
NOMAD 2018 Kaggle Competition: Solving Materials Science 
Challenges Through Crowd Sourcing 

	
 

Christopher Sutton,1,* Luca M. Ghiringhelli,1,*  
Takenori Yamamoto,2 Yury Lysogorskiy,3 Lars Blumenthal,4,5  

Thomas Hammerschmidt,3 Jacek Golebiowski,4,5 Xiangyue Liu,1 Angelo Ziletti,1   
Matthias Scheffler1 

 

 

1Fritz Haber Institute of the Max Planck Society  
Berlin, Germany  

 

2 Research Institute for Mathematical and Computational Sciences (RIMCS), LLC 
Yokohama, Japan 

 

3 ICAMS 
Ruhr-Universität 

Bochum, Germany 
 

4 EPSRC Centre for Doctoral Training on Theory and Simulation of Materials 
Department of Physics 

Imperial College London 
London, U.K. 

 
5 Thomas Young Centre for Theory and Simulation of Materials 

Department of Materials 
Imperial College London 

London, U.K. 
 
 
 
 
 
 
 
 
 
 
 
 

*Corresponding authors: sutton@fhi-berlin.mpg.de; ghiringhelli@fhi-berlin.mpg.de 
 
  



Abstract 
 
Machine learning (ML) is increasingly used in the field of materials science, where 

statistical estimates of computed properties are employed to rapidly examine the 

chemical space for new compounds. However, a systematic comparison of several ML 

models for this domain has been hindered by the scarcity of appropriate datasets of 

materials properties, as well as the lack of thorough benchmarking studies. To address 

this, a public data-analytics competition was organized by the Novel Materials Discovery 

(NOMAD) Centre of Excellence and hosted by the on-line platform Kaggle using a 

dataset of 3,000 (AlxGayInz)2O3 compounds (with x+y+z = 1). The aim of this challenge 

was to identify the best ML model for the prediction of two key physical properties that 

are relevant for optoelectronic applications: the electronic band gap energy and the 

crystalline formation energy. In this contribution, we present a summary of the top three 

ML approaches of the competition including the 1st place solution based on a crystal 

graph representation that is new for ML of the properties of materials. The 2nd place 

model of this competition combined many candidate descriptors from a set of 

compositional, atomic environment-based, and average structural properties with the light 

gradient-boosting machine regression model. The 3rd place model employed the smooth 

overlap of atomic positions representation with Gaussian process regression. To gain 

insight into whether the representation or the regression model determines the overall 

model performance, nine ML models comprised of the top-three representations from the 

competition and their regression models were examined using the Pearson correlation 

among their prediction errors. At a fixed representation, the largest correlation is 

observed in predictions made with kernel ridge regression (or Gaussian process 

regression) and a neural network, reflecting a similar performance on the same test set 

samples. Averaging the two models with the smallest Pearson correlation yields an even 

higher prediction accuracy. 

 
  



Introduction 
 
Computational approaches have become a powerful tool for guided design of new 

compounds to potentially aid the development of advanced technologies. However, the 

identification and discovery of new materials that are ideal for targeted applications is a 

nontrivial task that requires examining enormous compositional and configurational 

degrees of freedom. For example, an alloy with two substitutional atoms in the unit cell and 

with M sites displays a large number of possible configurational states of the order of 2M 

(neglecting symmetry) for each lattice, and most often several polymorphs have to be 

examined. 

 

 Density-functional theory (DFT) typically provides the best compromise between 

accuracy and cost; nevertheless, a single energy evaluation using DFT scaling as a high-

order polynomial with system size. As a result of the high computational demand, DFT-

based exploration of configurational spaces of alloys is only feasible for unit cells with a 

relatively small number of atoms. To efficiently search this vast chemical space, methods 

that allow for fast and accurate estimates of materials properties have to be developed.  

 

Machine learning (ML) promises to accelerate the discovery of novel materials by 

allowing to rapidly screen candidate compounds at significantly lower computational cost 

than traditional electronic structure approaches.1-6 A key consideration for an ML model 

of material properties is how to include atomic and structural information as a fixed-

length feature vector to enable regression, which is referred to as the representation or 

descriptor. Given that knowledge of the atomic positions and chemical species (e.g., the 

atomic number) for a given system is sufficient to construct the Hamiltonian, a ML 

descriptor should include the geometrical and chemical information in a convenient way. 

A considerable amount of work has been devoted to defining suitable ML descriptors of 

molecules or materials by encoding the chemical and geometrical information in various 

ways such as Coulomb matrices,7,8 scattering transforms,9 diffraction patterns,10 bags of 

bonds,11 many-body tensor representation,12 smooth overlap of atomic positions 

(SOAP),13,14 and several symmetry-invariant transformations of atomic coordinates.15-17 



All of these approaches represent the training or test samples and are typically combined 

with kernel ridge regression (KRR) or Gaussian process regression (GPR)18 methods to 

effectively identify differences in the structures of the data set. In addition, generalized 

atom-centered symmetry functions have also been developed to be combined with a 

neural network (NN).19,20 Other approaches such as a modified Least Absolute Shrinkage 

and Selection Operator (LASSO)21 and the Sure Independence Screening and Sparsifying 

Operator (SISSO)22 have focused on identifying the best descriptor out of a large space of 

mathematical combinations of simple features that represent the chemical information 

and (currently only simplified) structural information.23-25 

 

Of particular importance for the efficient modeling of the large configurational space of 

substitutional alloys, the cluster expansion (CE) method26-32 is an ML representation 

using only an occupational variable for each substitutional lattice site. However, the lack 

of explicit local atomic information (e.g., bond distances and angles) of the crystalline 

systems prevents a broad and transferable application of this approach. Along these same 

lines, semiempirical interatomic potentials or force field-based approaches use 

parameterized models based on classical mechanics (e.g., short range two-body and three 

body interactions, long range-Coulomb interactions) to approximate quantum mechanical 

properties. 

 

With so many choices of the various structural representations, it is often unclear which 

will be the most insightful or accurate for a given problem. Furthermore, optimizing an 

ML model for a particular application can be a time-consuming endeavor: A given 

representation is combined with a specific regression model (i.e., a model class and an 

induction algorithm) whose hyperparameters are tuned subsequently. Therefore, 

typically, only a few combinations of representation and regression algorithms are 

carefully tested for a specific application, which limits the understanding of how well 

various ML models perform. Crowd sourcing offers an alternative approach for 

examining several ML models by identifying a key problem and challenging the 

community to solve it by proposing solutions that are ranked in an unbiased way. To this 

end, the Novel Materials Discovery (NOMAD)33 Centre of Excellence organized a data-



analytics competition for predicting the key properties of transparent conducting oxides 

(TCOs) with Kaggle, which is one of the most recognized online platforms specializing 

in hosting data-science competitions. 

 

TCOs are an important class of well-developed and commercialized wide band-gap 

materials that have been employed in a variety of (opto)electronic devices such as solar 

cells, light-emitting diodes, field-effect transistors, touch screens, sensors, and lasers.34-44 

However, only a small number of compounds display both transparency and electronic 

conductivity suitable enough for these applications. For example, tin-doped indium oxide 

(In2O3:Sn) serves as the primary transparent electrode material for (opto)electronic 

devices because of its high-transparency over the visible range, resulting from an 

electronic band gap energy of 2.7 eV,45,46
 and its high electrical conductivity,47-49 which 

are typically competing properties.	A wide range of experimental band gap energies from 

3.6 to 7.5 eV have been reported from alloying In2O3/Ga2O3 or Ga2O3/Al2O3,50-56 which 

suggest that alloying of group-III oxides is a viable strategy for designing new wide band 

gap semiconductors. However, Al2O3, Ga2O3, and In2O3 all display very different 

ground-state structures. Therefore, it is unclear which structure will be stable for various 

compositions. The goal of the competition was to identify the best ML model for both the 

formation energy (an indication of the stability) and the band gap energy (an indication of 

transparency) using a dataset that contained 3,000 (AlxGayInz)2O3 compounds, 2,400 of 

which were used for the training set, with the remaining 600 samples were used as the 

test set that was kept secret for the entire competition. 

 

The competition was launched on December 18, 2017 and ended on February 15, 2018, 

attracting 883 participants. Figure 1 shows the distribution of the so-called public and 

private leaderboard scores for all the participants of the competition. The public score 

was calculated for only 100 fixed samples from the test set in order to quickly assess the 

performance of the submitted models, with the two target properties of these samples still 

kept secret. The remaining 500 samples of the test set were used to determine the winner 

of the competition, which is displayed in the private leaderboard. The scoring metric used 

in the competition was the root mean square logarithmic error (RMSLE): 



RMSLE =
1
𝑁 log

𝑦! + 1 
𝑦! + 1

!!

!!!

	

where N is the total number of samples. The error is calculated as the log ratio of the 

predicted target property 𝑦! and corresponding reference value 𝑦! of the formation energy 

and band gap energy computed using DFT with the PBE exchange-correlation functional 

using the all-electron electronic structure code FHI-aims with tight settings.57 The error 

for both of these two target properties is then averaged for a final assessment of the 

model performance. The log ratio of the errors is a convenient choice because it prevents 

the band gap, which is an order of magnitude larger than the formation energy (see Figure 

S1), from dominating an analysis of the predictive capability of each model.  

 

 
Figure 1. Histogram of averaged RMSLE of the band gap and formation energies for all 
of the 883 models submitted in the NOMAD 2018 Kaggle competition. The scores are 
shown for the Kaggle public and private scoreboards of the test containing 600 samples 
with the values of these two target properties withheld for the entire competition. The 



public score was calculated for 100 fixed samples; the private score was calculated for 
500 samples and was used to determine the winner of the competition. The vertical red 
lines correspond to the predictions from taking the average value of the training set to 
predict the public (dashed line) and private (line) datasets. 
 

For the practical application of ML models for high-throughput screening, it is of 

particular importance to have a model that inputs structural features based on a 

generalized unrelaxed geometry because the relaxed structures are not readily available. 

If the relaxed geometry needed to be calculated to obtain the input features for an ML 

model, then all of the quantities of interest would already be available. In this 

competition, the structures were provided by the linear combination of the stoichiometric 

amounts of the Al2O3, Ga2O3, and In2O3 geometries at the same lattice symmetry (i.e., 

obtained by applying Vegard’s law58,59 for the lattice vectors to generate the input 

structures); however, the target properties provided for learning and testing correspond to 

the values from the fully relaxed geometries. 

 

In Section I of this contribution, we describe the performance of the three ML approaches 

on the original dataset provided in the NOMAD 2018 Kaggle competition. Section II 

provides a comparison in the performance of these three representations with various 

regression methods to gain an understanding of the key determining factors for the high 

performance of the winning models. Section III provides a comparison between the errors 

of the fully optimized geometries and those obtained using the starting structures 

generated using Vegard’s law. Section IV examines the generalization error of the ML 

models for lattice symmetries outside of the training set. A detailed description of each of 

the three winning ML models from the competition is provided in the Methods section, 

we only briefly describe the models in the main text. 

 

  



Results 
 
I. Performance of the three winning approaches from the NOMAD 2018 
Kaggle competition 
 
As already mentioned in the introduction, the errors in both the band gap and formation 

energy of the crystalline system differ by about an order of magnitude in their mean and 

standard deviations. Thus, simply averaging the two absolute errors would result in an 

error metric that is dominated by the band gap energy because of its larger magnitude 

(Figure S1). This is why the RMSLE was the performance metric used in the 

competition. However, we decided for the discussion in this section to use the mean 

absolute errors (MAE) of the band gap and formation energies separately because they 

allow for a more intuitive quantification of model performance from a physical point of 

view:	

MAE = !
!

𝑦! − 𝑦!  !
!!! . 

Table 1 compares the RMSLE and MAE for the top three models. The 1st place model 

employed a crystal graph representation to convert the crystal structure into features by 

counting the contiguous sequences of unique atomic sites of various lengths (called n-

grams), which was combined with kernel ridge regression (KRR).60 The 2nd place model 

used an initially large set of candidate features (i.e., weighted chemical properties as well 

as atomic-environment representations based on analytic bond-order potentials (BOP)61-64 

and basic geometric measures), which is then optimized and combined with the light 

gradient-boosting machine (LGBM) regression model,65 which we label as 

c/BOP+LGBM. The 3rd place solution used the SOAP representation developed by 

Bartók et al.13,14 that incorporates information on the local atomic environment through a 

rotationally integrated overlap of the Gaussian shaped densities centered at the neighbor 

atoms, which was combined with a three-layer feed-forward NN (SOAP+NN).  

 

The top three models have a test-set MAE for the formation energy within 2 meV/cation, 

whereas a larger range of 21 meV is observed for the predictions of the band gap energy 

(Table 1). We note that for all three models, these errors only vary by 2 meV and 13 

meV/cation for the formation energy and band gap energy, respectively, when examining 



five additional re-partition random 80%/20% splits of the entire 3,000 compound dataset 

(Table S1). Based on the learning curves provided in Figure S2, the formation energy 

MAE values of all the three methods converge to within 2 meV/cation relative the error 

when training on the full 2,400 samples for training set sizes ≥ 960. For the band gap 

energies, a test-set MAE ≤ 16 meV relative to the error obtained when training on the 

full 2,400 samples is achieved for 960, 1,440, and 1,920 training samples for SOAP+NN, 

c/BOP+LGBM, and n-gram+KRR, respectively.  

 

Overall, the higher accuracy in the formation energy for all three approaches is attributed 

to the inclusion of the local atomic topography in each model. The lower accuracy for the 

band gap energy is attributed partly to the fact that the valence band is determined by 

hybridization of oxygen atoms, whereas the conduction band is described by the metal-

metal interactions. Therefore, an accurate description of this property most likely requires 

additional information to be included in the representation beyond the local structure.  

 

Table 1. A summary of the three winning models of the competition with the test-set root 
mean square log error (RMSLE) and mean absolute error (MAE) of the formation energy 
and band gap energy.	

 

Ranking ML representation + 
regression method Band gap energy Formation energy 

  
Root mean 
square log 

error 

Mean 
absolute 

error (meV) 

Room 
mean 

square log 
error 

Mean 
absolute 

error 
(meV/cation) 

1st n-gram+KRR 0.077 
(0.078*) 

114 
(106)* 

0.021 
(0.020*) 

15 
(14)* 

2nd c/BOP+LGBM 0.081 93 0.022 15 
3rd SOAP+NN 0.081 98 0.021 13 

* Determined using the quadgram vector instead of the ensemble of trigram and quadgram 
that was used in the competition.  
 
 
  



II.  Three winning representations combined with three regression 
methods  
 
To understand the effect of the choice of representation vs. regression model on the 

overall error, we now examine the performance of each representation combined with 

KRR/GPR, NN, and LGBM. A detailed description of each of the nine models is 

provided in the Methods section; here we only note that the hyperparameters are 

optimized for each representation and regression method combination.  

 
The primary goal for training an ML model is accurately generalize the rules learned on 

the training set to make predictions on unseen data. Overfitting describes the propensity 

of an ML model to give a higher accuracy on the training set compared with the test set, 

which is an indication of poor generalizable predictions of the model. To evaluate the 

generalizable error, we investigate the difference between the 95% percentiles of the 

MSE for the training and test sets for each of the nine ML models (Δ95%). The 95% 

percentiles for the training set and test set are given by the upper edges of the boxplots in 

Figure 2 (The explict values for the MAE and 95% percentiles are provided in Table S2).  

 

Beginning with a discussion of the errors in the formation energy, a practically identical 

error is observed among the predictions from all the three regression models (KRR/GPR, 

NN, LGBM) using the c/BOP, SOAP, and n-gram representations, with a maximum 

difference of 4 meV/cation, 2 meV/cation and 3 meV/cation, respectively (Figure 2).  

However, a large variation of the Δ95% value between the training and test predictions is 

observed. For example, a consistently larger Δ95% value is calculated when the NN and 

LGBM regression methods are used irrespective of the three representations. This is 

apparent in Figure 2 with the much narrower distribution of the errors training set 

absolute errors (blue) compared to the test set absolute errors (red). More specifically, a 

markedly large Δ95% is observed for n-gram+NN (Δ95% = 36 meV/cation) and n-

gram+LGBM (Δ95% = 49 meV/cation) compared with n-gram+KRR (Δ95% = 20 

meV/cation). A similar trend is found for SOAP representation combined with NN  

(Δ95% = 36 meV/cation), LGBM (Δ95% = 54 meV/cation) and GPR (Δ95% = 31 

meV/cation). A slightly larger difference between the 95% confidence thresholds of the 



training and test sets is computed for c/BOP+LGBM (Δ95% = 39 meV/cation), 

c/BOP+NN (Δ95% = 28 meV/cation) and c/BOP+KRR (Δ95% = 34 meV/cation). These 

results indicate a consistently larger Δ95% when the NN and LGBM regression models 

are used, indicating that these approaches are potentially more prone to overfitting in this 

application. This observation is consistent with the expectation that overfitting is more 

likely with highly nonlinear models that have more flexibility when learning a target 

function. 	However, this potentially might be resolved by a more careful hyperparameter 

optimization. 

 

Figure 2. A comparison of the distribution of the absolute errors for the training set (blue) 
and test set (red) of the formation energy (left) and band gap energy (right) from the three 
winning representations (n-gram, c/BOP, and SOAP) of the competition combined with 
the KRR/GPR, NN, and LGBM regression models. The markers indicate the mean 
absolute error (MAE) of the test set (orange cross) and training set (orange filled circle). 



Boxplots are included for each training and test set distribution to indicate the 25%, 50%, 
and 75% percentiles of the absolute errors. The box and violin plots only extend to the 
95% percentile. For the training set predictions, the maximum absolute error in the 
formation (band gap) energy for n-gram+KRR, c/BOP+LGBM, and SOAP+NN is 409 
meV/cation (1664 meV), 312 meV/cation (1264 meV), and 507 meV/cation (2000 meV), 
respectively. The corresponding maximum absolute test errors are 289 meV/cation (1083 
meV), 276 meV/cation (1680 meV), and 289 meV/cation (1198 meV), respectively. 
 
The Pearson correlation (r) between signed errors in the test set predictions is used to 

quantify correlations between test set errors for all combinations of representation 

(atomic/BOP, SOAP and n-gram) and regression model (LGBM, NN, or KRR/GPR) to 

elucidate the dominant factors of the model performance through a comparison of the 

nine model (Figure 3). The Pearson correlation is chosen for this analysis because it is 

simple parameter-free measure of the linear correlation between two variables (i.e., the 

residuals between two models) to indicate where two ML models have similar predictions 

for the test set. Beginning with a discussion of the errors in the formation energy, a 

practically identical error is observed among the predictions from all the three regression 

models (KRR/GPR, NN, LGBM) using the c/BOP, SOAP, and n-gram representations, 

with a maximum difference of 4 meV/cation, 2 meV/cation and 3 meV/cation, 

respectively (Figure 2).  The minor variation in the average error is attributed to the 

dominant effect of the representation in the overall accuracy. However, the range of r 

values between errors of the three n-gram (r = 0.74 – 0.81), SOAP (𝑟 = 0.72 – 0.87), and 

atomic/BOP (r = 0.82 – 0.92) models each using these representations combined with the 

three different regression model indicates that the accuracy of the three ML models is 

correlated but not identical. In addition, the highest Pearson correlations in the formation 

energy errors is observed for the predictions obtained with the c/BOP representation 

indicating that these models have a strongly correlated description of the test set. 

Furthermore, among all three representations, the highest Pearson coefficients are 

consistently obtained for the formation energy residuals between predictions using 

KRR/GPR and NN, with n-gram+KRR vs. n-gram+NN (r = 0.81), SOAP+GPR vs. 

SOAP+NN (r = 0.87), and c/BOP+KRR vs. c/BOP+NN (r = 0.92). In general, the high 

Pearson correlation among errors of the same representation indicates the choice of the 

representation is a determining factor in the performance of these approaches.  

 



In contrast to what is observed for the formation energy where the predictions made from 

the same representations are the most correlated largely independent of the regression 

model, the bandgap energies are less correlated overall. Relative to what is observed in 

the errors in the formation energy, a decrease in the r values between the predictions from 

KRR/GPR and NN regressors for n-gram+KRR vs. n-gram+NN (r = 0.66), c/BOP+KRR 

vs. c/BOP+NN (r = 0.73), and SOAP+GPR vs. SOAP+NN (r = 0.80). Overall, these 

lower Pearson correlation scores for the band gap errors indicate both that even with the 

same representation, the three respective ML models perform differently for the bandgap 

predictions, which is potentially a result of the larger errors in this target property.  

 

With an understanding of the correlation for each representation but using different 

regressors, a key question becomes how correlated the prediction errors are between all 

nine ML models. The highest correlation is observed when the LGBM regression model 

is used with the three representations. For the error predictions in the formation energy, 

the n-gram+LGBM vs. SOAP+LGBM (r = 0.78), and c/BOP+LGBM vs. SOAP+LGBM 

(r = 0.83) show a higher correlation compared with the predictions with n-gram+LGBM 

vs. c/BOP+LGBM (r = 0.74). For the errors in the bandgap energies, the highest 

correlations in the range of r =0.82 –0.85 are observed between each representation and 

combined with LGBM, which further demonstrates that this regression model dominates 

the prediction of this target property. This is rationalized to occur because the LGBM 

algorithm builds an accurate ML model by ensembling weak learners, which are 

flowchart-like structures that allow for input data points to be classified based on 

questions learned from the data.66 To improve the model predictions, gradient boosting is 

used to iteratively train additional models on the error. This process specifically 

addresses the weak points of the previous models, and therefore, the improved correlation 

indicates that the larger errors become described more consistently by these regression 

models.  

 

A linear combination of models with uncorrelated errors (i.e., small r values) can perform 

better than individual ML models, which is the basic idea behind the so-called 

ensembling.67-69 To demonstrate that this idea holds for the present data set and set of 



learners, we have combined various ML models with both small and large Pearson 

correlations. More specifically, an equivalent error to the 1st place n-gram+KRR model 

(MAE = 14 meV/cation) in the formation energy can be achieved by averaging the 

predictions from the n-gram+NN (MAE = 16 meV/cation) and c/BOP+NN (MAE = 19 

meV/cation) models, which have a r = 0.59. Furthermore, an MAE = 12 meV/cation can 

be obtained by averaging the predictions from the 1st place n-gram+KRR model (MAE = 

14 meV/cation) with SOAP+GPR (MAE = 13 meV/cation), which have an r = 0.72. In 

contrast, ensembling from two models with a large correlation of r = 0.92 such as 

c/BOP+KRR model (MAE = 17 meV/cation) with SOAP+NN (MAE = 13 meV/cation), 

leads to an MAE = 13 meV/cation. This result indicates that the ensembling two 

correlated models cannot lower the prediction errors. For the band gap energy, averaging 

the n-gram+NN (MAE = 124 meV) and SOAP+GPR (MAE = 98 meV) models yields an 

MAE = 97 meV (r = 0.67) which is lower than the 1st place n-gram+KRR model (MAE = 

114 meV). These results demonstrate that the Pearson correlation allows for an 

identification models with de-correlated predictions, which can be combined to obtain 

even lower errors.  

 
Figure 3. Pearson correlation in the test set errors of the formation energy (left) and 
bandgap energy (right) between each of the nine combinations of representation and 
regression model examined in this study. The black triangles indicate the predictions 
obtained for the same representation.   
	
  



III. Training and test set errors using features derived from relaxed 
structures  
 
For the purposes of efficient predictions in high throughput screening, it is important to 

incorporate structural features without performing a geometry optimization. If atomic 

structural information were required from optimized geometries, then most other 

quantities would be known as well and no predictions were necessary. The discussion has 

so far been limited to a dataset constructed using geometries generated from the weighted 

average of the optimized pure binary crystalline systems (i.e., applying Vegard’s law58,59 
to generate the input structures). However, the target formation and band gap energies 

correspond to the fully optimized structures with the lattice vectors and atomic positions 

allowed to relax self-consistently. Therefore, to examine the additional challenge for the 

ML description using this structure generation procedure, the performance of the top 

three ML approaches using the fully relaxed geometries is also examined.  

 

A difference of 3, 1, and 12 meV/cation in the formation energy is calculated between 

training the n-gram+KRR, c/BOP+LGBM, and SOAP+NN approaches using features 

generated from the relaxed structures compared with the Vegard’s law starting structures 

(Table 2). A similar trend is observed for the bandgap energy where a difference of 7, 7, 

and 21 meV, respectively, between the predictions using the two sets of geometries. The 

small difference in the error between the n-gram model for the relaxed geometry is 

attributed to the to the rigid definition of the coordination numbers based on pre-

determined cutoff value based on the ionic radii for the bond distances considered within 

the coordination sphere. In the n-gram model, the parameterization of the coordination 

environment for each lattice symmetry augments the additional challenge of the Vegard’s 

law starting structure by inputting bias into the model; however, this then leads to a 

representation that is less flexible to different input structures. In contrast, the SOAP 

representation is strongly dependent on the geometry used for building the descriptor, 

which leads to a large difference in errors between the two structures.   

 
  



Table 2. Comparison of test set MAE values for the different regression methods re-
trained using fully relaxed geometries for the NOMAD 2018 Kaggle dataset compared 
with idealized geometries.  

Representation Regression method Band gap energy Formation energy 

  Mean absolute error 
(meV) 

Mean absolute error 
(meV/cation) 

n-gram KRR  113 106* 17 14* 
c/BOP  LGBM 100 93* 14 15* 
SOAP NN 77 98* 1 13* 

*  Calculated using features from the Vegard’s law starting structure. 
 

IV. Examining the model generalizability to lattices outside of the 
training set  
 

Each model was re-trained on a dataset that contained only five out of six lattice 

structures and then tested on a dataset containing only the lattice structure excluded from 

the training set. The Ia3 lattice was chosen as the test set in this investigation because it 

displays the largest difference in the bandgap minimum and maximum values of all of the 

lattices (4.42 eV) with a standard deviation of 0.99 eV. The model performance for this 

re-partitioned training set (2384 structures encompassing five lattice symmetries) and the 

test set (616 structures of the Ia3 symmetry) results in significantly larger MAE values of 

53 meV/cation, 40 meV/cation, and 110 meV/cation for the formation energy for n-

gram+KRR, c/BOP+LGBM, and SOAP+NN, respectively (Table S3). A similar increase 

in the band gap energies is also observed for n-gram+KRR (MAE = 179 meV), 

c/BOP+LGBM (MAE = 180 meV), and SOAP+NN (MAE = 280 meV), respectively. 

The significant increase in the errors compared with the original dataset is attributed to 

the absence of common local atomic environment descriptors between the training and 

test sets.  

 

To examine if an improved generalizability of each model can be obtained by training a 

model for each lattice type separately, the c/BOP+LGBM model is re-trained by 

performing the feature selection and hyperparameter optimization procedure for each 

spacegroup separately and then tested on the left-out Ia3 lattice. This procedure results in 



a test set MAE score of 36 meV/cation (111 meV) for the formation (band gap) energy, 

which is improved compared to the MAE of 40 meV/cation (180 meV) when training the 

model to the entire training set.  

 

To give an indication of the prediction quality of these three ML models for the left-out 

lattice, a CE model was examined using a random training/test 75%/25% split of the 616 

structures with the Ia3 lattice symmetry. Using a CE model that includes two-point 

clusters up to six angstroms, a test set MAE of 23 meV/cation for the formation energy is 

obtained. A saturation in the learning curve with a training set size of only 50 samples for 

the CE approach (Figure S3), which indicates that this approach is incapable of achieving 

a higher accuracy with more data. In comparison to the CE test-set accuracy, the n-

gram+KRR, and c/BOP+LGBM have about twice the error when the Ia3 lattice is 

completely left out of the training set. For the band gap energy, the n-gram+KRR and 

c/BOP+LGBM models are much more accurate compared to what is achieved with CE 

(229 meV). These results indicate that the simple CE representation still provides a 

competitive accuracy on for modeling formation energy for lattices left out of the training 

set; however, the disadvantage of the CE approach is that a new model would have to be 

trained for each symmetry because only lattice-site occupations are included in this 

method. 

 
Discussion 
 
We have presented the three top performing machine learning models for the prediction 

of two key properties of transparent conducting oxides during a public crowd-sourced 

data-analytics competition organized by NOMAD and hosted by the online platform 

Kaggle. One key outcome of this competition was the development of a new 

representation for materials science based on the n-gram model. Because of the diverse 

set of methods and regression techniques, the interplay between the combination of the 

representation and regression methods was also analyzed. In particular, consistently large 

differences between the mean absolute errors and the 95 percentile distributions of the 

training and test set errors are consistently observed when a neural network and light 

gradient boosting machine is used at the regression models, which indicates a higher 



potential for overfitting for these methods. The Pearson correlation was used to 

investigate correlations between the estimates of the test set values among the various 

ML models to give additional insight into the model performance. Using this analysis, the 

largest Pearson correlations were observed for predictions from the same representations 

combined with different regressors for the formation energy. In particular, the highest 

predictions were observed for the same representations using neural network and kernel 

ridge regression (Gaussian process regression). The Pearson correlation allows for an 

identification models with de-correlated predictions to obtain even lower errors through 

ensembling.  

 

Methods 
 
I. n-gram model  
 

The 1st place winning solution uses a crystal graph representation to convert the 

crystalline structures into features by counting the contiguous sequences of unique atomic 

sites of various lengths (called n-grams).60 In this crystal graph representation (see Figure 

4), the nodes correspond to an atom in the unit cell and the edges between nodes are 

defined by the coordination environment. In this approach, the coordination environment 

of each atom was determined by counting the metal-oxygen distances that are less than 

the sum of ionic Shannon experimental radii70 scaled by 130-150% depending on the 

lattice type. In this crystalline graph generated for the unit cell, a directed graph with 

parallel edges to account for the periodicity (i.e., a given node that sits on the edge of the 

unit cell may have additional and equivalent bonds if translational symmetry is applied). 
Previously a crystal graph representation (constructed using a different definition of the 

coordination environment) was employed to create a consistent discretized representation 

of solid-state lattice (e.g., the cubic ABX3 perovskite lattice), which could then be used 

directly with convolutional neural network for learning properties of materials.71 

Although the n-gram model also relies on the discretization of the lattice, features were 

generated by binning the nodes of the contiguous sequences along a path in the crystal 

graph (see “Path Graph” in Figure 4) varying from 1 (unigram) to 4 (quadgram).  

 



Several n-gram items for a specific path in the crystal graph are labeled in Figure 4. The 

unigram features are generated from counting the unique coordination environments 

present along this labeled path (i.e., two four-coordinate gallium atoms [Ga-4], one two-

coordinate oxygen [O-2], two three-coordinate oxygen atoms [O-2 and O-3], one five-

coordinate indium [In-5]). The histogram of bigrams is formed from the contiguous 

sequence of two nodes, which corresponds to the combination of nearest-neighbor nodes 

(i.e., two nodes that share an edge). Trigrams and quadgrams are contiguous sequences 

up to three nodes and four nodes, respectively. In the example presented in Figure 4, the 

complete set of bigrams is two O-3/Ga-4, two O-2/Ga-4, and one O-3/In-5 bigrams.  

 

 

Figure 4. Depiction of crystal graph representing a configuration of In3Ga1O6, which 
shows the connections between each node that are defined by the chemical bonds. 
 

For the NOMAD 2018 Kaggle dataset, a total of 13 unique unigrams were used that 

range from 4 to 6 and unique oxygen coordination numbers that range from 2 to 5. To 

illustrate the histogram features generated from the n-gram model using, the unigrams for 

two 80-atom structures with the formula (Al0.25Ga0.28In0.47)2O3 and (Al0.63Ga0.34In0.03)2O3 

and C/2m and P63/mmc symmetry types are shown in Figure 5. Because of the variation 

in the count of n-grams for structure with different unit-cell sizes, these features were 

therefore normalized by the unit cell volume. 
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Figure 5. Histogram of the complete set of 13 unigram features formed from the total list 
of the unique coordination environment for each atom type for two training-set structures 
(Al0.25Ga0.28In0.47)2O3 and (Al0.63Ga0.34In0.03)2O3.  
 

The n-gram features are combined with a KRR model using the Gaussian radial basis 

function kernel. The values of the two hyperparameters (αi, the weights of each sample i 

and γ is the length scale of the Gaussian, which controls the degree of correlation 

between training point) were determined by performing grid searches with 5-fold CV and 

compares well to the private leaderboard score (Table 3). Similar to what was discussed 



in the context of ensembling different models with low correlation, here too the highest 

accuracies are obtained from an ensemble score of the trigram and quadgram predictions: 

𝑃!"# = 𝑎!"#𝑃 trigram + 1− 𝑎!"# 𝑃 quadgram , where a mixing parameter of 0.64 

and 0.69 for the formation and band gap energies was used, respectively. Although such 

an ensemble gives the lowest RMSLE, the entire list of unigrams, bigrams, trigrams, and 

quadgram features, were used throughout the discussion presented in this paper to 

facilitate a comparison between each of the different regression methods. This is a 

convenient choice to avoid having to re-train the mixing parameter for each analysis.  

 
Table 3. CV-score of the formation energies and band gap energies and public and 
private leaderboards RMSLE values for n-grams of various lengths (normalized by unit 
cell volume).  

 

n-grams 
lengths 

Formation 
energy  

RMSLE 

Bandgap 
RMSLE 

Public 
RMSLE 

Private  
RMSLE 

Unigram 0.0229 0.0817 0.0518 0.0560 
Bigram 0.0230 0.0811 0.0472 0.0540 
Trigram 0.0223 0.0814 0.0381 0.0514 

Ensemble of 
trigram and 
quadgram 

0.0200 0.0780 0.0380 0.0510 

Quadgram 0.0210 0.0770 0.0394 0.0506 

 

The n-gram features were combined with a NN architecture consisting of 11 dense layers 

with 100, 50, 50, 20, 20, 20, 20, 10, 10, 10 neurons respectively and LeakyReLU 

activation functions. The NN was implemented in PyTorch72 and optimized using 

Adam73 with a learning rate of 0.005. The n-gram features were combined with LGBM 

with the model hyperparameter optimization performed as described in Section II of the 

Methods.  

  



II. Atomic and Bond-order-potential derived features 
 

For the 2nd place model, many descriptor candidates are examined from a set of 

compositional, atomic environment-based, and average structural properties (Figure 6). 

Of this list, the optimal 175 (212) features are selected for the prediction of the band gap 

(formation) energy are based on an iterative procedure using the auxiliary gradient 

boosting regression tree (XGBoost) and used with the LGBM learning algorithm.  

 

The weighted chemical properties are computed from reference data using either the 

overall stoichiometry or the nearest neighbors. This approach is motivated by the 

concepts of structure maps that chart the structural stability of compounds in terms of 

chemical properties of the constituent atoms and the overall chemical composition.74-76 

For generating per-structure features, the weighted arithmetic mean of band gap and of 

formation energy are computed from the stoichiometry using the respective values for 

In2O3 (R-3c, Ia3, Pnma), Ga2O3 (C/2m, R-3c), and Al2O3 (C/2m, Pna21, R-3c, and P4232) 

of the Materials Project.77 The average and difference of several free-atom properties 

such as the electronic affinity, ionization potential, atomic volume, and covalent radius 

(all values were obtained from Ref. 78) are computed between each atom and each of its 

nearest neighbors to generate per-atom features. The list of nearest atomic neighbors is 

generated using the ASE package79	and determined based on the distance between two 

atoms being smaller than sum of the computed free-atom radii. 

 

The representations of the atomic environment are incorporated using BOP-based 

properties and simple geometric measures. The latter are comprised of averaged atomic 

bond distances, averaged cation-oxygen nearest-neighbor bond distances, 

centrosymmetric parameters (determined from a sum of the vectors formed between atom 

i and its nearest neighbors); and the volume per atom. The characterization of atomic 

environments by the BOP methodology relies on moments and the closely related 

recursion coefficients that connect the local atomic environment and local electronic 

structure (DOS) by the moments theorem.80 Within the analytic BOP formulism, these 

properties can be computed efficiently in an approximate way83,61,63 and used as per-atom 



features that represent the local atomic environment.64,81 For each atom, the n-th moment 

is computed by multiplying pairwise model Hamiltonians along self-returning paths (i.e., 

start and end at the same atom) up to length n. BOP allow for the discrimination and 

classification of atomic structures81 and local atomic environments,64 and therefore, make 

possible structural properties based on the atomic environment. In this work, a total of 12 

moments corresponding to the atomic environment up to the 6th nearest neighbor shell 

was used. This procedure is to some degree comparable to the n-gram approach of the 1st 

place solution with regard to sampling the environment. For example, a quadgram would 

correspond to one half of a self-returning path in an 8th moment calculation. One of the 

differences in the two methodologies is that all path segments are used explicitly in the n-

gram approach whereas only the individual self-returning paths are subsumed in the 

moments of the c/BOP approach.  

 

For each atom in the structure, this procedure generates a list with a length that is 

equivalent to the number of neighbors. A clustering scheme is then applied to the average 

and standard deviation of these features is used to generate a fixed-length representation. 

These properties were clustered into seven effective-atom groups based on its atomic 

environment described by a1
(j), b2

(j), and vj  using the k-means clustering algorithm75,76 

applied separately to O and Al, Ga, and In for each structure in the dataset. These clusters 

of varying lengths were then projected into a fixed-length vector by taking only the mean 

and standard deviation. If one of the 7 effective atoms is not present in a given structure, 

then the corresponding feature is set to zero.  

 

In total, this approach resulted in a set of 6,950 features (ca. 120 atomic properties per 

atom × 7 effective atomic environments × 4 element types × 2 statistical aggregation 

measures), which were reduced to set of 175 and 212 features for the prediction of the 

band gap and formation energies that produced the highest accuracy based on an iterative 

procedure using XGBoost.82 The final set of features where then combined with LGBM53 

for the final model with the hyper-parameters tuned using 10-fold CV within the 

hyperopt package83 and a suggestion algorithm using tree-structured Parzen estimators,84 



which resulted in an RMSLE value of 0.0462 and 0.0521 for the public and private 

leaderboards. 

	

 
Figure 6. Illustration of feature engineering and subsequent stages for the construction of 
the 2nd place c/BOP descriptor. 
 

The selection of the optimal set of features requires attributing an importance to each of 

ca. 7,000 features. However, recently, popular feature attribution methods were shown to 

have a lower assigned importance relative the true impact of that feature in modeling the 

target property.85 The SHapley Additive exPlanations (SHAP) method86 was proposed to 

give more accurate relative features importances and were calculated here as a 

normalized mean absolute value of the SHAP values for each feature (see Figure S4). For 

prediction of the band gap energy, the features with the largest relative importance (ca. 

17% each) are the weighted band gap of Al2O3, Ga2O3, and In2O3 and the volume per 

atom. In contrast, all features have a relatively small importance for the prediction of the 

formation energy; only geometrical information describing the environment of indium 

and the length centrosymmetric parameter has the highest importance. The per-atom 

features have a total relative importance of 40% and 33% for formation energy and band 



gap energy, respectively, including ca. 20% and 15% of the relative feature importance 

for the BOP-related features  

 

The same set of top-features used with LGBM to achieve the 2nd place score were also 

combined with KRR and NN. The features used with the KRR and NN regressors were 

rescaled to have a zero mean and unit variance. The KRR model employed a Gaussian 

radial basis function kernel with the α and γ hyperparameters tuned using a 5-fold CV 

grid search. The Keras package87 with the Tensorflow backend88 was used to generate a 

three-layer NN containing 1,024, 256 and 256 neurons with batch normalization, 

hyperbolic tangent activation function and 20% dropout in each layer. The output layer 

contained one neuron only had no batch normalization and used an ReLU activation 

function.89 The NN were trained for 500 epochs.  

 

III. SOAP feature vector  
The 3rd place solution used the smooth overlap of atomic positions (SOAP) kernel 

developed by Bartók et al. that incorporates information on the local atomic environment 

through a rotationally integrated overlap of Gaussian densities of the neighboring 

atoms.13,14 The SOAP kernel describes the local environment for a given atom through 

the sum of Gaussians centered on each of the atomic neighbors within a specific cutoff 

radius. The SOAP vector was computed using the QUIPPY package90 using a real-space 

radial cutoff in fcut of 10 Å and the smoothing parameter 𝜎!"#$ = 0.5 Å. The basis set 

expansion values of 𝑙 = 4 and 𝑛 = 4 were also used. For each structure, a single feature 

vector was used by averaging the per-atom SOAP vector for each atom in the unit cell, 

which resulted in a vector with a length of 681 values. These aggregated mean feature 

vectors for the dataset were then scaled so that each dimension has a mean equal to zero 

and variance equal to one.  

The average SOAP features were used in a three-layer feed-forward NN using Pytorch 

with batch normalization and 20% dropout in each layer. For predicting the bandgap 

energies and the formation energies, the initial layer had 1024 neurons and 512 neurons, 

respectively. In both cases, the remaining two layers had 256 neurons each. The neural 



networks were trained for 200 and 250 epochs for the prediction of the bandgap energies 

and the formation energies, respectively. The final predictions were based on 200 

independently trained NNs using the same architecture but with different initial weights. 

 

The average SOAP vector of each structure was combined with Gaussian Process 

Regression (GPR),18 where the  covariance function between two structures was defined 

as a polynomial kernel: 

𝑘 𝑅! ,𝑅! = (𝑎𝑅! ∙  𝑅!  + 𝑏)! 

Where 𝑅! and 𝑅!  are descriptor vectors for structure i and j; 𝑎 , b, and 𝑐  are kernel 

coefficients. The SOAP kernel can be re-written as: 

𝐾 𝑅! ,𝑅! =  𝑃𝑛1𝑛2𝑙(𝑅!)𝑃𝑛1𝑛2𝑙(𝑅!)
!!!!!

!

 

Several values for the Polynomial kernel degree x (ranging from 1 – 6) with a = 1.0 and b 

= 0.0 were examined until the lowest RMSLE was obtained. This resulted in two 

hyperparameters for the model construction: regularization of the GPR and the degree of 

the kernel. Optimal hyperparameters were identified using repeated random sub-sampling 

CV for 100 training and validation splits. The predictive accuracy was assessed using the 

validation data. Finally, the final GPR model was averaged over all 100 splits, which 

resulted in optimal regularization values of 7.6x10-6 and 3.84x10-5 for the formation 

energy and bandgap energy, respectively. These settings resulted in a RMSLE of 

0.021 and 0.085 for the formation energy and band gap energy for the test set.  

The SOAP vector was also combined with LGBM regression with the model 

hyperparameter optimization performed as described in Section II. This combination has 

proven to be suboptimal (discussed in the main text) and was dropped in favor of using a 

NN in the final submission.  
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The two target properties of the NOMAD 2018 Kaggle competition were the formation 

energy and band gap energy. The formation energy is calculated relative to pure In2O3, 

Al2O3, and Ga2O3 phases and were normalized per number of cations according to:  

𝐸! = 𝐸 (𝐴𝑙!𝐺𝑎!𝐼𝑛!)!𝑂! −  𝑥𝐸 𝐴𝑙!𝑂! − 𝑦𝐸 𝐺𝑎!𝑂! − 𝑧𝐸 𝐼𝑛!𝑂!   

where , 𝑥,𝑦, and 𝑧  are the corresponding relative concentrations of Al, Ga, and In, 

respectively defined as:  𝑥 =  !!"
!!"! !!"! !!" 

,𝑦 =  !!"
!!"! !!"! !!" 

, 𝑧 =  !!"
!!"! !!"! !!" 

.  

𝐸 (𝐴𝑙!𝐺𝑎!𝐼𝑛!)!𝑂!  is the energy of the mixed system, 𝐸 𝐴𝑙!𝑂! , 𝐸 𝐺𝑎!𝑂! , and 

𝐸 𝐼𝑛!𝑂!  are the energies of the pure binary crystalline systems in their thermodynamic 

ground state. This relative formation energy provides an estimate of the stability of the 

mixed system with respect to the stable ground state of the binary components and differs 

from the usual definition that instead uses the atomic energies for reference values. The 

relative formation energy is instead used because the use of atomic energies incorporates 

a large linear trend into the definition of the formation energy, which is easily learned by 

any machine learning approach and results in much lower errors for the formation energy 

compared to the bandgap energy. By using the bulk energies of the pure binary 

components as reference values (instead of the atomic energies), a more similar in in 

these two target properties is obtained. A similar distribution of the two target properties 

between the training and test sets for the formation energy (top, Figure S1) and bandgap 

energy (bottom, Figure S1) are observed for the 2400-value training and 600-value test 

set used in the NOMAD 2018 Kaggle competition.  

 
 



 
 

 
 
Figure S1. Histogram of the formation energy (top) and band gap energy (bottom) for the 
training and test sets used in the NOMAD 2018 Kaggle competition.  
  



Table S1. Comparison of the average and standard diversion of MAE values for the 
formation and bandgap energies for five random 80%/20% training/test set splits with the 
MAE values for the dataset used in the NOMAD 2018 Kaggle competition (Original).  
 

Descriptor Method 

Formation energy 
(meV/cation) Band gap energy (meV) 

Avg. (Std.) 
five 80/20 

splits 
Original  

 
Avg. (Std.) 
five 80/20 

splits 

Original 

n-gram KRR 16 (0.6) 14 119 (5) 106 

atomic/BOP  LGBM 17 (0.1) 15 104 (2) 93 

SOAP NN 14 (0.1) 13 107 (9)  99 

 

 
 

  



 

 
Figure S2. MAE learning curves for the formation energy (top) and bandgap (bottom) the 
training (solid lines) and test set (dashed) for n-gram+KRR (blue), atomic/BOP+LGBM 
(red), and SOAP+NN (black) using random subsets in increments of 20% of the 2400- 
samples training with a consistent 600-sample test set that was used in the NOMAD 2018 
Kaggle competition (i.e., 480 samples in the training set, with predictions made on the 
same 600-sample test set), 40% (960/600), 60% (1440/600), 80% (1920/600) and 100% 
(2400/600). All three models were trained using 5-fold cross-validation.	
 
  



Table S2. A comparison of the three winning representations of the competition 
combined with the KRR/GPR, NN, and LGBM regression models. The mean absolute 
error (MAE) of the formation energy and band gap energy for the test set and their 95% 
confidence values for the MAE are also provided.  
 

Representation Regression 
model  Formation energy 

(meV/cation) Band gap energy (meV) 

  Training 
(95% per.) 

Test  
(95% per.) 

Training  
(95% per.) 

Test  
(95% per.) 

n-gram NN 6 (18)  16 (54) 65 (188) 124 (397) 
n-gram KRR 11 (36) 14 (55) 96 (337)  106 (352) 
n -gram LGBM 4 (12) 17 (61) 39 (129) 110 (399) 
c/BOP NN 13 (36) 19 (64)  77 (229) 118 (410) 
c/BOP KRR 9 (27) 17 (61) 93 (319) 118 (452) 
c/BOP LGBM 4 (12) 15 (51) 41 (135)  94 (393) 
SOAP NN 4 (10) 13 (46)  32 (83) 99 (392) 
SOAP GPR 5 (16) 13 (47) 35 (107) 98 (378) 
SOAP LGBM 2 (6) 15 (60)  23 (92) 110 (478) 

 

Table S3. Comparison of test set MAE values for the three winning models trained for a  
dataset containing five of the total six lattice symmetries and a test set on comprising of 
only one lattice symmetry (Ia3) contained in the full 3000-sample (AlxGayInz)2O3 dataset. 
 

Representation Regressor 
Formation 

energy 
(meV/cation) 

Band gap 
energy 
(meV) 

n-gram KRR 53 179 
SOAP NN (GPR) 11 (11) 280 (680) 

atomic/BOP- 
features LGBM 40*/36** 180*/111** 

* Feature selection and model hyper-optimization according to five-fold cross-
validation with splits generated randomly 
** Feature selection and model hyper-optimization according to five-fold cross-
validation with splits generated based on spacegroup number	



 
Figure S3. MAE learning curves for the formation energy (top) for the training (solid 
lines) and test set (dashed) using a cluster expansion model constructed from a set of two-
point clusters up to six-angstroms.	
 
 

 

 

 

 

 

 

 

 



	

 
Figure S4. Relative importances for different groups of features for the formation energy 
(top) and band gap energy (bottom) per-structural features are comprised of 
compositional-related features and lattice-vector lengths. 


