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Abstract
Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and
psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD),
depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling,
rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study
(GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and
typically developing children of European ancestry (N= 2562–3468). We observed a genome-wide significant effect (p
< 1 × 10−8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924
host gene; rs17663182 p= 4.73 × 10−9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation
transporter; rs16928927, p= 2.25 × 10−8). rs17663182 (18q12.2) also showed genome-wide significant multivariate
associations with RAN measures (p= 1.15 × 10−8) and with all the cognitive traits tested (p= 3.07 × 10−8), suggesting
(relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps
of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities
were positively associated with EDUyears (p ~ [10−5–10−7]) and negatively associated with ADHD PRS (p ~
[10−8−10−17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD,
at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into
the genetics of dyslexia and its comorbities.

Introduction
Developmental dyslexia (DD) is a neurodevelopmental

disorder affecting the ability of learning to read and to
spell, in spite of adequate intelligence, educational
opportunities, and in the absence of overt neurological
and sensorial deficits1. It shows a prevalence of 5–12%
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among school-aged children, implying life-long learning
difficulties for most of the affected individuals1. DD is
characterized by a high rate of comorbidity with other
neuropsychiatric conditions like attention-deficit hyper-
activity disorder (ADHD), depression, and anxiety dis-
orders2. Dyslexic individuals usually have severe and
persistent problems in accurate and fluent reading and
spelling, and in reading comprehension3. These problems
are often associated with early deficits in neurocognitive
skills, such as the ability to recognize and manipulate the
phonemic constituents of speech (also known as phoneme
awareness, PA), the ability to store such phonemes while
reading (also known as phonological short-term memory),
or the ability to fast map known visual symbols onto
spoken word representations (known as naming speed)4.
All these abilities show moderate-to-high heritability
(40–80%)5–7 and significant genetic correlations with
DD5. Hence, they represent cognitive indicators of dys-
lexia risk that are optimally suited for investigating the
genetic mechanisms at its basis.
In the last two decades, several studies investigating

both DD and the underlying cognitive skills have been
carried out to better understand the genetic and neuro-
biological basis of dyslexia. On the one hand, linkage and
targeted association analyses have suggested different
candidate DD susceptibility genes (reviewed in refs. 1,8,9).
Only a few of these genes have been implicated in DD,
reading ability, and underlying cognitive skills in at least
two independent studies or datasets1. These include
DYX1C1 (15q21)10, KIAA0319 (6p22)11–14, DCDC2
(6p22)15–18, MRPL19/GCFC2 (2p12)19, ROBO1 (3p12)20–
22, GRIN2B23,24, FOXP225–27 and CNTNAP227–29.
On the other hand, most of the genome-wide associa-

tion studies (GWAS) published so far have identified
mainly suggestive associations with DD and related cog-
nitive traits (p < 10−5)30–34, with only one recent study
reporting a genome-wide significant association (p < 5 ×
10−8; see below)35. The first GWAS for reading ability
used DNA pooling of low vs. high reading ability groups
in ~1500 7-year-old children, which were genotyped with
a low-density single-nucleotide polymorphism (SNP)
microarray (∼107,000 SNPs)34. The SNPs showing the
largest allele frequency differences between low- and
high-ability groups were tested in an additional follow-up
cohort of 4258 children, finally identifying 10 SNPs
showing nominally significant associations with con-
tinuous variation in reading ability34. However, Luciano
et al.36 later found no evidence of replication of these
findings in an adolescent population sample of Australian
twins and siblings (N= 1177). A later genome-wide
linkage and association scan on ∼133,000 SNPs, in a
sample of 718 subjects from 101 dyslexia-affected families,
identified an association with dyslexia status at rs9313548,
near FGF18 (5q35.1)33. More recently, three GWAS

studies with different designs were carried out with the
aim of identifying shared genetic contributions to reading
and language abilities. Luciano et al.32 performed a
GWAS on quantitative reading- and language-related
traits in two population-based cohorts (N∼ 6500), ana-
lyzing word reading, nonword repetition, and a composite
score of reading and spelling abilities. They reported a
suggestive association of rs2192161 (ABCC13; 21q11.2)
with nonword repetition and of rs4807927 (DAZAP1,
19p13.3) with both the word reading and the
reading–spelling score. A case-control GWAS comparing
dyslexic (N= 353), language impaired (LI) (N= 163), and
comorbid cases (N= 174) to a population-based control
dataset (N= 4117) identified nominally significant asso-
ciations with comorbid DD-LI cases drawn from the same
population cohort used by Luciano et al.32. The most
significant associations were detected at rs12636438 and
rs1679255, mapping to ZNF385D (3p24.3)30. Another
GWAS analyzed the first principal component from var-
ious reading- and language-related traits (both with and
without IQ adjustment) in three datasets comprising
children with reading or language problems and their
siblings (N= 1862), and reported suggestive associations
at rs59197085, upstream of CCDC136/FLNC (7q32.1),
and at rs5995177, within RBFOX2 (22q12.3)31. More
recently, Truong et al.35 reported a genome-wide sig-
nificant multivariate association of rs1555839 (10q23.31)
with two skills predicting DD risk, namely rapid auto-
matized naming (RAN) and rapid alternating stimulus
(RAS), in a multisite case-control study of DD made up of
individuals of non-European ancestry (N= 1263). This
SNP, located upstream of the pseudogene RPL7P34, was
also associated with measures of word reading and was
replicated with RAN traits in an independent cohort from
Colorado35, partially overlapping with the Colorado
dataset analyzed by Gialluisi et al.31.
Although many of the genes suggested by these GWAS

studies showed interesting potential biological links to DD
and underlying skills, most of these associations did not
reach genome-wide significance and were not replicated
in independent datasets36,37. Prominently, an analysis of
17 candidate SNPs mostly identified by these GWAS, did
not manage to replicate the associations previously
reported, with word/nonword reading and fluency, PA
and RAN traits, in an independent family-based Dutch
population dataset comprising 483 children and 505
parents from 307 nuclear families37. This might have
different reasons, including the low statistical power of
the original GWAS studies implied by the relatively small
sample sizes, and the heterogeneity of recruitment criteria
and phenotypic assessment of the cohorts involved. In
addition, the candidate susceptibility genes identified and
replicated so far explain only a minor part of the genetic
variance underlying dyslexia and related cognitive traits,
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and a big proportion of this heritability remains
unexplained.
To help unravel the genetic basis of DD and related

neurocognitive skills, we conducted a large international
collaborative GWAS. We analyzed the cognitive traits
word reading, spelling, decoding skills, phoneme aware-
ness, verbal short-term memory, and naming speed, in
nine cohorts of reading impaired and typically developing
participants of European ancestry (maximum N= 3468).
We observed a genome-wide significant association at
18q12.2 and an association approaching genome-wide
significance at 8q12.3, both with rapid automatized
naming (RAN, N= 2563). These genetic effects extended
beyond the RAN domain, to other DD-related skills. Also,
we detected significant genetic overlaps of the traits
analyzed with educational attainment and ADHD risk.
Overall, our findings provide new insights in the genetic
etiology of dyslexia and related cognitive traits.

Subjects and methods
Datasets
Table 1 reports the main details on the datasets involved

in this study and on the recruitment criteria.
Unrelated DD cases and controls were recruited across

seven different European countries, namely Austria (N=
374), Germany (N= 1061), Finland (N= 336), France (N
= 165), Hungary (N= 243), The Netherlands (N= 311),
and Switzerland (N= 67). Cases were defined as subjects
showing more than 1.25 standard deviations (SD) below
grade level on a standardized word reading test, while
controls were defined as subjects with less than 0.85 SD
below grade level on the same test38. In addition, we
included two family-based datasets in the study. One of
these, from Colorado, United States (USA), contained
children showing a school history of reading difficulties as
well as their siblings (N= 585; 266 independent nuclear
families)31,39. The other one, from the United Kingdom
(UK), consisted of subjects with a formal diagnosis of
dyslexia and their unaffected siblings (N= 983; 608
independent nuclear families)31,40. Ethical approval was
obtained for each cohort at the local level, and written
informed consent was obtained for all the participants or
their parents, as described elsewhere31,41,42.
Although the family-based datasets have been pre-

viously investigated in GWAS studies31,40,43, the European
datasets have been analyzed in a candidate (SNP) asso-
ciation study42, and part of the German dataset has been
investigated in relation to mathematical abilities23 and to
neurophysiological DD endophenotypes44, such datasets
were never analyzed jointly in a GWAS of neurocognitive
traits related to dyslexia. In the present study, samples
from Austria, Germany, and Switzerland were merged
into a single dataset (hereafter called AGS), since they
shared language, genetic ancestry, phenotypic measures, Ta
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and selection criteria38,42,45. No other cohorts were
approached for the present study, and all the cohorts
contacted presented no refusal or lack of requirements for
inclusion criteria.

Phenotypic measures
We focused on the core phenotypes of dyslexia, namely

word reading (WRead), nonword reading (NWRead), and
word spelling (WSpell), and on five neurocognitive mea-
sures underlying reading ability and dyslexia (as well as
other comorbid learning disabilities, e.g., dyscalculia).
These skills included phoneme awareness (PA), digit span
(DigSpan, a measure of verbal short-term memory), and
rapid automatized naming of letters (RANlet), digits
(RANdig), and pictures (RANpic). These traits showed
moderate-to-high cross-trait correlations (see Table S1a,
b in Supplementary Methods). A brief explanation of
these measures is reported in Table 2, while details on
statistical elaboration are reported in Supplementary
Methods and elsewhere31,38,45. Briefly, raw scores from
psychometric tests were grade-normed (age-adjusted in
Colorado) and then z-standardized to reduce skewness,
with the exception of the DigSpan score, which was only
z-normalized38,45. No phenotypic outliers were detected
in any of the datasets analyzed (see Supplementary
Methods for details).

Genotype quality control (QC) and imputation
Individuals were genotyped using Illumina HumanHap

300 k, 550 k, 660 k, HumanOmniExpress, and Human-
CoreExome BeadChips (see Table S2 for details). Geno-
type QC was carried out in PLINK v1.90b3s46 and
QCTOOL v1.4 (see URLs), as described in Supplementary
Methods and elsewhere47. Within each dataset, SNPs
were filtered out if they showed a variant call rate < 98%; a
minor allele frequency (MAF) <5%, or a Hardy–Weinberg
Equilibrium (HWE) test p-value <10−6. Moreover, sam-
ples showing a genotyping rate <98%, cryptic relatedness
(in datasets of unrelated subjects), identity-by-descent
(IBD) not corresponding to the available pedigree infor-
mation (in sibling-based datasets), and mismatches
between genetic and pedigree-based sex were discarded.
Furthermore, genetic ancestry outliers—detected in a
multidimensional scaling (MDS) analysis of pairwise
genetic distance—and samples showing significant
deviations in genome-wide heterozygosity were also fil-
tered out (see Table S3).
For imputation, autosomal variants were aligned to the

1000 Genomes phase I v3 reference panel (ALL popula-
tions, June 2014 release)48 and pre-phased using SHA-
PEIT v2 (r837)49. Imputation was performed using
IMPUTE2 v2.3.250 in 5 Mb chunks with 500 kb buffers,
filtering out variants that were monomorphic in the 1000

Table 2 Cognitive traits analyzed in the present study

Trait Definition Task

Wread Reading single real words of varied difficulty Timed word reading in AGS, Finland, France, Hungary, and the Netherlands;

Untimed word reading in UK; composite score of timed word reading and

reading accuracy in Colorado

Wspell Spelling single real words after dictation Spelling accuracy

NWRead Reading aloud nonsense words of varied difficulty Timed nonword reading in AGS, Finland, France, Hungary, and the

Netherlands; untimed nonword reading in UK and Colorado

PA Deletion, substitution or swapping of specific phonemes in

one or multiple words

Phoneme deletion in AGS, Finland, France, Hungary, and the Netherlands;

Phoneme deletion/substitution and spoonerism in UK; composite of

phoneme deletion and phoneme segmentation and transposition tasks in

Colorado

DigSpan Reciting a sequence of digits presented by recalling them in

the same (forward) and/or reverse (backward) order

WISC (Wechsler intelligence scale for children) forward and backward digit

span task

RANdig Naming as quickly and as accurately as possible a matrix of

digits visually presented

Naming speed task (number of digits correctly named per minute)

RANlet Naming as quickly and as accurately as possible a matrix of

letters visually presented

Naming speed task (number of letters correctly named per minute)

RANpic Naming as quickly and as accurately as possible a matrix of

objects visually presented

Naming speed task (number of objects/pictures correctly named per minute)

More detailed information on these phenotypic measures, including psychometric tests used and statistical elaboration, is reported in the Supplementary Methods

Gialluisi et al. Translational Psychiatry            (2019) 9:77 Page 4 of 15    77 



Genomes EUR (European) samples. Chunks with < 51
genotyped variants or concordance rates < 92% were fused
with neighboring chunks and re-imputed. Finally, impu-
ted variants (genotype probabilities) were filtered out for
IMPUTE2 INFO metric < 0.8, MAF < 5% and HWE test
p-values <10, using QCTOOL v1.4. We checked again for
the absence of genetic ancestry and genome-wide het-
erozygosity outliers after imputation, which revealed
substantial concordance with pre-imputation QC. Further
details on the filters used in genotype QC are reported in
Table S3, while summary statistics are reported for each
dataset in Table S2.

Genetic association testing and meta-analysis
After genotype QC and imputation, autosomal genotype

probabilities were tested for association with the con-
tinuous traits available within each dataset. In the datasets
containing only unrelated subjects—namely AGS, Fin-
land, France, Hungary, and The Netherlands—association
with genotype dosage was tested through linear regression
in PLINK v1.9, using the first 10 genetic ancestry (MDS)
components as covariates. In the sibling-based datasets
(Colorado and UK), a generalized linear mixed-effects
model association test was carried out through FastLMM
v2.0751, using a genetic relationship matrix (GRM) of
samples as a random effect while disabling normalization
to unit variance for tested SNPs.
Following separate GWAS analyses for each dataset,

variant associations with each of the eight univariate traits
available were combined using a fixed-effects model based
on inverse-variance-weighted effect size in METASOFT
v2.0.152. Following the software guidelines, pooled ana-
lysis was conducted in two steps: a first run was carried
out to compute genomic inflation factors, which were
then used to correct meta-analysis statistics in a second
run. The numbers of subjects involved in our pooled
analysis were 3468 for WRead, 3399 for WSpell, 3409 for
NWRead, 3093 for PA, 2591 for DigSpan, 2563 for
RANlet and RANdig, and 2562 for RANpic (see Table S4
for detailed sample size by dataset). RAN measures and
DigSpan were not available in the UK dataset, which was
therefore not included in the pooled analyses of those
traits. The numbers of variants analyzed in two or more
datasets were 6,952,813 for RANlet, RANdig, RANpic,
and DigSpan and 6,969,139 for WRead, WSpell, NWRead,
and PA. The common genome-wide significance thresh-
old α= 5 × 10−8 was corrected for multiple testing of five
independent latent variables, as computed through
MatSpD53 on the correlation matrix of the eight uni-
variate traits analyzed (Table S1a, b). This adjustment
resulted in a final Bonferroni-corrected significance level
α= 1 × 10−8.
We also carried out a genome-wide multivariate genetic

association analysis through TATES54, combining the

univariate associations of single traits while taking into
account their cross-trait correlation matrix (Table S1a).
This analysis was aimed at the detection of vertical (or
relational) pleiotropic genetic effects, i.e., those effects
which are shared across traits due to their reciprocal
relations55. For this analysis, the classical genome-wide
significance threshold was used (α= 5 × 10−8).
The most significant associations detected were further

investigated to assess their robustness through a
permutation-based test. Moreover, we computed their
effect size (regression R2) and tested potential epistatic
effects of the variants identified. Similarly, we looked for
effects of these variants on the other cognitive traits tested
in our study through a horizontal pleiotropy test, aimed at
detecting effects that were independent on the one observed
on RANlet. Also, we looked for independent genetic effects
in the genomic regions where these variants lay (18q12.2
and 8q12.3). Finally, we tested them for association with
structural neuroimaging measures, which may be poten-
tially correlated with reading and language abilities, namely
subcortical volumes (see below). These analyses are repor-
ted in details in the Supplementary Methods section.

Assessment of genes and SNPs previously associated with
DD and related cognitive traits
We investigated single-variant associations for candi-

date SNPs and genes previously implicated in DD and
related cognitive traits.
First, we assessed all the variants mapping to nine

candidate genes (up to 10 kb from the 5′- or 3′-UTR):
DYX1C1, DCDC2, KIAA0319, C2ORF3, MRPL19,
ROBO1, GRIN2B, FOXP2, and CNTNAP2. For these
genes, association with DD and related cognitive traits
was previously reported in at least two independent stu-
dies (as reviewed in ref. 1). Of note, most of the candidate
variants identified in these genes have been already tested
in studies showing a variable degree of overlap with our
cohorts (reviewed in refs. 1,8,9), hence they cannot be
formally replicated within the scope of the current study.
For this reason, we focused our replication effort on six
candidate SNPs among these variants, for which a statis-
tically significant association (p < 0.05 after correction for
multiple testing) has been reported in the past in datasets
other than ours, but was never formally replicated. These
SNPs included rs6803202, rs4535189, rs331142 and
rs12495133 in ROBO121,22, rs7782412 in FOXP227, and
rs5796555 in GRIN2B24.
We next tested all the variants showing the strongest

associations with DD and related cognitive traits in pre-
vious GWAS30–35. These included all those variants
reported to be associated in previous GWAS papers,
including genome-wide significant associations (p < 5 ×
10−8), suggestive associations (p < 1 × 10−5), or variants
reported as the most significant associations (top 10 or
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top 100 list, depending on the associations reported in
each paper; see Results section for a complete list). Again,
some of these variants were identified by studies partially
overlapping with our datasets31, while for other SNPs
tested the statistics from the original papers were not fully
available or not always directly comparable, due to either
different design of the study or to different traits ana-
lyzed30–35. Therefore, a direct comparison was possible
only for few variants (see relevant Results section).

Gene- and pathway-based enrichment tests
Gene-based association analyses for the phenotypic

traits tested were performed using MAGMA v1.0656.
First, genetic variants were assigned to protein-coding
genes based on their position according to the NCBI 37.3
(hg19) build, extending gene boundaries by 10 kb from
the 3′- and 5′-UTR. A total of 18,033 genes (out of 19,427
genes available) included at least one variant that passed
internal QC, and were thus tested in gene-based enrich-
ment analysis. Gene-based statistics were computed using
the single-variant association statistics calculated in the
GWAS of each phenotype, using default settings. To
account for linkage disequilibrium (LD) among the var-
iants tested, we used genetic data from all the datasets
pooled together. Given the number of genes (18,033) and
of independent latent traits (5) tested, the Bonferroni-
corrected genome-wide significance threshold for this
analysis was set to α= 0.05 / (18,033 × 5)= 5.5 × 10−7.
Using the results of the gene-based association analysis,

we carried out a pathway-based enrichment test for each
trait analyzed in the study, through a competitive gene-set
analysis in MAGMA v1.06. We tested for enrichment
1329 canonical pathways (i.e., classical representations of
biological processes compiled by domain experts) from
the Molecular Signatures Database website (MSigDB v5.2,
collection C2, subcollection CP; see URLs). To correct
enrichment statistics for testing of multiple pathways, we
used an adaptive permutation procedure with default
settings (up to a maximum of 10,000 permutations).
Hence, for gene-set analysis we corrected the significance
threshold only for the number of independent latent traits
tested (α= 0.05/5= 0.01).

Polygenic risk score analysis
To assess the genetic overlap of common variants

between the dyslexia-related skills tested here and other
correlated phenotypes, we carried out a polygenic risk score
(PRS) analysis using PRSice v1.2557. This analysis tests
genetic overlap between two traits by making use of GWAS
summary statistics: a training GWAS is used to build the
PRS, which is then tested as a linear predictor of another
trait in an independent study (target GWAS). We used the
eight-univariate GWAS carried out here as a target, namely

WRead, WSpell, NWRead, PA, RANlet, RANdig, RANpic,
and DigSpan. As training GWAS, we selected 12 different
studies, involving seven subcortical volumes previously
tested in a large GWAS (N~13,000)58; an educational
attainment trait (expressed in years of education completed,
EDUyears; N~293,000)59; and four neuropsychiatric dis-
orders. These included ADHD (N~55,000)60; autism spec-
trum disorder (ASD; N~16,000)61; major depressive
disorder (MDD; N~19,000)62; and schizophrenia (SCZ;
N~150,000)63, and were selected in light of their comor-
bidity with dyslexia reported by previous literature4,64–66.
Similarly, the choice to test subcortical volumes was driven
by the increasing evidence implicating subcortical struc-
tures in reading and language abilities (as reviewed in
refs. 1,67,68).
We performed a Summary–Summary Statistic Based

Analysis using only SNPs with association p-values ≤ 0.05
in each training GWAS, and in linkage equilibrium (r2 <
0.05) with the local top hit within a 300 kb window. Only
SNPs which had been tested both in the training and in
the target GWAS were tested. The number of SNPs
meeting these criteria ranged from 11,017 for MDD vs.
DigSpan and RAN traits, to 25,409 for SCZ vs. WRead,
WSpell, NWRead, and PA. To verify the robustness of our
results, we repeated the analysis at increasing association
significance (PT) thresholds in the training GWAS (with
PT= 0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).
To have an indication on the concordance of shared

genetic effects for each pair of traits, we selected variants
with association p-values ≤ 0.05 in each training GWAS
and computed Pearson’s correlation of effect sizes (here-
after called rβ) with each of the target GWAS analyzed.
The significance threshold for these analyses was cor-
rected for multiple testing of five independent target
GWAS (i.e., the number of independent latent traits
computed through MatSpD, see Table S1b), 12 different
training GWAS and 12 different PT thresholds tested (α
= 0.05/(5 × 12 × 12)= 6.94 × 10−5.

Results
For each analysis presented below, we report the

empirical p-values, along with significance thresholds
adequately corrected for multiple testing (see Subjects and
methods section).

Single-variant genome-wide associations
Among the eight traits analyzed in the present GWAS,

only RANlet showed genome-wide significant associa-
tions withstanding correction for multiple testing (p < 1 ×
10−8), mapped to chromosome 18q12.2. The most sig-
nificant association was observed for rs17663182 (G/T;
MAF= 7.7%; p-value= 4.73 × 10−9, major allele (G) β
(SE)= 0.35 (0.06)). All the SNPs significantly associated
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on 18q12 were located within the non-coding gene
MIR924HG (micro-RNA 924 host gene, also known as
LINC00669; see Fig. 1a) and were in high LD with each
other (r2 > 0.9). An additional, independent association
approaching genome-wide significance was observed with
RANlet at rs16928927 (C/T; MAF= 6.5%; p-value=
2.25 × 10−8, major allele (C) β (SE)=−0.4 (0.07)) on
8q12.3. This SNP was located within the first intron of
NKAIN3 (Na+/K+ transporting ATPase interacting 3; see
Fig. 1b). Further details on these associations are reported
in Fig. 2 and Table 3.
Although neither of the two top SNPs was genotyped,

imputation quality was high in all datasets (IMPUTE2
INFO metric 0.89–0.94 for rs17663182 and ~0.99 for
rs16928927, respectively). These variants showed con-
sistent allelic trends (Fig. 3a, b), but explained a variable
proportion of RANlet variance in the different datasets
([0.03–1.8]% for rs17663182 and [0.067–2.96]% for
rs16928927, respectively; Table S5a, b). Both our lead
SNPs showed evidence of an association with many of the
traits analyzed, especially with RAN traits (see Fig. 4a, b).
Indeed, a genome-wide multivariate association analysis
with the eight cognitive skills detected a significant
association at rs17663182 (p= 3.07 × 10−8), and a sug-
gestive association at rs16928927 (p= 1.46 × 10−7).
Similarly, a multivariate association test focused on the
three RAN traits revealed a genome-wide significant
association of rs17663182 (p= 1.15 × 10−8), while
rs16928927 association only approached significance (p=
5.45 × 10−8). However, neither of these two SNPs showed
significant effects independent from RANlet on any other
trait (Table S5c, d). Similarly, we observed no significant
independent genetic influence on RANlet at 18q12.2 and
8q12.3, in a 100 kb window surrounding rs17663182 and
rs16928927 (Table S5e, f), as well as no significant

epistatic effect of these two variants on RANlet (Table
S5g). These SNPs did not show any statistically significant
association with volumes of seven different subcortical
structures (Table S5h, i).

Fig. 1 Regional association plots of lead variants. Regional association plots of a 18q12.2 and b 8q12.3 with the RANlet trait. The most
significantly associated variants are highlighted in violet. Plots were made using LocusZoom v0.4.8112

Fig. 2 Boxplots of RANlet trait for lead variants. Boxplots of the
RANlet trait as a function of genotype of the lead variants rs17663182
(left side, major allele G) and rs16928927 (right side, major allele C).
Genotype counts are G/G = 2,092; T/G = 307; T/T = 16; missing= 148
for rs17663182 and C/C = 1,965; T/C = 259; T/T = 7; missing =332 for
rs16928927 (Note: missing counts include Finland, where rs16928927
was not available). To generate these plots, all datasets were pooled
together. RANlet Z-scores plotted here are residualized against the first
10 MDS covariates in all datasets except for Colorado, where we
adjusted the phenotypic measure for pairwise genetic relatedness in
GenABEL113 (see Supplementary Methods section)
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Fig. 3 Forest plot of associations of lead variants with RANlet.
Forest plots of association signals with RANlet for a rs17663182
(18q12.2) and b rs16928927 (8q12.3). Effect sizes (β) refer to major
alleles a G and b C, respectively

Fig. 4 Forest plots of multi-trait associations for lead variants.
Forest plots of associations of a rs17663182 (18q12.2) and b
rs16928927 (8q12.3) with the different traits analyzed in the study.
Effect sizes (β) refer to major alleles a G and b C, respectively
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Detailed results of the GWAS analyses for each uni-
variate trait are reported in Supplementary Figure S1a–p
and Table S6a–h, while the most significant multivariate
associations detected genome-wide are reported in Table
S6i.

Genes and SNPs previously associated with DD and related
cognitive traits
In total, 12,785 variants were annotated to nine candi-

date genes previously implicated in dyslexia by at least
two independent studies, namely DYX1C1, DCDC2,
KIAA0319, C2ORF3, MRPL19, ROBO1, GRIN2B, FOXP2,
and CNTNAP2. We reported associations for all these
variants in Table S7a–h. Among these variants, a detailed
assessment of six candidate SNPs previously associated
with DD or related cognitive measures in independent
studies did not reveal any strong evidence of replication in
our cohorts (see Table S7i), although we found marginal
evidence of association of the ROBO1 variant rs12495133
with WSpell (C/A; MAF= 40%; p-value= 0.045, major
allele (C) β (SE)=−0.06 (0.03)), with an allelic trend
concordant with the original report22.
Similarly, among variants associated with DD and

related cognitive measures in previous GWAS efforts (see
Table S8a–i), we identified a few nominally significant
associations (p < 0.05) that were comparable with those
reported by previous independent studies (Table S8j). The
most significant associations were observed at
rs10485609, an intronic SNP located within the CSE1L
gene (20q13.13), with both word (A/G; MAF= 12%; p-
value= 2.6 × 10−3, major allele (A) β (SE)=−0.12 (0.04))
and nonword reading (p-value= 6.5 × 10−3, major allele
(A) β (SE)=−0.1 (0.04)). These associations showed the
same direction of effect as in the original report34.

Gene- and pathway-based associations
Gene-level analyses of single-variant association signals

in MAGMA revealed no significant enrichment of genes
after correcting for testing of 18,033 protein-coding genes
and of five independent latent traits (α= 5.5 × 10−7; see
Table S9a–h). The most significant association was
observed for the gene ADCYAP1R1 (adenylate cyclase
activating polypeptide 1 receptor type I; 7p14.3) with
NWRead (Z-score = 4.6; p = 2 × 10−6). Similarly, also in
the gene-set analysis of 1329 canonical pathways from the
MSigDB website, no pathway was significantly enriched (α
= 0.01 for permutation-based enrichments, already cor-
rected for testing of multiple pathways; see Table
S10a–h). However, we found a nominally significant
enrichment of associations with WSpell for genes in the
BioCarta RAS pathway (Bonferroni-corrected p = 0.045; β
(SE)= 0.64 (0.16); see Table S10i for a complete list of
genes leading the pathway-based association).

Genetic overlap with neuroimaging, neurodevelopmental,
and neuropsychiatric phenotypes
PRS analysis revealed the presence of a significant pro-

portion of shared genetic variance between the different
DD-related traits analyzed in our GWAS and some of the
neuroimaging, educational, and neuropsychiatric pheno-
types investigated in previous large GWAS studies (see Fig.
5; Table S11a–c). In particular, we observed significant
genetic overlaps withstanding Bonferroni correction (p <
6.94 × 10−5) with ADHD risk, and with educational
attainment (EDUyears). The ADHD PRS was negatively
associated with WRead, WSpell, and NWRead (at PT=
0.05: Nagelkerke’s R2 ranging from 0.004 for NWRead to
0.007 for WRead; p ~ [10−5–10−7]), while EDUyears
polygenic score was positively associated with WRead,
WSpell, NWRead, DigSpan, and PA (at PT = 0.05: R2

ranging from 0.011 for DigSpan to 0.019 for WRead and
PA; p ~ [10−8–10−17]). These results were substantially
confirmed at different PT thresholds (see Figure S11a–h).

Discussion
In the present study, we investigated genetic effects on

eight different neurocognitive skills, including behavioral
features and predictors of dyslexia. We conducted a
GWAS of up to 3468 subjects from nine different coun-
tries, speaking six different languages. Hence, our study
represents the most detailed GWAS in the field in terms
of phenotypes investigated, countries and languages
involved, and one of the largest reported so far.

Fig. 5 Polygenic Risk Score analysis. Results of the polygenic risk
score (PRS) analysis on the eight traits analyzed in this work (target
traits), which were compared with different neuropsychiatric,
educational, and neuroimaging phenotypes (training traits). In the
heatmap, –log(p) of the R2 computed by PRSice57 at an association p-
value threshold (PT) of 0.05 is reported. Complete summary statistics
are reported in Tables S11a, b, c
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We identified a genome-wide significant effect on rapid
automatized naming of letters, which showed a (rela-
tional) pleiotropic influence on the whole RAN domain
and, to a lesser extent, on reading abilities. Rapid naming
reflects the automaticity of visual–verbal access necessary
for efficient word decoding, and accounts for a significant
proportion of variance in word reading ability, especially
reading fluency, which is independent of the well-
established language and phonological processes impli-
cated in reading, like phoneme awareness69. This asso-
ciation between RAN and reading (fluency) has been
reported across different orthographies45 and over the life
span70. Furthermore, RAN turned out to be a significant
predictor of poor reading skills across orthographies38 and
is also used in kindergarten to identify children at risk of
dyslexia71. Good predictivity of reading performance has
been reported for both alphanumeric and non-
alphanumeric RAN measures, although correlations are
usually stronger between alphanumeric RAN and reading
fluency, compared with non-alphanumeric RAN (as
reviewed by Kirby et al.72). The correlations between
alphanumeric (letters and numbers) RAN and reading
skills are also significant through adulthood73. Impor-
tantly, RAN predicts later reading performance indepen-
dently from reading experience or early differences in
reading ability74–76, and from phoneme awareness. While
RAN has been shown to be an important predictor for
reading problems, it should be noted that, in line with
multiple-deficit models of dyslexia77, RAN represents one
of several predictors of DD risk and reading abilities
(reviewed in ref. 78). More recently, RAN has been also
associated with other learning disorders, like dyscalculia,
and it has been hypothesized that RAN deficits in dyslexic
children may be independent from those detected in
dyscalculic children79,80.
The most significant association signal with RANlet was

observed for rs17663182, a variant located within
MIR924HG (18q12.2; micro-RNA 924 host gene, or
LINC00669). Additional significant associations were
detected in the same region for other variants, all in high
LD with the lead SNP, which suggests that they identified
the same genetic effect on RANlet. This observation was
supported by the absence of strong independent genetic
effects on RANlet within a 100 kb window surrounding
the strongest signal at rs17663182. An extensive lookup of
these 18q12.2 variants in common online gene expression
databases—including the Genotype-Tissue Expression
portal (GTEx)81, the Brain eQTL Almanac (Braineac)82,
the Blood eQTL browser83, and the seeQTL database84 —
revealed weak evidence of expression quantitative trait
loci (eQTL) involving rs17663182 and neighboring asso-
ciated SNPs. Braineac reports nominally significant eQTL
effects (p-value < 0.05) for these SNPs on MIR924HG
expression in the occipital cortex, thalamus, and

substantia nigra. In addition, HaploReg v4.1 indicated the
presence of histone marks usually associated with tran-
scriptional activity in the same region, such as H3K4me1,
H3K27ac, and H3K9ac85. To the best of our knowledge,
no regulatory role is known for MIR924HG, and MIR924
has not been functionally characterized so far. None-
theless, the significant associations on 18q12.2 represent
an interesting genetic effect for three main reasons:
First and foremost, evidence of genetic linkage to

dyslexia-related cognitive traits has been reported for this
region in previous studies, although not always reaching
statistical significance86–89. In a genome-wide linkage
analysis of a German cohort partly overlapping with our
AGS dataset, a linkage peak to a principal component of
RAN scores was observed in a region encompassing the
microsatellite marker D18S1102, located ~2.1Mb down-
stream of rs1766318289. Similarly, a linkage signal was
later reported for the same marker with a composite RAN
score, in a Dutch sib-pair sample. However, this associa-
tion was weaker after including parents of the sib-pairs in
the analysis86. Early evidence for linkage in 18q12 has
been reported with word reading and orthographic cod-
ing, in samples partially overlapping with our Colorado
and UK datasets87,88. In line with these findings,
rs17663182 showed associations with traits other than
RANlet in our analysis, including RANdig, RANpic,
WRead, and NWRead (further discussed below). It would
be tempting to connect the linkage signals mentioned
above with the SNP associations at rs17663182, but it is
important to point out that this association likely repre-
sents only a small fraction of these linkage signals or even
a distinct genetic effect, because linkage and association
analyses tend to detect different effects90.
Second, a search for binding sites through the online

database TargetScanHuman v7.191 allowed us to identify
a series of interesting candidate target genes which
MIR924 could regulate. These include candidate dyslexia
susceptibility genes like MRPL19 and KIAA0319L,
although these did not show the highest predicted binding
scores to MIR924 (cumulative weighted context++
scores −0.08 and −0.07; ranked 1615 and 1626 over 3472
potential targets).
Third, MIR924HG is expressed in a number of cancer

cell lines, but consistently in samples representing iPS
differentiation into neurons, according to the FANTOM5
miRNA promoter analysis92. This is interesting in the
context that at least three dyslexia candidate genes
(namely DCDC2, DYX1C1, and KIAA0319) have been
implicated in regulating neuronal migration and cilia
functions in model systems9.
In the analysis of RANlet, we observed an additional

association approaching genome-wide significance at
rs16928927 (8q12.3). This intronic variant is located
within NKAIN3 (Na+/K+ transporting ATPase
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interacting 3), a gene which is widely and specifically
expressed in the brain, especially in the fetal temporal
lobe, in newborn and in adult hippocampal regions93.
Of note, both our lead SNPs showed associations with

different cognitive measures analyzed in this study,
especially with RAN traits. This multitrait association
trend is particularly noticeable for rs17663182, which
showed convincing evidence of influence within and even
beyond the RAN domain, extending to reading abilities, as
suggested by a genome-wide significant multivariate
association with all the cognitive traits analyzed. However,
a horizontal pleiotropy test on both variants did not reveal
any significant effect specific to cognitive traits other than
RANlet. This suggests that these variants likely exert their
genetic influence on the common phenotypic variance
underlying these traits, with different magnitude of effect
on each measure, rather than on trait-specific phenotypic
variance.
Despite the biological appeal of the top association

signals mentioned above, an imaging genetic assessment
of these SNPs did not reveal any significant effect on
variation in seven different subcortical volumes58. Con-
sidering the sample size of this neuroimaging genetic
analysis (N~13,000), we deem it unlikely that this lack of
support is caused by a lack of power. However, this
negative result does not rule out genetic effects of the
variants detected here on other brain structures involved
in reading networks, such as the inferior frontal gyrus and
the temporal and parietal gyri. These potential associa-
tions should be tested in the future, as was previously
done for other variants associated with reading-related
traits94,95.
An assessment of candidate genes and SNPs implicated

in dyslexia and related traits by other studies provided
weak or (in most cases) no evidence of replication. Several
possible factors may account for these apparently con-
trasting results. First, the heterogeneity of recruitment of
the samples analyzed may lead to discrepant results across
different studies: some genetic variants may have stronger
effects in the lower tail of the reading and language skills
distributions (i.e., in selected DD samples) and negligible
effects in a broader range of variation (i.e., in general
population samples). Second, the heterogeneity of
assessment of the phenotypes may result in traits that
ostensibly tap into the same cognitive domain but actually
represent slightly different abilities. This applies not only
to continuous DD-related measures, but also to the
classification of dyslexia cases and controls, for which a
consensus is far from being reached in the scientific
community3,96,97. Third, different genetic backgrounds of
the populations analyzed may be a factor when comparing
or meta-analyzing different association studies. The hap-
lotype structure in a specific region may differ between
populations, and so may change the LD between the tag

SNP (where the association is detected) and the genuine
causal SNP (which determines the association). In the
presence of substantial population stratification, this
could even result in contrasting directions of effect for the
same SNP in different studies37,98,99. Fourth, the incon-
sistent results from association studies may be due to
different age ranges of the samples analyzed, e.g., when
comparing an adult population with a datasets made up of
children37. An alternative explanation may be that the
original findings were type I errors, since false-positive
results may easily occur in analyses of relatively small
samples100. While this is a less likely explanation for those
associated SNPs which have been functionally investi-
gated, it may reasonably account for spurious associa-
tions, which are more likely to be affected by publication
biases (i.e., significant results tend to be favored for
publication) and reporting biases (i.e., investigators tend
to report only positive findings).
Another interesting finding of our study is the sig-

nificant genetic overlap that some of the traits analyzed
showed with educational attainment (EDUyears) and
ADHD. Educational attainment was already reported to
share a significant proportion of genetic variance with
word reading ability101,102. In a PRS analysis comparing
educational attainment with reading efficiency and com-
prehension, the same EDUYears score used here59

accounted for 2.1% (at the age of 7) to 5.1% (at the age of
14) of the variance in such reading measures in a UK
sample (N= 5825), and this association remained sig-
nificant even after correcting for general cognitive ability
and socioeconomic status101. More recently, Luciano
et al.102 used the results of a previous GWAS on reading
and language-related traits32 to test genetic correlations
with several health, socioeconomic, and brain structure
measures collected in adults from the UK (maximal N=
111,749; age range 40–69 years). Polygenic scores
increasing these traits—namely word reading, nonword
repetition, and a reading–spelling score— were all posi-
tively associated with a binary index of educational
attainment (college or university degree)102. In our paper,
we replicate these findings by reporting that variants
nominally associated with EDUyears explain almost 2% of
the total variance in WRead (used here as a target trait),
and extend the evidence of genetic overlap to other
behavioral features—WSpell and NWRead—and to cog-
nitive predictors of dyslexia risk like PA and DigSpan.
Our PRS analysis also revealed a shared genetic basis for

ADHD risk and the core dyslexia features WRead,
WSpell, and NWRead. This long-standing hypothesis was
originally supported by behavioral genetics studies of
twins103–105, and has been later corroborated by mole-
cular genetic studies. The existence of overlapping risk
loci between DD and ADHD suggests that these regions
could be the potential sites of liability underlying

Gialluisi et al. Translational Psychiatry            (2019) 9:77 Page 11 of 15    77 



ADHD–DD comorbidity1. Candidate DD susceptibility
genes like DYX1C1, DCDC2, and KIAA0319 have been
associated with inattention and hyperactivity/impulsiv-
ity106–108, and candidate ADHD genes like DRD4 have
been investigated for linkage and association with DD,
with inconsistent results109,110. More recently, Mascher-
etti et al.111 found significant main and interactive asso-
ciations upon hyperactivity/impulsivity involving DCDC2
and KIAA0319, while Sánchez-Móran et al.25 reported
stronger associations of candidate KIAA0319 and FOXP2
variants with ADHD–DD comorbid cases, compared with
simple dyslexic subjects. In line with this evidence, our
findings provide further support to a partly shared genetic
etiology of DD and ADHD at the genome-wide level.
Among the limitations of our study are a certain

variability in the inclusion criteria and phenotypic
assessment of some cohorts18, the absence of a follow-up
cohort to replicate the genome-wide significant associa-
tions detected, and the modest power to detect small
effect sizes (see Supplementary Methods). These are
counterbalanced by strengths of our study, which include
the variety of continuous neurocognitive traits analyzed,
covering all the most relevant dyslexia-related behavioral
phenotypes, and the homogeneity of QC procedures
among datasets, which are fundamental to improve sta-
tistical power. Indeed, most of our samples were collected
in the context of a large international consortium for
studying the neurobiological/genetic basis of dyslexia
(Neurodys), whose main purpose is to homogenize traits
and datasets to allow for comparable analyses across dif-
ferent countries38,42. Overall, this study represents an
early step of one of the largest international collaborations
aimed at clarifying the genetic basis of reading abilities
and disabilities, which will hopefully contribute to shed a
light on the neurobiology of dyslexia.
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