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Abstract

Kinetic ballooning modes (KBMs) are investigated by means of linear electromagnetic gyrokinetic

(GK) simulations in the stellarator Wendelstein 7-X (W7-X), for high-β plasmas, where β is the

ratio of thermal to magnetic plasma pressure. The analysis shows suppression of ion-temperature-

gradient (ITG) and trapped particle (TEM) modes by finite-β effects and destabilization of KBMs

at high β. The results are compared with a generic tokamak case.

We show that, for large pressure gradients, the frequency of KBMs evaluated by the GENE

code is in agreement with the analytical prediction of the diamagnetic modification of the ideal

magnetohydrodynamic limit in W7-X general geometry. Thresholds for destabilization of the

KBM are predicted for different W7-X equilibrium configurations. We discuss the relation of these

thresholds to the ideal MHD stability properties of the corresponding equilibria.
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I. INTRODUCTION

In a fusion reactor plasma, high density and temperature are necessary to achieve

favourable reaction conditions. This implies high plasma βs: the ratio of thermal to mag-

netic pressure. However, under such conditions, the curvature of the confining magnetic field

and the plasma pressure gradient can excite kinetic ballooning modes (KBMs). The study

of electromagnetic micro-turbulence due to KBMs is a topic which is largely unexplored in

stellarator geometry and in particular for the stellarator Wendelstein 7-X (W7-X).

Other instabilities are of course also relevant in W7-X. The electrostatic ion-temperature-

gradient-driven (ITG) and trapped-electron (TEM) modes have been extensively studied by

means of gyrokinetic simulations [1–7], but KBMs have been explored less in stellarators

than in tokamaks [8–12]. KBMs have recently been studied recently in helical plasmas [13],

for a model configuration of standard LHD plasmas. In the present work we present the first

numerical study of KBMs in W7-X. Although global fully-gyrokinetic simulations of a large

class of Alfvénic modes have been already performed for W7-X geometry [14], an extensive

investigation of KBMs in W7-X is still missing.

In tokamaks, numerical simulations show that the threshold for KBM destabilization

is often lower than that corresponding to the ideal MHD ballooning mode [15, 16]. In a

recent work [17], it was shown that, at long-wavelengths, a finite-β regime of KBMs can be

adequately described by a simple diamagnetic modification of the ideal MHD equation as

long as local magnetic drifts are kept consistent with the equilibrium constraint j×B = ∇p.

However, this result was only demonstrated for a simple ŝ − α equilibrium model [18] and

needs to be extended to more realistic geometry.

In this article we investigate KBMs in W7-X and we compare the behaviour of this

instability to a generic tokamak case. Our study also includes the electromagnetic versions

of other microinstabilities such as the ITG and TEM. The influence of parallel magnetic

fluctuations on the destabilisation of KBM is also considered, while this aspect has been

neglected in many previous numerical studies. Since the effect of plasma compressibility is

closely related to the equilibrium pressure gradient [19], we always use gyrokinetic input

quantities (pressure gradient and plasma β) consistent with the considered equilibria.

This work is structured in the following way: in Section II we summarise the relevant

results of the general KBM theory of Ref. [16], introduce the simplified KBM equation of
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Ref. [17] for the tokamak case and discuss necessary modifications connected with stellara-

tor geometry. In Section III we present results of linear electromagnetic GENE [20, 21]

calculations of the KBM threshold for destabilization in different W7-X configurations. We

also compare the phenomenology of ITG and TEMs in tokamak and W7-X for finite β. Our

conclusions are discussed in Section IV.

II. HIGH−β ORDERING FOR KBMS EQUATION

The basic theory of kinetic ballooning modes was developed in Ref. [16]. Here, the authors

solve the gyrokinetic equation by expanding in ε = v2thi/ω
2l2c � 1, where vthi =

√
2Ti/mi is

the ion thermal speed, lc the connection length and ω � vthe/lc is the mode frequency, with

vthe the electron thermal speed. The general KBM equation below retains magnetic drift

resonances, gyro-averaging and magnetic compressibility effects, but trapped particles are

neglected. The result is a second order differential equation for the electrostatic potential φ

that reads:
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where we defined the connection length lc and the coordinate z along the field is

defined so that lc∇‖ = ∂z, βi = 8πpi/B
2
a, b = k2⊥v

2
thi/2Ω2

iB, k⊥ is the wavevector

across the equilibrium magnetic field, Ωi(B) = mic/(eB) is the ion cyclotron frequency,

αn,j = 1 − (ω∗i/ω) (1 + nηj), τ = Te/Ti, ηi = Lni
/LTi , ω∗i,e = 1

2
kyρi,evth/Ln, ωB =

(k⊥ρs/2) · vthsb̂×∇B/B, ωκ = (k⊥ρs/2) · vthsb̂× (b̂ · ∇b̂), ρs = vths/Ωs(Ba), where Ba is

a reference constant magnetic field, LT i,e and Ln are the characteristic gradient lengths for

temperature and density and Q, Q′, R are velocity-space integrals (defined in [16]).
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In the recently published work [17] the problem of kinetic ballooning mode instability

was revisited in simple tokamak geometry. The authors derived an appropriate β-ordering,

which allows Eq. (2) to be simplified greatly. The results of the kinetic instability analysis

and its comparison with numerics lead to a natural distinction between ”high-temperature-

gradient” and ”moderate-temperature-gradient” KBM regimes.

In the first case, instability occurs only for mode frequencies such that ωr = ωpi/2, where

ωpi = ω∗i (1 + ηi). The maximum growth rate is located at very long wavelength. If magnetic

drifts are kept consistent with the equilibrium pressure gradient, the gyrokinetic codes GS2

[22, 23] and GENE [20, 21] show excellent quantitative agreement with the familiar ideal-

MHD equation with a diamagnetic correction [24]:

1

βi

v2thi
ω2l2c

∂

∂z
bB

∂φ

∂z
= −2ωκωp

ω2
φ− b

[
1− ω∗i

ω
(1 + ηi)

]
φ, (3)

where ωp = ω∗i (1 + ηi) − ω∗e (1 + ηe) ≡ ωpi + ωpe and ωκ 6= ωB since β is finite. Keeping

ωκ = ωB does not give a satisfactory agreement between analytics and numerics.

In more complicated geometries, Eq.(1) is still valid. In order to relate KBM theory to

stellarator equilibrium codes, it is useful to introduce a modification of Boozer coordinates

[25], that respects the field alignment:(
x1, x2, x3

)
= (s, q(s) (θ − θ0)− ζ, θ − θ0) ,

where s = Φ/Φedge, with Φ the toroidal magnetic flux and Φedge its value at the last closed

flux surface, and θ and ζ are the Boozer poloidal and toroidal angles, respectively, q = Φ′/Ψ′,

where Ψ is the poloidal magnetic flux and θ0 is the free parameter of ballooning theory. Thus

we obtain:
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Here
√
gB is the determinant of the Jacobian matrix, K is described in Eq. (2), a is a

reference length scale, k2
⊥ = kik

i = kjgjik
i, and the b term now becomes

b = −1
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Therefore, the magnetic geometry enters the KBM equation for stellarators through the

magnetic field B, the Jacobian and through the k⊥ terms. In the framework of a flux tube

approach, all of these quantities are functions of the field-line following coordinate.
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While in a stellarator one could expect a rather complicated outcome from the numerical

solution of Eq.(4), but in fact we will see that it shares some fundamental features with the

”high temperature-gradient” KBM solution of the tokamak case of Ref.[17].

III. NUMERICAL RESULTS FOR W7-X

In the present section, we first describe the main parameters of the magnetic configura-

tions that will be considered in this linear study, namely the stellarator W7-X and a standard

tokamak, both in the context of the flux tube approach. Numerical simulation results are

then presented for various sets of physical parameters.

3.1. Simulation details

The gyrokinetic simulations are carried out with the GENE code, which uses input data

from the VMEC [26] and GIST [27] codes for data concerning the geometry of the mag-

netic field. The simulations are carried out for a range of density (a/Lni,e) and temperature

(a/LT i,e) gradients, where a is a normalisation length, and as already mentioned, it is impor-

tant to vary the magnetic equilibrium from simulation to simulation so that it is consistent

with the resulting pressure gradient. The magnetic equilibrium is varied in a following way:

we keep the shape of the pressure profile constant but vary its absolute magnitude, so that

β becomes proportional to the pressure gradient.

We consider a hydrogen plasma in the collisionless regime, in the W7-X (KJM and TEH

configurations, two tubes: one with its center in the outboard midplane of the so-called bean-

shaped plane, the other centred around the outboard midplane of the ”triangular” plane,

both tubes extend one poloidal turn around the torus) and generic tokamak geometry, with

electromagnetic effects and consistent pressure gradients, therefore: Ti/Te = 1, mi/me =

1836, r/R = 0.26, q = 1.3, local magnetic shear ŝ = 0.745 for the tokamak case and

r/R ≈ 0.095, q = 1.1, ŝ ≈ −0.1 for the W7-X case. Here, Ti,e are the ion and electron

temperature, R is the major radius, r is the minor radius and ŝ is the global magnetic

shear. Here, βGENE = βi,e = βtotal
2

=
8πni0Tref
B2

ref
, where Tref is a reference temperature, Bref a

reference magnetic field and ni0 is the equilibrium ion density.

We consider kxρs = 0, where kx is the radial wavenumber, starting our reference case,
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further scans in this parameter are discussed later. Parallel magnetic fluctuations δB|| are

taken into account and their role will first be discussed.

3.2. Parallel magnetic fluctuations influence

The role of the δB|| has been neglected in many numerical studies of microinstabilities

and turbulence in the literature. Here we find that neglecting these effects has a noticeable

impact on growth rates even for reasonably small gradients [see Fig.1]. In Fig.1, we show

the spectrum of the KBMs obtained by GENE simulations for W7-X with and without δB||.

For these cases β = 3%, a/Lni,e = 0, a/LT i,e = 3 and a/LT i,e = 7. The same type of study

is then repeated for the tokamak case [see Fig. 2].

The comparison between Fig. 1 and Fig. 2 shows that in both cases an absence of δB||

effects leads to a decrease of KBM growth rate up to a factor of 6. This result is in line

with earlier findings that parallel magnetic fluctuations act destabilising [19, 28]. In the

stellarator case, for small gradient a/LT i,e = 3, δB|| is essential for KBMs destabilization

[see Fig.1a]. We also note that, for W7-X, the growth rate of the high-ky end of the spectrum

(trapped electron modes - TEMs) is not affected by parallel magnetic fluctuations.

For the stellarator, at large gradients, the mode frequency is ωr = ωpi/2 only if δB|| is

included [see Fig.1b]. In tokamak case we observe the same trend [see Fig.2b] however, even

with δB|| included, the frequency of the mode is not ωpi/2 for finite kys since the temperature

gradient a/LT i,e = 7 is not high enough (for a more detailed discussion about tokamak case

see Ref.[17]).

We conclude that local GK KBM simulations are consistent with diamagnetic modifica-

tion of ideal MHD only if magnetic compressibility is taken into account.
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Figure 1: Influence of δB||, spectra for W7-X from GENE simulations. Plot a: a/LT i,e = 3. Plot

b: a/LT i,e = 7.
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Figure 2: Influence of δB||, spectra for tokamak from GENE simulations. Plot a: a/LT i,e = 3.

Plot b: a/LT i,e = 7.

3.3. Scan in radial wavenumber

The most unstable KBM in W7-X geometry has vanishing radial wavenumber (Fig.3a),

which corresponds to θ0 = 0 in the ballooning representation. This is connected with the

fact that kx is a function of the global shear, ŝ, and W7-X has a very small ŝ. From this

it follows the weak dependence of our results on the specific choice of the simulated tube.
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We remark that the radial wavenumber of the most unstable KBM in W7-X is in contrast

with that of LHD [13] which is finite. The ITG mode also has the peak of the growth rate

curve located around kxρs = 0 (Fig.3b). In calculations shown in this figure, the density

gradient and β have both been set to zero, so that all microinstabilities other than the ITG

mode are eliminated. Periodicity in both plots is explained by the periodic dependence in

an envelope of a function which is required for a function in a real space to be periodic [see

Eq.4 of Ref.[29]]. In Fig.4 KBM normalized eigenfunction is presented for two simulation

tubes. Peaking of eigenfunction around non-zero θ (see Fig.4, right) is an interesting feature

of the simulation tube which is centred around the outboard midplane of the ”triangular”

plane. Earlier simulations have consistently showed this feature of the eigenfunction being

very small at the ”helical edge” on the outboard side of W7-X, presumably because the local

magnetic shear is exceedingly large there [30, 31].
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Figure 3: Growth rate (purple, +) and real frequency (green, x) dependence on kxρs for a) ITG

instability, a/LT i,e = 2, kyρs = 0.8, β = 0.0%, and b) KBM instability, a/LT i,e = 2, kyρs = 0.05,

β = 2.4%. Simulation tube is centred around the outboard midplane of the so-called a) ”bean”

plane and b) ”triangular” plane.
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3.4. The effect of temperature gradients in W7-X

Equation (3) implies that a necessary condition for instability is Re(ω) = ωpi/2. In

Ref.[17] it was shown that this is indeed observed in numerical simulations for large tem-

perature gradients for a simple tokamak geometry. We found that the same is true in the

stellarator W7-X [see Fig.5]. This simulation corresponds to an MHD mode in the limit

ky → 0, since on this plot we can observe a purely growing mode with maximum of growth

rate at ky = 0. Exactly the same type of instability in simple tokamak geometry was

discussed in [17].
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In W7-X we find that KBMs have zero frequency at ky = 0 for a range of temperature

gradients [see Fig.6]. Another important aspect is that, despite gradients being so small

that ωr deviates substantially from ωpi/2, yet the growth rate of the mode peaks at ky = 0,

as opposed to the tokamak, in which an increase in frequency is accompanied by a peaking
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of the growth rate at finite wavelengths.

W7-X was optimized such away that most magnetic configurations have a high threshold

for ideal-MHD instability [32]. It is therefore important to establish whether kinetic effects

can destabilize ballooning modes for βs lower than the ideal ones. In the next subsection

we investigate this question.

3.5. KBM and ideal MHD thresholds in W7-X

Results of GENE simulations for two W7-X configurations are shown in Fig.7. One of

these configurations (TEH, purple color, +) is atypical (non-optimised) in the sense that

it has no magnetic well and is therefore MHD-unstable for very low β, whereas the other

configuration (KJM, green, x) is a typical one and is MHD-stable up to 〈β〉 = 5% (where 〈β〉

is a plasma volume average β, not to be confused with local β which is used in the present

work). Growth rates (a) and real frequencies (b) are displayed as functions of β. For these

calculations we used zero density gradient, a/LT i,e = 2, and kyρs was varied from 0.05 to 0.8

to identify the maxima of growth rates. The TEH configuration is characterised by a small

rotational transform, low iota < 5/6, and very large mirror ratio = 24%, whereas the KJM

configuration corresponds to a more typical case with mirror ratio = 10% and standard iota

= 1.
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Figure 7: Dependence on β for the fastest growing mode with a/LT i,e = 2 and kyρs in the range

from 0.05 to 0.8, in two different W7-X configurations (KJM and TEH) and two simulation tubes

(centred around the outboard midplane of the ”bean” and ”triangular” plane). (a): growth rate

of the instabilities. (b): real frequency of the corresponding modes. Large dots specify where the

magnetic equilibrium was varied.

We see that the ”diamagnetically-modified ideal MHD” ballooning mode description (based

on our ωr condition, blue line Fig.7b) is valid for all KBMs presented on this plot. The

extrapolation of growth rate to where the KBM branch ot the curves in Fig.7 would intersect

the horizontal axis, γ = 0, suggests that the critical beta of KBM destabilization in the MHD

non-optimised configuration is β ∼ 0.65% while, for MHD optimised ones it is β ∼ 1.9%

(”bean” tube) and β ∼ 2.2% (”triangular” tube). We conclude that the MHD-optimized

configuration has a higher threshold for KBMs. This result confirms the expectation that

KBM stability should be related to ideal-MHD stability. A device like W7-X that has been

optimised to be MHD-stable up to very high β should therefore also benefit from enhanced

KBM stability. However, in previous simulations it has typically been seen that the KBM

stability threshold lies somewhat below that of ideal MHD ballooning modes. In Fig.8 we

show KBM critical β values (for KJM and TEH configurations) corresponding to the point

of marginal KBM stability: for kyρs from 0.005 to 0.4 and a range of β values, the linear

growth rates were obtained and KBM curves were extrapolated to a subdominant region
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where KBMs are marginally stable (the same procedure was described in Ref.[35] for s− α

tokamak geometry). Reference ideal MHD βcrit values (note, βcrit is a standard local one) for

both configurations were obtained by using a separate code [34] which solves the ideal MHD

ballooning equation along the field line. Note that the kinetic threshold is determined at the

specific ky where the KBM is destabilized first, which, in the TEH case is close to ky ≈ 0, as

it should in the ideal MHD (iMHD) limit. In TEH case, a higher stability limit of KBMs [as

compared with the ideal MHD limit], comes from kinetic effects, for example diamagnetic

[see eq. Eq. (3)]. However, in the KJM case, we see a KBM threshold significantly lower than

the corresponding iMHD limit. This might be connected with further kinetic effects, which

can provide additional destabilization close to marginality. One could perhaps attribute it

to the resonant ion-transit destabilization [for more details see Ref.[36]]. A numerical study

of KBMs observed above and below the iMHD limit was also performed in Ref. [35] for

s− α tokamak geometry.

Thus we conclude that, even though W7-X has been optimised to be MHD-stable up to

very high β and indeed the MHD-optimized configuration has a relatively high threshold for

KBMs, kinetic effects are important and we may expect KBM instability before we reach

the iMHD ballooning threshold.
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Figure 8: KBM critical β values corresponding to the point of marginal KBM stability (see the

text). For reference: the MHD estimates obtained by an ideal ballooning code are shown as lines.
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different a/LT i,e, standard Cyclone Base Case parameters, collisionless regime, ŝ− α geometry.

In Fig.7, the growth rate of ITG instability decreases moderately with β and the ITG mode

is subdominant for β > 2.4% in the MHD-optimized case (KJM) and for β > 1.2% in the

MHD-non-optimized one (TEH). However, we do not observe regions where instability is

completely suppressed between ITG and KBM. A trapped-electron mode (TEM) window

is not observed between KBMs and ITGs either (in contrast to the usual picture of the

tokamak case, Fig.1 of Ref.[8]) and Fig. 9 of this article). This might be connected with,

first, more unstable ITGs (less stabilized by β) and, second - TEMs in W7-X are more stable

given the fact that most trapped electrons have favourable bounce-averaged curvature [37].

The same was observed in [13], where the authors reported that the trapped electron mode

is not observed in the same type of calculations for the standard Large Helical Device (LHD)

case. This is a major difference between electromagnetic microinstabilities in stellarators

and tokamaks.

We further proceed with a comparison of the W7-X results with a generic tokamak case,

emphasising the consistency of the local pressure gradient and the plasma equilibrium. In

Fig. 10 we show the growth rates obtained from the gyrokinetic calculations performed by

GENE code as functions of β and ky.
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Figure 10: Growth rates as a function of β and kyρs (colorcoded), when pressure gradients are

consistent with the plasma equilibrium. Left: simulations for standard tokamak case. Right: W7-X

standard configuration (KJM, ”bean” tube).

For these calculations we include δB|| effects (as we do in all our calculations) and take

pressure gradients in GENE to be consistent with the plasma equilibrium obtained by the

VMEC code [26]. We stress the importance of this type of consistency because the difference

with results obtained in a non-consistent way (see Fig. 11) is evident. In Fig. 10 we can

observe different types of electromagnetic microinstabilities. For the tokamak standard case

( Fig. 10, left plot) the region with β < 1.7% and kyρs < 0.7 shows electromagnetic ITG

modes, while the region with β > 2.3% and 0.1 < kyρs < 0.4 contains KBMs. TEMs can be

observed in the region with kyρs > 0.8. For the W7-X standard case ( Fig. 10, right plot) ITG

instability exists in a wider region of parametrs, and complete electromagnetic stabilization

of this instability does nor appear. KBMs are more stable than in the tokamak case and the

most unstable ones are those with the smallest wavenumbers. TEMs are present for high

ky but cannot be observed in the region between ITG and KBM (as has been previously

discussed). We conclude this W7-X configuration appears to be somewhat more stable than

the tokamak with respect to low ky modes, including KBMs.

As already mentioned, simulations with consistent plasma equilibria are quite different

from those without.
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Figure 11: Growth rates as a function of β and kyρs (colorcoded), when pressure gradients are not

(!) consistent with the plasma equilibrium. Left: simulations for standard tokamak case. Right:

W7-X standard configuration (KJM, ”bean” tube).

In Fig.11 we show the result of simulations in a fixed equilibrium (zero β) that does not vary

with β and observe that growth rates for ITG and TEM for small values of β are approx-

imately the same (in comparison with Fig.10) but KBMs are significantly more unstable

at higher values of β, both in the tokamak and in W7-X. However, in the stellarator case,

they share the same feature of having the most unstable mode around kyρs = 0. The most

interesting point here is that the TEM for the tokamak case seems not to be affected by β if

the equilibrium is kept constant, but if it is varied consistently with the pressure gradients

(Fig. 10) the TEM is stabilized by β as originally predicted by Rosenbluth and Sloan [38].

For our W7-X calculations the TEM is moderately stabilized by β in both cases, both with

consistent and non-consistent equilibria.

IV. CONCLUSION

In the present work, linear electromagnetic gyrokinetic numerical simulations of microin-

stabilities have been performed with the GENE code in finite-β plasmas for different geome-

tries in the stellarator device Wendelstein 7-X as well as a generic tokamak model.
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The results exhibit good agreement of the real frequencies of KBMs with the diamagnetic

modification of ideal MHD limit in the large-gradient-regime for W7-X geometry. This

finding agrees with a recent KBM study in simple tokamak geometry [17].

Thresholds for KBM mode destabilization in W7-X configurations with different ideal

MHD stability properties have been compared and found to be correlated. Simulations of

the KBM instability in the standard (MHD-optimized) W7-X geometry with β= 3%, flat

density profile and temperature gradient a/LT i,e = 2 show that the KBM stability threshold

(kyρs = 0.05) is about 2.2% (simulation tube centred around the outboard midplane of

the ”triangular” plane) and 1.9% (”bean”) as compared with 0.65% in the non-optimized

configuration, which has a much lower MHD stability threshold. KBM critical β values

correspond to the point of marginal KBM stability were compared with the reference MHD

estimates obtained by ideal ballooning code and were found to be lower in KJM case. Thus

we conclude that we may expect a rise of KBM instability before corresponding iMHD

threshold.

The comparison of W7-X and a generic tokamak shows that one of the significant features

of the KBM in W7-X geometry is that the most unstable mode has kyρs = 0 for a wide

range of simulation parameters. This is in contrast to the tokamak configuration, where the

most unstable mode closer to the marginality has a finite kyρs. In W7-X, the ITG mode is

progressively suppressed with increasing β but is not stabilized completely and the critical

value for the onset of KBM is about β = 2.5% for a/LT i,e = 2, flat density gradient and and

ŝ ≈ −0.1. For the tokamak case, we observe a more significant β stabilization of the ITG

mode and more unstable KBMs (β = 2.1%). We conclude that this W7-X configuration

appears to be more stable than the tokamak case with respect to low ky modes, including

KBMs.

In all these simulations, it is important to keep the magnetic equilibrium geometry con-

sistent with the varying pressure gradient in the gyrokinetic simulations. This is clearly seen

when we compare our results with simulations obtained without this sort of concordance.

It is noted that β stabilization of TEM in the tokamak case appears only if the equilibrium

is varied consistently with the pressure gradient, whereas in W7-X calculations, the TEM is

also (moderately) stabilized by β even if the equilibrium is kept fixed.

17



Acknowledgements

The authors are grateful to F. Zonca and F. Jenko for for constructive comments and

fruitful discussions and Y. Turkin for technical support. GENE simulations were performed

at Computer Centre in Garching.

[1] A. Zocco, P. Xanthopoulos, H. Doerk, J. W. Connor, J. Plasma Phys., vol. 84, 715840101

(2018)

[2] V. Kornilov, R. Kleiber, R. Hatzky, L. Villard and G. Jost, Phys. Plasmas 11 3196 (2004)

[3] P. Xanthopoulos, F. Merz, T. Gorler, F. Jenko, PRL 99, 035002 (2007)

[4] J. Riemann, R. Kleiber and M. Borchardt, Plasma Physics and Controlled Fusion, 58 (7)

(2016)

[5] P. Xanthopoulos, Phys. Plasmas 14, 042501 (2007)

[6] J.H.E. Proll, H.E. Mynick, P. Xanthopoulos, S.A. Lazerson, B.J. Faber, Plasma Physics and

Controlled Fusion 58 (1), 014006 (2015)

[7] J.H.E. Proll, P. Helander and Xanthopoulos, Physics of Plasmas 20 122506 (2013)

[8] M. J. Pueschel, M. Kammerer, and F. Jenko, Phys. Plasmas 15, 102310 (2008)

[9] M. Kotschenreuther, Phys. Fluids 29, 2898 (1986)

[10] J. A. Baumgaertel, E. A. Belli, W. Dorland, W. Guttenfelder, G. W. Hammett, D.R.

Mikkelsen, G. Rewoldt, W.M. Tang, P. Xanthopoulos, Phys. Plasmas 18, 122301 (2011)

[11] A. Mishchenko, R. Hatzky, A. Könies, Phys. Plasmas 15 (11), 112106, (2008)

[12] A. Biancalani, A. Bottino, S. Briguglio, A. Könies, Ph. Lauber, A. Mishchenko, E. Poli, B.

D. Scott and F. Zonca, Phys. Plasmas 23, 012108 (2016)

[13] A. Ishizawa, S. Maeyama, T.-H. Watanabe, H. Sugama and N. Nakajima, J. Plasma Phys.

81, 435810203 (2015)

[14] A. Mishchenko, M. Borchardt, M. Cole, R. Hatzky, T. Fehér, R. Kleiber, A. Kon̈ies and A.

Zocco, Nucl. Fusion 55 (5), 053006 (2015)

[15] R.J. Hastie and K.W. Hesketh, Nucl. Fusion 21 651 (1981)

[16] W.M. Tang, J.W. Connor, and R. J. Hastie, Nucl. Fusion 20, 1439 (1980)

[17] K. Aleynikova and A. Zocco, Physics of Plasmas 24, 092106 (2017)

18



[18] J.W. Connor, R.J. Hastie, and J.B. Taylor, Phys. Rev. Lett. 40 (1978)

[19] A. Zocco, P. Helander, J.W. Connor, Plasma Physics and Controlled Fusion 57 (8) (2015)

[20] F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000)

[21] T. Dannert and F. Jenko, Phys. Plasmas 12, 72309 (2005)

[22] M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995)

[23] W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)

[24] K.V. Roberts and J.B. Taylor, Phys. Rev. Lett. 8, 197 (1962)

[25] A. H. Boozer, Phys. Fluids 23, 2283 (1980)

[26] S.P. Hirshman, W.I. van Rij, and P. Merkel, Comput. Phys. Commun. 43, 143 (1986)

[27] P. Xanthopoulos, W.A. Cooper, F. Jenko, Y. Turkin, A. Runov, J. Geiger, Phys. Plasmas 16,

082303 (2009)

[28] E. A. Belli and J. Candy, Phys. Plasmas 17, 112314 (2010)

[29] D. Dickinson, C. M. Roach, J. M. Skipp, H. R. Wilson, Phys. Plasmas 21, 010702 (2014)

[30] R. Kleiber and B. Scott, Phys. Plasmas 12 102507 (2005)

[31] P. Helander, C. D. Beidler, T. M. Bird, M. Drevlak, Y. Feng, R. Hatzky, F. Jenko, R. Kleiber,

J. H. E. Proll, Yu. Turkin, and P. Xanthopoulos, Plasma Phys. Controlled Fusion 54, 124009

(2012)

[32] C. Nührenberg, Nucl. Fusion 56 076010 (2016)

[33] A.M. Dimits, G. Bateman, M.A. Beer, B.I. Cohen, W. Dorland, G.W. Hammett, C. Kim, J.E.

Kinsey, M. Kotschenreuther, A.H. Kritz, L.L. Lao, J. Mandrekas, W.M. Nevins, S.E. Parker,

A.J. Redd, D.E. Shumaker, R. Sydora, and J. Weiland, Phys. Plasmas 7, 969 (2000)

[34] J. Nuehrenberg and R. Zille, Equilibrium and stability of low-shear stellarators, Theory of
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