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It was recently proposed to leverage the representational power of arti¯cial neural networks, in

particular Restricted Boltzmann Machines, in order to model complex quantum states of

many-body systems [G. Carleo and M. Troyer, Science 355(6325) (2017) 602.]. States repre-

sented in this way, called Neural Network States (NNSs), were shown to display interesting
properties like the ability to e±ciently capture long-range quantum correlations. However,

identifying an optimal neural network representation of a given state might be challenging, and

so far this problem has been addressed with st€ochastic optimization techniques. In this work,

we explore a di®erent direction. We study how the action of elementary quantum operations
modi¯es NNSs. We parametrize a family of many body quantum operations that can be

directly applied to states represented by Unrestricted Boltzmann Machines, by just adding

hidden nodes and updating the network parameters. We show that this parametrization
contains a set of universal quantum gates, from which it follows that the state prepared by any

quantum circuit can be expressed as a Neural Network State with a number of hidden nodes

that grows linearly with the number of elementary operations in the circuit. This is a powerful

representation theorem (which was recently obtained with di®erent methods) but that is not
directly useful, since there is no general and e±cient way to extract information from this

unrestricted description of quantum states. To circumvent this problem, we propose a step-

wise procedure based on the projection of Unrestricted quantum states to Restricted quantum

states. In turn, two approximate methods to perform this projection are discussed. In this way,
we show that it is in principle possible to approximately optimize or evolve Neural Network

States without relying on stochastic methods such as Variational Monte Carlo, which are

computationally expensive.
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1. Introduction

As is well known, the description of general quantum states of composite systems

requires an amount of information that grows exponentially with the number of

subsystems. This simple fact is one of the reasons why general quantum systems are

hard to simulate with ordinary computers. A possible workaround for this problem is

to abandon the desire of describing arbitrary quantum states, and only concentrate

on a manifold of physically meaningful states.1 A prominent example along this line is

given by the Matrix Product States (MPSs)2 ;a. Here, the physically meaningful states

that are addressed are the low energy states of gapped Hamiltonians with local

interactions. In one dimension, it is known that those states satisfy an entanglement

area law, and MPSs are a su±ciently general class of states compatible with such

law.3–7 This is also a limitation for MPSs, since they are then not su±cient to e±-

ciently capture the rich physics close to quantum critical points, where the gap

typically closes and the quantum correlations no longer obey an area law.8,9 This is

also the case for systems with long range interactions.10–13

Recently, a new family of states was proposed by Carleo and Troyer14 to deal with

long range quantum correlations in many-body systems: the so-called Neural Net-

work States (NNSs) or Neural Quantum States (NQSs). The main idea behind this

proposal is to treat the wave function as a functional that maps con¯gurations of

lattice spin systems (states of a given computational basis) to complex numbers

(probability amplitudes). As the name suggests, a neural network architecture is used

to model this mapping. In particular, the neural networks employed in Ref. 14 are

Restricted Boltzmann Machines (RBMs). An RBM is de¯ned in terms of a network of

hidden and visible nodes, with weighted connections between these two groups,

which thus form a bipartite graph (see Fig. 1). An Ising-like energy functional is

assigned to the network, and the distribution realized by it is speci¯ed by the

Boltzmann factor corresponding to that energy, often conditioned on some

Fig. 1. Restricted Boltzmann Machine with N ¼ 5 visible and M ¼ 3 hidden nodes. When modelling a
quantum state, each of the visible nodes v1; . . . ; vN represents, for instance, a spin sj on a lattice. The

number of hidden neurons determines the power that the network has to represent distributions over the

visible nodes.

aHere, we assume a restricted bond dimension of the MPS, such that the total number of parameters which

need to be speci¯ed is polynomial in the number of subsystems. If the bond dimension is not restricted, any

quantum state can be cast as an MPS.

N. Freitas, G. Morigi & V. Dunjko

1840008-2

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

01
8.

16
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 Q
U

A
N

T
U

M
 O

PT
IC

S 
on

 0
1/

17
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



con¯guration of either the visible or both hidden and visible parts of the network.

The \programming" or \training" of the network consists in adjusting the weights

such that the network matches, or well approximates, a target distribution over the

visible nodes, which is often speci¯ed only via a set of samples drawn from it.

In order to model a quantum many body state, each visible node is associated with

a subsystem, for example a spin on a lattice, and the expressive powerb of the machine

increases with the number of hidden nodes considered.

The family of states thus obtained with e±cient NNSs, that is, those utilizing only

a polynomial number of hidden nodes was later shown to be able to e±ciently de-

scribe volume-law entanglement13 ;c. The relationship between NNSs and MPSs was

explored in Ref. 15, showing that, in general, in order to exactly represent a given

NNS as a MPS, an exponentially large bond dimension is required for the latter.

Thus, it was shown that MPSs cannot e±ciently describe general NNSs based on

RBMs (RBM-NNSs). In subsequent works, it was shown that RBM-NNSs are also

related to other previously known families such as String-Bond States,16 or arbitrary

graph states.17

So far, NNSs were mainly employed as a variational Ansatz, either to minimize the

energy of a model Hamiltonian, to evolve a state over time, or for quantum state

tomography.13,14,16,18 In these cases the neural network representing the state was

optimized by usual Variational Monte Carlo (VMC) techniques. This is computa-

tionally expensive, since at each iteration in the optimization it is necessary to sto-

chastically estimate the gradient of an objective function with respect to the network

parameters.14 In this work we explore a di®erent direction. Our main aim is to ¯nd a

method to evolve a given NNS, on the level of the representation and in a controlled

way, without requiring stochastic sampling and estimation. We begin by investi-

gating how to update the parameters of a given NNS to take into account the action

of simple physical processes. Thus, we pose the following question: is there any family

of (non-trivial) elementary quantum operations (i.e. unitary gates) that can be ap-

plied to a NNS state, in such a way that the resulting state is also e±ciently repre-

sentable as a NNS, and such that the update can be performed on the level of the NN

representation itself? How can this family be parametrized? An answer to this

question would shed further light on the properties and limitations of NNSs, and

could guide the development of e±cient numerical algorithms to evolve and optimize

NNSs, without the need to rely exclusively on stochastic methods. In other words,

what we are asking for is a collection of e±cient rewriting rules, which can approx-

imate the evolution of quantum states, on the level of the graphs representing them.

As it turns out, even very simple one-body unitary operations take a general

RBM-NNS to a new state that is naturally represented by Unrestricted Boltzmann

bBy expressive power here we mean the size and complexity of the set of distributions which can be realized

over the visible nodes, by marginalizing over the hidden nodes.
c It is well-known that RBMs (and NNSs) can represent any distribution and/or state, provided the

number of hidden nodes is not limited. This is similar to how unlimited bond dimensions render MPSs fully

expressible.
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Machines (UBMs), for which connections among the hidden nodes are allowed. We

point out that this does not mean that applying a single-body unitary to a RBM-NNS

necessarily renders this state into a new one without an e±cient RBM representation.

However, an extremely simple update rule can be identi¯ed if the restriction on the

connections in the hidden layer is relaxed. We will refer to states described by UBMs

as UBM-NNSs. For this more general representation, there exists a family of non-

trivial operations whose action can be easily represented by simple update rules.

Speci¯cally, we identify a family of K-body operations that can be applied to any

UBM-NNS by only adding K hidden nodes to the UBM, followed by a simple update

of the network parameters. This family contains universal sets of gates, so in this

way, we also show that the quantum state prepared by any quantum circuit can be

expressed as a UBM-NNS with a number of hidden units that increases linearly with

the number of elementary operations in the circuit, provided that the initial state is

also a UBM-NNS. These results are compatible to those obtained in Ref. 17, where

the representational power of Deep Boltzmann Machines was explored and compared

to the shallow or restricted cased. However, our methods are di®erent and provide

new insights. Although the mentioned results are interesting and show the power of

Boltzmann Machines to represent quantum states, they are not directly useful. The

reason is that, in contrast to RBM-NNSs, there is no accurate and e±cient way to

extract information out of a UBM-based description of a quantum state. To explain

this we compare the problem of sampling a UBM-NNS to standard Quantum Monte

Carlo techniques based on path integrals, where a classical model, \dual" to a

quantum model of interest, is sampled.19–21

In fact, the main advantage of RBMs is that they can be sampled e±ciently (since

the quotients between probability amplitudes can be readily computed). Of course,

this comes at the expense of some representational power.17 Nevertheless, as men-

tioned before, RBM-NNSs can still represent many complex and highly entangled

quantum states.13,15–17 Thus, building on the study of quantum operations, we

propose a method to evolve an initial RBM-NNS in such a way that the ¯nal state is

also an easy to sample RBM-NNS. The central idea is that, whenever a quantum

operation transform the input state to a UBM-NNS, this output state is projected

back to the family of RBM-NNS. Two projection procedures are presented and dis-

cussed. Finally, this ideas are tested on the transverse ¯eld Ising model in one di-

mension. To the best of our knowledge, this is the ¯rst example of a method in which

RBM-NNS are optimized in a deterministic manner, providing an alternative to

stochastic methods.

This article is organized as follows: in Sec. 2 we review the de¯nition of RBM-NNS

and show how the action of simple one-body unitaries takes them to UBM-NNS. In

Sec. 2.2 we de¯ne general UBM-NNS and show how the network must me modi¯ed to

take into account the action of K-body operations. In Sec. 3 we compare the sampling

of UBM-NNS to usual QMC methods. In Sec. 4 we propose a method to continuously

dAs explained in Ref. 17, Deep and Unrestricted Boltzmann machines are equivalent.
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project the evolved state back to the family of RBM-NNS. Finally, in Sec. 5 we apply

this ideas and show how to approximate the ground state of an Ising chain.

2. RBM-NNSs and One-Body Operations

Boltzmann machines are described by a set of nodes (neurons), representing sto-

chastic variables, with bidirectional weighted connections between them forming a

neural network. These nodes are usually split in two groups: visible nodes and hidden

nodes. The restriction in Restricted Boltzmann Machines (RBMs) is that no con-

nections are allowed between nodes of the same group, as depicted in Fig. 1.

In classical RBMs, an energy function is assigned to the network, which is typi-

cally a quadratic function of the node values

ERBM ¼ �atv� bth� htWv;

where v ¼ ðv1; . . . ; vNÞt and h ¼ ðh1; . . . ;hMÞt are column vectors with the values

of the N visible nodes and the M hidden nodes, respectively. The vectors a ¼
ða1; . . . ; aNÞt and b ¼ ðb1; . . . ; bMÞt, along with the M �N matrix W , are the para-

meters of the network. The constants ak and bk are known as o®sets, and the com-

ponents of the matrix W indicate the weights of the connections. In classical

applications, the parameters a, b, and W are real, and it is assumed that the prob-

ability distribution for the stochastic variables in h and v, P ðv;hja; b;WÞ, is of the
Boltzmann form

Pðv;hja; b;WÞ ¼ 1

Z
e�ERBM ;

where Z ¼Pv;he
�ERBM is the partition function. Now, this network can be used to

learn a target probability distribution over the visible nodes. Given a training set of

con¯gurations for the visible nodes, with a distribution PT ðvÞ, training the network

means to adjust the network parameters a, b and W in order to minimize some

measure of distancee between the marginal distribution over the visible nodes

PðvÞ ¼
X

h1;...;hM

P ðv;hja; b;MÞ ð1Þ

and PT ðvÞ. This is an optimization problem that can be attacked with di®erent iter-

ative methods, such as so-called contrastive divergence.23 The fact that hidden nodes

are not connected between them in RBMs (i.e. the energy is only linear in h), allows to

explicitly perform the sum to ¯nd P ðvÞ. If it is assumed for simplicity that the hidden

variables hk are binomial, taking the values f�1; 1g, then from Eq. (1) we obtain

P ðvÞ / ea
tv
YM
m¼1

coshðbm þ ðWvÞmÞ;

apart from a normalization constant.

eFor example, the Kullback-Leibler divergence.22

Neural network operations and Susuki–Trotter evolution of neural network states
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As proposed in Ref. 14 it is possible to extend this approach to learn, or model,

a quantum state or wavefunction instead of a probability distribution. For this, let

us consider a many body system with N subsystems, each with R levels fjsigs¼1;...;R.

A computational basis for the whole system can be given by the product states

js1; s2; . . . ; sNi ¼ �N
k¼1jski. Any many-body state j�i can then be considered as the

mapping �ðs1; . . . ; sNÞ � hs1; . . . ; sN j�i of each of these product states to a complex

probability amplitude. Thus, by associating each variable sk with a visible node of a

RBM, we can model this mapping as

�ðsÞ /
X

h1;...;hM

ea
tsþb thþhtWs; ð2Þ

where s ¼ ðs1; . . . ; sNÞt, and the parameters a, b andW are allowed to be complex. As

in the previous equation, in the rest of this work we will describe quantum states up

to an unspeci¯ed normalization constant. It is not required to known this constant

since in order to estimate the expectation value of physical quantities for a given state

we employ stochastic methods which only need to evaluate the ratios �ðsÞ=�ðs 0Þ for
di®erent con¯gurations s and s 0, as explained in detail in Ref. 14.

In what follows, we will focus in the case in which each subsystem is a two-level

system (i.e. a spin-1/2 or a qubit), so that the visible nodes are also binomial variables

and each sk can only take the values f�1; 1g (i.e. R ¼ 2). We will refer to quantum

states written as in Eq. (2) as an RBM-NNS.

2.1. Action of one-body operations

Let us consider a linear operation U ðjÞ acting on the Hilbert space of subsystem

j (a single spin-1/2). How does this operation act on a given RBM-NNS? First, we

note that if U
ðjÞ
s;s 0 ¼ hsjU ðjÞjs 0i are the matrix elements of U ðjÞ, and �ðsÞ is an

arbitrary wavefunction, then the wavefunction corresponding to the state j� 0i ¼
U ðjÞj�i is

� 0ðsÞ ¼
X
s 0
j

U
ðjÞ
sj;s

0
j
�ðs1; . . . ; sj�1; s

0
j; sjþ1; . . . ; sNÞ:

We will assume for the moment that the matrix elements of the operation U ðjÞ can be

expressed as

U
ðjÞ
s;s 0 ¼ A e�sþ�s 0þ!ss 0 ð3Þ

with complex parameters �, � and !. If the operation U ðjÞ is required to be unitary,

then the value of the constant A should be such that detðU ðjÞÞ ¼ 1. As we explain

later, up to a global phase, any spin-1=2 unitary can be described in this way.

However, this parametrization also allows for non-unitary operations. Then, if the

initial state j�i is a RBM-NNS with M hidden variables and parameters a, b and W ,

N. Freitas, G. Morigi & V. Dunjko
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we have

� 0ðsÞ ¼
X

h1;...;hM ;s 0
j

exp
X
n6¼j

ansn þ
X
i

bihi þ
X
i

X
n 6¼j

hiWi;nsn

 !

�A exp ajs
0
j þ
X
i

hiWi;js
0
j þ �sj þ �s 0

j þ !sjs
0
j

 !
:

This last expression is already written in a form that suggest us to consider the sum

index s 0
j as a new hidden node. Indeed, � 0ðsÞ can be expressed as

� 0ðsÞ ¼ A
X

h1;...;hMþ1

e ~a tsþ~b t ~hþ ~h t ~Wsþ ~h t ~X ~h=2; ð4Þ

which is similar to Eq. (2) but with an additional term ~h
t ~X ~h=2 describing interac-

tions between hidden nodes. In the previous expression, the updates to the original

vectors a, b and h, denoted ~a, ~b and ~h, are

~a ¼ ða1; . . . ; aj�1; �; ajþ1; . . . ; aNÞt;
~b ¼ ðb1; . . . ; bM ; � þ ajÞt;
~h ¼ ðh1; . . . ;hM ;hMþ1Þ t;

ð5Þ

and the new matrices ~W and ~X are given by

~W ¼

j j 0 j j

Wi;1 � � � Wi;j�1
..
.

Wi;jþ1 � � � Wi;N

j j 0 j j
0 � � � 0 ! 0 � � � 0

0
BBBB@

1
CCCCA;

~X ¼

0 � � � 0 W1;j

..

. . .
. ..

.
W2;j

..

.

0 � � � 0 WM;j

W1;j W2;j � � � WM;j 0

0
BBBBBBBB@

1
CCCCCCCCA
:

ð6Þ

Therefore, the state j� 0i ¼ U ðjÞj�i can be written as a NNS with one more hidden

variable with respect to j�i and, more importantly, in terms of an Unrestricted

Boltzmann machine (UBM), where the interaction between hidden variables is de-

scribed by the matrix ~X . Figure 2 illustrates the new network giving rise to j� 0i,
Eq. (4), as if a one-body operation was applied to the subsystem 3 in Fig. 1. We see

that the new hidden node only connects to the visible node corresponding to the

subsystem where the operation was applied, and also, in principle, to all the preex-

istent hidden nodes.

Neural network operations and Susuki–Trotter evolution of neural network states
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We now turn to analyze the family of linear operations given by Eq. (3). First, we

note that forU ðjÞ to be unitary� and �must be imaginary, and ImðwÞ ¼ �ðnþ 1=2Þ=2
for any integer n (we take n ¼ 0 in what follows). Thus, we can rewrite Eq. (3) as

U ðjÞ ¼ ei�=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 coshð2! 0Þp eið� 0þ� 0Þe! 0 �ieið� 0�� 0Þe�! 0

�ie�ið� 0�� 0Þe�! 0
e�ið� 0þ� 0Þe! 0

 !
: ð7Þ

In this form, the new parameters � 0, � 0 and ! 0 are real numbers. Up to a global phase,

Eq. (7) is equivalent to any spin-1=2 unitary operation. It is particularly interesting

to analyze the case of operations that are diagonal in the computational basis

(rotations around ẑ). We see that such operations are recovered in the limit

! 0 ! þ1. However, in that case the new hidden node hMþ1 can be identi¯ed with sj
and eliminated (only the terms in which hMþ1 ¼ sj survive when the sum in Eq. (4) is

performed). Thus, rotations around the ẑ axis of subsystem j can be implemented

without adding new hidden nodes, and just updating the value of aj according to the

rule aj ! aj � i�=2, where � is the rotation angle. We also note that the represen-

tation of in¯nitesimal operations requires large values of ! 0. As an example, for the

in¯nitesimal rotation U ðjÞ ¼ � ði�=2Þ�x
j we have !

0 ¼ ð�1=2Þ logð�=2Þ. This will be
relevant for the analysis of the projection method presented in Sec. 4.

2.2. UBM-NNSs and K-body operations

The results from the previous section motivate us to de¯ne an extended family

of NNSs, in which the wavefunction is represented in terms of an Unrestricted

Boltzmann Machine (UBM). In this case, internal connections in the groups of

hidden and visible nodes are allowed. Then, we consider wavefunctions that can be

written as

�ðsÞ ¼
X

h1;...;hM

ea
tsþbthþhtWsþhtXh=2þstYs=2; ð8Þ

where the vectors a, s, b and h, and the matrix W are de¯ned as before, while the

symmetric matrices X and Y contain the weights of the connections within the

hidden and visible layer, respectively. They also have null diagonals (any nonzero

h1 h2 h3 h4

s1 s2 s3 s4 s5

Fig. 2. Unrestricted Boltzmann machine with 5 visible units and 4 hidden units, resulting from applying a

one-body operation to the spin represented by the visible node 3 of Fig. 1. The new hidden node is colored in
red and the new connections are marked by thick lines.

N. Freitas, G. Morigi & V. Dunjko
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diagonal element on X on Y will not have any e®ect if all the nodes can only take the

values �1). We will refer to states written in this way as UBM-NNS.

We are interested in ¯nding a family of linear operations that can be e±ciently

applied to the previous states. We will ¯rst consider two-body operations, acting on

subsystems j and k, such that their matrix elements U
ðj;kÞ
rs;r 0s 0 ¼ hr; sjU ðj;kÞjr 0; s 0i can be

expressed as

U
ðj;kÞ
rs;r 0s 0 ¼ A exp �tqþ � tq 0 þ 1

2
ðqt q 0tÞ

0 �

� 0
�

�t
0 �

� 0

0
BB@

1
CCA q

q 0

� �0
BB@

1
CCA; ð9Þ

where q ¼ r
s

� �
, q 0 ¼ r 0

s 0

� �
, � ¼ �1

�2

� �
, � ¼ �1

�2

� �
, � and � are constants, and � is a

2� 2 matrix. The parameters �, �, �, � and � can in principle be complex valued. In

the next section we explain that, at variance with the single qubit case, not any

unitary over two qubits can be written in this way.

As in the previous section, it can be seen that if the wave function of the state j�i
is given by Eq. (8), then the wavefunction of j� 0i ¼ U ðj;kÞj�i can also be expressed as

a UBM-NNS with new vectors:

~a ¼ ða1; . . . ; aj�1; �1; ajþ1; . . . ; ak�1; �2; akþ1; . . . ; aNÞt;
~b ¼ ðb1; . . . ; bM ; �1 þ aj; �2 þ akÞt;
~h ¼ ðh1; . . . ;hM ;hMþ1;hMþ2Þt

ð10Þ

and matrices

~W ¼

j 0 j 0 j j

Wi;1 � � � ..
.

Wi;jþ1 � � � ..
.

Wi;kþ1 � � � Wi;N

j 0 j 0 j j
Yj;1 � � � �11 Yj;jþ1 � � � �12 Yj;kþ1 � � � Yj;N

Yk;1 �21 Yk;jþ1 �22 Yk;kþ1 Yk;N

0
BBBBBBB@

1
CCCCCCCA
;

~X ¼

W1;j W1;k

W2;j W2;k

X ..
. ..

.

WM;j WM ;k

W1;j W2;j � � � WM ;j 0 � þ Yj;k

W1;k W2;k � � � WM;k � þ Yj;k 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

~Y n;n 0 ¼
Yn;n 0 ; n;n 0 6¼ j; k;

��n 0;k; n ¼ j;

��n 0;j; n ¼ k:

0
B@

ð11Þ

Neural network operations and Susuki–Trotter evolution of neural network states
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Thus, we see that under the action of the two-body operation given by Eq. (9), the

resulting NNS can also be described by a UBM but with two additional hidden nodes.

We have focused on two-body operations but these results can be directly extended to

the case of K-body operations. Thus, we can consider operations U acting on K two-

level subsystems whose matrix elements Uq1;...;qK ;q 0
1
;...;q 0

K
¼ hq1; . . . ; qKjU jq 01; . . . ; q 0Ki

can be written as

Uq;q 0 ¼ Aexp �tqþ � tq 0 þ 1

2
ðqt q 0tÞ � �

� t �

� �
q

q 0

� �� �
; ð12Þ

where q ¼ ðq1; . . . ; qKÞt, q 0 ¼ ðq 01; . . . ; q 0KÞt, � and � are column vectors with K

components, and �, � and � are K �K matrices. � and � are symmetric with null

diagonals. Operations in this family can be applied to any UBM-NNS by adding K

hidden nodes and modifying the o®sets and connections weights in a way that is a

direct extension of Eqs. (10) and (11) for the case of two-body operations. We refer to

operations that can be written as in Eq. (12) as Neural Network Operations (NNOs),

since they can also be represented by a network of nodes or neurons with associated

complex o®sets and arbitrary connections between them (with complex weights), as

is depicted in Fig. 3. Note that in this case there are no hidden nodes, although

composition of two or more NNOs leads to networks with hidden nodes.

In Appendix A, it is shown that an operation U given by Eq. (12) will be unitary if

and only if the followings conditions hold: (i) The components of �, �, � and � are

purely imaginary, (ii) the matrix � should have only one element di®erent from zero

in each row and (iii) the imaginary part x of each of these elements should be

such that cosð2xÞ ¼ 0. Thus, the number of independent real parameters is

nK ¼ K 2 þ 2K. This should be compared with the number mK ¼ 22K � 1 of inde-

pendent real parameters for arbitrary K-body unitaries (apart from global phases).

For K ¼ 1 we have n1 ¼ m1 ¼ 3, as we expect since we saw that any one-body

unitary is a NNO. On the other hand, already for K ¼ 2 we have n2 ¼ 8 and

m2 ¼ 15. Thus, only a restricted set of two-body unitaries can be cast as NNO.

However, this restricted set includes entangling operations. As a simple example, we

Fig. 3. Neural network representing an arbitrary ¯ve-body NNO. For given values of q1; . . . ; qN and

q 01; . . . ; q
0
N , evaluation of the network gives the complex matrix element hq1; . . . ; qK jU jq 01; . . . ; q 0Ki.

N. Freitas, G. Morigi & V. Dunjko
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note that for � ¼ � ¼ 0, � ¼ 0, � ¼ i� 0 1

1 0

� �
, and � ¼ ið2nþ 1Þ�=4 1 0

0 1

� �
, we ob-

tain the following two-body unitary:

U ¼ 1

2

iei� ei� ei� �iei�

e�i� ie�i� �ie�i� e�i�

e�i� �ie�i� ie�i� e�i�

�iei� ei� ei� iei�

0
BBB@

1
CCCA; ð13Þ

which takes product states into maximally entangled states for � ¼ �=4. This oper-

ation and all the one-qubit operations form a universal set of quantum gates that can

be expressed as NNOs. From this, it follows that the resulting state of any quantum

circuit with G one-qubit and two-qubit gates can be cast as a UBM-NNS with a

number of hidden nodes that is linear in G, provided that the initial state is also a

UBM-NNS. However, we note that the direct application of a K-body operation

could be more e±cient, in terms of the number of hidden nodes added to the network,

than decomposing it in terms of a set of one-body and two-body primitives. Thus, it is

interesting to investigate what kind ofK-body operations can be expressed as NNOs.

As explained in Sec. 2, the action of one-body unitaries that are diagonal in the

computational basis (rotations around ẑ) can be implemented without adding new

hidden nodes. The same happens for diagonal two-body unitaries. Indeed, the con-

trolled rotation expð�ið�=2Þ� ðjÞ
z �

ðkÞ
z Þ can be obtained as a NNO in the limit

Reð�Þ ! þ1, and can be implemented without adding hidden nodes and just

updating the matrix Y according to Yj;k ! Yj;k � i�=2.

3. Sampling of UBM-NNSs

The previous results are interesting and promising, but are not directly useful. In fact,

it is not clear how to extract information out of the representation given by Unre-

stricted Boltzmann Machines. In contrast to RBMs, it is not possible to analytically

perform the sum over the hidden nodes of a UBM, since these nodes interact with

each other. Therefore, for general UBM-NNSs, �ðsÞ cannot be evaluated in an e±-

cient and exact way. Approximate solutions are in principle possible, but, as we will

see, they su®er from the well known `sign problem' of standard quantum Monte Carlo

(QMC) techniques.21,24

In Eq. (8) the task is to evaluate the sum over the variables h1; . . . ;hM . Without

restricting in some way the matrix X, this is at least as hard as computing the

partition function of an arbitrary classical Ising system (which is intractable25). An

approximate numerical solution might be to employ a Metropolis-like sampling

strategy, and only consider the terms of the sum with larger contributions. However,

due to the \sign problem", this approach can only be applied in a restricted family of

problems. To explain this we will focus on a particular example: the determination of

the ground state of the one dimensional transverse ¯eld Ising model (TFI-1D) via a

Neural network operations and Susuki–Trotter evolution of neural network states

1840008-11

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

01
8.

16
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 Q
U

A
N

T
U

M
 O

PT
IC

S 
on

 0
1/

17
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Susuki–Trotter evolution in imaginary time. The elementary interactions of this

model give rise to operations that can be easily represented as one-body and two-

body NNOs. In this way, we will be able to explicitly construct a UBM-NNS that

approximates the ground state of the model. The Hamiltonian of this model is

H ¼ �J
XN�1

j¼1

�z
j�

z
jþ1 þ h

XN
j¼1

�x
j

 !
; ð14Þ

where J > 0, and we consider open boundary conditions. We want to prepare the

ground state of this Hamiltonian via imaginary time evolution of the following initial

state: j�ð0Þi ¼ �N
k¼1½ðj � 1i þ j1iÞ= ffiffiffi

2
p �, which can be considered as a RBM-NNS

with N visible nodes, M ¼ 0 hidden nodes, a ¼ 0 and Y ¼ 0. This state is \evolved"

in imaginary time t with the operator V ðtÞ ¼ e�tH . If j�ð0Þi has a non-vanishing

projection in the ground state subspace, then j�ðtÞi ¼ V ðtÞj�ð0Þi will belong to that

subspace for t ! þ1. We can approximate the operator V ðtÞ as a periodic circuit

using the ¯rst-order Susuki–Trotter approximation:

V ðtÞ ¼ e�tH ¼ ðe�tH=SÞS ’
YN�1

k¼1

g2ðkÞ
YN
k¼1

g1ðkÞ
 !

S

; ð15Þ

where S is the total amount of steps and

g1ðkÞ ¼ e	Jh�
x
k ;

g2ðkÞ ¼ e	J�
z
k�

z
kþ1 ;

ð16Þ

are one-body and two-body elementary operations, respectively (	 ¼ t=S). A circuit

representing this decomposition of V ðtÞ is shown in Fig. 4 for N ¼ 4 and S ¼ 2.

Figure 5 illustrates the UBM representing the ¯nal state after the application of

the decomposition of Eq. (15) to j�ð0Þi for N ¼ 5 and S ¼ 3. Since g2 is diagonal in

the computational basis, it can be implemented without adding hidden nodes, as

explained in the previous section. However, as shown in Sec. 2, each application of g1
adds one hidden node to the network. The new hidden nodes organize themselves in a

two-dimensional structure with interactions between ¯rst neighbors. The weights of

the vertical and horizontal edges are wv ¼ logðcothð	JhÞÞ=2 and wh ¼ 	J , respec-

tively. Of course, we are just recovering the well know correspondence, or duality,

between the TFI-1D model and the 2D classical anisotropic Ising model.20 We see

g1
g2

g1
g2

g1
g2

g1
g2

g1
g2

g1
g2

g1 g1

Fig. 4. Approximation of V ðtÞ as a circuit for N ¼ 4 spins and S ¼ 2 Trotter steps.

N. Freitas, G. Morigi & V. Dunjko
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that the hidden nodes of the UBM representation of �ðtÞ act as the classical spins of
the corresponding classical model. This can be generalized to more complex models in

higher dimensions.

Now, in order to evaluate the probability amplitude �ðs; tÞ according to Eq. (8),

we could implement an importance sampling strategy to numerically approximate

the sum. As in usual QMC methods, that are also based on a quantum-classical

correspondence, this will only work reliably, in principle, if the parameters b, W and

X in Eq. (8) are real, such that the factor expðbthþ htWsþ htXh=2Þ is always real
and positive for all h and sf. Otherwise the numerical `sign problem' will hamper the

accurate estimation of �ðs; tÞ.21,24
Thus, so far the situation is completely analogous to the one faced by

standard QMC techniques: a dual classical system is constructed from a quantum

Hamiltonian, and properties of the quantum model are obtained by stochastic

sampling of the classical model, whenever it is free from the sign problem. However,

the representation of quantum states via RBM suggest a way around this, as we

explain in the next section.

4. Projecting UBM-NNSs onto RBM-NNSs

As explained in Sec. 2, the sum over hidden nodes of a RBM can be performed

analytically. Therefore, the amplitudes �ðsÞ corresponding to any RBM-NNS can be

e±ciently and exactly computed even for complex b andW (see Eq. (2)). RBM-NNSs

are then free from the sign problem, since no importance sampling is necessary to

evaluate �ðsÞ. This is true also if the RBM-NNS is allowed to have interactions

between its visible nodes (i.e. if Y 6¼ 0). Thus, in this section we consider an extended

de¯nition of RBM-NNS that allows for those interactions: a RBM-NNS is just a

UBM-NNS with X ¼ 0. It should be noted also that the interactions in the visible

layer can be alternatively represented as mediated by additional hidden nodes

(at most NðN � 1Þ=2, one for each possible interaction in the visible layer).16,17

h1 h2 h3 h4 h5

h6 h7 h8 h9 h10

h11 h12 h13 h14 h15

s1 s2 s3 s4 s5

Fig. 5. UBM representing j�ðtÞi ¼ V ðtÞj�ð0Þi for N ¼ 5 spins and S ¼ 3 Trotter steps. The application
of each Trotter step adds a layer of hidden nodes to the network.

fThis is in fact the case for the given example, but the imaginary time evolution in more complex models, or

even the real time evolution in the TFI-1D model, leads to UBMs with complex X.

Neural network operations and Susuki–Trotter evolution of neural network states

1840008-13

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

01
8.

16
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 Q
U

A
N

T
U

M
 O

PT
IC

S 
on

 0
1/

17
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



When a RBM-NNS is subjected to a non trivial evolution, interactions between

hidden nodes will appear and the resulting state will be described by a UBM-NNS for

which, in general, no e±cient and accurate way of computing �ðsÞ is available. One

possible approach to avoid this problem is to continuously project the quantum state

back to the family of RBM-NNSs during its evolution. In this section, we explore a

possible way to perform this projection.

In ¯rst place, we choose the set of all the one-body unitaries plus the controlled

rotations expð�ið�=2Þ� ðjÞ
z �

ðkÞ
z Þ as a universal set of gates in terms of which we will

decompose any global unitary operation. As we mentioned before, the controlled

rotations can be implemented without adding hidden nodes and without inducing

interactions between the preexisting hidden nodes. Therefore, when applying a given

evolution (decomposed as a quantum circuit) to an NNS, hidden nodes will be added

to the network only for one-body operations, and only then will interactions between

the new and preexisting hidden nodes be induced (see Figs. 1 and 2). However, if a

one-body NNO is applied to an RBM-NNS (that, by de¯nition, has no interactions

between hidden nodes), the resulting state will be a UBM-NNS with a very special

interaction structure among its hidden nodes: in principle all hidden nodes will in-

teract with the newly added hidden node, but not between them. We consider the

problem of projecting this new state back to the RBM-NNS family, as depicted in

Fig. 6. Given a procedure to perform this projection, then by applying it every time a

h1 h2 h3 h4(a)

s1 s2 s3 s4 s5

(b)

h1 h2 h3 h4 h5 h6

s1 s2 s3 s4 s5

Fig. 6. Reduction of UBM-NNS (a) to a RBM-NNS (b) Note that the number of hidden nodes in (b) can

be in principle larger than in (a), and the ¯delity of the projection is expected to improve with more hidden

nodes.

N. Freitas, G. Morigi & V. Dunjko
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one-body NNO is applied during the execution of a quantum circuit, the ¯nal state

after the full evolution will be easy to sample RBM-NNS. Of course, any projection

procedure is expected to induce errors, i.e. the ¯delity between the original and

projected states will be less that unity. This errors will accumulate during the exe-

cution of a circuit, and this will severely limit the accuracy of the results.

In fact, it is important to note that a general and e±cient solution to the proposed

problem is not expected to exist. Previous works17 have used complexity theoretical

arguments showing that for many important classes of quantum states, e.g. those

which are e±ciently generated by quantum circuits, those which are representable by

PEPS, and those which are ground states of k-local Hamiltonians, there exist

instances which cannot be e±ciently represented by RBMs (exactly nor to high

precision). The existence of an RBM representation of such states would cause the

collapse of the polynomial hierarchy (PH) to the third level. In our approach we,

seemingly, attempt to do more: we aim to e±ciently ¯nd these representations, given

quantum circuits as input. The possibility of generically solving such a task has even

more dramatic complexity-theoretic consequences, e.g. if an algorithm converting

between a given circuit, and the RBM representing the output state to exponential

precision which is runnable in polynomial time were to exist, then #P problems could

be solved in polynomial time as well. This would imply a complete collapse of the

polynomial hierarchy, i.e. P � PH,g and, in particular P ¼ NP ¼ BQP . However,

these arguments do not imply that no useful states have e±cient RBM representa-

tions, or algorithms which construct them. Consequently, any heuristic method

which attempts this, may be to a larger or smaller extent applicable to a given

setting, which is one of the motivations of this work.

Since the structure of the hidden interactions in the states to be reduced is very

simple (see Fig. 6(a)), the sum over hidden nodes in Eq. (8) can still be performed

analytically. Indeed, if there are M hidden nodes and it is considered, without loss of

generality, that the last of them is the one that interacts with all the others, then

�ðsÞ ¼ ea
tsþstYs=2 � ebMþwMs

YM�1

k¼1

2 coshðwksþ bk þXk;MÞ
"

þ e�bM�wMs
YM�1

k¼1

2 coshðwksþ bk �Xk;MÞ
#
; ð17Þ

where wk is the kth row ofW , and it was used that only the elements Xk;M ¼ XM ;k of

X are di®erent from zero. Our goal is to approximate �ðsÞ with a RBM-NNS � 0ðsÞ,
for which the sum over the hidden nodes evaluates to

� 0ðsÞ ¼ ea
0 tsþstY 0s=2

YM 0

k¼1

2 coshððW 0sþ b 0ÞkÞ; ð18Þ

gThis holds as P is self-low i.e. P P 	 P . If #P was solvable in poly-time, then P � PP , and since

P PP � PH (Toda's Theorem), we have that P contains PH.
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for a number M 0 of hidden nodes and new parameters a 0, b 0, W 0 and Y 0. In principle

it could be M 0 
 M , since the quality of the approximation is expected to improve

with larger M 0. In fact, from the previous considerations about computational

complexity, the numberM 0 of new hidden nodes is expected to increase exponentially

with N and M in the general case (for an exact mapping). Here, we propose two

simple methods to perform the approximation of �ðsÞ by � 0ðsÞ, and provide nu-

merical evidence in favor of the feasibility of these approaches. We begin by rear-

ranging the expression in Eq. (17) in the following way:

�ðsÞ ¼ ea
tsþstYs=22 coshðlogð
ðsÞÞÞ

YM�1

k¼1

2fkðsÞ; ð19Þ

where 
ðsÞ is given by


ðsÞ ¼ ebMþwMs
YM�1

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðwksþ bk þXk;MÞ
coshðwksþ bk �Xk;MÞ

s
ð20Þ

and

fkðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðwksþ bk þXk;MÞ coshðwksþ bk �Xk;MÞ

q
: ð21Þ

Equation (19) has a factored structure similar to an RBM-NNS wavefunction, as in

Eq. (18). So far, no approximation has been made. The ¯rst method, explained in the

following, consists in giving appropriate approximations for the functions logð
ðsÞÞ
and fkðsÞ.

4.1. First method

Our goal is to take Eq. (19) to a form comparable to Eq. (18). A simple way to do that

is to propose a linear approximation for the function logð
ðsÞÞ and to approximate

each factor fkðsÞ as the one corresponding to a single hidden node of an RBM-NNS.

Explictly, we propose to ¯nd new vectors w 0
k and new constants b 0k such that

fkðsÞ ’ ck coshðw 0
ksþ b 0kÞ ð22Þ

for each k ¼ 1; . . . ;M � 1, where ck is an unimportant proportionality factor. Also,

we appoximate logð
ðsÞÞ as
logð
ðsÞÞ ’ w 0

Msþ b 0M ð23Þ
for some vector w 0

M and o®set b 0M . In this way, the original state �ðsÞ given by

Eq. (17) is approximated by an RBM-NNS with parameters a 0 ¼ a, Y 0 ¼ Y ,

b 0 ¼ ðb 01; . . . ; b 0MÞt, and a matrix W 0 with rows w 0
1; . . . ;w

0
M . In Appendix B, we give

details about the numerical implementation of this method, which is based on the

requirement that the proposed approximations in Eqs. (22) and (23) hold exactly

when wks ¼ �jjwk jj1 and wks ¼ 0 (jj � jj1 is the ‘1 vector norm). Here, we discuss two
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limiting cases in which the proposed approximations can be explicitly found and are

exact.

In ¯rst place we consider the limit of strong hidden connections in which jXk;M j �
jwksþ bkj for k ¼ 1; . . . ;M � 1. To ¯rst-order in this limit (that is, to ¯rst-order in

jXk;M j�1) Eq. (23) holds exactly with parameters w 0
M and b 0M given by

w 0
M ¼ wM þ

XM�1

k¼1

tanhðXk;MÞwk ð24Þ

and

b 0M ¼ bM þ
XM�1

k¼1

tanhðXk;MÞbk; ð25Þ

while the parameters b 0k and w 0
k for k ¼ 1; . . . ;M � 1 vanish. Thus, in this limit all

the hidden nodes in the original state are condensed into a single one. This is natural,

since for large jXk;M j hidden nodes M and k are highly correlated.

Now we analyze the opposite limit of weak hidden connections, i.e. jXk;M j �
jwksþ bkj for k ¼ 1; . . . ;M � 1. This time, to ¯rst-order in jXk;M j we have

fkðsÞ ¼ coshðwksþ bkÞ. Therefore, Eq. (22) holds with b 0k ¼ bk and w 0
k ¼ wk for

k ¼ 1; . . . ;M � 1. Thus, the ¯rst M � 1 hidden nodes retain their original para-

meters. However, also to ¯rst-order in jXk;M j, the function logð
ðsÞÞ is given by:

logð
ðsÞÞ ’ w 0
Msþ b 0M þ

XM�1

k¼1

Xk;M tanhðwksþ bkÞ: ð26Þ

Thus, we see that the condition of weak hidden connections is not enough to assure

that a linear approximation for the function logð
ðsÞÞ holds. In principle, it is also

necessary to assume that the components of wk are small, so that a linear approxi-

mation to each function tanhðwksþ bkÞ in the sum of the last equation can be given.

In particular, to ¯rst order in wk and bk, we obtain the following expressions for the

parameters of the hidden node M:

w 0
M ¼ wM þ

XM�1

k¼1

Xk;Mwk ð27Þ

and

b 0M ¼ bM þ
XM�1

k¼1

Xk;Mbk: ð28Þ

Then, under the conditions mentioned above, the parameters of the hidden node

M in the obtained RBM-NNS are updated by small contributions of the other hidden

nodes connected to it in the original UBM-NNS.
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We test this projection method on randomly generated NNSs. For this, we

consider NNSs with the same number N ¼ M ¼ 12 of visible and hidden nodes.

The components of the matrix W (or equivalently, of the vectors !k) are selected

from an uniform distribution in the interval ½�w;w�. The hidden connections Xk;M

are selected from an uniform distribution in the interval ½�x;x�. All the other

parameters (a, b and Y ) are zero. We ¯x w ¼ 1=5 and let x take values between 0

and 1. For each value of x, we generate 200 random NNSs and calculate the average

¯delity F between each generated state and the one obtained after the projection.

This is done exactly so we limit to N ¼ 12. Figure 7 shows the average in¯delity

I ¼ 1�F for three di®erent versions of the method: (i) the numerical implemen-

tation of the method explained in Appendix B (ii) the limit of weak hidden con-

nections, and (iii) the limit of strong hidden connections. We see that in the ¯rst

two cases the in¯delity of the projection is indeed low for small x, but the numerical

version of the method is more robust for higher x. Also, the in¯delity for the

projection rules obtained for strong hidden connections decreases for increasing x,

as expected.

As a ¯nal remark, we note that, as explained at the end of Sec. 2, the action of

in¯nitesimal one-body operations will add hidden nodes to the network, and that the

weight of their connections to the visible layer will increase as the given operations

approach the identity. This compromises the assumption that the components of the

vectors wk are small, that led to the last couple of equations. The second method that

is presented below attempts to directly take into account the action of in¯nitesimal

operations.

Fig. 7. (Color online) Mean value of the in¯delity I as a function of the x, for w ¼ 1=5, N ¼ 12 and 200

randomly generated states for each point. The error bars indicate the uncertainty in the mean values.
The blue line corresponds to the numerical implementation of the method, while the orange and green

lines correspond to the projection rules obtained in the limit of weak and strong hidden connections,

respectively.
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4.2. Second method: In¯nitesimal operations

The previous method provides an approximated RBM representation of the UBM-

NNS obtained by the application of a one-body operation to an initial RBM-NNS.

We now present a di®erent method, in which the action of the given operation is

taken into account by just updating the parameters of the initial RBM-NNS. Con-

sequently, the number of hidden nodes remains constant. This method only considers

the action of in¯nitesimal one-body operations. If we apply such an operation to a

given RBM-NNS, one might expect to be able to approximate the resulting state

(with reasonable ¯delity) by a new RBM-NNS with slightly di®erent parameters. We

will see that this is indeed the case, at least under some conditions that we discuss in

the following.

Thus, we consider a RBM-NNS with parameters a;Y ; b and W , and the corre-

sponding wavefunction �ðsÞ. If the parameters are modi¯ed as x 0 ¼ xþ �x (where

x ¼ a;Y ; b or W), then, to ¯rst order in the variations �x, the new wavefunction

� 0ðsÞ is given by the following expression:

� 0ðsÞ
�ðsÞ ’ 1þ �atsþ st�Ys=2þ �btT ðsÞ þ T ðsÞt�Ws

� 1þ PðsÞ; ð29Þ
where the column vector T ðsÞ has components

TjðsÞ ¼ tanhðbj þ ðWsÞjÞ: ð30Þ
Now, we consider also a third state, that results from applying an in¯nitesimal

one-body operation to the original state �ðsÞ. We assume for simplicity that the

operation in question is the in¯nitesimal rotation U ¼ e�i���x=2 ’ þ A�x, with

A ¼ �i��=2. If this operation is applied to spin k, the resulting wavefunction� 00ðsÞ ¼P
s 0 hskjU js 0

ki�ðs 0Þ can be expressed as

� 00ðsÞ
�ðsÞ ¼ 1þ Ae�2ak sk�2sk ðYsÞkCkDkðsÞ � 1þQðsÞ; ð31Þ

where the factor Ck ¼
QM

j¼1 coshð2Wj;kÞ is independent of s and the factor FkðsÞ is
given by

DkðsÞ ¼
YM
j¼1

ð1� TjðsÞ tanhð2Wj;kÞskÞ: ð32Þ

We now compute the ¯delity between states � 0ðsÞ and � 00ðsÞ, given by

F ¼ jh� 0j� 00ij= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih� 0j� 0ih� 00j� 00ip
. A rather long but straightforward calculation

shows that to ¯rst non-trivial order in P and Q (de¯ned in Eqs. (29) and (31)), the

¯delity satis¯es

F 2 ¼ 1� VarðP � QÞ; ð33Þ

Neural network operations and Susuki–Trotter evolution of neural network states
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where VarðXÞ ¼ hðX 
 � hX 
iÞðX � hXiÞi and the mean values are calculated

according to the probability distribution given by the original wavefunction �ðsÞ

hXi ¼ 1P
s 0 j�ðs 0Þj2

X
s

j�ðsÞj2XðsÞ: ð34Þ

Thus, VarðP � QÞ can be interpreted as the expected variance in the state �ðsÞ of an
(in general non-hermitian) operator which is diagonal in the computational basis,

with diagonal elements PðsÞ � QðsÞ.
In order to take into account the action of the operation U on spin k by updating

the parameters a;Y ; b and W of the original state, we should select the updates �a,

�Y , �b and �W that minimize VarðP � QÞ (and thus maximize the ¯delity F ). This is

again a complex and highly non-linear optimization problem. However, as we explain

below, it can be easily solved to ¯rst-order in the parameters a;Y and W . In that

regime, it is possible to select the updates �x in such a way that PðsÞ � QðsÞ is a

constant independent of s, and therefore has no variance (up to the considered

order). This is done as follows. To ¯rst order in a and Y we can approximate the ¯rst

non-trivial factor appearing in Eq. (31) as

e�2ak sk�2sk ðYsÞk ’ 1� 2aksk � 2skðYsÞk þ � � � ð35Þ

Also, to ¯rst-order in the parameters Wj;k:

DkðsÞ ’ 1�
XM
j¼1

TjðsÞ tanhð2Wj;kÞsk þ � � � ð36Þ

Introducing these expansions back in Eq. (31) and comparing the result to Eq. (29)

we can see how to select the updates �a, �Y , �b and �W in order for PðsÞ � QðsÞ to be
independent of s. The results are

�aj ¼ �2ACk �j;kak;

�Yi;j ¼ �2ACk ð�i;kYk;j þ �j;kYk;iÞ;
�bj ¼ 2ACk tanhð2Wj;kÞak;
�Wi;j ¼ 2ACk tanhð2Wi;kÞðYk;j � �k;j=2Þ:

ð37Þ

We stress that the above update rules are only expected to be useful in the regime

where the parameters a;Y and W are su±ciently small. Also, the perturbative

treatment is not consistent, since not all second-order terms were considered but only

the bilinear ones. Proper analytical consideration of higher-order terms in Eqs. (35)

and (36) might lead to better update rules valid on a wider regime, althought in that

case one also has to face the optimization problem of minimizing VarðP � QÞ. This
will be explored in future works. In Appendix C the in¯delity I is explicitly evaluated

to ¯rst non-trivial order in A and W , for the speci¯c case in which a ¼ 0, b ¼ 0

and Y ¼ 0.
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4.3. Remarks and comparisons between the two methods

The numerical implementation of the proposed approximations in the ¯rst method

(method I) heavily rely on the assumption that the parameters !k and Xk;M are real.

The projection procedure can still be carried out for complex parameters, but it is not

expected to o®er a good approximation of the original state in that case. Conse-

quently, this method is restricted to models already free from the sign problem. Be

that as it may, this method can still be of practical relevance, since the RBM re-

presentation is more compact and easy to sample than a positive de¯nite UBM-NNS.

In contrast, the update rules derived for in¯nitesimal operations (method II) are

in principle valid for real as well for complex parameters. In the next section we show

that they can be used to evolve states according to the TFI-1D Hamiltonian in real

time, where complex parameters for the instantaneous RBM-NNS are needed. They

are however severely limited by the fact that they were derived only to ¯rst order in

the original parameters. This, in turn, limits the total time to which states can be

accurately evolved.

5. Proof of Concept

5.1. Imaginary time evolution

As a proof of concept, we apply the previously introduced ideas and methods to a

simple problem: the approximation with a RBM-NNS of the ground state of the TFI-

1D model. We will compare our results to those originally obtained in Ref. 14, where

the same model was employed as a testbed, and its ground state was approximated

with a RBM-NNS optimized via a Variational Monte Carlo algorithm.

We apply the Trotter evolution in imaginary time introduced in Sec. 3, now with

periodic boundary conditions. Thus, we repeatedly apply the following Trotter step:

S	 ¼
YN
k¼1

g2ðkÞ
YN
k¼1

g1ðkÞ ð38Þ

to the initial state j�ð0Þi ¼ �N
k¼1½ðj � 1i þ j1iÞ= ffiffiffi

2
p �. Again, g1ðkÞ ¼ e	Jh�

x
k and

g2ðkÞ ¼ e	J�
z
k�

z
kþ1 (this time, N þ 1 ¼ 1 should be understood), and 	 is the time step

(we take J ¼ 1 in the following). We will ¯rst consider the projection method (I).

Thus, after the application of each g1 operation, we project the resulting state back to

a RBM-NNS according to the procedure explained in Appendix B.

After the application of a single Trotter step, the network representing the state

gains N new hidden nodes. Thus, old hidden nodes could be deleted such that after

each step the factor M=N does not exceeds some integer constant � ¯xed before

hand. This is the \hidden-variable density" de¯ned in Ref. 14. However, the pro-

jection method I is such that for this model only the newest N hidden nodes remain

connected to the visible layer, and therefore with this method the hidden node

density � is e®ectively always 1. With more sophisticated projection methods the

value of � could be selected at will.
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We ¯rst consider an ising chain with N ¼ 40 spins and a transverse ¯eld h ¼ 0:5.

In Fig. 8 we show the mean value of energy per spin � ¼ E=N for the RBM-NNS

obtained after each Trotter step as a function of the total imaginary time, for di®erent

time steps. The mean value of the energy E was estimated stochastically in the same

way as in Ref. 14. We stress that this is only done to monitor the convergence of the

method, but no information from this sampling is used to assist the optimization, and

that the RBM-NNS after any number of steps can be obtained with no sampling at

all. This is in fact the main advantage of the proposed method. We observe that in

general the energy increases after reaching a minimum value (this is shown for

	 ¼ 0:02 J�1 but is also observed for higher values of 	). However, there are values of

	 for which this \rebound" is not observed and the energy attains a minimum for large

times (as shown for 	 ’ 0:005 J�1). In this last case, the mean value of the energy

approaches that obtained with VMC (see Fig. 8 note), but does not improve it.

Figure 9 shows that not always a smaller value of the time step 	 produces better

results. Thus, there seems to be an optimal value of 	 , for which the energy obtained

for large times is minimum. This is also evident from Fig. 10(a), where the asymptotic

value of the energy is plotted as a function of 	 . This behavior is due to the fact that

the projection procedure introduces errors that are independent from the errors in-

troduced by the discretization in the Susuki–Trotter evolution. It can be qualitatively

understood as follows. The errors introduced by the Susuki–Trotter decomposition

increase monotonically with the Trotter step 	 . Therefore, even if the projection

method applied after each one-body operation were free from errors, the ¯delity of the

Fig. 8. Mean value of the energy per spin as a function of the total imaginary time, for two di®erent values

of the time step 	 . The parameters are N ¼ 40 and h ¼ 0:5. The dashed black line correspond to the value

of energy obtained via optimization of an RBM-NNS with VMC (� ¼ 1). The inset shows in detail the last

part of the optimization. (Projection method I).

Note: We take as a reference the state stored in the ¯le Ground/Ising1d 40 0.5 1.wf found in the Sup-
plementary Material of Ref. 14.
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Fig. 10. Mean value of the energy per spin as a function of the time step, for a total imaginary time of
t ¼ 5 (a), and t ¼ 6 (b). The dashed lines indicate the energy obtained via optimization of RBM-NNS with

VMC in each case. (Projection method I).

Note: We take as a reference the state stored in the ¯le Ground/Ising1d 40 1 1.wf found in the Supple-

mentary Material of Ref. 14 (see Fig. 8 note also).

Fig. 9. Mean value of the energy per spin as a function of the total imaginary time, for decreasing values of

the time step 	 . The parameters are the same that for Fig. 8. (Projection method I).
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generated output states is expected to decrease as 	 increases. However, for low

values of 	 the error of the projection method dominates over the error introduced by

the Susuki–Trotter discretization. This is so, as discussed in Sec. 2, since the action of

in¯nitesimal one-body operations requires strong connections between the hidden

and visible layers. This, as it follows from the analysis of Sec. 4 for weak hidden

connections, is expected to reduce the ¯delity of the projection method. Thus, there is

a trade-o® between these two sources of errors that determines an optimal value of

the Trotter step 	 .

Figure 10(b) shows that for the critical case in which h ¼ 1 the energy gap be-

tween our solution and that obtained with VMC increases. This fact might point out

to some limitation of projection method I to deal with the long-range correlations

present in the critical ground state, which is compatible with the fact that this state

has proven to be harder to approximate even with variational methods.14

Now we turn to the consideration of the projection method II developed for

in¯nitesimal one-body operations in Sec. 4.2. In this case, we take into account the

action of each one-body operation by just updating the parameters of the RBM-NNS

according to Eq. (37), without adding any hidden node. Thus, we need to provide an

initial state with the desired number of hidden nodes. To motivate the choice of the

initial state that is used in the following, we note that the two-body operations

g2ðkÞ ¼ e	J�
z
k�

z
kþ1 can be exactly taken into account by adding a hidden node h

which is connected to the visible nodes k and kþ 1 with strength w ¼ Wh;k ¼
Wh;kþ1 ¼ arccoshðe2	JÞ=2. Thus, we take as initial state a RBM-NNS with a ¼ 0,

b ¼ 0, Y ¼ 0 and a matrix W with components Wh;v ¼ wð�h;v þ �hþ1;vÞ, for h ¼
1; . . . ;N and N þ 1 ! 1. Then, the initial state has M ¼ N hidden nodes (� ¼ 1),

each of which is connected with the same strength to two successive visible nodes, as

if the operations g2ðkÞ (k ¼ 1; . . . ;N) were already applied once to the state j�ð0Þi
employed previously.

Figure 11 compares the convergence of method I and II. The two methods seems

to follow the same curve for short times, although method I attains lower energies

than method II for later times. In fact, for this last method the energy increases after

reaching a minimum value.

We note that although the proposed methods are not able to improve the results

obtained by Variational Monte Carlo, they can still be employed to e±ciently obtain

partially optimized states that can be afterward re¯ned by stochastic methods. In

this way, the total computational e®ort might be reduced, in comparison to a fully

stochastic optimization.

5.2. Real time evolution

In all the above examples it was only necessary to deal with real parameters a, b, Y

and W during the optimization of the RBM-NNSs. In fact, to study the ground state

of the one-dimensional TFI model, we could have also sampled a \two-dimensional"

positive de¯nite UBM-NNS wavefunction, as explained in Sec. 3, since this model is
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free from the sign problem. To test if the projection method II is capable of dealing

with RBM-NNSs with complex parameters, we study the real time evolution of

the same model. In this case, complex parameters are necessary to track the time

evolution.

Thus, we consider the Susuki–Trotter decomposition of the unitary operator

UðtÞ ¼ e�itH , which is the same as before (Eq. (38)), this time in terms of elementary

unitaries g1ðkÞ ¼ ei	Jh�
x
k and g2ðkÞ ¼ ei	J�

z
k�

z
kþ1 . As before we take an initial

Fig. 11. Convergence of the energy optimization for the two projection methods I and II. The parameters

are the same as in Fig. 8.

Fig. 12. Evolution of h�xi for the two instantaneous quenches h ¼ þ1 ! 2 and h ¼ þ1 ! 1=5. The

number of spins is N ¼ 24 and the Trotter step is 	 ¼ 0:005 J�1. Dashed lines correspond to the exact

expectation value of �x obtained from the exact representation of the wavefunction, while dots indicate the

stochastic estimates for the same quantity obtained by sampling the RBM-NNSs.
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RBM-NNS with a ¼ 0, b ¼ 0, Y ¼ 0 and a matrix W with components Wh;v ¼
wð�h;v þ �hþ1;vÞ, for h ¼ 1; . . . ;N and N þ 1 ! 1. This time, however, we must take

w ¼ arccoshðei2	JÞ=2. This initial state is (for small 	) a good approximation of the

ground state of the considered model for h ! þ1. We then evolve it in time with

h ¼ 2 or h ¼ 1=5 and measure the expectation value h�xi of the magnetization in the

transverse direction as a function of time.

We compared the results with those obtained from the same Susuki–Trotter

evolution but using an exact representation of the wavefunction, to which the

operations g1ðkÞ and g2ðkÞ are also applied exactly. For this reason we limit to

N ¼ 24. Figure 12 shows the evolution of h�xi for the two quenches and the two

representations considered. For short times, the results obtained using RBM-NNSs

and the update rules of method II qualitatively agree with the ones obtained from the

exact representation.

The code used to obtain all the results presented in this article can be found in

Ref. 26.

6. Discussion

In this work we considered the problem of evolving or optimizing Neural Network

States based on Restricted Boltzmann Machines without relying on st€ochastic

methods. Our aim was to identify simple and e±cient update rules to take into

account the action of elementary operations on quantum states, on the level of the

neural network representation of those states. We showed that the application of

very simple one-body unitaries to Neural Network States (NNSs) based on Restricted

Boltzmann Machines (RBMs) motivates an extension of this class in order to include

NNSs based on Unrestricted Boltzmann Machines (UBMs). We have parametrized a

family of K-body operations that can be e±ciently applied to states in this new class.

We showed that there are universal quantum gates included in this family, and

therefore, that the action of any quantum circuit on a NNS can be e±ciently

represented by a new NNS with a number of new hidden nodes that grows linearly

with the number of elementary operations in the circuit. This results are similar to

the ones obtained recently in Ref. 17. However, we give a more general parametri-

zation of many body operations, which o®er more freedom to choose a set of universal

quantum gates in terms of which to decompose general quantum circuits. We also

showed that the action of one-body rotations and two-body controlled rotations that

are diagonal in the computational basis can be taken into account without leaving

the family of RBM-NNSs.

As an application of our study of quantum operations, we investigated a proce-

dure to optimize or evolve RBM-NNSs in such a way that the evolved state is still

parametrized in this way. This procedure is based on the solution of a basic problem

involving Boltzmann Machines: the reduction to a RBM of an UBM with only a

single hidden node connected to the others. Two approximate methods to perform
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this reduction or projection were discussed. As a proof of concept, we applied these

methods to the imaginary and real time evolution of the transverse ¯eld Ising model

in one dimension. In the case of imaginary time evolution we compared our results

with those obtained via Variational Monte Carlo (VMC) methods. Although the

quality of the results o®ered by our methods is not comparable to the solutions

obtained with VMC, we think that the proposed methods could be useful as a ¯rst

stage in a global optimization. However, before applying these methods to more

complex problems, it is necessary to perform a deeper study of the their properties

and limitations, in particular of the errors that they introduce. More elaborate and

accurate projection methods might also be developed. In this work we limited our-

selves to show that deterministic (as opposed to stochastic) optimization or evolution

of RBM-NNSs is in principle possible.

While investigations of this kind are pragmatically motivated — we aim to ¯nd

more e±cient methods for computational physics — they could also establish con-

nections between machine learning, computational complexity theory, and quantum

physics. Further, they can serve as inspiration for novel quantum algorithms. For

instance, we note that any UBM-NNS which can be reached starting from some

simple initial state using a polynomial circuit is also a UBM whose distribution can be

e±ciently sampled on a quantum computer (but, likely, not classical). Therefore, this

o®ers a route for identifying quantum algorithms for sampling Unrestricted or Deep

Boltzmann Machines.

After completion of this work, we became aware of a recent article addressing

similar questions.27
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Appendix A. Unitary K-Body NNOs

In this appendix we give su±cient and necessary conditions for a K-body Neural

Network Operation to be unitary. As explained in the main text, these operations are

de¯ned with respect to a given computational basis fjq1; . . . ; qKig as those whose

matrix elements Uq1;...;qK ;q
0
1;...;q

0
K
¼ hq1; . . . ; qKjU jq 01; . . . ; q 0Ki can be written as

Uq;q 0 ¼ Aexp �tqþ � tq 0 þ 1

2
ðqt q 0tÞ � �

� t �

� �
q

q 0

� �� �
; ðA:1Þ

where q ¼ ðq1; . . . ; qKÞt, q 0 ¼ ðq 01; . . . ; q 0KÞt, � and � are column vectors with K

components, and �, � and � are K �K matrices. � and � are symmetric with null

diagonals.
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If the matrix U is unitary then it must be U †U ¼ UU † ¼ . From Eq. (A.1) the

diagonal elements of U †U are:

ðU †UÞq;q ¼ jAj2exp ð� þ � 
Þtqþ 1

2
qtð�þ �
Þq

� �

�
X
r

exp ð�þ �
Þrþ rtð�þ �
Þqþ 1

2
rtð�þ �
Þr

� �
; ðA:2Þ

where r ¼ ðr1; . . . ; rKÞt. If U †U ¼ , then the previous expression should be inde-

pendent of q. For this to happen it is clear that it should be Reð�Þ ¼ Reð�Þ ¼ 0.

Applying the same condition to UU † it follows that Reð�Þ ¼ Reð�Þ ¼ 0. Therefore,

the previous expression can be reduced to

ðU †UÞq;q ¼ jAj2
X
r

expðrtð�þ �
ÞqÞ

¼
YK
i¼1

2 cosh
X
j

ð�i;j þ �

i;jÞqj

 !
: ðA:3Þ

This last expression will be independent of q if and only if the matrix Reð�Þ has at
most one element per row di®erent from zero (since each component of q is just �1

and coshðxÞ is an even function). Finally, the nondiagonal elements of U †U are:

ðU †UÞq;s ¼ jAj2exp � tðs� qÞ þ 1

2
ðst�s� qt�qÞ

� �

�
YK
i¼1

2 cosh
1

2

X
j

ð�i;j þ �

i;jÞðqj þ sjÞ þ ð�i;j � �


i;jÞðsj � qjÞ
 !

: ðA:4Þ

Now, since Reð�Þ has only one element di®erent from zero in each row, and since we

are assuming q 6¼ s, at least one of the factors in the last line of the last equation is

equal to:

2 cosh
1

2

X
j

ð�i;j � �

i;jÞðsj � qjÞ

 !
: ðA:5Þ

This factor will always vanish if 2� Imð�Þ has also only one element di®erent from

zero in each row, in the same positions of the non-zero elements of Reð�Þ, and each of

them is such that it cosine vanishes.

Appendix B. Implementation of the First Projection Method

In this Appendix we give details about the numerical implementation of the ¯rst

projection method.

First part.Givenwk, bk, andXk;M for 1 � k � M � 1, we need to ¯nd ck,w
0
k and b 0k

such that the factor fkðsÞ de¯ned in Eq. (21) is approximated by ck coshðw 0
ksþ b 0kÞ, as
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in Eq. (22). We consider w 0
k ¼ �wk, for some constant �, so we just need to determine

the constants ck, � and b 0k. We choose them imposing that the right and left hand side

of Eq. (22) coincide for ws ¼ 0, ws ¼ jjwjj1, and ws ¼ �jjwjj1 (jj � jj1 is the ‘1 vector

norm). This is done numerically with an iterative method.

Second part. We need now to give a linear approximation of the function

logð
ðsÞÞ. From Eq. (20), we have

logð
ðsÞÞ ¼ bM þ wMsþ 1

2

XM�1

k¼1

gkðsÞ; ðB:1Þ

where we de¯ne gkðsÞ ¼ logðcoshðwksþ bk þXk;MÞÞ � logðcoshðwksþ bk �Xk;MÞÞ
for each 1 � k � M � 1. We approximate each of these functions as gkðsÞ ’
�kwksþ bk, and the constants �k and �k are obtained by requiring the approxima-

tion to be exact for wks ¼ jjwjj1 and wks ¼ �jjwjj1. Thus, the new parameters for the

hidden node M are b 0M ¼ bM þPM�1
k¼1 �k and w 0

M ¼ wM þPM�1
k¼1 �kwk.

Appendix C. Estimation of the Error for In¯nitesimal Operations

In this section we evaluate the expression in Eq. (33) for the projection ¯delity of

method II in a particular case. We consider that the original state has parameters

a ¼ 0, b ¼ 0, and Y ¼ 0, and we will analyze how the in¯delity I ¼ 1� F scales for

small W . From Eq. (33) it is clear that to ¯rst order in P and Q (de¯ned in Sec. 4.2)

the in¯delity satis¯es:

I ’ VarðP � QÞ=2; ðC:1Þ
where VarðXÞ ¼ hðX 
 � hX 
iÞðX � hXiÞi and the mean values are calculated

according to the probability distribution given by the original wavefunction �ðsÞ

hXi ¼ 1P
s 0 j�ðs 0Þj2

X
s

j�ðsÞj2XðsÞ: ðC:2Þ

For the particular case mentioned above (a ¼ 0; b ¼ 0;Y ¼ 0 and a given W), we

obtain the following expression for XðsÞ ¼ PðsÞ � QðsÞ:

XðsÞ ¼ ACk 1þ
X
m;n

TmðsÞTnðsÞ tanhð2Wm;kÞ tanhð2Wn;kÞ
" #

; ðC:3Þ

where as de¯ned in Eq. (30), TnðsÞ ¼ tanhððWsÞnÞ (recall that we are considering

b ¼ 0). When the components of W are su±ciently small we can approximate

TnðsÞ ’ ðWsÞn and therefore,

XðsÞ ¼ ACk 1þ 4
X
i;j

ðWtWÞi;k ðWtWÞj;k sisj
" #

: ðC:4Þ
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Now we note that for W ! 0 the distribution j�ðsÞj2 is completely °at, i.e. all

con¯gurations s are equiprobable, and as a consequence we have hsisji ’ �i;j. Thus

we can readily evaluate hXi for small W , obtaining

hXðsÞi ¼ ACk½1þ 4ðWtWW tWÞk;k�: ðC:5Þ

Also, in the same limit we have hsisjsksli ¼ �j;k�l;m þ �j;l�k;m þ �j;m�k;l � 2�j;k;l;m, an

we can use this identity to evaluate hX 
Xi. In this way we arrive at the ¯nal result

I ¼ VarðXÞ=2 ¼ ðhX 
Xi � hX 
ihXiÞ=2
¼ 16jACkj2

X
i6¼j

ðWtWÞi;kðWtWÞ
i;kðWtWÞj;kðWtWÞ
j;k: ðC:6Þ

From this expression we see that if � is the typical scale of the components of the

matrix W , the in¯delity scales as I / jAj2�8N 2. This scaling with N corresponds

actually to the worst case scenario in which there is no notion of locality in the matrix

W (i.e. a given hidden neuron is in principle connected to all visible nodes, and not

only to a group of them of restricted size).
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