segment words from the continuous speech stream to succeed at the task,
and that factors that do not directly relate to the linguistic aspect of the
experimental task affect the measured outcome, namely the choice of specific
test stimuli, infants’ attention span, and external assessment criteria. The
implications of this chapter’s findings on the interpretation of infant studies
are discussed in detail in section 5.3. Considering computational modelling,
the work in this chapter constitutes a first step towards bridging the gap be-
tween infant data on the one hand and unobservable internal processes and
representations on the other. Computational models usually aim to simulate
underlying abilities, but the available infant data that computational models
take as reference stem mostly from behavioural measurements. These mea-
surements only allow indirect insight into infants’ underlying abilities and
have to be interpreted with caution (see also section 5.3).
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Learning words from continuous speech was in focus in the two following
chapters, which explored the impact of different past experiences and differ-
ent test situations. Both chapter 3 and chapter 4 demonstrated that a model
that operates on real speech and does not implement segmentation proce-
dures can successfully learn words. Only about ten experiences with each
word, always embedded in a short sentence, were sufficient to almost always
recognise this word in a new test sentence. The models’ ability to detect
words in noisy speech was tested in chapter 3, an ability that is important
for infants since they are exposed to ambient noise relatively frequently in
their daily lives, for example when the television is playing in the back-
ground (B. A. Barker & Newman, 2004). The results show that the model is
somewhat robust to added noise, to an extent that is comparable to infants’
abilities measured in behavioural studies (e.g., Newman, 2005; B. A. Barker
& Newman, 2004).

Chapter 3 and chapter 4 manipulated the learning conditions to examine
which changes in the input modify the model’s abilities. Both chapters led
to insights concerning variability and generalisation that will be discussed in
detail in section 5.2. The main finding was that added learning experience,
be it from the same speaker or from multiple voices, improved the model’s
generalisation abilities of stored knowledge to unknown speakers.

5.2 Variability & generalisation

Speech is variable due to a number of reasons such as between-speaker vari-
ation, background noise, differences in mood, and speech rate (see chapter
1). In language comprehension the ability to generalise knowledge to ac-
commodate new experience and therefore to effectively ignore non-essential
variation is an important skill. Infants are still learning which aspects of the
speech signal are essential for the intended message (changing “cup” to “tup”
for instance, results in a non-word) and which aspects are not, such as a
change based on the speaker’s mood or identity. To investigate the models’
generalisation abilities, all models were tested with material spoken by an
unknown speaker. Across chapters it became clear that it is more difficult
– but not impossible – to match test stimuli from an unknown speaker to
stored representations, a result that is in line with infant and adult data
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(Houston & Jusczyk, 2000; Goldinger, 1998). Since properties of the differ-
ent voices were still present during the matching process, it became clear
in chapter 2 that differences in the pairs of known and unknown speakers
influence the model’s word detection ability.

Experiencing variability across non-linguistic dimensions during learning
has been suggested to aid generalisation abilities (Newman, 2008). When
hearing the same word spoken by several speakers, infants seem to put more
emphasis on linguistically important aspects of the speech signal, a predic-
tion that has so far only been modelled using simplified and hand-crafted
input instead of real speech (Apfelbaum &McMurray, 2011). This prediction
is addressed in chapters 3 and 4, which investigated whether generalisation
from variable input can be simulated within the framework of the present
models. To this end, multiple speakers provided the learning material. In
chapter 3 the presence of multiple speakers during learning aided generali-
sation to unknown speakers, even when background babble noise was added
to the test material. It seemed that the mere presence of variable input,
hearing multiple speakers as opposed to just hearing one, seems sufficient,
for a beneficial effect to be observed.

Chapter 4 compared two ways of processing speech input and dealing
with between-speaker variability; either the model captured between-speaker
variability within one representation in the lexicon or it assigned separate
representations to words spoken by different speakers. It turned out that
accumulating variability between speakers within a single lexical representa-
tion was more beneficial for the model’s ability to recognise words, especially
when they were spoken by an unknown speaker. The impact of the process-
ing strategy depended on the way in which speakers were presented in the
input: the model either heard multiple speakers intermixed or each speaker
was presented separately in blocks. With intermixed presentation the model
could harness all variability at once, leading to the highest generalisation
ability measured in this chapter. In these simulations, the difference be-
tween the two processing strategies was small. However, when speakers were
presented in blocks and the model could only learn from one speaker at a
time, it became clear that the representations adapt to the most recent ex-
perience. This means that the model could recognise speech by the current
input speaker very well, but previously heard speakers were at a disadvantage
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since the representations that had been tuned to their voices have changed
to accommodate the current speaker. After hearing a number of utterances
from one speaker, the word recognition abilities for previous speakers could
even return to the level of an unknown speaker.

It might not always be the best strategy to modify representations that
optimally accommodate one specific experience, such as a specific speaker
in the input. Chapter 4 introduced a mechanism that protects parts of the
model’s memory from unwanted changes in a new situation. This mecha-
nism avoids that new input interferes with previously acquired knowledge so
that past experience can be preserved. A similar mechanism that determines
which parts of the memory should be subject to learning in a specific situa-
tion might be equally beneficial in human learning. Indeed, selective memory
adjustments are subject to intensive research (Hardt et al., 2013).

The temporal structure of variability, blocked versus mixed, and its im-
pact on learning has wider implications. While these two conditions are ex-
tremes, they illustrate that the impact of experiencing variability does not
only depend on the number of speakers (or other sources of variability) in
the input, but also on the temporal order in which this variability is experi-
enced. Adult studies and work on infant visual categorisation has found an
impact of presenting variable items either blocked, so that adjacent stimuli
were very similar, or mixed, so that large between-stimulus variability can
be experienced over a short time span: when all variable items are presented
mixed and in close proximity, categorisation and generalisation responses are
improved (Mather & Plunkett, 2011; Chandrasekaran et al., 2013; Magnuson
& Nusbaum, 2007). The temporal structure of acoustic variability has not
yet received much consideration in the context of early language acquisition.
Chapter 4 clearly illustrates that statements about the benefit of variability
should at least consider whether there are further requirements beyond the
mere presence of variable input. In the context of between-speaker variabil-
ity, this would for example mean that having multiple speakers in the input
might not always yield the same outcomes. When an infant spends most
time with one of the speakers, a predicted beneficial effect might be smaller
than when multiple caregivers provide input simultaneously.

Notably, hearing several speakers during learning had small negative ef-
fects on the models’ ability to recognise words spoken by known speakers, as
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chapters 3 and 4 showed. In such situations generalisation abilities to new
speakers are not necessary. Building representations from a more variable
signal with multiple speakers extended the learning phase, an outcome that
could be expected. In addition, having to accommodate multiple speakers in
the lexicon slightly lowered performance for those known speakers through-
out learning, because the models’ representations were not completely tuned
to a single voice. The impact of a more varied input on infants’ language ac-
quisition has so far mostly suggested to be beneficial (e.g., Newman, 2008),
but these results point to a possible trade-off between the ability to gener-
alise knowledge to new input, such as unknown speakers, and the ability to
completely adapt to and learn from the typical experience, for example the
main caregivers.

5.3 Interpreting infant studies

The present modelling work led to three important insights that can help
re-evaluate the results of infant studies. All three points are discussed in
detail below. The simulations show that caution must be exercised when
interpreting infant data.

First, the exact structure of internal representations might not be fully
reflected in a specific assessment. Test stimuli can match internal represen-
tations on many dimensions, and therefore each specific test stimulus deter-
mines which aspects of the internal representations become most important
in a specific test. In chapter 3 test stimuli were altered by noise, came from
an unknown speaker, or both. In this chapter it was not possible to reli-
ably predict the model’s performance based on an analysis of the complete
internal representations. In a similar vein, different combinations of learn-
ing and test stimuli led to different outcomes in chapter 2. The impact of
merely changing the test speaker without altering internal representations
was so strong that it could change a significant effect to a null result (see sec-
tion 2.5). Therefore, general conclusions regarding internal representations
might not be warranted based on experiments which are using a limited set
of stimuli that only measure certain aspects of the internal representation
under scrutiny. In turn, overt (simulated) behaviour cannot lead to con-
clusions about all facets of underlying representations. The same reasoning
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can be applied when interpreting infant behaviour in an experiment: conclu-
sions about the structure and make-up of internal representations can only
be drawn when the task and test material are taken into consideration. In
summary, the first point underlines the importance of considering the task,
including the stimulus material, infants face in experimental situations.

Second, infants do not necessarily display their internal abilities in the
form of desired behaviours in a specific experiment. The absence of a be-
havioural effect that for example differentiates between a known and an
unknown word does not imply the absence of an underlying ability to de-
tect known words (e.g., Aslin, 2007; Junge et al., 2012). Chapter 2 modelled
both underlying abilities to detect known words and overt behaviour in an
experimental setting. Two factors could obscure the underlying word detec-
tion ability: infants’ attention span and the experimenters’ criterion of what
constituted the desired behaviour. Attention span is important, because the
loss of interest drives observable behaviour – the headturns. When an infant
never loses interest or is too easily distracted, the difference between test tri-
als with known and unknown words vanishes, irrespective of any underlying
abilities. This point underlines the importance of individual differences (see
chapter 1 and Cristia et al., 2013), both between infants and across different
experimental trials, since attention span is expected to decrease during the
course of an experiment (e.g., Houston & Jusczyk, 2000).

Third, infants might not use the presumed abilities when they show the
expected behaviour in a specific experimental task, such as listening longer to
a known than to an unknown word. The link between underlying abilities and
observable behaviour was an important topic in chapters 2 and 3. In chapter 2
it became clear that the modelled HPP does not require word segmentation,
an ability that has long been claimed to be necessary to explain infants’
ability to detect known words in continuous speech in this task (Jusczyk &
Aslin, 1995, and subsequent work). The simulations of this chapter could
replicate infant behaviour without first extracting words from continuous
speech.

Chapter 3 reported simulated listening preferences – a typical measure-
ment in infant studies – which can be computed either based on a general
detection of any acoustic pattern that is stored in the lexicon (form only)
or which can reflect the recognition of a specific word (meaning-driven form
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detection). In chapter 3 the difference between simply computing acoustic
matches, without reference to word meaning, and recognition of a specific
target word became clear. The model simulated infant behaviour on the ba-
sis of acoustic matching alone. This means that the awareness that a specific
word is present in the input is not necessary – it seems sufficient to consider
how well a given word matches any entry in the lexicon. Of course, if the tar-
get word is stored in the lexicon, the best match will often be with this word,
although this might not always be the case, especially in noisy conditions.
Noise can distort the speech signal, which in turn can give rise to “mis-
understandings”, as experiences with conversations in noisy environments
confirm. The notion of computing acoustic matches without considering the
meaning of the intended target word becomes even more important when
experiments compare infants’ reactions to known versus unknown words.
An unknown word might match an unintended target to some extent, which
decreases the difference in internal activations of stored representations. The
same concern holds for modelling work: assuming that infants recognise a
specific word whereas they actually might rely on acoustic matches would
not correctly estimate infants’ abilities. If a recognition process is modelled,
the model would not reflect what infants actually (can) do.

5.4 Limitations, open questions, & future work

There are several topics that the present thesis could not address. Most
prominently the emergence of abstract units remains an issue to be taken
up by future research. The present thesis demonstrated that learning word
representations that link stretches of speech to a form of meaning from the
variable and continuous speech signal provides a feasible starting point for
language acquisition. This stands in contrast with previous proposals as-
suming that infants first have to decode the speech signal in the form of
a sequence of discrete, abstract symbols (Kuhl, 2004; Gervain & Werker,
2008).

All modelling work presented here rests on numerous assumptions that
are necessary to allow for feasible simulations. Most prominently, a number of
factors that might be important were not implemented in the present model,
such as social interaction. Infants learn language based on interactions with
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their caregivers and the importance of contingent input is becoming ap-
parent in multiple experimental studies and theories of language acquisition
(Frank, Goodman, & Tenenbaum, 2009; Tomasello, 2009; Topping, Dekhinet,
& Zeedyk, 2013; Yu & Ballard, 2007).

The models presented in chapters 3 and 4 learned words in the presence
of one unambiguous meaning label, which might not be entirely realistic.
While recent studies show that word learning indeed improves when infants
have one object in view while it is being named (Pereira et al., 2013), such
situations do not constitute all of infants’ learning experiences (Roy & Pent-
land, 2002). Work addressing the impact of one clear cue to meaning on
learning using an active learning strategy have shown that while indeed the
learning task becomes harder in the presence of unreliable input, the model
still learns successfully, albeit slower (Versteegh et al., 2010).

The speech material used in this thesis was pre-recorded in a highly-
controlled environment and contained material of a few native speakers of
British English. This corpus allowed for the targeted manipulation of several
factors, such as the presence of background noise (chapter 3) and using the
same sentence material spoken by different speakers (chapters 2, 3, and 4).
However, only few minimal pairs are present in the corpus used, and across
chapters the impact of different lexicon sizes and combinations of words in
the lexicon were not explored to keep each chapter focused on the topic at
hand. There might be an influence of lexical entries on each other, be it min-
imal pairs that require focus on their distinguishing properties, or different
words that contain similar sounds. Future work must also expand the pre-
sented work to more realistic corpora, not in the least because infant directed
speech is acoustically different from speech when reading, even if the readers
were instructed to speak as if to a young infant (Lahey & Ernestus, 2013). In
addition, it is necessary to let all models of early language acquisition learn
using speech material from various languages, especially languages that are
not Germanic, to avoid an accidental bias that favours English and related
languages (Fourtassi, Börschinger, Johnson, & Dupoux, 2013). Predecessors
of the models presented in chapters 3 and 4 have done exactly this and found
little to no performance difference when for example using Finnish speech
material (e.g., ten Bosch & Boves, 2008).
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The processing and representation of speech input aimed to be as plausi-
ble as possible on one hand and suitable for processing by a machine learning
procedure on the other hand. The speech encoding was based on spectral
representations of the signal, along with its change over time. This encoding
proved sufficient for the tasks at hand while remaining rich and close to the
signal (see e.g., sections 3.2.3.1 and 4.2.3). However, a number of limitations
became apparent in the chapters. Most prominently, the encoding used in
this thesis does not preserve voice pitch, an important cue to speaker gender
in human speech processing. The impact of this omission has to be explored
in subsequent modelling studies. It might be possible that previously ob-
served effects of speaker gender in infant studies (Houston & Jusczyk, 2000)
are based on the on average greater pitch difference across gender, explaining
infants’ seeming ability to generalise to new speakers only when the gender
does not change. Simulations with an amended speech representation that
include pitch information might be able to replicate these findings.

In all models the memory did not adapt to test stimuli, whereas infants
are usually not aware of the specific status of a test situation. Because the
model did not learn during testing, the same testing material could be used
at different points in learning, which improves comparability across tests.
Nonetheless, introducing learning into the test situation might be especially
beneficial for the model of an experimental procedure presented in chapter
2. The model can simulate the dynamics during a single trial, as visualised in
figure 2.5, but the potential effect of learning from each speech input, while
potentially being small for each sentence, is not yet covered by the model. It
is thus difficult to assess the impact of learning during test on the behavioural
dynamics and to precisely match the model’s simulated behaviour to infants’
responses in the same test situation.

The memory protection mechanism introduced in chapter 4 also requires
further research. This mechanism prevented that representations adapted
to one speaker and thus a specific situation where only this speaker was
present could be changed due to new experiences. Situation-specific learning
can take place when the situation changes and infants note this, for example
in a different home where unknown speakers are present. Future modelling
work together with considerations on a theoretical level might yield testable
predictions for infant studies, as it is not yet clear whether and how infants
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selectively adapt their memory depending on the specific situation they find
themselves in.

5.5 Conclusion

The present thesis offers a new perspective on early language acquisition,
where word-level knowledge can precede abstract sound representations.
While infants’ lexicon develops and is influenced by the emergence of sound
categories, early learning can proceed in absence of what was long thought to
be a prerequisite for language acquisition: perceiving speech as a sequence of
symbols that has lost most, if not all, of the variability present in the acous-
tic signal. This finding implies that infants can bootstrap into language not
from learning sound categories but starting from larger parts of the speech
input.
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Notes
21The same speaker will also produce the same word very differently, e.g., when mood

or addressee (infant or adult) changes. In this work we focus on the typically larger vari-
ability between two different speakers. By extension, it is possible that infants use similar
strategies when they encounter variability within a single speaker’s different utterances.

22This is very similar to the way in which speech is represented in mobile telephony. It is
also the preferred representation in automatic speech and speaker recognition (Coleman,
2005).

23The corpus is available upon request via The Language Archive of the Max Planck
Institute for Psycholinguistics, Nijmegen, The Netherlands, at tla.mpi.nl.
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Formal descriptions of the models

Input representation

Acoustic encoding

Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCCs) are a popular representation
of the time-varying spectral characteristics of speech signals in Automatic
Speech Recognition. Let st, t = 0, 1, · · · , T be the discrete-time representa-
tion of a continuous speech signal s(t). To account for the tendency that the
energy in speech signals is concentrated in the lower frequencies, the signal
st is first differenced so as to yield ŝt = st − .97 × st−1. From the signal ŝt
overlapping intervals with a duration of 20 ms are extracted by multiplying
ŝt by a Hamming window wt that is shifted in steps of 10 ms:

w(n) = 0.54− 0.46 · cos

(
2 · π · n
K − 1

)
, n = 0, 1, · · · ,K

An utterance with a duration of, for example, 3 s (= 3000 ms) will result in
a sequence of 300 speech frames.

To transform the signal from the time domain into the spectral domain,
a Discrete Fourier Transform (DFT) is calculated for each windowed speech
frame via

|Xf |2 =|
N−1∑
n=0

(ŝ(n) · w(n)) · e−i2π·n·f/N |2 (5.1)

with N being the number of DFT frequencies (set to 400 in the present
thesis). The absolute values of the resulting N/2 Fourier coefficients are
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then multiplied by the triangular frequency response of 30 bandpass filters
with center frequencies defined on the technical Mel frequency scale with
m ≈ 2595 · log10

(
1 + f

700

)
for frequencies f > 700 Hz, and a linear relation

between m and f for frequencies < 700 Hz. This arrangement corresponds
to the frequency resolution of the human auditory system. The weighted
Fourier coefficients are summed to obtain 30 Mel-frequency spectral energy
coefficients, of which the 10-log is taken. Finally, the 30 Mel-spectral power
values MFq are converted to 12 MFCCs by means of an Inverse Discrete
Cosine Transform:

MFFCm =

30∑
q=0

√
2

30
· log(MFq) cos

(
2π · (m− 1) · (q − 1)

2 · 30

)
(5.2)

with m = 1, 2, · · · , 12. The log-energy is added as the 13th coefficient. The
∆ and ∆∆ coefficients are computed from the 13 coefficients as the linear
regression over time in a sequence of nine adjacent frames. The result is a
39 dimensional vector, updated every 10 ms.

Vector Quantisation

Each time frame of the signal is represented as a set of 13 static MFCC, 13

∆, and 13 ∆∆ coefficients, i.e., a vector consisting of three sets of 13 real
numbers. To limit the number of possible representations Vector Quantisa-
tion (VQ) is applied to the three vectors. To this end, three code books of
150, 150, and 100 labels for the MFCC, ∆, and ∆∆ coefficients, respectively,
were obtained a priori based on conventional k-Means clustering applied to
the MFCC analysis of recordings made of ten native speakers of Dutch, who
read short sentences in a noise-free environment. After the VQ step, each
speech frame is represented by three VQ labels; one from each of the three
code books. Per code book, the label lj(at) for a speech frame at corresponds
to the index of the code book prototype pi,j that has the smallest Euclidean
distance to at:

lj(at) = argmin
i

(at − pi,j)2, j = 1, 2, 3. (5.3)
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Histogram of Acoustic Co-ocurrences

As a result of the VQ operation, each utterance is represented as a sequence
of triplets of VQ labels. Utterances of unequal duration will result in se-
quences of triples of VQ labels of unequal length. To obtain a fixed-length
representation, the sequence of triples of VQ labels of an utterance is con-
verted into a Histogram of Acoustic Co-occurrences (HAC; Van hamme,
2008). A HAC representation is a (very high dimensional) vector that con-
tains for each pair of VQ labels the number of times that these labels co-occur
at a distance of two and at a distance of five frames. Since there are 150 la-
bels for the static MFCCs, 150 labels for the ∆, and 100 labels for the ∆∆,
there are 2× 1502 + 2× 1502 + 2× 1002 possible co-occurrences. This results
in HAC vectors of the form

Va =



V lag=2
MFCC

·
V lag=5

MFCC

·
V lag=2

∆

·
V lag=5

∆

·
V lag=2

∆∆

·
V lag=5

∆∆



(5.4)

A signal of 3 s generates close to 600 counts in the 110, 000-dimensional
HAC vector, which amounts to a sparseness of 99.45 % if all these counts fall
into different HAC components. It is likely that some of them co-contribute
to the same component, resulting in sparseness at > 99.45 %. Therefore,
HAC representations of short utterances are extremely sparse.

Meaning encoding

In chapters 3 and 4 the HAC vectors Va that represents the acoustic infor-
mation of an utterance are augmented with a (much shorter) extension Vm
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which represents the meaning of an utterance. In this thesis the meaning of
an utterances is defined as the presence of a specific keyword in that utter-
ance. This information can be encoded in a vector with the length of the
number of possible keywords, with a value of one at the index position of
the keyword, and a value of zero at all other index positions:

Vm[i] =

1 if the utterance contains keyword i

0 otherwise
(5.5)

Learning and matching: Non-negative Matrix Fac-

torization

In all model implementations in this thesis Non-negative Matrix Factoriza-
tion (NMF; Lee & Seung, 1999) is used for learning associations between the
acoustic and meaning representations and or finding the best match between
learned representations and unknown input during tests. The general idea,
as introduced by Lee and Seung (1999), is as follows: An input matrix V

is of size m × n, with m being the dimension with which perceptual input
is encoded (here more than 110, 000, as described in the previous section),
and n referring to the number of observations. NMF factorises V as two
much smaller matrices W and H, of size m× r and r× n respectively, with
r � m,n, such that

V ≈W ×H. (5.6)

This factorisation expresses each column of V in terms of a linear combi-
nation of limited number of vectors in W, whose representational format
is the same as V, but the memory size is limited by the inner dimension
r. The matrix H contains the weights required to represent V in terms of
the contents of W and can be considered as temporary connections between
internal representations.

The cost function that was used in NMF is the Kullback-Leibler (KL)
divergence, which governs the approximation described in equation 5.6.

DKL(WH‖V) =
∑
ij

(Vij log
Vij

(WH)ij
+ (WH)ij −Vij) (5.7)
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The NMF operation is implemented by iteratively applying the following
steps (in the present work we limited the number of operations to 2):

Wik ←Wik

∑
j

Hkj

(
V

WH

)
ij

(5.8)

Normalise :
∑
i

Wik = 1

Hkj ← Hkj

∑
i

Wik

(
V

WH

)
ij

Normalise :
∑
i

Hik = 1

Incremental learning

Instead of presenting all input at once, as required by the form of NMF
introduced by Lee and Seung (1999), an incremental (adaptive) version of
NMF was developed to mirror learning in a more plausible manner by Driesen
et al. (2009). Adaptive NMF introduces an additional parameter: γ, which
represents the weight of previous updates. The above-described process is
adjusted as follows to process an input vector V from all inputs V.

With the t’s utterance in a sequence of T utterances in V:

Wt
ik ←Wt

ik

∑
j

Ht
kj

(
V

WH

)t
ij

+ γκ, with κ = Wt−1
ik

(
V

WH

)t−1

ij

H

Normalise:
∑
i

Wt
ik = 1

Hkj ← Hkj

∑
iWik

(
V

WH

)
ij

Normalise:
∑
i

Hik = 1

W0 (at the beginning of learning) and H (for each new utterance) are ini-
tialised with small random numbers using the MatLab function rand(),
which returns a matrix containing pseudorandom values drawn from the
standard uniform distribution on the interval (0,1).
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Equalising the contributions of the acoustic and meaning sub-
vectors

Since the meaning part of an input vector vm comprises a much smaller
number of coefficients (equal to the number of keywords in an experiment)
than the acoustic part va (about 200 non-zero coefficients for the MFCC,
∆ and ∆∆ co-occurrences), the contribution of vm to the distance function
is multiplied with a weight factor, which is fixed to 100 in chapter 3. In
chapter 4, the impact of this factor is explored in more detail; it was found
to not be critical for the learning outcome (see also Van hamme, 2008; for
similar findings).

Testing

To test the model, new acoustic input va is approximated using only the
acoustic-encoding part of the memory: Wa, with the KL as cost function
(see equation 5.7).

va ≈ (Wa · ĥ) (5.9)

ĥ is obtained by using the lower two expressions in Eq. (5.8).
Chapters 3 and 4 assess model performance based on the approximated

meaning information of a test utterance, which is obtained using the weights
from the acoustic decoding step in equation 5.9.

v̂m ≈ (Wm · ĥ) (5.10)

Chapter 2: Familiarity scores

In chapter 2, the ability of a model to to distinguish sentences that con-
tain known keywords from sentences that do not contain known keywords
is assessed. For this purpose familiarity scores are computed based from the
weights in vector ĥ (see equation 5.9). In the experiments reported in this
chapter, the input vectors V and the internal memory W do not contain
a meaning-encoding part. Instead, W is divided into two parts: one set of
columns stores (10 columns) store information about familiarised words and
100 additional columns store past experience with speech input. Therefore,
W is not learned by applying NMF to input speech. Rather, it is constructed
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by hand, by stacking the HAC vectors of ten utterances that each contain
one out of two familiarised keywords, and the HAC vectors of 100 randomly
selected utterances that do not contain one of these keywords.

The activation vector ĥ obtained by approximating an unknown utter-
ance with the contents of W contains one value for each column in W,
denoting how much this column could contribute to approximating the test
utterance. To allow for comparison across test utterances, ĥ is first nor-
malised to sum to 1. Familiarity scores are derived from the 10 entries of ĥ
that correspond to the word-encoding columns, which are indicated as ĥw.

For a test utterance u the single episode activation is the maximum
activation value in ĥw, irrespective of the keyword corresponding to that
value:

actus = max ĥuw (5.11)

The cluster activation for a test utterance u is obtained as the sum of all
values in ĥ:

actuc =

10∑
1

ĥuw (5.12)

Chapter 3: Simulated preferences

In chapter 3, listening preferences for sentences that contain a known word
over sentences that do not contain a known keyword are computed. In this
case, NMF is used to learn the matrix W from input vectors V which are
comprised of an acoustic part va and a meaning part vm. During test the
acoustic sub-vector vua of an utterance u is used to obtain the weight vector
ĥu by means of (5.10), which is then used to compute the meaning sub-vector
v̂um. In chapter 3 a distinction is made between matching and recognition.
The matching score Ms for a sentence s is defined as

Matching: Mu = maxi v̂
u
mi

for any mu
i .

The recognition score Ru for utterance u is defined as the activation of the
keyword that is present in utterance u.

BothMu and Ru hold for utterance that either contain learned keywords
or not. In the experiments in chapter 3 the preference values are summed
over 20 test utterances for each keyword, measured at 10 points during the
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learning process. With ptkknown the score for a test utterance k at testing mo-
ment t that contains a learned keyword, and ptkunknown for the corresponding
test utterance that does not contain a known keyword, and using the same
expression for matching and recognition scores, the final preference score is
obtained from

pref =

10∑
t

20∑
k

ptkknown −
1

3
×

30∑
t

20∑
k

ptkunknown

To account for the fact that three foils are matched to each target word,
the sums over test sentences are divided by 3 for unknown words.

Chapter 4: Accuracy

In chapter 4 accuracy is used as an evaluation measure. Accuracy is defined
as the proportion of the sentences in a test for which the keyword with
the highest activation is identical to the actual keyword that was present
in the sentence. Concretely, accuracy over a number of test items Ntest is
computed based on a comparison of the reconstructed meaning vector v̂m
and the withheld meaning vector vm.

acc×Ntest =

Ntest∑
k=1

+1 if max (v̂m
k) = max (vkm) = i

+0 otherwise

Operations on the internal memory W

In chapter 4 parts of the internal memory are exempt from further updates at
the moment when a new speaker appears in the blocked presentation mode.
At the moment the speaker changes, the freezing procedure finds the columns
in the memory W learned from the previous speaker with coefficients in the
sub-matrix of Wm exceeding a pre-set threshold. This threshold is selected
such that it on average corresponds to the highest 20 % of the columns in
Wm.

The selected columns of W are stored in the matrix Wfreeze. A new
matrix W′, comprising 70 columns is then constructed by appending the
same number of columns to the remainder of W such that the size of W′

equals that ofW. The new columns are initialised with small positive random
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numbers in the same way as W0 is initialised at the beginning of learning.
In the next test phase unknown utterances NMF is used to approximate
the acoustic HAC vectors of the test utterances by means of the matrix
[WWfreeze].
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Contributions

Chapters 2, 3, and 4 are based on journal articles with the PhD candidate
as first author, the promotors Prof. P. Fikkert and Prof. L. Boves, and the
co-promotor Dr. L.F.M. ten Bosch as co-authors. Below the contributions
of the PhD candidate and of Dr. L.F.M. ten Bosch to Chapters 2-4 are
described to allow for a full assessment of the candidate’s work. For all three
papers it holds that C. Bergmann wrote the paper, guided by comments and
supported by text editing from the three co-authors.

PhD candidate C. Bergmann, MSc

Ch. 2 : C. Bergmann designed and implemented the model, conceived and
conducted the experiments, analysed the data (including statistical
analyses, visualisation), and wrote the paper.

Ch. 3 : C. Bergmann designed, conducted and analysed the experiments and
wrote the paper. This included corpus design, model adjustment24,
parallelisation of simulations, model testing, processing and analysis
of the raw data, including statistical analyses in Python and R and
visualisation of the data using Python.

Ch. 4 : C. Bergmann designed, conducted and analysed the experiments and
wrote the paper. Specifically, C. Bergmann designed and implemented
all experimental conditions in the model (see previous chapter), ran the
simulations, analysed the outcomes and visualised all data. Simulations
exploring the impact of various model parameters were conducted and
analysed by the first author. The results of these simulations are re-
ported briefly in the chapter, in section 4.3.5.4, and concern changes
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of internal parameters. Simulations of the model that comprises an ad-
ditional mechanism to protect parts of its internal memory were also
conducted and analysed by C. Bergmann (see section 4.3.5.4).

Dr. L.F.M. ten Bosch

Ch. 2 : L.F.M. ten Bosch assisted in the model design and implementation.
Specifically, L.F.M. ten Bosch provided MatLab code of a preliminary
version of the first module in the model, based on various functions pro-
vided as deliverable within the ACORNS project, which was adapted
and integrated into the model by C. Bergmann and later rewritten
by the first author to include more changes and adjustments. These
changes include different ways of computing internal familiarity scores
(see section 2.3.5 and conference proceedings papers Bergmann et al.,
2012, 2014), the simulation of test situations (see section 2.3.6), and
the correct computation of simulated listening times (see section 2.3.7).

Ch. 3 : L.F.M. ten Bosch conducted additional analyses of the internal rep-
resentations based on the raw data provided by the first author. These
additional analyses informed part of the interpretation of the main
results reported in this chapter.

Ch. 4 : L.F.M. ten Bosch provided MatLab code to implement the adjusted
model containing the memory protection mechanism (see section 4.3.5.4).
The simulations of the adjusted model with the memory protection
mechanism were conducted and analysed by C. Bergmann.
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Samenvatting: Summary in Dutch

Baby’s leren woorden van de sprekers in hun omgeving. Dit proefschrift is
geïnspireerd door de vraag hoe baby’s woorden ontdekken in het continue
spraaksignaal dat ze horen. Dit is onderzocht door het taalverwervingsproces
van baby’s te simuleren met computermodellen. In tegenstelling tot eerdere
computersimulaties maken de computermodellen in dit proefschrift gebruik
van gewone spraak waarin geen grenen van woorden of klanken aangegeven
zijn. Dit maakt het vinden van woorden als discrete eenheden allesbehalve
triviaal, maar doet tegelijkertijd veel meer recht aan het werkelijke prob-
leem dat baby’s moeten oplossen. Immers, woorden worden zelden in iso-
latie uitgesproken, zelfs in spraak die tot baby’s gericht is. Woorden worden
bovendien doorgaans met veel variatie uitgesproken afhankelijk van spreker,
de stemming van de spreker, de spreeksnelheid, de context waarin een wo-
ord voorkomt, achtergrondlawaai, etc. In dit proefschrift wordt onderzocht
in hoeverre variatie in het spraaksignaal van verschillende sprekers het leren
en herkennen van woorden lastiger maakt of juist vereenvoudigt. Ook wordt
onderzocht welke rol achtergrondruis in het signaal speelt.

In dit proefschrift wordt aangenomen dat de eerste woorden worden
opgeslagen als ongeanalyseerde eenheden, bestaande uit continue brokken
spraaksignaal. Het zoeken naar akoestische overeenkomsten tussen gehoorde
spraak en opgeslagen woorden – de eerste stap in het woordherkenningspro-
ces – staat centraal in dit proefschrift. In computersimulaties bleek dat “com-
puterbaby’s” in staat zijn woorden te leren, ondanks de grote mate van
variabiliteit in het spraaksignaal afkomstig van verschillende mannelijke en
vrouwelijke sprekers, en ondanks een zekere mate van achtergrondruis.

De meeste gegevens over vroege woordherkenning bij baby’s zijn verkre-
gen door middel van de Headturn Preference Procedure (HPP). In deze
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procedure worden baby’s doorgaans in een gewenningsfase (‘habituatiefase’)
bekend gemaakt met een aantal woorden. Vervolgens wordt in de testfase
gemeten of baby’s verschillend gedrag vertonen (bijv. langer kijken/luisteren)
als ze bekende of nieuwe woorden horen. Een significant verschil in kijk- of
luistertijd duidt op de waarneming van het verschil tussen bekende en nieuwe
woorden, en dus op bekendheid met een woord of herkenning van een woord.

In hoofdstuk 2 wordt een computersimulatie gepresenteerd van de Head-
turn Preference Procedure (HPP). De computerbaby krijgt input in de vorm
van echte spraak met terugkerende woorden, net als in de habituatiefase van
een HPP experiment met levende baby’s. In de testfase hoort de comput-
erbaby ofwel spraak met de woorden die ook in de habituatiefase zijn geho-
ord, ofwel woorden die daar niet in voorkwamen. De computerbaby genereert
vervolgens observeerbaar gedrag, te vergelijken met de kijktijd in een HPP
experiment. Het model toont aan dat er een complex verband is tussen de
onderliggende vaardigheden (woordleren en woordherkenning) en het ob-
serveerbare gedrag (kijktijd) van baby’s zoals gemeten door HPP studies.
Interessant is dat het computermodel gebruik maakt van woordherkenning
zonder expliciet gebruik te maken van woordsegmentatie van de gehoorde
spraak: voldoende overlap tussen opgeslagen woorden en gehoorde spraak
volstaat voor woordherkenning.

In het model is verder gekeken in hoeverre factoren zoals de specifieke
keuze van teststimuli, de mate van aandacht die baby’s hebben voor het
spraaksignaal en beslissingen van de proefleider de uitkomsten beïnvloeden.
Het onderzoek in dit hoofdstuk vormt een eerste stap naar het overbruggen
van de kloof tussen enerzijds het waarneembare gedrag van de baby tijdens
een experiment en anderzijds de niet-waarneembare interne cognitieve pro-
cessen en representaties.

Computationele modellen komen in alle soorten en maten. De compu-
tationele modellen waar we naar streven zijn die modellen die zich zo goed
mogelijk richten op de simulatie van de onderliggende cognitieve processen.
De beschikbare gegevens die de modellen als referentie nemen zijn echter
meestal gebaseerd op metingen van observeerbaar gedrag. Deze metingen
geven alleen op een indirecte manier inzicht in de onderliggende processen
en moeten daarom voorzichtig worden geïnterpreteerd.
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Het onderwerp van de twee volgende hoofdstukken is het leren van woor-
den en hun betekenis op de basis van continue spraak. In deze hoofdstukken
wordt onderzocht wat de invloed is van verschillen in talige ervaring (zoals
het aantal sprekers dat een baby hoort) en verschillende testsituaties. Zowel
hoofdstuk 3 als hoofdstuk 4 tonen aan dat een model dat met echte spraak
werkt en geen expliciete segmentatieprocedures implementeert succesvol kan
zijn in het leren van woorden. Wanneer een woord tien keer gehoord is in een
korte zin, is dit voldoende voor het model om het vervolgens te herkennen
in een nieuwe testzin.

Zowel in hoofdstuk 3 als in hoofdstuk 4 worden de leeromstandigheden ge-
manipuleerd in verschillende experimenten. Hiermee wordt onderzocht welke
veranderingen in de input het leervermogen beïnvloeden. In hoofdstuk 3 wor-
den de modellen getest op hun vermogen om woorden te herkennen in spraak
in achtergrondruis. Achtergrondruis is vaak aanwezig in alledaagse situaties
(televisie, stofzuiger, etc.) waarin baby’s opgroeien. Het is daarom van be-
lang te weten welke invloed achtergrondruis op het leren en herkennen van
woorden heeft. De resultaten van de simulaties tonen aan dat het model re-
delijk robuust is tegen ruis. Deze resultaten zijn vergelijkbaar met resultaten
die bij baby’s zijn gemeten in gedragsonderzoek.

Een opvallende conclusie uit hoofdstuk 4 is dat het leren van woorden
beter kan gaan als spraak van meerdere sprekers wordt aangeboden. Ken-
nelijk is de variabiliteit in het spraaksignaal afkomstig van verschillende
sprekers waardevol voor het leren van woorden.

Samengevat biedt dit proefschrift een nieuw perspectief op de eerste fase
van taalverwerving, waar kennis van woorden vooraf kan gaan aan het leren
van abstracte klankrepresentaties. Terwijl het lexicon van baby’s zich on-
twikkelt en beïnvloed wordt door het ontstaan van klankcategorieën, kan de
taalverwerving beginnen met ongeanalyseerde brokken spraaksignaal zon-
der dat de spraak hoeft te worden weergegeven als een reeks symbolen die
abstraheren over variabiliteit van spraakklanken.
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