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ASD is the term for a group of pervasive neurodevelopmental 
disorders characterized by impaired social and communica-
tion skills along with repetitive and restrictive behavior. The 

clinical presentation is highly heterogeneous, including individu-
als with severe impairment and intellectual disability (ID) as well 
as individuals with above-average intelligence quotient (IQ) and 
high levels of academic and occupational functioning. ASD affects 
1–1.5% of individuals and is highly heritable, and both common 
and rare variants contribute to its etiology1–4. Common variants 
have been estimated to account for a major part of ASD liability2, 

as has been observed for other common neuropsychiatric disor-
ders. In contrast, de novo mutations, mostly copy number variants 
(CNVs) and gene-disrupting point mutations, have larger individ-
ual effects but collectively explain <5% of the overall liability1–3 and 
far less of the heritability. Although a number of genes have been 
convincingly implicated via excess statistical aggregation of de novo 
mutations, the largest genome-wide association study (GWAS) to 
date (n = 7,387 cases scanned)—although providing compelling 
evidence for the bulk contribution of common variants—did not 
conclusively identify single variants at genome-wide significance5–7. 
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Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed 
in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individ-
ual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population 
resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identi-
fied five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic 
architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with 
other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualita-
tive polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal 
function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.
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These results underscore that common variants, as in other complex 
diseases such as schizophrenia, individually have low impact and 
that a substantial scale-up in sample numbers would be needed.

Here we report what are, to our knowledge, the first common 
risk variants robustly associated with ASD, by more than doubling 
the discovery sample size relative to that in previous GWAS5–8. 
We describe strong genetic correlations between ASD and other 
complex disorders and traits, confirming shared etiology, and we 
show results indicating differences in the polygenic architecture 
across clinical subtypes of ASD. Leveraging these relationships and 
recently introduced computational techniques9, we identify addi-
tional previously undescribed ASD-associated variants that are 
shared with other phenotypes. Furthermore, by integrating with 
complementary data from Hi-C chromatin-interaction analysis of 
fetal brains and brain transcriptome data, we explore the functional 
implications of our top-ranking GWAS results.

Results
GWAS. As part of the iPSYCH project10, we collected and geno-
typed a Danish nationwide population-based case–cohort sample 
including nearly all individuals born in Denmark between 1981 
and 2005 and diagnosed with ASD (according to the International 
Statistical Classification of Diseases and Related Health Problems, 
10th revision (ICD-10)) before 2014. We randomly selected con-
trols from the same birth cohorts (Supplementary Table 1). We 
previously validated registry-based ASD diagnoses11,12 and dem-
onstrated the accuracy of genotyping DNA extracted and ampli-
fied from blood spots collected shortly after birth13,14. Genotypes 
were processed with Ricopili15, performing stringent quality con-
trol of data, removal of related individuals, exclusion of ancestry 
outliers based on principal component analysis (PCA), and impu-
tation by using the 1000 Genomes Project phase 3 reference panel. 
After this processing, genotypes from 13,076 cases and 22,664 
controls from the iPSYCH sample were included in the analysis. 
As is now standard in human complex-trait genomics, our pri-
mary analysis was a meta-analysis of the iPSYCH ASD results 
with five family-based trio samples of European ancestry from the 
Psychiatric Genomics Consortium (PGC; 5,305 cases and 5,305 
pseudocontrols)16. All PGC samples had been processed with the 
same Ricopili pipeline for quality control, imputation, and analy-
sis as used here.

Supporting the consistency between the study designs, the 
iPSYCH population-based and PGC family-based analyses showed 
a high degree of genetic correlation with rG = 0.779 (s.e.m. = 0.106; 
P = 1.75 × 10−13), findings similar to the genetic correlations 
observed between datasets in other mental disorders17. Likewise, 
polygenicity, as assessed by polygenic risk scores (PRSs), showed 
consistency across the samples, thus supporting homogeneity of the 
effects across samples and study designs (results below regarding 
PRSs on a five-way split of the sample). The SNP heritability (hG

2) 
was estimated to be 0.118 (s.e.m. = 0.010), for a population preva-
lence of 0.012 (ref. 18).

The main GWAS meta-analysis included a total of 18,381 
ASD cases and 27,969 controls, and applied an inverse-variance-
weighted fixed-effects model. To ensure that the analysis was well 
powered and robust, we examined markers with minor-allele fre-
quency (MAF) ≥0.01 and imputation INFO score ≥0.7, which 
were supported by an effective sample size in >70% of the total. 
This final meta-analysis included results for 9,112,387 autosomal 
markers and yielded 93 genome-wide-significant markers in three 
separate loci (Fig. 1, Table 1a and Supplementary Figs. 1–44). Each 
locus was strongly supported by both the Danish case–control 
and the PGC family-based data. Although modest inflation was 
observed (lambda = 1.12, lambda1000 = 1.006), linkage disequilib-
rium (LD)-score regression analysis19 indicated that this finding 
arose from polygenicity (>96%; Methods) rather than confounding.  

The strongest signal among 294,911 markers analyzed on the X 
chromosome was P = 7.8 × 10−5.

We next obtained replication data for the top 88 loci with P val-
ues <1 × 10−5 in five cohorts of European ancestry, including a total 
of 2,119 additional cases and 142,379 controls (Supplementary 
Table 2 and 3). An overall replication of the direction of effects 
was observed (53 of 88 (60%) of P <1 × 10−5; 16 of 23 (70%) at 
P <1 × 10−6; sign tests, P = 0.035 and P = 0.047, respectively), and 
two additional loci achieved genome-wide significance in the 
combined analysis (Table 1a). More details on the identified loci 
can be found in Supplementary Table 4, and selected candidates 
are described in Box 1.

Correlation with other traits and multitrait GWAS. To inves-
tigate the extent of genetic overlap between ASD and other phe-
notypes, we estimated the genetic correlations with a broad set of 
psychiatric and other medical diseases, disorders, and traits avail-
able at LD Hub20, by using bivariate LD-score regression (Fig. 2 and 
Supplementary Table 5). Significant correlations were found for 
several traits including schizophrenia15 (rG = 0.211, P = 1.03 × 10−5) 
and measures of cognitive ability, especially educational attain-
ment21 (rG = 0.199, P = 2.56 × 10−9), thus indicating a substantial 
genetic overlap with these phenotypes and corroborating previous 
reports5,22–24. In contrast to findings in previous reports16, we find 
a strong and highly significant correlation with major depression25 
(rG = 0.412, P = 1.40 × 10−25), and we report a novel and prominent 
overlap with ADHD26 (rG = 0.360, P = 1.24 × 10−12). Moreover, we 
confirm the genetic correlation with social communication difficul-
ties at age 8 in a non-ASD population sample previously reported 
and based on a subset of the ASD sample27 (rG = 0.375, P = 0.0028).

To leverage these observations for the discovery of loci that may 
be shared between ASD and these other traits, we selected three par-
ticularly well-powered and genetically correlated phenotypes. These 
were schizophrenia (n = 79,641)15, major depression (n = 424,015)25, 
and educational attainment (n = 328,917)21. We used the recently 
introduced MTAG method9 which, in brief, generalizes the stan-
dard inverse-variance-weighted meta-analysis for multiple pheno-
types. In this case, MTAG takes advantage of how, given an overall 
genetic correlation between ASD and a second trait, the effect-size 
estimate and evidence for association to ASD can be improved by 
appropriate use of the association information from the second 
trait. The results of these three ASD-anchored MTAG scans are 
correlated to the primary ASD scan (and to each other), but given 
the exploration of three scans, we used a more conservative thresh-
old of 1.67 × 10−8 for declaring significance across these secondary 
scans giving an estimated maximum false discovery rate (maxFDR) 
of 0.021. In addition to stronger evidence for several of the ASD 
hits defined above, variants in seven additional regions achieved 
genome-wide significance, including three loci shared with educa-
tional attainment and four shared with major depression (Table 1b, 
Box 1, Supplementary Table 6 and Supplementary Figs. 49–55). We 
note that in these seven instances, the effect-size estimate is stronger 
in ASD than the secondary trait, and the result is not characteristic 
of the strongest signals in these other scans (Supplementary Table 
7–9) (and in fact, three of these seven were not significant in the sec-
ondary trait and constitute potentially novel findings). Moreover, 
we benchmarked against MTAG running two very large and heri-
table traits (height28, n = 252,288 and body mass index (BMI)29, 
n = 322,154) with no expected links to ASD, and no significant loci 
were added to the list of ASD-only significant associations.

Gene and gene-set analysis. Next, we performed gene-based 
association analysis on our primary ASD meta-analysis by using 
MAGMA30, testing for the joint association of all markers within 
a locus (across all protein-coding genes in the genome). This 
analysis identified 15 genes surpassing the significance threshold  
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(Supplementary Table 10). As expected, most of these genes were 
located within the genome-wide-significant loci identified in 
the GWAS, but seven genes were located in four additional loci: 
KCNN2, MMP12, NTM, and a cluster of genes on chromosome 17 
(KANSL1, WNT3, MAPT, and CRHR1) (Supplementary Figs. 57–
71). In particular, KCNN2 was strongly associated (P = 1.02 × 10−9), 
far beyond even single-variant statistical thresholds, and is included 
in the descriptions in Box 1.

Enrichment analyses using gene coexpression modules from 
human neocortex transcriptomic data (M13, M16, and M17 from 
Parikshak et al.31) and loss-of-function intolerant genes (probabil-
ity of loss-of-function intolerance, pLI >0.9)32,33, for which there 
is evidence of enrichment in neurodevelopmental disorders26,31,34, 
yielded only nominal significance for the latter (P = 0.014) and M16 
(P = 0.050) (Supplementary Table 11). Genes implicated in ASD by 
studies or rare variants in Sanders et al.35 were just shy of showing 
nominally significant enrichment (P = 0.063), whereas enrichment 
in the curated gene list from the SPARK consortium36 was sig-
nificant (P = 0.0034). Likewise, analysis of Gene Ontology sets37,38 
for molecular function from the Molecular Signatures Database 
(MsigDB)39 showed no significant sets after Bonferroni correction 
for multiple testing (Supplementary Table 12).

Dissection of the polygenic architecture. Because ASD is a highly 
heterogeneous disorder, we explored how hG

2 partitioned across 
phenotypic subcategories in the iPSYCH sample, and we estimated 
the genetic correlations among these groups by using GCTA40. 

We examined cases with (n = 1,873) and those without ID and 
the ICD-10 diagnostic subcategories of childhood autism (F84.0, 
n = 3,310), atypical autism (F84.1, n = 1,607), Asperger’s syndrome 
(F84.5, n = 4,622), and other/unspecified pervasive developmental 
disorders (PDDs, F84.8-9, n = 5,795), reducing to nonoverlapping 
groups when performing pairwise comparisons (Supplementary 
Table 13). Whereas the pairwise genetic correlations were consis-
tently high among all subgroups (95% confidence intervals (CIs) 
including 1 in all comparisons), the hG

2 of Asperger’s syndrome (hG
2

=0.097, s.e.m. = 0.001) was found to be twice the hG
2 of both child-

hood autism (hG
2= 0.049, s.e.m. = 0.009, P = 0.001) and the group 

of other/unspecified PDDs (hG
2= 0.045, s.e.m. = 0.008, P = 0.001) 

(Supplementary Tables 14 and 15 and Supplementary Figs. 82 and 
83). Similarly, the hG

2 of ASD without ID (hG
2= 0.086, s.e.m. = 0.005) 

was three times higher than that for cases with ID (hG
2 = 0.029, 

s.e.m. = 0.013, P = 0.015).
To further examine the apparent polygenic heterogeneity across 

subtypes, we investigated how PRSs trained on different pheno-
types were distributed across distinct ASD subgroups. We focused 
on phenotypes showing strong genetic correlation with ASD (for 
example, educational attainment) but also included traits with little 
or no correlation to ASD (for example, BMI) as negative controls. 
In this analysis, we regressed the normalized scores on ASD sub-
groups while including covariates for batches and principal com-
ponents (PCs) in a multivariate regression. Of the eight phenotypes 
evaluated, only the cognitive phenotypes showed strong heteroge-
neity (educational attainment21, P = 1.8 × 10−8; IQ41, P = 3.7 × 10−9) 
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Fig. 1 | Manhattan plots. The x axis shows genomic position (chromosomes 1–22), and the y axis shows statistical significance as –log10(P) of z statistics. 
a, The main ASD scan (18,381 cases and 27,969 controls), with the results of the combined analysis with the follow-up sample (2,119 cases and 142,379 
controls) in yellow in the foreground. Genome-wide-significant clumps are green, and index SNPs are shown as diamonds. b–d: Manhattan plots for three 
MTAG scans of ASD together with schizophrenia15 (34,129 cases and 45,512 controls; b), educational attainment21 (n = 328,917; c) and major depression25 
(111,902 cases and 312,113 controls; d). Full-size plots are shown in Supplementary Figs. 45–48. In all panels, the results of the composite of the five 
analyses (consisting of the minimal P value of the five for each marker) is shown in gray in the background.
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(Supplementary Fig. 84). Interestingly, all case–control groups with 
or without ID showed significantly different loading for the two 
cognitive phenotypes: controls with ID had the lowest score, fol-
lowed by ASD cases with ID, and ASD cases without ID again had 
significantly higher scores than those of any other group (educa-
tional attainment, P = 2.6 × 10−12 ; IQ, P = 8.2 × 10−12).

With respect to the diagnostic subcategories constructed 
hierarchically from ASD subtypes (Supplementary Table 13), 
the cognitive phenotypes again showed the strongest het-
erogeneity across the diagnostic classes (educational attain-
ment, P = 2.6 × 10−11; IQ, P = 3.4 × 10−8), whereas neuroticism23 
(P = 0.0015), chronotype42 (P = 0.011), and subjective well-being23 
(P = 0.029) showed a weaker but nominally significant degree of 
heterogeneity, and schizophrenia, major depressive disorder, and 
BMI29 were nonsignificant across the groups (P > 0.19) (Fig. 3). 
This pattern weakened only slightly when we excluded subjects 
with ID (Supplementary Fig. 85). For neuroticism, there was a 
clear split, with atypical and other/unspecified PDD cases having 
significantly higher PRSs than childhood autism and Asperger’s 
syndrome, P = 0.00013. Given the genetic overlap of each subcat-
egory with each phenotype, the hypothesis of homogeneity across 
subphenotypes was strongly rejected (P = 1.6 × 10−11), thereby 
establishing that these subcategories indeed have differences in 
their genetic architectures.

Focusing on educational attainment, we found a significant 
enrichment of PRSs for Asperger’s syndrome (P = 2.0 × 10−17) in 
particular, and for childhood autism (P = 1.5 × 10−5), but not for the 
group of other/unspecified PDD (P = 0.36) or for atypical autism 
(P = 0.13) (Fig. 3). Excluding individuals with ID only marginally 
changed this result: atypical autism became nominally significant 

(P = 0.020) (Supplementary Fig. 85). These results show that the 
genetic architecture underlying educational attainment is indeed 
shared with ASD but to a variable degree across the disorder spec-
trum. We found that the observed excess in ASD subjects of alleles 
positively associated with education attainment43,44 was confined 
to Asperger’s syndrome and childhood autism, and it was not seen 
here in atypical autism nor in other/unspecified PDD.

Finally, we evaluated the predictive ability of ASD PRSs by 
using five different sets of target and training samples within the 
combined iPSYCH-PGC sample. The observed mean variance 
explained by PRSs (Nagelkerke’s R2) was 2.45% (P = 5.58 × 10−140) 
with a pooled PRS-based case–control odds ratio (OR) = 1.33 (95% 
CI 1.30 –1.36) (Supplementary Figs. 89 and 91). Dividing the tar-
get samples into PRS decile groups revealed an increase in ORs 
with increasing PRSs. The ORs for subjects with the highest PRSs 
increased to OR = 2.80 (95% CI 2.53–3.10) relative to the lowest 
decile (Fig. 4a and Supplementary Fig. 92). By leveraging correlated 
phenotypes in an attempt to improve prediction of ASD, we gener-
ated a multiphenotype PRS as a weighted sum of phenotype-specific 
PRSs (Methods). As expected, Nagelkerkes’s R2 increased for each 
PRS included, attaining its maximum at the full model at 3.77% 
(P = 2.03 × 10−215) for the pooled analysis with an OR = 3.57 (95% CI 
3.22–3.96) for the highest decile (Fig. 4b and Supplementary Figs. 
93 and 94). These results demonstrate that an individual’s ASD risk 
depends on the level of polygenic burden of thousands of common 
variants in a dose-dependent manner, which can be reinforced by 
adding SNP weights from ASD-correlated traits.

Functional annotation. To obtain information on the possible bio-
logical underpinnings of our GWAS results, we conducted several 

Table 1 | Genome-wide-significant loci from ASD scans and MTAG analyses

Index  
variant

Chr BP Analysis P β s.e. A1/A2 FRQ Support from other scans Nearest genes

Scan P β

a rs910805 20 21248116 ASD 2.04 × 10−9 –0.096 0.016 A/G 0.760 ASD-SCZ 1.5 x10−10 –0.069 KIZ, XRN2, 

NKX2-2, NKX2-4ASD-Edu* 2.0 x10−8 –0.061

rs10099100 8 10576775 ASD 1.07 × 10−8 0.084 0.015 C/G 0.331 Comb ASD 9.6 × 10−9 0.078 C8orf74, SOX7, 

PINX1ASD-Edu 1.6 × 10–8 0.056

rs201910565 1 96561801 Comb ASD 2.48 × 10−8 –0.077 0.014 A/AT 0.689 ASD 3.4 × 10−7 –0.033 LOC102723661,  
PTBP2

rs71190156 20 14836243 ASD 2.75 × 10−8 –0.078 0.014 GTTTT 0.481 Comb ASD 3.0 × 10–8 –0.072 MACROD2

TTT/G ASD-Edu 1.2 × 10−8 0.053

rs111931861 7 104744219 Comb ASD 3.53 × 10−8 –0.216 0.039 A/G 0.966 ASD 1.1 × 10−7 –0.094 KMT2E, SRPK2

b rs2388334 6 98591622 ASD-Edu 3.34 × 10−12 –0.065 0.009 A/G 0.517 ASD 1.0 × 10−6 –0.068 MMS22L, POU3F2

rs325506 5 104012303 ASD-MD 3.26 × 10−11 0.057 0.009 C/G 0.423 ASD 3.5 × 10−7 0.071 NUD12

rs11787216 8 142615222 ASD-Edu 1.99 × 10−9 –0.058 0.010 T/C 0.364 ASD 2.6 × 10−6 –0.030 MROH5

rs1452075 3 62481063 ASD-Edu 3.17 × 10−9 0.061 0.010 T/C 0.721 ASD 2.1 × 10−7 0.035 CADPS

rs1620977 1 72729142 ASD-MD 6.66 × 10−9 0.056 0.010 A/G 0.260 ASD 1.2 × 10−4 0.062 NEGR1

rs10149470 14 104017953 ASD-MD 8.52 × 10−9 –0.049 0.008 A/G 0.487 ASD 8.5 × 10−5 –0.056 MARK3, CKB, 
TRMT61A, BAG5, 
APOPT1, KLC1, 
XRCC3

rs16854048 4 42123728 ASD-MD 1.29 × 10−8 0.069 0.012 A/C 0.858 ASD 5.9 × 10−5 0.082 SLC30A9, BEND4, 
TMEM33, DCAF4L1

a, Loci reaching genome-wide significance in analysis of the ASD phenotype alone. The ‘analysis’ column indicates the minimum P value arising from the original scan (ASD) and the combined analysis 
with the follow-up sample (Comb ASD). The column ‘support from other scans’ lists the other analyses (including MTAG) that further support the locus at genome-wide significance. For the ASD scan 
results, genome-wide-significant results in the locus from the other scans are shown; for Comb ASD, the results from ASD are displayed. b, Additional genome-wide-significant loci identified in the three 
MTAG analyses. The three analyses are ASD with schizophrenia (SCZ)15, educational attainment (Edu)21, and major depression (MD)25. Here the ‘analysis’ column indicates which MTAG analysis gave the 
results (ASD-Edu or ASD-MD), and the columns ‘support from other scans’ provide the corresponding scan results in ASD alone. In both a and b, independent loci are defined to have r2 <0.1 and distance 
>400 kb, and the index variant is displayed in the column ‘index var’. Chr, chromosome; BP, chromosomal position; A1/A2, alleles; FRQ, allele frequency of A1; β, estimate of effect with respect to A1;  
s.e., standard error of β; P, association P value of the index variant (P). ‘Nearest genes’ lists nearest genes from within 50 kb of the region spanned by all SNPs with r2 ≥0.6 to the index variant. Asterisks 
indicate a different lead SNP from the index variant.
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analyses. First, we examined how the ASD hG
2 partitioned on func-

tional genomic categories as well as on cell-type-specific regulatory 
elements, by using stratified LD-score regression45. This analysis 
identified significant enrichment of heritability in conserved DNA 
regions and monomethyl histone H3 Lys4 (H3K4me1) histone 
marks46, as well as in genes expressed in central-nervous-system 
cell types as a group (Supplementary Figs. 95 and 96), in line with 
observations in schizophrenia15, major depression25, and bipolar 
disorder22. Analyzing the enhancer-associated mark H3K4me1 in 
individual cells/tissues46, we found significant enrichment in brain 
and neuronal cell lines (Supplementary Fig. 97). The highest enrich-
ment was observed in the developing brain, germinal matrix, cortex-

derived neurospheres, and embryonic-stem-cell-derived neurons, 
results consistent with ASD as a neurodevelopmental disorder with 
largely prenatal origins, as supported by data from analysis of rare 
de novo variants31.

Common variation in ASD is located in regions that are highly 
enriched with regulatory elements predicted to be active in human 
corticogenesis (Supplementary Figs. 95–97). Because most gene 
regulatory events occur at a distance via chromosome looping, we 
leveraged Hi-C data from the germinal zone (GZ) and postmitotic-
zone cortical plate (CP) in the developing fetal brain to identify 
potential target genes for these variants47. We performed fine-
mapping of 28 loci to identify the set of credible variants with likely 

Box 1 | Selected loci and candidates (ordered by chromosome)

Gene Locusa and supporting evidence Gene function

NEGR1 Chr 1:72729142
Shared ASD-MDD locus
This locus is also significant in depression25,57, educational 
attainment21, intelligence41, obesity, and BMI29,58–61, and in an ASD-
schizophrenia meta-analysis5.
NEGR1 is the only protein-coding gene in the locus.
NEGR1 is supported by brain Hi-C and eQTL analyses25.

Neuronal growth regulator 1 (NEGR1) is an adhesion molecule 
modulating synapse formation in hippocampal neurons62,63 and 
neurite outgrowth64,65. It is a member of the IgLON protein family, 
which is implicated in synaptic plasticity and axon extension66–68

NEGR1 is predominantly expressed (and developmentally 
upregulated) in the hippocampus and cortex69, as well as the 
hypothalamus70

PTBP2 Chr 1:96561801
ASD locus
This locus is also significant in BMI29,58,60 weight58, and educational 
attainment21.
In schizophrenia, the locus shows a P value of 6.5 × 10–6 (ref. 15).
PTBP2 is the nearest protein-coding gene, ~625 kb from the index 
SNP.
De novo and rare variants in PTBP2 have been reported in ASD 
cases1,3,71.
PTBP2 is supported by Hi-C results in this study (Fig. 5d).

PTBP2, also known as nPTB (neuronal PTB) or brPTB (brain PTB), 
is a splicing regulator. PTBP1 and its paralog PTBP2 bind intronic 
polypyrimidine tracts in precursor mRNAs and target large sets of 
exons, thereby coordinating alternative-splicing programs during 
development72. Several switches in the expression of PTBP1 and 
PTBP2 regulate alternative splicing during neurogenesis and 
neuronal differentiation73–76.

CADPS Chr 3:62481063
Shared ASD-Edu locus
This locus is also significant in a study of cognitive-decline rate77.
CADPS is supported by Hi-C results in this study (Fig. 5a).

CADPS encodes a calcium-binding protein involved in exocytosis 
of neurotransmitters and neuropeptides. In line with CAPDS 
mRNA being mainly expressed in the brain and pituitary (GTEx 
portal; see URLs), immunoreactive CAPS-1 is localized in neural 
and various endocrine tissues78. In hippocampal synapses, 
CADPS regulates the pool of readily releasable vesicles at 
presynaptic terminals79,80

KCNN2 Chr 5:113801423
ASD locus (gene-wise analysis)
This locus is also significant in educational attainment21,81.
KCNN2 synaptic levels are regulated by the E3 ubiquitin ligase 
UBE3A82, whose overexpression has been linked to ASD risk82,83.

KCNN2 is a voltage-independent Ca2+-activated K+ channel that 
responds to changes in intracellular calcium concentration and 
couples calcium metabolism to potassium flux and membrane 
excitability. In central-nervous-system neurons, activation of 
KCNN2 modulates neuronal excitability by causing membrane 
hyperpolarization84. Hippocampal KCNN2 has roles in the 
formation of new memory85, encoding and consolidation of 
contextual fear86, and in drug-induced plasticity87.

KMT2E Chr 7:104744219
ASD locus
This locus is also significant in schizophrenia15,88 and in ASD-
schizophrenia meta-analysis5.
KMT2E de novo mutations are associated with ASD at FDR <0.1 
(ref. 35).
A KMT2E credible SNP is a loss-of-function variant (Supplementary 
Table 16).

KMT2E encodes histone-lysine N-methyltransferase 2E and forms 
a family together with SETD5 (refs. 89,90). Evidence suggests that 
recognition of the histone H3K4me3 mark by the KMT2E PHD 
finger can facilitate recruitment of KMT2E to transcription-active 
chromatin regions91,92. KMT2E has been implicated in chromatin 
regulation, control of cell-cycle progression, and maintaining 
genomic stability93.

MACROD2 Chr 20:14836243
ASD locus
This locus is significant in previous ASD GWAS94 but not supported 
in larger study95.
MACROD2 is the only protein-coding gene in the locus.

MACROD2 is a nuclear enzyme that binds mono-ADP-ribosylated 
(MARylated) proteins and functions as an eraser of mono-ADP-
ribosylation96. Intracellular MARylated histones and GSK3β are 
substrates of MACROD2, and the removal of MAR from GSK3β 
is responsible for reactivation of its kinase activity96. This gene is 
expressed in the lung and multiple regions of the brain but has 
low or no expression across most other tissues (GTEx portal; see 
URLs).

aPosition of index SNP is listed. Chr, chromosome.
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causal genetic risk48 (Methods). Credible SNPs were significantly 
enriched in enhancer marks in the fetal brain (Supplementary Fig. 
98), thus again confirming the likely regulatory role of these SNPs 
during brain development.

On the basis of location or evidence of physical contact from 
Hi-C, the 380 credible SNPs (28 loci) were assigned to 95 genes 
(40 protein coding), including 39 SNPs within promoters assigned 
to 9 genes, and 16 SNPs within the protein coding sequence of 8 
genes (Supplementary Table 16 and Supplementary Fig. 98). Hi-C 
identified 86 genes, which interacted with credible SNPs in either 
the CP or GZ during brain development. Among these genes, 34 
interacted with credible SNPs in both CP and GZ, thus represent-
ing a high-confidence gene list. Notable examples are illustrated in 
Fig. 5 and highlighted in Box 1. By analyzing their mean expression 
trajectory, we observed that the identified ASD-candidate genes 
(Supplementary Table 16) showed the highest expression during 
fetal corticogenesis, a finding in line with the enrichment of heri-
tability in the regulatory elements in developing brain (Fig. 5e–g). 
Interestingly, both common and rare variation in ASD preferen-
tially affects genes expressed during corticogenesis31, thus high-
lighting a potential spatiotemporal convergence of genetic risk on 
this specific developmental epoch, despite the disorder’s profound 
genetic heterogeneity.

Discussion
The high heritability of ASD has been recognized for decades and 
remains among the highest for any complex disease despite many 
clinical diagnostic changes over the past 30–40 years resulting 
in a broader phenotype that characterizes more than 1% of the 
population. Although early GWAS permitted estimates that com-
mon polygenic variation should explain a substantial fraction of 
the heritability of ASD, individually significant loci remained elu-
sive. This lack of results was suspected to be due to limited sample 
size, because studies of schizophrenia—with similar prevalence  
and heritability, and lower fitness—and major depression  
achieved striking results only when sample sizes five to ten times 

larger than those available in ASD were used. This study has 
finally borne out that expectation with definitively demonstrated 
significant ‘hits’.

Here we report what are, to our knowledge, the first reported 
common risk variants robustly associated with ASD, on the basis of 
unique Danish resources in conjunction with results of the earlier 
PGC data—more than tripling the previous largest discovery sam-
ple. Of these, five loci were defined in ASD alone, and seven addi-
tional suggested at a stricter threshold by using GWAS results from 
three correlated phenotypes (schizophrenia, depression, and edu-
cational attainment) and a recently introduced analytic approach, 
MTAG. Both genome-wide LD-score regression analysis and the 
finding that, even among the loci defined in ASD alone, additional 
evidence in these other trait scans indicated that the polygenic 
architecture of ASD is significantly shared with the risk of adult psy-
chiatric illness and higher educational attainment and intelligence. 
Of note, the MTAG analyses were carried out as three pairwise anal-
yses. Consequently, we avoided the complex interactions that might 
have arisen if we ran three or four correlated phenotypes at a time9. 
Indeed, despite the secondary summary statistics coming from 
large, high-powered studies, we obtained relatively modest weights 
of the contributions from these statistics, because the genetic cor-
relations were modest. The largest weight was 0.27 for schizophre-
nia, followed by 0.24 for major depression, and 0.11 for educational 
attainment. Moreover, the estimated worst-case FDR was 0.021, just 
0.001 higher than that of the ASD GWAS alone. Thus, all loci iden-
tified by MTAG were found with an acceptable degree of certainty 
and had substantial contributions from ASD alone (Table 1a,b and 
Supplementary Table 6). We expect that most or all such loci will 
probably be identified in future ASD-only GWAS as sample sizes 
are increased substantially; however, given how new these methods 
are, the precise phenotypic consequences of these particular vari-
ants await expansion of all these trait GWAS.

In most GWAS studies, there has been little evidence of hetero-
geneity of association across phenotypic subgroups. In this study, 
however, we observed strong heterogeneity of genetic overlap 
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for testing a total of 234 traits available at LD Hub with the addition of several new phenotypes. Estimates and tests were performed with LDSC19. 
The results shown correspond to the following GWAS analyses: IQ41 (n = 78,308), educational attainment21 (n = 328,917), college55 (n = 111,114), self-
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Supplementary Table 5 shows the full output of this analysis. Asterisks indicate values are from in-house analyses of new summary statistics not yet 
included in LD Hub.

Nature Genetics | VOL 51 | MARCH 2019 | 431–444 | www.nature.com/naturegenetics436

http://www.nature.com/naturegenetics


ArticlesNATure GeneTiCS

Multivariate regression of nRPS over hierarchical subtypes
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Fig. 3 | Profiling PRS load across distinct ASD subgroups. Results are shown for eight different phenotypes: schizophrenia (SCZ)15, major depression 
(MD)25, educational attainment (Edu)21, human intelligence (IQ)41, subjective well-being (SWB)23, chronotype42, neuroticism23, and BMI29. The bars show 
coefficients from multivariate multivariable regression of the eight normalized scores on the distinct ASD subtypes of 13,076 cases and 22,664 controls, 
adjusting for batches and PCs. The subtypes are the hierarchically defined subtypes for childhood autism (hCHA, n = 3,310), atypical autism (hATA, 
n = 1,494), Asperger’s syndrome (hAsp, n = 4,417), and the lumped pervasive disorders developmental group (hPDM, n = 3,855). The orientations of 
the scores for subjective well-being, chronotype and BMI have been switched to improve graphical presentation. The corresponding plot where subjects 
with ID have been excluded is shown in Supplementary Fig. 85, and with ID as a subtype in Supplementary Fig. 84. Applying the same procedure to the 
internally trained ASD score did not display systematic heterogeneity (P = 0.068) except as expected for the ID groups (P = 0.00027) (Supplementary  
Fig. 88). Linear hypotheses were tested with the Pillai test.
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with other traits when our ASD samples were divided into distinct 
subsets. In particular, the excess of alleles associated with higher 
intelligence and educational attainment was observed only in the 
higher-functioning categories (particularly in individuals with 
Asperger’s syndrome and individuals without comorbid ID) and not 
in the other/unspecified PDD and ID categories. These results are 
reminiscent of, and logically inverted relative to, the much greater 
role of spontaneous mutations in these latter categories, particularly 
in genes known to have an even larger effect in cohorts ascertained 
for ID/developmental delay49. Interestingly, other/unspecified PDDs 
and atypical autism also have significantly higher PRSs for neuroti-
cism than childhood autism and Asperger’s syndrome. The different 
enrichment profiles observed provide evidence of a heterogeneous 
and qualitatively different genetic architecture among subtypes of 
ASD, which should inform future studies aiming at identifying eti-
ologies and disease mechanisms in ASD.

The strong differences in estimated SNP heritability between 
ASD cases with versus without ID, and the highest values observed 
in Asperger’s syndrome, provide genetic evidence of longstanding 
observations. In particular, the results align well with the observa-
tion that de novo variants are more frequently observed in ASD 
cases with ID than in cases without comorbid ID, that IQ correlates 
positively with family history of psychiatric disorders50; and that 
severe ID (encompassing many syndromes that confer high risk 
of ASD) show far less heritability than that observed for mild ID51, 
intelligence in general52, and ASDs. Thus, it is perhaps unsurprising 
that our data suggest that the contribution of common variants may 
be more prominent in high-functioning ASD, such as Asperger’s 
syndrome.

We further explored the functional implications of these results 
with complementary functional genomics data including Hi-C 
analyses of fetal brains and brain transcriptome data. Analyses at 
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Fig. 5 | Chromatin interactions identify putative target genes of ASD loci. a–d. Chromatin-interaction maps of credible SNPs to the 1-Mb flanking region, 
providing putative candidate genes that physically interact with credible SNPs. The gene model is based on Gencode v19, and putative target genes are in 
red; the genomic coordinate for a credible SNP is labeled as GWAS; –log10(P value), the significance of the interaction between a SNP and each 10-kb bin, 
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genome-wide scale (partitioned hG
2 (Supplementary Figs. 95–97) 

and brain transcriptome enrichment (Fig. 5e–g)) as well as at single 
loci (Fig. 5a–d and Box 1) highlighted the involvement of processes 
relating to brain development and neuronal function. Notably, sev-
eral genes located in the identified loci have previously been linked 
to ASD risk in studies of de novo and rare variants (Box 1 and 
Supplementary Table 4), including PTBP2, CADPS, and KMT2E, 
which were found to interact with credible SNPs in the Hi-C analy-
sis (PTBP2 and CADPS) or to contain a loss-of-function credible 
SNP (KMT2E). Interestingly, aberrant splicing of the sister gene of 
CADPS, CADPS2, which has almost identical function, has been 
found in autism cases, and Cadps2-knockout mice display behav-
ioral anomalies with translational relevance to autism53. PTBP2 
encodes a neuronal splicing factor, and alterations in alternative 
splicing have been identified in brains from individuals diagnosed 
with ASD54.

In summary, we established an initial robust set of common vari-
ant associations in ASD and have begun laying the groundwork 
through which the biology of ASD and related phenotypes will 
inevitably be better articulated.

URLs. GenomeDK high-performance-computing cluster in 
Denmark, https://genome.au.dk/; iPSYCH project, http://ipsych.
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surfsara.nl/systems/lisa/; plink 1.9, http://www.cog-genomics.org/
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ldsc/; LD Hub, http://ldsc.broadinstitute.org/ldhub/; GTEx portal, 
https://gtexportal.org/home/
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Methods
Subjects. iPSYCH sample. The iPSYCH ASD sample is a part of a population based 
case–cohort sample extracted from a baseline cohort10 consisting of all children 
born in Denmark between 1 May 1981 and 31 December 2005. Singletons who 
were born to a known mother and were resident in Denmark on their first birthday 
were included. Cases were identified from the Danish Psychiatric Central Research 
Register (DPCRR)12, which includes data on all individuals treated in Denmark 
at psychiatric hospitals (from 1969 onward) as well as at outpatient psychiatric 
clinics (from 1995 onward). Subjects were diagnosed with ASD in 2013 or earlier 
by a psychiatrist according to ICD10, including diagnoses of childhood autism 
(ICD10 code F84.0), atypical autism (F84.1), Asperger’s syndrome (F84.5), other 
pervasive developmental disorders (F84.8), and pervasive developmental disorder, 
unspecified (F84.9). For controls, we selected a random sample from the set of 
eligible children excluding those with an ASD diagnosis by 2013.

The samples were linked by using the unique national personal identification 
number to the Danish Newborn Screening Biobank (DNSB) at Statens Serum 
Institute (SSI), where DNA was extracted from Guthrie cards, and whole-genome 
amplification was performed in triplicate, as described previously13,97. Genotyping 
was performed at the Broad Institute of Harvard and MIT (Cambridge, MA, USA) 
with PsychChip arrays from Illumina according to the manufacturer’s instructions. 
Genotype calling of markers with MAF >0.01 was performed by merging call sets 
from GenCall98 and Birdseed99, and less frequent variants were called with zCall100. 
Genotyping and data processing were carried out in 23 waves.

All analyses of the iPSYCH sample and joint analyses with the PGC samples 
were performed at the secured national GenomeDK high-performance computing 
cluster in Denmark. The study was approved by the Regional Scientific Ethics 
Committee in Denmark and the Danish Data Protection Agency.

PGC samples. In brief, five cohorts provided genotypes to the sample (n denotes 
the number of trios for which genotypes were available): the Geschwind Autism 
Center of Excellence (ACE; n = 391), the Autism Genome Project94 (AGP; 
n = 2,272), the Autism Genetic Resource Exchange101,102 (AGRE; n = 974), the 
NIMH Repository, the Montreal103/Boston Collection (MONBOS; n = 1,396, and 
the Simons Simplex Collection104,105(SSC; n = 2,231). The trios were analyzed as 
cases and pseudocontrols. A detailed description of the sample is available on the 
PGC website, and additional details are provided in Anney et al.5. Analyses of the 
PGC genotypes were conducted on the computer cluster LISA at the Dutch HPC 
center SURFsara.

Follow-up samples. As follow-up for the loci with P values <10−6, we asked for look-
up in five samples of Nordic and Eastern European origin, including 2,119 cases 
and 142,379 controls in total: BUPGEN (Norway: 164 cases and 656 controls), 
PAGES (Sweden: 926 cases and 3,841 controls not part of the PGC sample above), 
the Finnish autism case–control study (Finland: 159 cases and 526 controls), and 
deCODE (Iceland: 574 cases and 136,968 controls; Eastern Europe: 296 cases and 
388 controls) (details in Supplementary Note).

Statistical analyses. All statistical tests were two sided unless otherwise stated. 
Software versions and additional information can be found in the Nature Research 
Reporting Summary.

GWAS analysis. Ricopili15, the pipeline developed by the PGC Statistical Analysis 
Group was used for quality control, imputation, PCA, and primary association 
analysis (details in the Supplementary Note). The data were processed separately in 
the 23 genotyping batches in the case of iPSYCH and separately for each study in 
the PGC sample. Phasing was achieved with SHAPEIT106, and imputation was done 
with IMPUTE2 (refs. 107,108) with haplotypes from the 1000 Genomes Project, phase 
3 (ref. 109) as a reference.

After exclusion of regions of high LD110, the genotypes were pruned down 
to a set of approximately 30,000 markers (details in Supplementary Note). With 
PLINK’s111 identity by state analysis, pairs of subjects were identified with π ̂ > .0 2,  
and one subject of each such pair was excluded at random (with a preference 
for keeping cases). PCA was carried out with smartPCA112,113. In iPSYCH, a 
subsample of European ancestry was selected as an ellipsoid in the space of 
PC1–3 and centered and scaled by using the mean and eight s.d. of the subsample 
whose parents and grandparents were all known to have been born in Denmark 
(n = 31,500). In the PGC sample, the European (CEU) subset was chosen by using 
a Euclidian-distance measure weighted by the variance explained by each of the 
first three PCs. Individuals more distant than ten s.d. from the combined CEU and 
Toscani in Italy (TSI) HapMap reference populations were excluded. We conducted 
a secondary PCA on the remaining 13,076 cases and 22,664 controls to provide 
covariates for the association analyses. Numbers of subjects in the data-generation 
flow for the iPSYCH sample can be found in Supplementary Table 1.

We performed association analyses by applying PLINK 1.9 to the imputed 
dosage data (the sum of imputation probabilities P(A1A2) + 2P(A1A1)). In 
iPSYCH, we included the first four PCs as covariates as well as any PC beyond 
that, which were significantly associated with ASD in the sample, whereas the 
case–pseudocontrols from the PGC trios required no PC covariates. Combined 
results for iPSYCH and for iPSYCH with the PGC were achieved by meta-analysis 

of batchwise and studywise results by using METAL114 (July 2010 version) with an 
inverse-variance-weighted fixed-effect model115. On chromosome X, males and 
females were analyzed separately and then meta-analyzed together. Subsequently, 
we applied a quality filter allowing only markers with an imputation info score 0.7, 
MAF of 0.01 and an effective sample size (Supplementary Note) of at least 70% of 
the study maximum. The degree to which the deviation in the test statistics could 
be ascribed to cryptic relatedness and population stratification rather than to 
polygenicity was measured from the intercept in LD-score regression19 (LDSC) as 
the ratio of (intercept – 1) and (mean χ2 – 1).

MTAG9 was applied with standard settings. The iPSYCH-PGC meta-analysis 
summary statistics were paired with the summary statistics for each of major 
depression25 (excluding the Danish samples but including summary statistics from 
23andMe57; 111,902 cases, 312,113 controls, and mean χ2 = 1.477), schizophrenia15 
(also excluding the Danish samples; 34,129 cases, 45,512 controls, and mean 
χ2 = 1.804) and educational attainment21 (328,917 samples and mean χ2 = 1.648). 
These are studies that have considerably more statistical power than the ASD 
scan, but because the genetic correlations are modest in the context of MTAG, 
the weights ascribed to the secondary phenotypes in the MTAG analyses remain 
relatively low (no higher than 0.27). The maximum FDR was estimated as 
recommended in the MTAG paper9 (details in the Supplementary Note).

The results were clumped, and we highlighted loci of interest by selecting those 
that were significant at 5 × 10−8 in the iPSYCH-PGC meta-analysis or the meta-
analysis with the follow-up sample or were significant at 1.67 × l0−8 in any of the 
three MTAG analyses. The composite GWAS consisting of the minimal P values 
at each marker over these five analyses was used as a background when creating 
Manhattan plots for the different analyses showing both what was maximally 
achieved and what the individual analysis contributed to that.

Gene-based association and gene-set analyses. MAGMA 1.06 (ref. 30) was applied 
to the ASD GWAS summary statistics to test for gene-based association. By using 
NCBI 37.3 gene definitions and restricting the analysis to SNPs located within the 
transcribed region, we tested mean SNP association with the sum of –log(SNP P 
value) as the test statistic. The resulting gene-based P values were further used in 
competitive gene-set enrichment analyses in MAGMA. One analysis explored the 
candidate sets M13, M16, and M17 from Parikshak et al.31, constrained, loss-of-
function intolerant genes (pLI >0.9; refs. 32,33) derived from data from the Exome 
Aggregation Consortium (details in Supplementary Note), as well as gene sets 
found in studies of rare variants in autism by Sanders et al.35 and the curated gene 
list from the SPARK consortium36. Another was an agnostic analysis of the Gene 
Ontology sets37,38 for molecular function from MsigDB 6.0 (ref. 39). We analyzed 
only genes outside the broad MHC region (hg19: Chr 6: 25–35 Mb) and included 
only gene sets with 10–1,000 genes. The gene sets from Sanders et al. and SPARK 
included only one gene in MHC and were exempt from the MHC exclusion to 
be as true to the set as possible. All gene sets with significant enrichment were 
inspected to ensure that the signal was not driven by one or a few associated loci 
with multiple genes in close LD.

SNP heritability. SNP heritability, hG
2, was estimated by using LDSC19 for the 

full ASD GWAS sample and GCTA40,116,117 for subsamples too small for LDSC. 
For LDSC, we used precomputed LD scores based on the European-ancestry 
samples of the 1000 Genomes Project118 restricted to HapMap3 (ref. 119) SNPs. The 
summary statistics with standard LDSC filtering were regressed onto these scores. 
For liability-scale estimates, we used a population prevalence for Denmark of 
1.22% (ref. 18). Lacking proper prevalence estimates for subtypes, we scaled the full 
spectrum prevalence on the basis of the composition of the case sample.

For subsamples too small for LDSC, the GREML approach of GCTA40,116,117 
was used. On best-guess genotypes (genotype probability >0.8, missing rate 
<0.01, and MAF >0.05) with indels removed, a genetic relatedness matrix was 
fitted for the association sample (i.e., the subjects of European ancestry with 
π ̂ ≤ .0 2), thus providing a relatedness estimate for all pairwise combinations 
of individuals. Estimation of the phenotypic variance explained by the SNPs 
(REML) was performed by including PC1–4 as continuous covariates together 
with any other PC that was nominally significantly associated with the phenotype 
as well as batches as categorical indicator covariates. Testing equal heritability 
for nonoverlapping groups was performed with permutation tests (with 1,000 
permutations), keeping the controls and randomly assigning the different case 
labels.

Following Finucane et al.45, we conducted an enrichment analysis of the 
heritability for SNPs for functional annotation and for SNPs located in cell-type-
specific regulatory elements. Using first the same 24 overlapping functional 
annotations (stripped down from 53), as in Finucane et al., we regressed the χ2 
from the ASD GWAS summary statistics on the cell-type-specific LD scores 
downloaded from the site mentioned above with baseline scores, regression 
weights, and allele frequencies based on European-ancestry 1000 Genome 
Project data. The enrichment of a category was defined as the proportion of 
SNP heritability in the category divided by the proportion of SNPs in that 
category. Still following Finucane et al., we performed a similar analysis using 
220 cell-type-specific annotations divided into ten overlapping groups. In 
addition, we conducted an analysis based on annotations derived from data on 
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H3K4me1 imputed gapped peak data from the Roadmap Epigenomics Mapping 
Consortium120, more specifically information excluding the broad MHC region 
(Chr 6: 25–35 Mb).

Genetic correlation. For the main ASD samples, SNP correlations, rG, were 
estimated by using LDSC19, and for the analysis of ASD subtypes and subgroups 
in which the sample sizes were generally small, we used GCTA40. In both cases, 
we followed the same procedures as those explained above. For all but a few 
phenotypes, LDSC estimates of correlation were achieved by upload to LD Hub20 
for comparison to 234 phenotypes in total.

Polygenic risk scores. For the PRSs, we clumped the summary statistics, applying 
standard Ricopili parameters (details in the Supplementary Note). To avoid 
potential strand conflicts, we excluded all ambiguous markers for summary 
statistics not generated by Ricopili by using the same imputation reference. PRSs 
were generated at the default P-value thresholds (5 × 10–8, 1 × 10–6, 1 × 10–4, 0.001, 
0.01, 0.05, 0.1, 0.2, 0.5, and 1) as a weighted sum of the allele dosages in the  
ASD GWAS sample, summing over the markers abiding by the P-value threshold 
in the training set and weighing by the additive scale effect measure of the  
marker (log(OR) or β) as estimated in the training set. Scores were normalized 
before analysis.

We evaluated the predictive power by using Nagelkerke’s R2 and plots of ORs 
and CIs over score deciles. Both R2 and ORs were estimated in regression analyses 
including the relevant PCs and indicator variables for genotyping waves.

Lacking a large ASD sample outside of iPSYCH and PGC, we trained a set of 
PRSs for ASD internally as follows. We divided the sample into five subsamples 
of approximately equal size, respecting the division, into batches. We then ran 
five GWAS, leaving out each group in turn from the training set, then performed 
meta-analysis of these with the PGC results. This procedure produced a set of 
PRSs for each of the five subsamples trained on their complement. Before analyses, 
each score was normalized to the group in which it was defined. We evaluated the 
predictive power in each group and on the whole sample combined.

To exploit the genetic overlap with other phenotypes to improve prediction, 
we created a series of new PRSs by adding to the internally trained ASD score 
the PRSs of other highly correlated phenotypes in a weighted sum (details in the 
Supplementary Note).

To analyze ASD subtypes in relation to PRSs, we defined a hierarchical set of 
phenotypes in the following way: The first hierarchical subtypes were childhood 
autism; hierarchical atypical autism was defined as all individuals with atypical 
autism and no childhood autism diagnosis, and hierarchical Asperger’s syndrome 
was defined as all individuals with an Asperger’s syndrome diagnosis and neither 
childhood autism nor atypical autism. Finally, we lumped other pervasive 
developmental disorders and pervasive developmental disorder, unspecified 
into pervasive disorders developmental mixed, and the hierarchical version 
consisted of all subjects with such a diagnosis and none of the preceding diagnoses 
(Supplementary Table 13). We examined the distribution over the distinct ASD 
subtypes of PRSs for a number of phenotypes showing high rG with ASD (as well 
as a few with low rG as negative controls), by performing multivariate regression 
of the scores on the subtypes while adjusting for relevant PCs and wave-indicator 
variables in a linear regression (details in the Supplementary Note).

Hi-C analysis. The Hi-C data were generated from two major cortical laminae: the 
GZ, containing primarily mitotically active neural progenitors, and the cortical and 
subcortical plate, consisting primarily of postmitotic neurons47. We first derived a 
set of credible SNPs (putative causal SNPs) from the identified top-ranking loci in 
the ASD GWAS by using CAVIAR48. The 30 loci showing the strongest association 
were intersected with the Hi-C reference data, thus resulting in 28 loci for analysis. 
To test whether credible SNPs were enriched in active marks in the fetal brain120, 
we used GREAT, as previously described47,121. Credible SNPs were subgrouped 
into SNPs without known function (unannotated) and functionally annotated 
SNPs (SNPs in the gene promoters and SNPs causing nonsynonymous variants) 
(Supplementary Fig. 98). Then we integrated unannotated credible SNPs with 
chromatin-contact profiles during fetal corticogenesis47, defining genes physically 
interacting with intergenic or intronic SNPs (Supplementary Fig. 98).

The spatiotemporal transcriptomic atlas of the human brain was obtained 
from Kang et al.122. We used transcriptomic profiles of multiple brain regions 
with developmental epochs spanning prenatal (6–37 weeks postconception) 
and postnatal (4 months to 42 years) periods. Expression values were log-
transformed and centered to the mean expression level for each sample by using 
a scale(center = T, scale = F)+1 function in R. ASD candidate genes identified by 
Hi-C analyses (Supplementary Fig. 98) were selected for each sample, and their 
average centered expression values were calculated and plotted.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary.

Data availability
The summary statistics are available for download the iPSYCH and at the PGC 
download sites (see URLs). For access to genotype data from the PGC samples and 
the iPSYCH sample, researchers should contact the lead principal investigators 
M.J.D. and A.D.B. for PGC-ASD and iPSYCH-ASD, respectively.
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Data collection This is fully described in the Online Methods and associated Supplemental Note. In brief: GenCall, Birdseed and zCall were used for 
genotype calling and the genotypes merged. 

Data analysis This is fully described in the Online Methods and associated Supplemental Note. In brief: Genotype calling was done using GenCall 
(1.6.2.2), Birdseed (1.6) and zCall version 1 (Autocall, https://github.com/jigold/zCall). Quality control, imputation, association analyses, 
and polygenic risk scoring was done using the Ricopili pipeline: https://github.com/Nealelab/ricopili, which relies on the following 
software: SHAPEIT v2, IMPUTE2, Eigensoft 6.0.1 (incl. smartPCA), Plink 1.9, METAL 2011-03-25. 
For gene-based and gene-set analyses we used MAGMA 1.06.  
Estimation of credible SNPs were done using CAVIAR v1, and to test whether credible SNPs are enriched in active marks in the fetal brain 
and in-house implementation of the GREAT method was used (see Won et al. Nature. 2016;538(7626):523-527). 
Functional annotation of credible SNPs was done using Ensemble Variant Effect Predictor (VEP). 
SNP heritability, partitioning of the heritability and genetic correlations were estimated using LD score regression (https://github.com/
bulik/ldsc) and LD hub (http://ldsc.broadinstitute.org/) for the large samples. Genetic correlation between ASD subtypes was estimated 
using GCTA v1.26.0. 
Multitrait association analyzes were conducted using MTAG (https://github.com/omeed-maghzian/mtag). 
R v3.4 was used in general for statistical analyzes and plotting (https://www.Rproject.org).
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As stated in the manuscript, summary statistics has already been made available at http://ipsych.au.dk/downloads/ and https://www.med.unc.edu/pgc/results-and-
downloads. For access to genotypes from the PGC samples and the iPSYCH sample, researchers should contact the lead PIs Mark J. Daly and Anders D. Børglum for 
PGC-ASD and iPSYCH-ASD respectively.
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Sample size No sample size calculation was made. Previous studies of psychiatric disorders that 
are very polygenic (e.g. schizophrenia) have demonstrated that high numbers of 
cases and controls (in line with the sample size analyzed in this study) yield enough 
power to detect common risk variants with low effect sizes.

Data exclusions Within each analyzed cohort we aimed at analyzing genetically homogeneous 
samples. Genetic outliers were excluded based on principal component analyses 
and related individuals were removed.

Replication Consistency was checked internally between the 23 batches in iPSYCH and 
between iPSYCH and PGC. The 88 strongest signals were followed up in 
independent samples from other Nordic countries and Eastern Europe. We 
evaluated our results in three ways: sign test, genetic correlation, and metaanalysis 
of the combined samples, and these generally support the results from our 
primary GWAS. In addition support for the reported loci were obtained by MTAG 
analysis of correlated traits.

Randomization It is an observational study comparing everybody in the selected birth cohorts with 
and ASD diagnosis as cases, and a random sample from the complement in said 
cohort as controls.

Blinding In iPSYCH, diagnoses are drawn from registries. These are administrative data bases populated by data from the clinicians long before the 
current study. The blood samples are pulled from a biobank. Hence, the study participants and diagnosing clinicians are blinded with respect 
to this study. Genotyping is done on a massive scale on 85.000 individuals on 500.000 variables (which by imputation is expanded to ~10 
million variables), and the data is generated without a specif goal or effect in mind except for an overall goal of investigating the genetic and 
environmental effects on psychiatric disorders. So although it is in principle possible for analysts in the lab to look up crude diagnostic data for 
a sample, it will not change the genotyping.  - In the meta analysis we include data from the Psychiatric Genetics Consortium (PGC) which has 
been reported in an earlier publication. There design was different, but analyses analogous. 
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Population characteristics In the meta-analysis we included samples from the Psychiatric Genetics Consortium (PGC) and the iPSYCH sample. The iPSYCH 
sample was processed in 23 batches (genotyping, qc and imputation was done separately for theses batches) of approximately 
3,500 individuals each. All analyzes were adjusted for batch, and principal components included to control for population 
stratification. The PGC samples are trio samples, hence there was no need to adjust for populations stratification there.

Recruitment In iPSYCH, diagnoses are drawn from national registries and the blood samples are pulled from a the Danish Neonatal Screening 
Biobank. Hence, it is a population sample and bias from self-selection is impossible. 
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