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Abstract—The reliable fraction of information is an attrac-
tive score for quantifying (functional) dependencies in high-
dimensional data. In this paper, we systematically explore the
algorithmic implications of using this measure for optimization.
We show that the problem is NP-hard, which justifies the usage of
worst-case exponential-time as well as heuristic search methods.
We then substantially improve the practical performance for both
optimization styles by deriving a novel admissible bounding func-
tion that has an unbounded potential for additional pruning over
the previously proposed one. Finally, we empirically investigate
the approximation ratio of the greedy algorithm and show that it
produces highly competitive results in a fraction of time needed
for complete branch-and-bound style search.

Index Terms—knowledge discovery, approximate functional
dependency, information theory, optimization, branch-and-bound

I. INTRODUCTION

Given a data sample Dn = {d1, . . . ,dn} drawn from the
joint distribution p of some input variables I and an output
variable Y , it is a fundamental problem in data analysis to find
variable subsets X ⊆ I that jointly influence or (approximately)
determine Y . This functional dependency discovery problem,
i.e., to find

arg max{Q(X ;Y ) : X ⊆ I} (1)

for some real-valued measure Q that assesses the dependence
of Y on X , is a classic topic in the database community [1,
Ch. 15], but also has many other applications including feature
selection [2] and knowledge discovery [3]. For instance, finding
such dependencies can help identify compact sets of descriptors
that capture the underlying structure and actuating mechanisms
of complex scientific domains (e.g., [4], [5]).

For categoric input and output variables, the measure Q
can be chosen to be the fraction of information [6], [7], [8]
defined as

F (X ;Y ) = (H(Y )−H(Y | X ))/H(Y ) ,

where H(Y ) =
∑
y∈Y p(y) log p(y) denotes the Shannon

entropy. This score represents the relative reduction of un-
certainty about Y given X . It takes on values between 0
and 1 corresponding to independence and exact functional
dependency, respectively.

Estimating the score naively with empirical probabilities p̂,
however, leads to an overestimation of the actual dependence
between X and Y , a behavior known as dependency-by-
chance [9]. In particular, since the bias is increasing with the
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Figure 1: Dependency-by-chance. Estimated fraction of infor-
mation for variables X of increasing domain size (4 to 2048)
to independent Y (domain size 4) for fixed sample size (1000).
Estimated dependency increases for naive estimator F̂ , while
the corrected-for-chance estimator F̂0 accurately estimates
population value F (X;Y ) = 0.

domain size of variables [10], it is unsuitable for dependence
discovery where we have to soundly compare different variable
sets of varying dimensionality and consequently of widely
varying domain sizes (see Fig. 1). In some feature selection
approaches (see, e.g., [11]) this problem is mitigated by only
considering dependencies of individual variables or pairs.
Alternatively, some algorithms from the database literature,
e.g., [12], [13], neglect this issue by assuming a closed-world,
i.e., the unknown data generation process p is considered equal
to the empirical p̂ [7].

Both of these approaches are infeasible in the statistical
setting with arbitrary sized variable sets that we are interested
in. Instead, here, the fraction of information can be corrected by
subtracting its estimated expected value under the hypothesis
of independence. This gives rise to the reliable fraction of
information [14], [15] defined as

F̂0(X ;Y ) = F̂ (X ;Y )− Ê0(F̂ (X ;Y )) ,

where Ê0(F̂ (X ;Y )) =
∑
σ∈Sn F̂ (X;Yσ)/n! is the expected

value of F̂ under the permutation model [16, p. 214], i.e.,
under the operation of permuting the empirical Y values
with a random permutation σ ∈ Sn. This estimator can
be computed efficiently in time O(nk) for X with domain
size k (see [17] and appendix). Moreover, the maximization
problem (Eq. (1)) can be solved effectively by a simple
branch-and-bound scheme: the maximally attainable F̂0 for
supersets of some partial solution X can be bounded by the
function f̄mon(X ) = 1 − Ê0(F̂ (X ;Y )), which follows from
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the monotonicity of Ê0(F̂ ( · ;Y )) [14].
This, however, is a rather simplistic bounding function that

leaves room for substantial improvements. Moreover, it is
unclear whether one has to rely on exponential-time worst-case
branch-and-bound algorithms in the first place. Finally, the
option of heuristic optimization has not yet been explored.

To this end, this paper provides the following contributions:
1) We show that the problem of maximizing the reliable

fraction of information is NP-hard. This justifies the
usage of worst-case exponential-time algorithms as well
as heuristic search methods (Sec. III).

2) Motivated by this insight, we then greatly improve the
practical performance for both of these optimization styles
by deriving a novel admissible bounding function f̄spc(X ).
This function is not only tighter than the previously
proposed f̄mon(X ) but in particular we have that the
supremum of f̄mon(X )/f̄spc(X )—and thus the potential
for additional pruning in search—is unbounded (Sec. IV).

3) Finally, we report extensive empirical results evaluating the
proposed bounding function and the various algorithmic
strategies. In particular, we consider the approximation
ratio of the greedy algorithm and show that in fact,
it produces highly competitive results in a fraction of
time needed for complete branch-and-bound style search—
motivating further investigation of this fact (Sec. V).

We round up with a concluding discussion (Sec. VI). Before
presenting the main contributions, we recall reliable functional
dependency discovery and prove some basic results (Sec. II).

II. RELIABLE DEPENDENCY DISCOVERY

Let us denote by [n] the set of positive integers up to n.
The symbols log and ln refer to the logarithms of base 2 and
e, respectively. We assume a set of discrete random variables
A = I ∪ {Y } is given along with an empirical sample Dn =
{d1, . . . ,dn} of their joint distribution. For a variable X we
denote its domain, called categories (or distinct values), by
V (X) but we also write x ∈ X instead of x ∈ V (X) whenever
clear from the context. We identify a random variable X with
the labeling X : [n]→ V (X) it induces on the data sample,
i.e., X(i) = di(X). Moreover, for a set S = {S1, . . . , Sl} of
labelings over [n], we define the corresponding vector-valued
labeling by S(i) = (S1(i), . . . , Sl(i)). With XQ for a subset
Q ⊆ [n], we denote the map X restricted to domain Q.

We define cX : V (X) → Z+ to be the empirical counts
of X , i.e., cX(x) = |{i ∈ [n] : X(i) = x}|. We further
denote with p̂X : V (X)→ [0, 1], where p̂X(x) = cX(x)/n, the
empirical distribution of X . Given another random variable
Z, p̂Z |X=x : V (Z)→ [0, 1] is the empirical conditional distri-
bution of Z given X = x, with p̂Z|X=x(z) = cX∪Z(x,z)/cX(x)

for z ∈ Z. However, we use p̂(x) and p̂(z |x) respectively
whenever clear from the context. These empirical probabilities
give rise to the empirical conditional entropy Ĥ(Y |X) =∑
x∈X p̂(x)Ĥ(Y |X = x), the empirical mutual informa-

tion Î(X;Y ) = Ĥ(Y )−Ĥ(Y |X), and the empirical fraction
of information F̂ (X;Y ) = Î(X;Y )/Ĥ(Y ).

Recall that the reliable fraction of information is defined as
the empirical fraction of information F̂ (X;Y ) minus its ex-
pected value under the permutation model Ê0(F̂ (X;Y )) where
Ê0(F̂ (X;Y )) =

∑
σ∈Sn F̂ (X;Yσ)/n!. Here, Sn denotes the

symmetric group of [n], i.e., the set of bijections from [n]
to [n], and Aσ denotes the composition of a map A with the
permutation σ ∈ Sn, i.e., Aσ(·) = A(σ(·)). We abbreviate
the correction term Ê0(F̂ (X;Y )) as b̂0(X,Y, n) and the
unnormalized version as m̂0(X,Y, n) = b̂0(X,Y, n)Ĥ(Y ).

A. Specializations and Labeling Homomorphisms
Since we identified sets of random variables with their

corresponding sample-index-to-value map, they are subject to
the following general relations of maps with common domains.

Definition 1. Let A and B be maps defined on a common
domain N . We say that A is equivalent to B, denoted as
A ≡ B, if for all i, j ∈ N it holds that A(i) = A(j) if and
only if B(i) = B(j). We say that B is a specialization of A,
denoted as A � B, if for all i, j ∈ N with A(i) 6= A(j) it
holds that B(i) 6= B(j).

A special case of specializations is given by the subset relation
of variable sets, e.g., if X ⊆ X ′ ⊆ I then X � X ′. The
specialization relation implies some important properties for
empirical probabilities and information-theoretic quantities.

Proposition 1. Given variables X , Z and Y , with X � Z,
the following statements hold:

a) there is a projection π : V (Z) → V (X), s.t. for all
x ∈ V (X), it holds that p̂X(x) =

∑
z∈π−1(x) p̂Z(z),

b) Ĥ(X) ≤ Ĥ(Z)
c) Ĥ(Y |Z) ≤ Ĥ(Y |X),
d) Î(X;Y ) ≤ Î(Z;Y ),

Proof. Let us denote with p and q the p̂X∪Y and p̂Z∪Y distri-
butions respectively. Statement a) follows from the definition.
For b), we define h(x) = −p(x) log p(x) for x ∈ X , and
similarly h(z) for z ∈ Z. We show that for all x ∈ X ,
h(x) ≤

∑
z∈π−1(x) h(z). The statement then follows from

the definition of Ĥ . We have

h(x) = −p(x) log p(x)

= −

 ∑
z∈π−1(x)

q(z)

 log

 ∑
z∈π−1(x)

q(z)


= −

∑
z∈π−1(x)

q(z) log

 ∑
s∈π−1(x)

q(s)


≤ −

∑
z∈π−1(x)

q(z) log q(z) =
∑

z∈π−1(x)

h(z) ,

where the inequality follows from the monotonicity of the log
function (and the fact that q(z) is positive for all z ∈ Z).
c) Let us first recall the log-sum inequality [18, p. 31]: for
non-negative numbers a1, a2, . . . , an and b1, b2, . . . , bn,

n∑
i=1

ai log
ai
bi
≥
( n∑
i=1

ai

)∑n
i=1 ai∑n
i=1 bi

(2)



with equality if and only if ai/bi constant. We have:

Ĥ(Y |Z) =−
∑

z∈Z,y∈Y
q(z, y) log

q(z, y)

q(z)

(a)
= −

∑
x∈X,y∈Y

∑
z∈π−1(x)

q(z, y) log
q(z, y)

q(z)

(2)
≤ −

∑
x∈X,y∈Y

( ∑
z∈π−1(x)

q(z, y)
) ∑
z∈π−1(x)

q(z, y)

∑
z∈π−1(x)

q(z)

=−
∑

x∈X,y∈Y
p(x, y) log

p(x, y)

p(x)
= Ĥ(Y |X)

d) We have Î(Z;Y ) = Ĥ(Y ) − Ĥ(Y |Z) ≤ Ĥ(Y ) −
Ĥ(Y |X) = Î(X;Y ) following from (c).

In order to analyze monotonicity properties of the permuta-
tion model, the following additional definition is useful.

Definition 2. We call a labeling X homomorphic to a labeling
Z (w.r.t. the target variable Y ), denoted as X - Z, if there
exists σ ∈ Sn with Y ≡ Yσ such that X � Zσ .

See Tab. I for examples of both introduced relations. Impor-
tantly, the inequality of mutual information for specializations
(Prop. 1d) carries over to homomorphic variables and in turn
to their correction terms.

Proposition 2. Given variables X , Z and Y , with X - Z,
the following statements hold:

a) Î(X;Y ) ≤ Î(Z;Y )
b) m̂o(X,Y, n) ≤ m̂o(Z, Y, n)

Proof. Let σ∗ ∈ Sn be a permutation for which Y ≡ Yσ∗ and
X � Zσ∗ . Property a) follows from

Î(Z;Y ) = Î(Zσ∗ ;Yσ∗) = Î(Zσ∗ ;Y ) ≥ Î(X;Y ) ,

where the inequality holds from Prop. 1d). For b), note that
for every σ ∈ Sn, it holds from Prop. 1d) that Î(Zσ◦σ∗ ;Y ) ≥
Î(Xσ;Y ). Hence

m̂o(Z, Y, n) =
1

n!

∑
σ∈Sn

Î(Zσ;Y )

=
1

n!

∑
σ∈Sn

Î(Zσ◦σ∗ ;Y )

≥ 1

n!

∑
σ∈Sn

Î(Xσ;Y ) = m̂o(X,Y, n)

B. Search Algorithms

Effective algorithms for maximizing the reliable fraction of
information over all subsets X ⊆ I are enabled by the concept
of bounding functions. A function f̄ is called an admissible
bounding function for an optimization function f if for all
candidate solutions X ⊆ I, it holds that f̄(X ) ≥ f(X ′) for

X1 X2 X3 X4 Y

a a a b a
a b b a b
b c b b b
b c c c b

Table I: Specialization and homomorphism examples. We
have X1 � X2, X1 - X2, X1 - X3, X1 - X4, X2 - X3.
Note that X3 6- X4 as there is no σ ∈ S4 that satisfies
specialization w.r.t. X4 and Y ≡ Yσ

Algorithm 1 OPUS: Given a set of input variables I , function
f , bounding function f̄ , and α ∈ (0, 1], the algorithm returns
the X ∗ ⊆ I satisfying f(X ∗) ≥ αmax{f(X ′) : X ′ ⊆ I}

1: function OPUS(Q,S)
2: if Q is empty then
3: return S
4: else
5: (X ,Z) = pop(Q)
6: R = {(X ∪ {Z}, Z) : Z ∈ Z}
7: X ∗ = arg max{f(X ′) : X ′ ∈ R ∪ {S}}
8: R′ = {(X ′, Z) ∈ R : αf̄(X ′) > f(X ∗)}
9: Z ′ = {Z : (X ′, Z) ∈ R′}

10: [(X1, Z1), . . . , (Xk, Zk)] = sort(R′)
11: Q′ = Q ∪ {(Xi,Z ′ \ {Z1, . . . , Zi}) : i ∈ [k])}
12: return OPUS(Q′,X ∗)
13: X ∗ = OPUS({(∅, I)}, ∅)

all X ′ with X ⊆ X ′ ⊆ I. Such functions allow to prune all
supersets X ′ of X whenever f̄(X ) ≤ f(X ∗) for the current
best solution X ∗ found during the optimization process.

Branch-and-bound, as the name suggests, combines this
concept with a branching scheme that completely (and non-
redundantly) enumerates the search space 2I . Here, we
consider optimized pruning for unordered search (OPUS),
an advanced variant of branch-and-bound that effectively
propagates pruning information to siblings in the search
tree [19]. Algorithm 1 shows the details of this approach.

In addition to keeping track of the best solution X ∗ seen
so far, the algorithm maintains a priority queue Q of pairs
(X ,Z), where X ⊆ I is a candidate solution and Z ⊆ I
constitutes the variables that can still be used to augment X ,
e.g., X ′ = X ∪ {Z} for a Z ∈ Z . The top element is the
one with the smallest cardinality and the highest potential (a
combination of breadth-first and best-first order). Starting with
Q = {(∅, I)}, X ∗ = ∅, and a desired approximation guarantee
α ∈ (0, 1], in every iteration OPUS creates all refinements of the
top element of Q and updates X ∗ accordingly (lines 5-7). Next
the refinements are pruned using f̄ and α (line 8). Following,
the pruned list is sorted according to decreasing potential (this
is a heuristic that propagates the most augmentation elements to
the least promising refinements [19]), the possible augmentation
elements Z ′ are non-redundantly propagated to the refinements
of the top element, and finally the priority queue is updated
with the new candidates (lines 9-11).



Algorithm 2 GREEDY: Given a set of input variables I,
function f , and bounding function f̄ , the algorithm returns the
X ∗ ⊆ I approximating f(X ∗) = max{f(X ′) : X ′ ⊆ I}

1: function GREEDY(C,S)
2: if I \ C is empty or f̄(C) ≤ f(S) then
3: return S
4: else
5: R = {C ∪ {Z} : Z ∈ I \ C}
6: C∗ = arg max{f(X ′) : X ′ ∈ R}
7: X ∗ = arg max{f(X ′) : X ′ ∈ {S, C∗}}
8: return GREEDY(C∗,X ∗)
9: X ∗ = GREEDY(∅, ∅)

A commonly used alternative to complete branch-and-bound
search for the optimization of dependency measures is the
standard greedy algorithm (see [11], [20]). This algorithm
only refines the best candidate in a given iteration. Moreover,
bounding functions can be incorporated as an early termination
criterion. For the reliable fraction of information in particular,
there is potential to prune many of the higher levels of
the search space as it favors solutions that are small in
cardinality [14]. The algorithm is presented in Algorithm 2.

The algorithm keeps track of the best solution X ∗ seen, as
well as the best candidate for refinement C∗. Starting with
X ∗ = ∅ and C∗ = ∅, the algorithm in each iteration checks
whether C∗ can be refined further, i.e., if I \ C∗ is not empty,
or if C∗ has potential (the early termination criterion). If not,
the algorithm terminates returning X ∗ (lines 2-3). Otherwise
C∗ is refined to all possible refinements, and the best one is
selected as a candidate to update X ∗ (lines 5-7).

Concerning the approximation ratio of the greedy algorithm,
there exists a large amount of research focused on submodular
and/or monotone functions, e.g., [21], [22], [23]. However,
we note that F̂0 is neither submodular nor monotone, and
hence these results are not directly applicable. To demonstrate
empirically the quality of the results, we perform an evaluation
in Sec. V-B. We discuss further on this topic in Sec. VI.

III. HARDNESS OF OPTIMIZATION

In this section, we show that the problem of maximizing F̂0

is NP-hard by providing a reduction from the well-known NP-
hard minimum set cover problem: given a finite universe U =
{u1, . . . , un} and collection of subsets B = {B1, . . . , Bm} ⊆
2U , find a set cover, i.e., a sub-collection C ⊆ B with

⋃
C = U ,

that is of minimal cardinality.
The reduction consists of two parts. First, we construct a base

transformation τ1(U,B) = Dl that maps a set cover instance
to a dataset Dl such that set covers correspond to attribute sets
with an empirical fraction of information score F̂ of 1 and
bias correction terms b̂0 that are a monotonically decreasing
function of their cardinality. In a second step, we then calibrate
the b̂0 terms such that, when considering the corrected score
F̂0, they cannot change the order between attribute sets with
different F̂ values but only act as a tie-breaker between attribute

u1 u2

u3 u4

u5

B1 B3

B4 B2

X1 X2 X3 X4 Y

1 1 a 1 1 a
2 a 2 2 a a

S1 3 3 a a a a
4 4 a 4 a a
5 a 5 a 5 a

6 a a a a b
7 a a a a b

S2 8 a a a a b
9 a a a a b
10 a a a a b

11 b c c c c
12 c b c c c

S3 13 c c b c c
14 c c c b c
15 c c c c c

Figure 2: Base transformation example. Left: a set cover
instance U = {u1, . . . , u5} and B = {B1,B2, B3, B4}. Right:
the resulting D15 using τ1(U,B) (bold indicates the set cover)

sets of equal F̂ value. This is achieved by copying the dataset
Dl a suitable number of times k such that the correction terms
are sufficiently small but the overall transformation, denoted
τk(U,B) = Dkl, is still of polynomial size.

The base transformation τ1(U,B) = Dl is defined as
follows. The dataset Dl contains m descriptive attributes
I = {X1, . . . , Xm} corresponding to the sets of the set
cover instance, and a target variable Y. The sample size is
l = 2n + m + 1 with a logical partition of the sample
into the three regions S1 = [1, n], S2 = [n + 1, 2n], and
S3 = [2n + 1, l]. The target attribute Y assigns to sample
points one of three values corresponding to the three regions,
i.e., Y : [l]→ {a, b, c} with

Y (j) =


a, j ∈ S1

b, j ∈ S2

c, j ∈ S3

and the descriptive attributes Xi assign up to n + 3 distinct
values dependending on the set of universe elements covered
by set Bi, i.e., Xi : [l]→ {1, 2, . . . , n, a, b, c} with

Xi(j) =


j, j ∈ S1 ∧ uj ∈ Bi
a, (j ∈ S1 ∧ uj 6∈ Bi) ∨ j ∈ S2

b, j = 2n+ i

c, j ∈ S3 \ {2n+ i}

.

See Fig. 2 for an illustration. This transformation establishes
a one-to-one correspondence of partial set covers C ⊆ B and
variable sets X ⊆ I , which we denote as X (C). Let us denote
(a, . . . , a) as ~a. The first part of the construction (S1 and S2)
couples the amount of uncovered elements U \

⋃
C to the

conditional entropy of Y given X (C) = ~a through p̂(Y =
a | X (C) = ~a) = |U \

⋃
C|/(n + |U \

⋃
C|). The second part

(S3) links the size of C to the number of distinct values on S3.
We can note the following central properties.



Lemma 3. Let τ1(U,B) = Dl be the transformation of a set
cover instance (U,B) and C, C′ ⊆ B be two partial set covers.
Then the following holds.

a) If |
⋃
C| ≥ |

⋃
C′| then F̂ (X (C);Y ) ≥ F̂ (X (C′);Y ); in

particular, C is a set cover, i.e.,
⋃
C = U , if and only if

F̂ (X (C);Y ) = 1,
b) If C is a set cover and C ′ is not a set cover then

Î(X (C);Y )− Î(X (C′);Y ) ≥ 2/l.
c) If C and C′ are both set covers then X (C) - X (C′) if

and only if |C| ≤ |C′|.

Proof. Statement a) follows from the definition of τ1.
To show b), since F̂ (X (C′);Y ) and thus Î(X (C′);Y ) are

monotone in |
⋃
C′|, it is sufficient to consider the case where

|U \
⋃
C′| = 1. In this case we have

Î(X (C);Y )−Î(X (C′);Y ) = Ĥ(Y | X (C′))− Ĥ(Y | X (C))︸ ︷︷ ︸
=0

and, moreover, as required

Ĥ(Y | X (C′)) = −p̂(~a, a) log p̂(a |~a)− p̂(~a, b) log p̂(b |~a)

= −1

l
log

(
1

n+ 1

)
− n

l
log

(
n

n+ 1

)
≥ 2

l
.

For c) observe that for a variable set X = X (C) correspond-
ing to a set cover C, we have for all i, j ∈ S1 that X (i) 6= X (j).
Thus, XS1 ≡ X ′S1

for a variable set X ′ = X (C′) corresponding
to another set cover C′. Moreover, we trivially have XS2

≡ X ′S2
.

Finally, let Q,Q′ ⊆ S3 denote the indices belonging to S3

where X and X ′ take on values different from (c, . . . , c).
Note that all values in these sets are unique. Furthermore,
if |C| ≤ |C′| then |Q| ≤ |Q′| and in turn |Q \Q′| ≤ |Q′ \Q|.
This means we can find a permutation σ ∈ Sn such that for all
i ∈ Q\Q′ it holds that σ(i) = j with j ∈ Q′ \Q and σ(i) = i
for i 6∈ Q∩Q′ (that is σ permutes all indices of non-(c, . . . , c)
values of C in S3 to indices of non-(c, . . . , c) values of C′).
For such a permutation it holds that Yσ ≡ Y and XS3 � X ′S3σ

.
Therefore, X - X ′ as required.

Now, although set covers C ⊆ B correspond to variable
sets X with the maximal empirical fraction of information
value of 1, due to the correction term, it can happen that
F̂0(X ′;Y ) > F̂0(X ;Y ) for a variable set X ′ corresponding
to a partial set cover. To prevent this we make use of the
following upper bound of the expected mutual information
under the permutation model.

Proposition 4 ( [15], Thm. 7). For a sample of size n of the
joint distribution of variables A and B having a and b distinct
values, respectively, we have

m̂0(A,B, n) ≤ log

(
n+ ab− a− b

n− 1

)
This result implies that we can arbitrarily shrink the correc-

tion terms if we increase the sample size but leave the number
of distinct values constant. Thus, we define the extended
transformation τi(U,B) = Dil through simply copying Dl

a number of i times, i.e., by defining dj = d(j mod l) for
j ∈ [l + 1, il]. With this definition we show our main result.

Theorem 5. Given a sample of the joint distribution of
variables I and Y , the problem of maximizing F̂0( · ;Y ) over
all subsets of I is NP-hard.

Proof. We show that there is a number k ∈ O(l) such that w.r.t.
transformation τk we have that for all set covers C ⊆ B and their
corresponding variable sets X = X (C), m̂0(X , Y, n) < 2/l.
Since all properties of Lemma 3 transfer from τ1 to τk, this
implies that for all variable sets X ′ = X (C′) corresponding to
non-set-covers C′ ⊆ B, it holds that

F̂0(X ;Y ) = F̂ (X ;Y )− m̂0(X , Y, n)/Ĥ(Y )

> F̂ (X ;Y )− 2/lĤ(Y )

≥ F̂ (X ;Y )− (Î(X ;Y )− Î(X ′;Y ))/Ĥ(Y )

= F̂ (X ′;Y ) ≥ F̂0(X ′;Y )

where the greater-than follows from Lm. 3a) and 3b). Thus,
any X with maximum F̂0 corresponds to a set cover C.

Moreover, we know that C must be a minimum set cover as
required, because for a smaller set cover C′, X (C′) - X (C) by
Lemma 3c) and thus b̂0(X (C′), Y, n) ≤ b̂0(X (C), Y, n) from
Prop. 2b)—therefore, X (C) would not maximize F̂0.

To find the number k that defines the final transformation
τk, let Dil = τi(U,B) and C be a set cover of (U,B). Since
X = X (C) has at most 3l distinct values in Dil and Y exactly
3, from Prop. 4 and the monotonicity of ln we know that

ln(2)m̂0(X (C), Y, n) ≤ ln

(
il + 3l

il − 1

)
≤ ln

(
i+ 3

i− 1

)
≤ 4

i− 1

where the last inequality follows from ln(x) ≤ x − 1. Thus,
for k = d2l/ ln 2e + 1 ∈ O(l) we have m̂0(X , Y, n) < 2/l
as required. The proof is concluded by noting that the final
transformation τk(U,B) is of size O(l2m) (where l = 2n+m+
1), which is polynomial in the size of the set cover instance.

IV. REFINED BOUNDING FUNCTION

The NP-hardness established in the previous section excludes
(unless P=NP) the existence of a polynomial time algorithm
for maximizing the reliable fraction of information, leaving
therefore exact but exponential search and heuristics as the
two options. For both, and particularly the former, reducing
the search space can lead to more effective algorithms. For this
purpose, we derive in this section a novel bounding function
for F̂0 to be used for pruning.

Recall that an admissible bounding function f̄ for effective
search is an upper bound to the optimization function value
f of all supersets of a candidate solution X ⊆ I. That is, it
must hold that f̄(X ) ≥ f(X ′) for all X ′ with X ⊆ X ′ ⊆ I.
At the same time, in order to yield optimal pruning, the bound
should be as tight as possible. Thus, the ideal function is

f̄ideal(X ) = max{F̂0(X ′;Y ) : X ⊆ X ′ ⊆ I} .

Computing this function is of course equivalent to the original
optimization problem and hence NP-hard. We can, however,
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Figure 3: Evaluating f̄spc for branch-and-bound optimization. Relative nodes explored difference (left) and relative runtime
difference (right) between methods OPUSspc and OPUSmon. Positive (negative) numbers indicate that OPUSspc (OPUSmon) is
proportionally “better”. The datasets are sorted in decreasing number of attributes.

relax the maximum over all supersets to the maximum over all
specializations of X . That is, we define a bounding function
f̄spc(X ) through

f̄spc(X ) = max{F̂0(X ′;Y ) : X � X ′}
≥max{F̂0(X ′;Y ) : X ⊆ X ′ ⊆ I} = f̄ideal(X ) .

While this definition obviously constitutes an admissible
bounding function, it is unclear how it can be efficiently
evaluated. Let us denote by R+ the operation of joining a
labeling R with the target attribute Y , i.e., R+ = {R} ∪ {Y }
(see Tab. II for an example). This definition gives rise to a
simple constructive form for computing f̄spc.

Theorem 6. The function f̄spc can be efficiently computed as
f̄spc(X ) = F̂0(X+;Y ) in time O(n|V (X )||V (Y )|).

Proof. We start by showing that the (·)+ operation causes a
positive gain in F̂0, i.e., for an arbitrary labeling R it holds
that F̂0(R+;Y ) ≥ F̂0(R;Y ).

Let us define Î0(R+;Y ) = Î(R+;Y ) − Ê0(Î(R+, Y )). It
is then sufficient to show Î0(R+;Y ) ≥ Î0(R;Y ). We have

Î0(R+;Y ) =
(
Ĥ(Y ) + Ĥ(R+)− Ĥ(R+, Y )

)
− 1

n!

(∑
σ∈Sn

(Ĥ(Yσ) + Ĥ(R+)− Ĥ(R+, Yσ)

)

=
1

n!

∑
σ∈Sn

Ĥ(R+, Yσ)− Ĥ(R+, Y )

≥ 1

n!

∑
σ∈Sn

Ĥ(R, Yσ)− Ĥ(R, Y ) = Î0(R;Y ) ,

since Ĥ(R+, Y ) = Ĥ(R ∪ Y, Y ) = Ĥ(R, Y ), and from
Prop. 1b), for every σ ∈ Sn, Ĥ(R+, Yσ) ≥ Ĥ(R, Yσ).

To conclude, let Z be an arbitrary specialization of X . We
have by definition of Z and Z+, that X+ � Z+. Moreover,
F̂ ( · ;Y ) = F̂ ({ · } ∪ {Y };Y ) = 1. Thus

F̂0(X+;Y ) =F̂ (X+;Y )− b̂0(X+, Y, n)

=1− b̂0(X+, Y, n)

≥1− b̂0(Z+, Y, n)

=F̂0(Z+;Y ) ≥ F̂0(Z;Y ) ,

as required. Here, the first inequality follows from Prop. 1b),
the second from the positive gain of Z+ over Z .

For the complexity recall that b̂0(X , Y, n) can be computed
in time O(nmax{|V (X )|, |V (Y )|}) (see appendix). The com-
plexity follows from |V (X+)| ≤ |V (X )||V (Y )|.

Note that the X+ operation does not have to be computed
explicitly because the non-zero marginal counts for X+ can
simply be obtained as the non-zero counts of the joint
contingency table of X and Y (which has to be computed
anyway for F̂0; see appendix).

Intuitively, X+ constitutes the most efficient specialization
of X in terms of growth in F̂ and b̂0 (which is not necessarily
attainable by a subset of input variables). In contrast, the
bounding function f̄mon(X ) = 1− b̂0(X , Y, n) of [14] assumes
that full information about the target can be attained (i.e.,
F̂ = 1) without “paying” an increased b̂0 term. The following
proposition shows that this idea leads to an inferior bound.

Proposition 7. Let X ⊆ I and ∆ = f̄mon(X )− f̄spc(X ). The
following statements hold:

a) ∆ ≥ 0 for all datasets, i.e., f̄spc(X ) ≤ f̄mon(X )
b) there are datasets D4l for all l ≥ 1 s.t. ∆ ∈ Ω(1− 1

log 2l )

Proof. a)

f̄spc(X ) =1− b̂0(X+, Y, n)

≤1− b̂0(X , Y, n) = f̄mon(X ) ,

where the inequality holds from Prop. 1b) and X � X+.
b) For l ≥ 1 we construct a dataset D4l with two variables

X : [4l]→ {a, b} and Y : [4l]→ [2l], with

X(i) =

{
a, i mod 2 = 1

b, i mod 2 = 0

and Y (i) = di/2e respectively (see Tab. II). We have

∆ = 1− b̂0(X,Y, 4l)− 1 + b̂0(X+, Y, 4l)︸ ︷︷ ︸
=Ĥ(Y |X+

σ )/Ĥ(Y )=0

=
1

n!

∑
σ∈Sn

Ĥ(Y |Xσ)/Ĥ(Y )

≥ min
σ∈Sn

Ĥ(Y |Xσ)/Ĥ(Y ) .



X Y X+ Xσ∗

a 1 (a,1) a
b 1 (b,1) a
a 2 (a,2) a
b 2 (b,2) a

...

X Y X+ Xσ∗

...
a 2l-1 (a,2l-1) b
b 2l-1 (b,2l-1) b
a 2l (a,2l) b
b 2l (b,2l) b

Table II: Construction showing advantage of upper bound
1 − b̂0(X+, Y, n) = 0 vs 1 − b̂0(X,Y, n) ≥ 1 − 1/ log(n/2),
i.e., all specializations of X that contain full information about
Y are injective (key) maps (see Prop. 7).
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Figure 4: Evaluating the two branch-and-bound frame-
works. Relative time difference between methods OPUSspc and
BNBmon. Positive (negative) numbers indicate that OPUSspc
(BNBmon) is proportionally “better”. Datasets are sorted in
decreasing number of attributes.

One can show that the minimum of the last step is attained by
the permutation σ∗ ∈ Sn with

σ∗(i) =

{
2i− 1, i ∈ [1, 2l]

4l − 2(4l − i), i ∈ [2l + 1, 4l]
,

which corresponds to sorting the a and b values of X (see
Tab. II). For this permutation the normalized conditional entropy
evaluates to 1− 1/ log(2l) as required.

Thus, we have established that f̄spc is not only tighter than
f̄mon, but even that the difference can be arbitrary close to 1
(for an increasing domain size of Y ). Put differently, their ratio,
and thus the potential for additional pruning, is unbounded.

Computationally, f̄spc(X ) is more expensive than f̄mon(X ) by
a factor of |V (Y )|. In order to partially alleviate this increase,
note that one can first check the pruning condition (line 8 of
Alg. 1 or line 2 of Alg. 2) w.r.t. f̄mon and only compute f̄spc if
that first check fails. That is, whenever f̄mon(X ) is sufficient
to prune a candidate X we can still do so with the same
computational complexity. However, the additional evaluation
of f̄spc(X ) can be a disadvantage in case it still does not allow
to prune. This trade-off is evaluated in the following section.

V. EVALUATION

For ease of comparison to [14], we consider datasets from
the KEEL data repository [24]. In particular, we use all
classification datasets with d ∈ [10, 90] and no missing values,
resulting in 35 datasets with 52000 and 30 rows and columns on
average, respectively. All metric attributes are discretized in 5

equal-frequency bins. The datasets are summarized in Table III.
The runtimes are averaged over 3 runs. All implementations
are available online1.

We use two metrics for evaluation, the relative runtime
difference and the relative difference in number of explored
nodes. For methods A and B, the relative runtime difference
on a particular dataset is computed as

rrd(A,B) =
(τA − τB)

max(τA, τB)
,

where τA and τB are the run times for A and B respectively.
The rrd score lies in [−1, 1], where positive (negative) values
indicate that B is proportionally faster (slower). For example,
a rrd score of 0.5 corresponds to a factor of 2 speed-up, 0.66
to a factor of 3, 0.75 to 4 etc. The relative nodes explored
difference rnd is defined similarly. For both scores, we consider
(−0.5, 0.5) to be a region of practical equivalence, i.e., a factor
of 2 of improvement is required to consider a method “better”.

A. Branch-and-bound

We first investigate the effect of the refined bounding function
by comparing OPUSspc and OPUSmon, i.e., Alg. 1 with f̄spc
and f̄mon as bounding functions respectively. Last, we compare
the proposed branch-and-bound framework OPUSspc to the one
of [14], which we call BNBmon (a combination of best-first
search and refinement based on lexicographical order). For
a fair comparison, we set a common α value for all three
methods on each dataset by determining the largest α value
in increments of 0.05 such that they terminate in less than 90
minutes (see Tab. III).

In Fig. 3 we present the comparison between OPUSspc and
OPUSmon. The left plot demonstrates that f̄spc can lead to
a considerable reduction of nodes explored over f̄mon. In
particular, 15 cases have at least a factor of 2 reduction, 7
have 4, and there is one 1 with 760. For 20 cases there is
no practical difference. The plot validates that the potential
for additional pruning is indeed unbounded (Sec. IV). In
terms of runtime efficiency (right plot), OPUSspc is “faster” in
70% of the datasets. In more detail, and considering practical
improvements, 12 datasets have at least a factor of 2 speedup,
6 have 4, 1 has 266, while only 2 have a factor of 2 slowdown.
Moreover, we observe from the plot (where datasets are
sorted in decreasing number of attributes) a clear correlation
between number of attributes and efficiency: the 6 out of 10
datasets with the slowdown are also the ones with the lowest
number of features. Overall, f̄spc leads to a more effective
optimization with branch-and-bound, and particularly for the
higher-dimensional cases.

Following, we compare OPUSspc to BNBmon, presenting
the results in Fig. 4. The plot is quite evident that the new
framework outperforms the baseline. There are 16 cases with at
least a speedup of 2x, 10 with 4x, and there even exists a case
with 2880x. Moreover, since both OPUSmon and BNBmon use
the same bounding function f̄mon, the two plots Fig. 4 and Fig. 3

1https://github.com/pmandros/fodiscovery

https://github.com/pmandros/fodiscovery
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Figure 5: Evaluating f̄spc for heuristic optimization.
Relative time difference between methods GREEDYspc
and GREEDY. Positive (negative) numbers indicate that
GREEDYspc (GREEDY) is proportionally “better”. The datasets
are sorted in decreasing number of attributes.

(right) suggest that Alg 1 is a more effective branch-and-bound
framework for the reliable fraction of information.

B. Greedy

We begin the evaluation with the performance of f̄spc for
heuristic search. We present the relative runtime differences of
GREEDY and GREEDYspc, i.e., Alg 2 with and without f̄spc,
in Fig. 5 (raw results in Table III). The plot shows that f̄spc
indeed improves the efficiency of the heuristic search, as we
find that for 12 datasets there is a speedup of at least a factor
of 2, and 8 of at least a factor of 4.

Next, we investigate the quality of the greedy results. Note
that this is possible as we have access to the branch-and-bound
results. In Fig. 6 we plot the differences between the F̂0 score
of the results obtained by greedy and branch-and-bound on each
dataset (raw results in Table III). Note that branch-and-bound
uses the same α values as with the experiments in Sec V-A,
and that we only plot the non-zero differences in the two plots,
left for α = 1, i.e, optimal solutions, and right for α < 1, i.e.,
approximate solutions with guarantees.

At a first glance, we observe that there is no difference in
21 out of 35 cases considered, 7 where greedy is better (this
of course on the datasets where α < 1), and 7 for branch-and-
bound. Out of the 21 cases where the two algorithms have
equal F̂0, 16 of them have α = 1, i.e., the greedy algorithm is
optimal roughly 45% of the time. Moreover, the cases where
branch-and-bound is better is only by a small margin, 0.03
on average, while greedy “wins” by 0.1 on average. Another
observation from the right plot of Fig. 6 is that the largest
differences between the two algorithms is for the 3 datasets
where the lowest α values where used, i.e., 0.05, 0.1, and 0.35.

Lastly in Fig 7, we consider the relative runtime difference
between the greedy algorithm and branch-and-bound, i.e.,
GREEDYspc and OPUSspc. As expected, the greedy algorithm is
significantly faster in the majority of cases. There are, however,
4 cases where branch-and-bound terminates much faster, which
also happen to coincide with more aggressive α values for
branch-and-bound.
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Figure 6: Evaluating the heuristic algorithm for result
quality. Left: difference in F̂0 between methods GREEDYspc

and OPUSspc (i.e., F̂0(X ∗grd;Y )−F̂0(X ∗bnb;Y ) where X ∗grd and
X ∗bnb are the solutions of Alg. 2 and 1 respectively) for α = 1.
Since α = 1, the negative values close to 0 indicate that Alg. 2
retrieves nearly optimal solutions. Data are sorted in increasing
quality difference. Right: difference for α < 1. Positive values
indicate that Alg. 2 retrieves better solutions when Alg. 1 uses
guarantees α < 1. Data are sorted in increasing α values.
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Figure 7: Evaluating the heuristic algorithm in terms of
running time. Relative time difference between methods
GREEDYspc and OPUSspc. Positive (negative) numbers indicate
that GREEDYspc (OPUSspc) is proportionally “better”. Datasets
are ordered in decreasing number of attributes.

VI. CONCLUSION

We investigated the algorithmic aspect of discovering depen-
dencies in data using the reliable fraction of information, where
we proved the NP-hardness of the problem and derived a refined
bounding function for more effective optimization. Moreover,
we considered an improved branch-and-bound algorithm and
explored the aspects of heuristic optimization. The experimental
evaluation showed that the refined bounding function is very
effective for both types of optimization, the proposed branch-
and-bound framework outperforms the baseline, and that the
greedy algorithm provides solutions that are nearly optimal.

While the given reduction from set cover can be extended
to show that, unless P=NP, no fully polynomial time approxi-
mation scheme exists, the possibility of weaker approximation
guarantees remains. In particular, the strong empirical perfor-
mance of the greedy algorithm hints that F̂0 could have a
certain structure favored by the greedy algorithm, e.g., some
weaker form of submodularity (we remind that F̂0 is neither
submodular nor monotone). For instance, we could explore
ideas from Horel and Singer [25] where a monotone function
is e-approximately submodular if it can be bounded by a



submodular function within 1 ± e. Another idea is that of
restricted submodularity for monotone functions [26], where a
function is submodular over a subset of the search space. It
might be that the greedy algorithm only considers candidates
where F̂0 is submodular.

Furthermore, the proposed bounding function is likely to
be applicable to a larger selection of corrected-for-chance
dependence measures, and a general framework for maximizing
reliable measures could be established.
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APPENDIX

Here, we recap how to efficiently compute the correction
term m̂o(X , Y, n) for an attribute set X ⊆ I and target
Y in Dn (cf. [14], [17]). Let the observed domains of X
and Y be V (X ) = {x1, . . . ,xR} and V (Y ) = {y1, . . . , yC},
respectively. We define shortcuts for the observed marginal
counts ai = c(X = xi) and bj = c(Y = yj) as well as for the
joint counts ci,j = c(X = xi, Y = yj). The contingency table
c for X and Y is then the complete joint count configuration
c = {ci,j : 1 ≤ i ≤ R, 1 ≤ j ≤ C}. The empirical mutual
information for X and Y can then be computed as:

Î(X , Y ) = Î(c) =

R∑
i=1

C∑
j=1

cij
n

log
cijn

aibj

Each σ ∈ Sn results in a contingency table cσ. We denote
with T = {cσ : σ ∈ Sn} the set of all such contingency tables.
Crucially, all these tables have the same marginal counts ai, bj ,
i ∈ [1, R], j ∈ [1, C]. Hence, one can rewrite m̂o as

m̂o(X , Y, n) =
∑
cσ∈T

p̂o(c
σ)

R∑
i=1

C∑
j=1

cσij
n

log
cσijn

aibj

were p̂o(c) is the probability of contingency table c ∈ T . This
allows one to re-order terms to have a per cell contribution to
m̂o, rather than per contingency table c ∈ T , i.e.,

m̂o(X , Y, n) =

R∑
i=1

C∑
j=1

n∑
k=0

p̂o(c
σ
ij = k)

k

n
log

kn

aibj
.

The individual empirical counts cσij are then distributed hyper-
geometrically, i.e.,

p̂o(c
σ
ij = k) =

(
bi
k

)(
n− bi
aj − k

)
/

(
n

aj

)
.

These probabilities can be computed efficiently in an incre-
mental manner by noting that they are non-zero only for k
between max(0, ai+ bj −n) and min(ai, bj) and by using the
hypergeometric recurrence formula.
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