Human Genetics: The Evolving Story of FOXP2

Simon E. Fisher1,2,3
1Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
2Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
3Twitter: @ProfSimonFisher
Correspondence: simon.fisher@mpi.nl
https://doi.org/10.1016/j.cub.2018.11.047

FOXP2 mutations cause a speech and language disorder, raising interest in potential roles of this gene in human evolution. A new study re-evaluates genomic variation at the human FOXP2 locus but finds no evidence of recent adaptive evolution.

One longstanding challenge in biology is to understand how changes in the human genome contributed to the evolution of our species. With advances in molecular methods, this question can be investigated by comparing DNA sequences from Homo sapiens to those of other great apes, and even to archaic hominins, such as Neandertals, as well as by searching for signs of Darwinian selection in the genomic variation of living human populations [1]. In 2001, a study reported the first case of a gene mutated in a developmental speech and language disorder [2]. The culprit, a gene called FOXP2, attracted the attention of researchers across multiple disciplines [3]. Given its link to acquisition of spoken language skills, one of the most distinctive capabilities of Homo sapiens, this gene was seen as an obvious candidate for evolutionary study. This led to two independent reports in 2002, which established that, despite high sequence conservation in primates, the human FOXP2 protein differed from its chimpanzee counterpart at two amino-acid sites [4,5]. Moreover, when the studies examined nucleotide variation in the relevant part of the genomic locus in living populations, patterns were compatible with recent positive selection having acted on FOXP2 [4,5]. FOXP2 became a poster-child for genes that may have played a role in the emergence of modern humans. Now, more than 15 years later, Atkinson and colleagues [6] perform a thorough investigation of modern human FOXP2 variation, taking advantage of genome sequences available from diverse populations across the world; these new analyses provide no support for recent selection, overturning prior conclusions.

FOXP2 was originally discovered through intensive studies of a large family in which fifteen relatives, across three generations, had problems sequencing the rapid co-ordinated movements that facilitate fluent speech, accompanied by impaired language production and comprehension [2]. All affected members carried a heterozygous point mutation in FOXP2, disturbing the function of the
encoded protein, a transcription factor that regulates other genes [2,3]. Following this first report, dozens of cases of distinct independent mutations have been identified [7], confirming that inactivation of one FOXP2 copy can profoundly derail speech development while general cognitive skills are less affected. Over the past decade and a half, researchers have gained some tantalizing clues about FOXP2 function. For example, neuroimaging of affected individuals has revealed subtle alterations in structure or function of distributed brain circuits, especially those involving the cortex, basal ganglia and cerebellum, overlapping with regions of high FOXP2 expression [3,8].

Curiously, FOXP2 is ancient history; the gene is found in similar form in rodents, birds, reptiles and fish among others [3]. Mice with the same mutations that cause speech disorder display altered sequencing of ultrasonic vocalisations [9]. Electrophysiological studies of the brains of these mice have revealed disrupted plasticity of cortico-basal ganglia circuits [10,11]. Knockdown of the avian FOXP2 orthologue in a key basal ganglia nucleus in brains of zebra finches affects the variability of the songs that they learn [3,12]. Although expressed in other tissues, such as lung, heart and even bone [13], human and animal studies suggest that FOXP2 supports development and function of a subset of neuronal circuits, including those relevant to motor skills and vocal behaviours; and that such circuits may be especially sensitive to gene dosage [3, 8–12].

Against this backdrop of conservation across vertebrates, how has FOXP2 changed in human evolution (Figure 1)? Initial studies identified amino-acid substitutions in exon 7 that distinguish human FOXP2 from the chimpanzee protein and suggested that they were associated with a selective sweep within the last 100–200 thousand years [4,5]. However, when analysis of archaic hominin DNA became feasible, researchers found that the protein-coding sequence of FOXP2 in Neandertals matched that of Homo sapiens [14]. This result suggested that, rather than being subject to recent selection, the two amino-acid substitutions were more likely already fixed in the common ancestor of Neandertals and modern humans, which lived at least 400 thousand years ago. Follow-up studies attempted to reconcile dating inconsistencies [15], for example by postulating multiple successive evolutionary events at the locus, occurring before and after the Neandertal–human split [16]. One report suggested that the target of the putative recent sweep may have been within an intronic regulatory element [17].

While the original screen for selection investigated only part of FOXP2 in 20 humans from different continents [4] (Figure 1), for their new study, Atkinson and colleagues [6] re-assessed the entire locus, using high-coverage genomes from next-generation sequencing of global human populations, including the Human Genome Diversity Panel (HGDP) and the 1000 Genomes phase 1 dataset. As in prior studies [4,5], selection was evaluated with Tajima’s D, a statistic that uses patterns of diversity in DNA sequences to detect deviations from neutral (random) processes of evolution. The authors compared D estimates for FOXP2 to a null distribution of expected values from the remainder of the genome (i.e., sequences with predominantly neutral population histories). When using a pooled HGDP dataset in which three-quarters of individuals were non-African, roughly matching the composition of the sample studied in [4], FOXP2 gave significantly negative D values. These values lay in the bottom 5% of the distribution, traditionally viewed as evidence of positive selection [6]. However, when the HGDP dataset was split into African and Eurasian individuals, D values for FOXP2 were within the normal range expected for the ancestry of each population, based on genomic background data [6]. The authors found that D values are not only skewed by changing population composition, but are also sensitive to genomic ‘window’ size, i.e. how much flanking DNA sequence is used [6]. Alternative methods consistently failed to detect a recent selective sweep [6].

What of the amino acids in exon 7 that distinguish the human and chimpanzee FOXP2 proteins? We already knew from archaic genome sequencing [14] that the substitutions are considerably older than the <200k year estimates of the first evolutionary studies [4,5]. Were they subject to more ancient selection, in common ancestors of Neandertals and modern humans? Atkinson and colleagues [6] assessed variation of FOXP2 coding sequences in HGDP and in 10 chimpanzees, comparing rates of

figure 1. changing views of FoxP2 and human evolution.
the human FOXP2 locus spans more than 600 kilobases of genomic DNA. Boxes represent exons (present in processed mRNA), lines represent introns (removed from mRNA by splicing), and black shading indicates exons that code for protein. In 2001 an exon 14 missense mutation (p.R553H) was found in members of a three-generation family affected by a rare speech disorder [2]. Evolutionary changes at the FOXP2 locus that have been hypothesized as relevant for human origins are highlighted, including: two amino-acid (aa) substitutions in exon 7; the putative selective sweep originally proposed by [4]; an intronic derived polymorphism between exons 8 and 9; and a conserved element in that intron which may represent a long noncoding (Inc) or enhancer (enlh) RNA. Note that the evolutionary changes [4–6,17] and known disorder-causing mutations [2,7] are entirely distinct from each other. Top left shows an evolutionary tree of hominins and closest primate relatives (adapted from [1]), with the lineage leading to archaic hominins in green, and the lineage leading exclusively to modern humans in purple.
within- and between-species variation for synonymous and non-synonymous substitutions [6]. The results were
inconclusive. Interestingly, when inserted into transgenic mouse models, the exon-7 amino-acid substitutions have been
shown to impact on plasticity of a subset of brain circuits in ways that differ from loss-of-function alleles, offering
additional evidence of a potential evolutionary significance of such changes [18].

In searching for alternative targets of recent selection at FOXP2, previous work [17] had highlighted an intronic
substitution that distinguishes most work [17] had highlighted an intronic
observed in southern Africa is
Argue that the existing allelic variation
changes[18].

Additional evidence of a potential
of brain circuits in ways that differ from
into transgenic mouse models, the exon-7
recent selection at
synonymous and non-synonymous
within- and between-species variation for
Dispatches
Current Biology

introduction, representing one of the
largest deserts of admixture in the human genome [19]. However, the biological meaning of this finding is not
yet understood.

Atkinson and colleagues [6] demonstrate convincingly that evidence of selection must be assessed carefully in
humans, as conclusions can be inadvertently affected by cohort
composition or genomic window size. But the lack of recent selection at FOXP2
does not nullify its relevance for key aspects of our biology. Even without
recent selection in humans, the unusual effects of FOXP2
dysfunction mean that it is still a promising window into the
neurobiology of speech and language [3]. And while the capacity to acquire
spoken language may be unique to our species, the underlying genomic
architecture is undeniably complex, involving interacting networks of a myriad
different genetic factors [20]. We should not expect our origins to be explained in
terms of just a single gene. FOXP2 was only ever going to be one piece of an
extremely elaborate puzzle.

REFERENCES

2. Lai, C.S., Fisher, S.E., Hurst, J.A., Vargha-
Khadem, F., and Monaco, A.P. (2001). A
forkhead-domain gene is mutated in a severe
speech and language disorder. Nature 413,
519–523.
as a molecular window into speech and
language. Trends Genet. 25, 166–177.
4. Enard, W., Przeworski, M., Fisher, S.E., Lai,
C.S., Wiebe, V., Kitoano, T., Monaco, A.P.,
and Paabo, S. (2002). Molecular evolution of
FOX2, a gene involved in speech and
(2002). Accelerated protein evolution and
origins of human-specific features: Foxp2 as
an example. Genetics 162, 1825–1835.
6. Atkinson, E.G., Audesse, A.J., Palacios, J.A.,
Bibo, D.M., Webb, A.E., Ramachandran, S.,
and Hen, B.M. (2018). No evidence for recent
selection at FOXP2 among diverse human
7. Morgan, A., Fisher, S.E., Scheiffer, I., and
Hildebrand, M. (2017). FOXP2-related speech
and language disorders. In GeneReviews®
[Internet]. M.P. Adam, H.H. Ardinger, R.A.
Pagon, S.E. Wallace, J.H. Bean, K.
Stephens, and A. Amemiya, eds. (Seattle (WA):
University of Washington, Seattle), pp. 1993–
2018.
8. Liègeois, F., Morgan, A.T., Connelly, A.,
of FOXP2: dysfunction within the human
15, 283–288.
9. Chabout, J., Sarkar, A., Patel, S.R., Radden,
T., Dunson, D.B., Fisher, S.E., and Jarvis, E.D.
(2016). A Foxp2 mutation implicated in human
speech deficits alters sequencing of ultrasonic
vocalizations in adult male mice. Front. Behav.
Neurosci. 10, 197.
10. Groszer, M., Keays, D.A., Deacon, R.M.,
de Bono, J.P., Prasad-Mulcare, S., Gaub, S.,
Baum, M.G., French, C.A., Nicod, J., Coventry,
and motor learning in mice with a point
mutation implicated in human speech deficits.
11. French, C.A., Jin, X., Campbell, T.G., Gerfen,
E., Groszer, M., Fisher, S.E., and Costa, R.M.
(2012). An aetiological Foxp2 mutation causes
aberrant striatal activity and alters plasticity
during skill learning. Mol. Psychiatry 17, 1077–
1085.
12. Murugan, M., Harward, S., Scharff, C., and
Money, R. (2013). Diminished Foxp2 levels
affect dopaminergic modulation of
corticostriatal signaling important to song
13. Xu, S., Liu, P., Chen, Y., Chen, Y., Zhang, W.,
Zhao, H., Cao, Y., Wang, F., Jiang, N., Lin, S.,
et al. (2018). Foxp2 regulates anatomical
features that may be relevant for vocal
 Acad. Sci. USA 115, 8799–8804.
14. Krause, J., Lalueza-Fox, C., Orlando, L.,
Enard, W., Green, R.E., Burbano, H.A., Hublin,
J.J., Hann, C., Fortea, J., de la Rasilla, M.,
et al. (2007). The derived FOX2 variant of
modern humans was shared with Neandertals.
15. Coop, G., Bullaughy, K., Luca, F., and
at the human FOXP2 gene. Mol. Biol. Evol. 25,
1257–1259.
16. Ptak, S.E., Enard, W., Wiebe, V., Heilmann, I.,
Krause, J., Lachmann, M., and Paabo, S.
(2009). Linkage disequilibrium extends across
potentative selected sites in FOX2P. Mol. Biol.
Evol. 26, 2181–2184.
17. Maricic, T., Günther, V., Georgiev, O., Gehre,
S., Currin, M., Schreweis, C., Naumann, R.,
Burbano, H.A., Meyer, M., Lalueza-Fox, C.,
et al. (2013). A recent evolutionary change
affects a regulatory element in the human
18. Enard, W., Gehre, S., Hammerschmidt, K.,
Hölter, S.M., Blass, T., Somel, M., Brückner,
M.K., Schreweis, C., Winter, C.,
et al. (2009). A humanized version of Foxp2
Neurol. 174, R50–R70, January 21, 2019
21, 120–126.
Understanding language from a genomic