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Abstract: Many psycholinguistic models of speech sequence planning
make claims about the onset and offset times of planning units, such as
words, syllables, and phonemes. These predictions typically go untested,
however, since psycholinguists have assumed that the temporal dynam-
ics of the speech signal is a poor index of the temporal dynamics of the
underlying speech planning process. This article argues that this prob-
lem is tractable, and presents and validates two simple metrics that
derive planning unit onset and offset times from the acoustic signal and
articulatographic data.
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1. Background

Typically, the inverse mapping between the acoustic signal and the articulator configu-
ration is characterized as highly non-linear and one-to-many, in that many speech
sounds can be produced by multiple configurations of the vocal tract. This assumed
intractability has complicated the evaluation of psycholinguistic models of speech plan-
ning, specifically claims about the implementation of abstract linguistic planning units
by speech motor programs.

While it is the case that speakers can make use of alternative vocal tract con-
figurations to achieve speech sounds when articulatory freedom is constrained
(Lindblom et al., 1977), the opacity of the correspondences between acoustics, articula-
tion, and the dynamics of higher planning processes may be overestimated (Hogden
et al., 1996). This paper posits that the problem is tractable and proposes methods to
characterize the dynamics of higher planning processes from the acoustic signal or
from tracked articulator movements. Thus, the testing of previously untestable predic-
tions of psycholinguistic models is facilitated.

1.1 Acoustic change largely reflects articulatory change

Despite assumptions to the contrary, in practice, the inverse mapping from the acous-
tic signal to articulatory configurations can be defined in an appropriate way to pre-
dict articulatory configurations from the acoustic signal, within a certain tolerance
for deviations in the articulatory domain. For speech sounds that consist of multiple
acoustic events (such as diphthongs, plosives), the mapping results in an estimated
trajectory in articulatory space. For a subset of stable speech sounds, “codebooks” of
articulatory configurations associated with acoustic outcomes can be compiled (e.g.,
Hogden et al., 1996). Moreover, machine learning approaches that use contextual
information and large corpora of training data have proven successful in predicting
articulatory configuration from the acoustic signal with no constraints on speech
materials (e.g., Illa and Ghosh, 2018; Richmond, 2006; Uria et al., 2011).

Relatedly, it holds that when the vocal tract is in a stable configuration, the
acoustic output is also stable, and that when the acoustic output is changing, the vocal
tract configuration must also be changing. This observation has been exploited in blind
speech segmentation, where frame-by-frame changes in the acoustic spectrum are
tracked, and peaks in spectral change are detected. These peaks correspond to percep-
tually relevant phone boundaries (e.g., Dusan and Rabiner, 2006; Hoang and Wang,
2015). These approaches assume that segments are concatenated without overlap, mak-
ing them unsuited for the retrieval of onset and offset times of overlapping planning
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units. They can, however, serve as inspiration for the development of new techniques
to retrieve planning unit dynamics.

Note that although changes in the acoustic signal must reflect changes in the
articulatory configuration, it does not follow that when the vocal tract configuration is
changing, the acoustic signal always changes with it, since for many speech sounds, the
precise positioning of non-critical articulators is unimportant (such as tongue position
during the realization of /m/).

1.2 The mapping between planning units and acoustics and articulation

A class of psycholinguistic speech production models (which we will term phoneme-
based models) characterize the units that mediate between formulation (lexical access
and phonological encoding) and execution (speech motor programming and articula-
tion itself) as phonemes, or sequences of phonemes, such as syllables, demi-syllables,
or whole words (e.g., Dell and O’Seaghdha, 1992; Levelt et al., 1999; Tourville and
Guenther, 2011). Phoneme-based models conceptualize the execution process as an
obedient servant of formulation, which entails that the observable movements of the
articulators and the resulting speech acoustics are inherently a consequence of planning
units in formulation becoming active and subsequently being deactivated.

The DIVA model (Tourville and Guenther, 2011) operationalizes the planning
units by defining them in terms of upper and lower bounds for articulator positions,
and upper and lower bounds for expected fundamental frequency and formants.
Planning units typically overlap in time, and all simultaneously active planning units
exert influence on the articulatory configuration and speech acoustics directly via the
feedforward route and indirectly by shaping the expected acoustic and somatosensory
outcomes, which in turn lead to corrective feedback.

The temporal overlap of adjacent planning units (at the output stage of
phoneme-based psycholinguistic speech planning models) results in local coarticulation
in the overt speech. Equivalently, low level pre-activation (priming) of upcoming plan-
ning units and incomplete deactivation of preceding planning units result in longer-
range coarticulation in the overt speech.

The retrieval of planning units from electromagnetic articulography (EMA)
data has been attempted by Steiner and Richmond (2009), who developed an analysis-
by-resynthesis approach that reconstructs a gestural score in terms of vocalic and con-
sonantal gestures for an articulatory synthesizer. This representation differs from that
inherent to phoneme-based models, in that vowel and consonants are treated as funda-
mentally distinct units of representation on distinct tiers of the gestural score, while
phoneme-based models instead predict a chain of potentially overlapping planning
units of the same class, on the same tier.

Vaz et al. (2016) described an algorithm to retrieve an underlying structure
from multivariate time series data, and tested it on vocal tract constriction distances
measured from real-time magnetic resonance imaging vocal tract data. The algorithm
was able to construct an inventory of gestures, and an activation time series for each
of these gestures, which are collectively analogous to a gestural score in the articula-
tory phonology (AP) framework. AP diverges from phoneme-based models in that the
planning units it supposes are not (sequences of) phonemes, but rather articulatory ges-
tures defining articulatory events, such as the creation of a labial closure (Browman
and Goldstein, 1992), which cannot easily be translated into phonemes.

The direct retrieval of the timings of planning units from the acoustic signal
has been attempted by Nam et al. (2012), again with an analysis-by-synthesis
approach, and similarly rooted in the AP framework. Their procedure involves con-
structing a task-dynamic gestural score (encoding the speech to be produced in terms
of degrees of constriction at different positions in the vocal tract) from an orthographic
transcription of the speech. Then, the TADA model (Nam et al., 2004; Saltzman and
Munhall, 1989) is used to predict time-varying vocal tract dimensions from the gestural
score, which is then synthesized to produce a speech signal. Next, dynamic time warp-
ing (DTW) is applied between the synthesized and natural speech signals. This involves
stretching and compressing the synthesized speech signal in the temporal dimension, to
improve the temporal alignment with the natural speech signal. The resulting warping
scale can then be applied to the gestural score, yielding a warped gestural score from
which activation and deactivation times of individual gestures can be established.

Aside from requiring potentially difficult to acquire articulatory measurements,
procedures that construct multivariate gestural scores cannot readily be applied to
phoneme-based models of speech production, since the gestures are not consistent with
or easily mapped to the planning units hypothesized by phoneme-based models of
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lexical access and multi-word processes of speech production (e.g., Bohland et al.,
2010; Dell and O’Seaghdha, 1992; Levelt et al., 1999). An additional concern is that
the researcher is relatively unconstrained in the construction of the gestural score for
an utterance, either directly or through their parameterization of the linguistic model.

2. Study aims

This study aims to provide a means to estimate the onset and offset times of phoneme-
based planning units (such as words, syllables, or phonemes) from recorded speech.
Tight temporal locking between formulation and execution processes in speech produc-
tion suggests that reconstructing the activation dynamics of planning units from articula-
tor movement is feasible. That the inverse mapping between acoustics and articulation is
transparent enough to construct codebooks describing the mapping implies that recon-
structing the activation dynamics of planning units from the acoustic signal should also
be feasible for a constrained repertoire of speech sounds.

We propose two approaches to retrieve planning unit onset and offset times
from speech materials; from the acoustic signal and from EMA data. We compare the
outcomes of the two techniques, to establish that recovering planning unit onset and
offset times from the acoustic signal is broadly equivalent to recovering planning unit
timing from articulatographic data.

The first metric uses EMA fleshpoint position data and begins by deriving
upper and lower bounds for each fleshpoint position for each segment from corpus
data. Subsequently, a multi-dimensional, time-varying target for a multi-segmental
speech sequence is constructed, the temporal parameters of which are adjusted to fit
the observed data. The second metric exploits the acoustic signal directly with no need
to record articulator motion, but constrains the speech sounds that can be evaluated.
This metric depends on the claim that acoustic instability mirrors articulatory instabil-
ity, which in turn reflects simultaneous activation of multiple planning units.

Neither metric is predicated on any specific theoretical treatment of speech pro-
duction, aside from the assumption that planning units are phonemes or sequences of
phonemes. The parameterization of both metrics is data-driven. For the experimental
psycholinguist, a metric that can be collected from the acoustic signal alone is preferable,
since that reduces the burden of data collection on both researcher and participant, and
makes co-recording of electrophysiological or other measures during speech production
possible because no articulatographic data needs to be collected.

The two metrics were tested on acoustic and articulatory data for the same
vowel-consonant (VC) sequences, taken from the EMA subset of the mngu0 corpus
(Richmond et al., 2011). Comparing the performance of the metrics against a “gold
standard” baseline annotation of the onsets and offsets of speech planning units is
clearly impossible, given that any hand annotation of speech planning unit onsets and
offsets would inherently be largely arbitrary and noisy.

3. Speech materials

The EMA subset of the mngu0 corpus (Richmond et al., 2011) was used, which con-
sists of TIMIT sentences read by a single male speaker of British English. EMA sen-
sors were placed on the lower and upper lips, at the tongue tip, blade, and dorsum and
on the lower incisors (to track jaw motion). A further sensor was placed on the upper
incisors to serve as a reference for the others.

From the 1263 sentences of the mngu0 corpus, VC sequences of interest were
identified, where a monophthong transitioned into a continuant consonant. The
sequences were all one of the following: /am/, /aS/, /av/, /IS/, /Iv/, /im/, /iv/, /ˆm/, /is/,
/ˆs/, /`n/. Note that in the context of phoneme-based models, where no distinction is
made between planning units for different classes of phonemes, there is no reason to
suppose that sequences of a different composition (CVs or CCs, for instance) would
behave any differently from the VCs tested here. This means that the predictions of
phoneme-based speech planning models can effectively be tested by this reduced set
of sequences. This yielded 775 sequences of interest, which were identified based on
the forced aligned transcriptions available in the corpus. Analysis intervals from the
temporal center of the forced aligned vowel to the temporal center of the forced
aligned consonant were defined [see Fig. 1(a)]. The analysis interval served as a land-
mark to identify the transitions found, so the precision of the start and end points
was not critical, as long as the transition between the planning units was included.

In the EMA data, articulator positions on the mid-sagittal plane were extracted.
To facilitate annotation, the data were rotated independently for each sensor by means
of principal component analysis, so that PC1 captured the most informative direction of
movement for that sensor (in all cases the open-close dimension). Since PC2 is
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orthogonal to PC1, it captured forward–backward movement. Then, manual annotation
was undertaken (by the first author) to identify articulatory stable periods of each seg-
ment for use in the preparation of the targets used in the articulatory metric. Movement
tracks in PC1–PC2 dimensions were displayed on a graphical interface, and periods of
stability associated with the vowel and continuant consonant were highlighted. The artic-
ulatory configuration was considered stable if there was little to no change (assessed
visually) in several sensors. Since the targets were defined in terms of 95% highest density
intervals (see Sec. 4), some noise in this annotation procedure was acceptable.

4. Planning unit timing from articulatory measurements

The articulatory metric identifies planning unit onset and offset times from EMA data
by essentially inverting the motor control process: reconstructing a multidimensional
articulatory target that could have led to the recorded movements during a vowel-
consonant sequence. This was done separately for each VC transition token, using a
parameter optimization routine which adjusted the onset and offset times of the seg-
ment targets to construct a target that fitted the recorded movements well.

First, separate segmental targets are established for the vowels and for the
consonants, defined in terms of upper and lower bounds for the positions of each flesh-
point (lower jaw, upper and lower lips, tongue tip, blade, and dorsum) on the two
dimensions (principal components) of the mid-sagittal plane. These maxima and min-
ima are derived from the distribution of sensor positions during the hand-annotated
stable periods of those segments in the corpus, by extracting the 95% highest density
interval(s). When the positioning of a fleshpoint is of crucial importance to the identity
of the segment, it varies little between realizations, and the target is narrow (e.g., the
positioning of the tongue tip in /s/). When the positioning of a fleshpoint is only mar-
ginally relevant for the identity of the segment, the target is broad (e.g., the positioning
of the tongue back in /v/), since there is a lot of variability in the source data.

The sequence targets were constructed by temporally-overlapping the vowel
and consonant targets. Figure 1(c) depicts an example of the construction of the tar-
gets, for the sequence /i+v/, showing the target bounds for each segment as boxes (pur-
ple for PC1, blue for PC2), for the tongue body sensor. The segmental targets are fixed
at the outer edges, such that the vowel target begins at the hand-annotated onset of
vowel stability, and the consonant target ends at the hand-annotated offset of conso-
nant stability. The other two temporal parameters, the offset of the vowel target and
the onset of the consonant target are free parameters that can be optimized.

The upper bound of the sequence target is calculated as an exponential moving
average (with a window of 20 ms) of the upper bounds of the segmental targets over
time. This means that for time points when only the vowel target is engaged, the upper
bound is equal to the upper bound of the vowel target. When both segmental targets are
engaged, however, the upper bound switches smoothly from following the upper bound
of the vowel target to reflecting the average upper bound of both targets. Once the vowel
target is disengaged, the upper bound smoothly shifts to reflect the upper bound of the
consonant target. The lower bound is derived in the same way. For each analysis inter-
val, an independent parameter optimization routine is conducted. Two parameters,

Fig. 1. (Color online) An example analysis. (a) An analysis interval is defined that stretches from the temporal
center of the forced aligned vowel to center of the forced aligned consonant. (b) The acoustic metric. See Sec. 5
for details. (c) The articulatory metric. See Sec. 4 for details.
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the onset time of the consonant target and the offset time of the vowel target, are
optimized with the BOBYQA algorithm (Powell, 2009).

To evaluate how well a sequence target defined by a pair of consonant target
onset and vowel target offset times fitted the observed movements, the proportion of
time points where the recorded sensor positions are outside the bounds of the multidi-
mensional target is counted. This proportion is used as a score to be minimized.

For each realization, 200 starting points for these parameters are tried, sam-
pled from normal distributions (standard deviation¼ 25 ms) centered around the anno-
tated end of vowel stability (this is the center-point of the starting distributions for the
consonant onset parameter) and the annotated beginning of consonant stability (this is
the center-point of the starting distributions for the vowel offset parameter). To select
a single vowel offset time and consonant onset time from the distributions that resulted
from the 200 initializations, a two-dimensional distribution is constructed, where the
dimensions are the vowel offset time parameter and consonant onset time parameter.
The distribution is weighted by one minus the score achieved in each attempt (to
weight the best solutions most heavily) and the peak is identified. The coordinates of
this peak define the planning unit onset and offset times.

5. Planning unit timing from the acoustic signal

The acoustic metric quantifies the rate of change in the acoustic signal (the spectral
change). Local peaks in this signal identify periods where the speech acoustics, and
therefore the underlying vocal tract configuration, are changing. At the transition
between two planning units, this change is due to the interaction of the two overlap-
ping planning units, and the duration of the instability is equated with the duration of
the overlap. The onset of the second planning unit is equated with the start of such a
period of instability. The offset of the first planning unit is equated with the end of
that same period of instability. This is illustrated in Fig. 1(b).

First, a continuous spectral change signal is required. MFCC vectors (Mel fre-
quency cepstral coefficient; 25 ms analysis frame length, samples every 10 ms) are
extracted for the analysis intervals (with a margin of 40 ms before and after). MFCC
vectors may be seen as a numeric representation of the spectral content of the speech
signal during a short (25 ms) window, and are one of the best spectro-temporal repre-
sentations of speech acoustics. From each frame to the next, the Euclidean distance in
MFCC space is calculated as follows, where j is the index of the MFCC coefficient
and t is the index of the frame,

Dspec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X12

j¼0

ðMFCCjt �MFCCjtþ1Þ
2

vuut : (1)

This gives Dspec(t), a spectral distance function quantifying the degree of spec-
tral change evident in the acoustic signal, sampled every 10 ms.

Second, this continuous signal must be transformed to a categorical one. The
spectral distance function is smoothed twice, once with a 30 ms wide Gaussian kernel,
yielding Dfast(t), which captures relatively fast changes in the spectral distance function;
and once with a 90 ms wide Gaussian kernel, yielding Dslow(t), which captures longer
term trends in the function.

Spline interpolation (every 0.1 ms) is then applied to these functions in order
to improve temporal resolution, yielding Ifast(t) and Islow(t). The two interpolated func-
tions are overlaid, and parts of the signal in each analysis interval where Ifast(t) is
larger than Islow(t) are identified as candidate overlaps [in Fig. 1(b) shown as green
shading]. Where Ifast(t) exceeds Islow(t), atypically fast acoustic change is occurring:
acoustically evident planning unit overlap. It is possible that there are multiple periods
where Ifast(t) exceeds Islow(t), however, typically one period is longer and the associated
peak is larger. Therefore, a heuristic is engaged to select precisely one period per anal-
ysis window: the duration of each of these periods is calculated. Periods that cross the
boundaries of the analysis interval (into the margins) are discarded. When an analysis
interval still contains multiple periods, all but the longest candidate are discarded. This
yields precisely one period of acoustically evident planning unit overlap per analysis
interval. The onset of the remaining period of overlap [where Ifast(t) becomes larger
than Islow(t)] yields the onset of the consonant planning unit. The offset of the overlap
[where Ifast(t) becomes smaller than Islow(t)] yields the offset of the vowel planning unit.

R scripts implementing the two metrics and the data preprocessing method are
available from https://git.io/fh8EM.
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6. Results and discussion

Figure 2 shows the onsets and offsets of planning units (event times) as predicted by
the articulatory (x axis) and acoustic metrics (y-axis). All times are relative to the
forced-aligned offset of the consonant, meaning that times less than 0 are to be
expected. An r2 of 0.447 was calculated between the event times derived by the two
metrics. This moderately high correlation between the predictions indicates that both
metrics capture the same underlying dynamic process of planning unit activation.

The intercept of �10.64 indicates that the acoustic metric systematically pre-
dicts earlier event times than the articulatory metric does. This is approximately half
the width of the 25 ms analysis window employed in the acoustic metric, which sug-
gests that this anticipation may be an artifact of the spectral analysis.

The metrics were evaluated by comparing the predicted planning unit onset
and offset times. Because the two metrics are so divergent in the modality of the data
used and the approach used to derive event times from the data, we interpreted the
finding that they predicted comparable event times as evidence that they both index
the onset and offset times of planning units. This is of course weaker evidence in sup-
port of the validity of a metric than comparison against data capturing the ground
truth, but the ground truth is clearly unobtainable in this case. Comparison against the
results obtained by Nam et al. (2012) is also problematic given the AP theoretical
framing inherent to their procedure.

The articulatory metric is in principle equally suited to examining transitions
between any pair of segments where there is at least a short period of articulatory sta-
bility in each segment, including stops. Of course, given the metric-comparison
approach we took to evaluate the performance of the two metrics, the articulatory
metric was only tested on materials also suitable for the acoustic metric.

The acoustic metric is inherently limited to identifying planning unit onset and
offset times at transitions between a subset of segment types involving at least a short
period of articulatory stability and incomplete obstruction of the airflow: monoph-
thong vowels, nasals, and continuant fricatives. Nevertheless, for the experimental
psycholinguist, the convenience of acoustic-only recording may well outweigh the dis-
advantage of constrained material selection.

Both metrics share the inherent assumption that the onsets of all the move-
ments or gestures involved in the production of a phoneme are synchronized. This
assumption is inherent to the class of phoneme-based models, which form the main-
stream in psycholinguistic models of higher speech planning. Adhering to it was neces-
sary to achieve this paper’s goal of making it possible to test and refine phoneme-
based models by relating activation dynamics to the speech signal. Models based on a
multivariate gestural score may achieve better fits to the data given that they are not
constrained by this synchronicity assumption.

The metrics were developed and tested using the mngu0 corpus (Richmond
et al., 2011), which contains a large quantity of English data from a single speaker,
rather than smaller quantities of data from multiple speakers available in other cor-
pora. The mngu0 corpus was selected because we sought to have a large number of
realizations of each segment to reliably compute the static segment targets for the
articulatory metric. It remains to be seen how the articulatory metric would perform
given a smaller dataset. A requirement for a large speaker-specific dataset would be
disadvantageous in the context of experimental psycholinguistics, where it is typically
desirable to test multiple speakers on a small set of materials, though recent success in

Fig. 2. (Color online) The correlation between planning unit onset and offset times, derived from the articula-
tory (x axis) and acoustic metrics (y-axis).
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using a generalized background model and a speaker-specific adaptive model in acous-
tic-to-articulatory inversion (Illa and Ghosh, 2018) offers hope that a comparable
approach could work for this metric also.

7. Conclusion

This paper presented two techniques to identify planning unit onsets and offsets from
articulographic and acoustic data in the context of phoneme-based models of speech
production. The first metric requires articulographic recording, but imposes less con-
straint on speech material selection. The second metric exploits the acoustic signal
directly, with no need to record articulator motion, but constrains the speech sounds
that can be evaluated. This metric depends on the claim that acoustic instability mir-
rors articulatory instability, which in turn reflects simultaneous activation of multiple
planning units. The two metrics are agnostic to the duration of planning units (sylla-
bles, demi-syllables, phonemes, entire words), and make minimal assumptions about
precisely what is encoded by the planning unit, other than that upper and lower
bounds for articulatory positions are encoded. A moderately high correlation between
the event times predicted by the two metrics indicates that they capture the same
underlying dynamic process of planning unit activation. This means in turn that tem-
poral predictions of phoneme-based psycholinguistic models can be tested using the
acoustic signal without the need to collect articulographic data.
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