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A B S T R A C T

Disfluencies, like uh, have been shown to help listeners anticipate reference to low-frequency words. The as-
sociative account of this ‘disfluency bias’ proposes that listeners learn to associate disfluency with low-frequency
referents based on prior exposure to non-arbitrary disfluency distributions (i.e., greater probability of low-fre-
quency words after disfluencies). However, there is limited evidence for listeners actually tracking disfluency
distributions online. The present experiments are the first to show that adult listeners, exposed to a typical or
more atypical disfluency distribution (i.e., hearing a talker unexpectedly say uh before high-frequency words),
flexibly adjust their predictive strategies to the disfluency distribution at hand (e.g., learn to predict high-fre-
quency referents after disfluency). However, when listeners were presented with the same atypical disfluency
distribution but produced by a non-native speaker, no adjustment was observed. This suggests pragmatic in-
ferences can modulate distributional learning, revealing the flexibility of, and constraints on, distributional
learning in incremental language comprehension.

Introduction

Humans are capable of rapidly detecting and adapting to statistical
properties in their sensory environment. When it comes to language,
this phenomenon, known as distributional or statistical learning, has
been argued to underlie speech processing and language acquisition
(Saffran, Aslin, & Newport, 1996). Emerging frameworks in psycho-
linguistics (e.g., P-chain model: Dell & Chang, 2013; Belief-updating
model: Kleinschmidt & Jaeger, 2015) state that listeners overcome the
variability and uncertainty that is so pervasive in spontaneous spoken
communication by flexibly adjusting their expectations about future
input based on prior experiences. Distributional learning within the
scope of a single experimental session has been demonstrated in the
online processing of prosodic (Kurumada, Brown, & Tanenhaus, 2012),
phonological (Norris, McQueen, & Cutler, 2003), syntactic (Fine,
Jaeger, Farmer, & Qian, 2013), and semantic cues (Yildirim, Degen,
Tanenhaus, & Jaeger, 2016) in language. The current study contributes
to these psycholinguistic perspectives by showing, for the first time,
that listeners also track the distribution of metalinguistic performance
cues, namely disfluencies like uh.

At the same time, listeners draw pragmatic inferences about the
speaker and communicative situation at hand, which may influence

how linguistic cues are weighed (Bosker & Reinisch, 2015; Brunellière
& Soto-Faraco, 2013; Grodner & Sedivy, 2011; Kleinschmidt & Jaeger,
2015; Kraljic, Samuel, & Brennan, 2008; van Bergen & Bosker, 2018;
Van Berkum, Van den Brink, Tesink, Kos, & Hagoort, 2008). For in-
stance, while hearing a native talker make a grammatical error results
in a P600 effect in listeners’ ERPs, no such effect is observed when the
same error is produced by a non-native talker (Hanulíková, Van Alphen,
Van Goch, & Weber, 2012). The present experiments demonstrate that
distributional learning in disfluency processing is modulated by prag-
matic inferences about the talker, showing that listeners differentially
adjust to the same disfluency distribution in native vs. non-native
speech.

Spoken communication in everyday situations is riddled with dis-
fluencies, including silent pauses, filled pauses or fillers (e.g., uh), re-
petitions, corrections, etc. It is estimated that about 6 disfluencies are
produced every 100 words (Bortfeld, Leon, Bloom, Schober, & Brennan,
2001; Fox Tree, 1995). Disfluencies follow a non-arbitrary distribution
in native speech, with a greater likelihood of occurrence before rela-
tively more complex lexical items, such as low-frequency words (De
Jong, 2016; Hartsuiker & Notebaert, 2010; Levelt, 1983).

Listeners have been argued to be sensitive to the statistical regula-
rities in the disfluency distribution in native speech, as evidenced by
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prediction of more complex referents upon hearing the filler uh. For
instance, in a seminal eye-tracking study by Arnold, Hudson Kam, and
Tanenhaus (2007), listeners were presented with fluent (“Click on the
red [target]”) and disfluent instructions (“Click on thee uh… red
[target]”) to click on either known (e.g., an ice-cream cone) or un-
known objects (unidentifiable symbols lacking a conventionalized lex-
ical label). Recordings of participants’ eye movements showed that
listeners already anticipated reference to unknown objects (increase in
proportion of fixations to unknown objects) when hearing the filler uh
in the disfluent condition (i.e., well before hearing the target). Other
studies have since shown the same effect in children as young as 2 years
of age (Kidd, White, & Aslin, 2011; Orena & White, 2015; Owens &
Graham, 2016; Owens, Thacker, & Graham, 2018; Thacker, Chambers,
& Graham, 2018a, 2018b). Adult listeners have also been shown to be
able to predict other types of complex referents, such as discourse-new
(Arnold, Fagnano, & Tanenhaus, 2003; Arnold, Tanenhaus, Altmann, &
Fagnano, 2004; Barr & Seyfeddinipur, 2010), compound (Watanabe,
Hirose, Den, & Minematsu, 2008), and low-frequency referents (Bosker,
Quené, Sanders, & De Jong, 2014a) upon hearing a disfluent filler uh.

Listeners’ so-called disfluency bias for relatively more complex re-
ferents has been attributed (at least in part) to prior exposure to the
non-arbitrary distribution of disfluencies in native speech (Bosker et al.,
2014a). Given that disfluencies tend to occur more often before com-
plex lexical items than before relatively simple words (Arnold &
Tanenhaus, 2011; De Jong, 2016; Hartsuiker & Notebaert, 2010), lis-
teners can cleverly use disfluencies as a predictive cue in comprehen-
sion. We refer to this account as the associative account of the disfluency
bias: listeners anticipate more complex referents upon encountering a
disfluency due to association with the non-arbitrary disfluency dis-
tribution in spontaneous speech.

To date, however, there is little evidence for distributional learning
in the online processing of disfluencies. For instance, in most of the
studies investigating the disfluency bias the factor Fluency was fully
crossed with the particular target manipulation (e.g., known and un-
known objects occurred equally often in fluent and disfluent utterances;
Arnold et al., 2007). If listeners can flexibly adjust to this particular
disfluency distribution over the course of an experiment, one would
expect the disfluency bias for unknown objects to decrease as the ex-
periment progresses (since, in the experiment, the disfluency is not
predictive of the target to follow). However, none of the eye-tracking
studies cited in this paper report any order effect (neither positive nor
negative; cf. Corley & Hartsuiker, 2011 for an overall order effect in
reaction time data, but no interaction between order and delay), except
for Bosker et al. (2014a) and Thacker, Chambers, and Graham (2018b).

In Bosker et al. (2014a), participants were presented with fluent and
disfluent instructions to click on either a high-frequency (e.g., a hand)
or a low-frequency object (e.g., an igloo). Participants were reported to
anticipate low-frequency objects upon hearing the filler uh in disfluent
utterances. Moreover, this disfluency bias was found to increase over the
course of the experiment, which the authors explained with reference to
the disfluency distribution in their experiment. Even though fluency
was fully crossed with word frequency in experimental trials, in filler
trials participants consistently heard low-frequency words in disfluent
utterances and high-frequency words in fluent utterances. As such, the
overall disfluency distribution across the entire experiment was skewed
towards low-frequency objects, which the authors speculated the par-
ticipants may have adjusted to.

In Thacker et al. (2018b), children were presented with two talkers
with distinct favorite colors (blue for male talker, pink for female
talker). In their first experiment, the children were found to anticipate
reference to objects of that talker’s dispreferred color in disfluent
utterances (and vice versa in fluent utterances). This disfluency bias,
however, diminished slightly over the course of the experiment. To test
whether this was a result of adjustment to the disfluency distribution in
the experiment, they increased the percentage of ‘disconfirming’ trials
(dispreferred colors in fluent utterances and preferred colors in

disfluent utterances) in a second experiment. Consequently, the dis-
fluency bias towards dispreferred colors diminished even faster.

The manipulation of disfluency distributions in Thacker et al.
(2018b) is, to date, the strongest evidence for distributional learning in
the processing of disfluencies. However, its support for the associative
account of the disfluency bias is limited by three factors. First, it
showed a reduction in the disfluency bias across the experiment, without
showing how a disfluency bias can gradually arise. Second, it showed
modulation of a disfluency bias for talker color preferences that were
established only moments before the experiment started. It may be
argued that this disfluency bias is more susceptible to modulation, be-
cause associations are built on only a few examples. And third, it stu-
died 5-year old children; as such, it remains unknown whether plasti-
city in disfluency processing is sustained in adults.

Given limited evidence for distributional learning in disfluency
processing so far, some studies have actually argued against the asso-
ciative account. Their arguments mostly hinged on flexibility in the
disfluency bias. For instance, prior knowledge about talker identity can
reduce the disfluency bias. When participants are told up front that they
will listen to an atypical talker with ‘object agnosia’, who experiences
trouble in naming even ordinary objects, the disfluency bias for un-
known objects disappears (Arnold et al., 2007). Also, the disfluency bias
for discourse-new referents only arises when the referents are new for
the particular speaker at hand (Barr & Seyfeddinipur, 2010; but see
Heller, Arnold, Klein, & Tanenhaus, 2014). These findings cannot easily
be accounted for by the associative account and instead support an
inferential account, where listeners infer the cause of production diffi-
culty in the particular speaker to guide their visual attention during
listening.

A study particularly relevant for the present investigation is Bosker
et al. (2014a), who, as mentioned above, showed a disfluency bias for
low-frequency referents when listening to native speech. A second ex-
periment tested native listeners’ processing of disfluencies produced by
a non-native speaker, who produced the same fluent and disfluent in-
structions, but with a strong foreign accent. Listeners’ gaze patterns
revealed that there was no disfluency bias when listening to a non-
native talker: listeners were as likely to look at high- or low-frequency
objects when hearing a non-native uh. The authors explained the ab-
sence of a disfluency bias for non-native speech in terms of the atypical
distribution of non-native disfluencies. Non-native speakers typically
produce fewer low-frequency words, resorting to more commonly used
lexical items (De Jong, 2016), and more disfluencies, such as silent and
filled pauses (Bosker, Quené, Sanders, & De Jong, 2014b), negatively
affecting non-native fluency perception (Bosker, Pinget, Quené,
Sanders, & De Jong, 2013). As such, non-native disfluencies occur more
often before high-frequency words than they do in native speech.
Consequently, listeners, upon hearing a foreign accent in non-native
speech, may bring this less regular non-native disfluency distribution to
bear, realize that non-native disfluencies are less indicative of the word
to follow, and thus show no disfluency bias when listening to non-na-
tive speech.

This explanation for the absence of a disfluency bias for non-native
speech is in line with the associative account: in non-native speech, the
association between disfluencies and low-frequency referents is simply
much weaker. However, as explained above, evidence for adjustments
in the processing of disfluencies based on prior exposure to particular
disfluency distributions is limited. In fact, the same results may be ex-
plained by assuming that listeners abandon all predictions entirely
when listening to non-native speech. This is supported by studies
finding that other forms of prediction (phonological, syntactic, etc.) are
also attenuated in non-native speech comprehension (Brunellière &
Soto-Faraco, 2013; Hanulíková et al., 2012). Maybe listening to foreign
accented speech is so cognitively taxing (Quené & Van Delft, 2010; Van
Wijngaarden, 2001) and slow (Munro & Derwing, 1995) that it prevents
listeners from using predictive strategies in disfluency processing alto-
gether, regardless of disfluency distributions.
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The present study has two aims: first, it investigates whether lis-
teners track the distribution of disfluencies in an online fashion during
the course of a single experiment, flexibly adjusting their predictive
strategies based on the disfluency distribution at hand. Experiment 1 –
modelled after Bosker et al. (2014a) – involved eye-tracking (visual
world paradigm) and was designed to address this first question. Two
groups of Dutch participants were presented with fluent (Klik op de
[target] “Click on the [target]”) and disfluent instructions (Klik op uh…
de [target] “Click on uh… the [target]”), produced by a native speaker
of Dutch, to click on high-frequency (e.g., a hand) and low-frequency
(e.g., an igloo) referents presented on screen, while their eye fixations
were recorded (see Fig. 1). Crucially, the two groups differed in the
disfluency distribution they were exposed to. The Typical Group con-
sistently heard the native speaker produce high-frequency targets in
fluent utterances and low-frequency targets in disfluent utterances,
reflecting (to some degree) the typical distribution of disfluencies in
native speech. The Atypical Group heard the same speaker produce the
opposite disfluency distribution: high-frequency targets appeared in
disfluent utterances and low-frequency targets in fluent utterances.

If listeners can flexibly adjust their predictive strategies in an online
fashion, based on exposure to particular disfluency distributions over
the course of an experimental session, we predict differential looking
behavior for the two groups. The Typical Group will likely start out
with some disfluency bias to low-frequency referents at the start of the
experiment (based on life-long exposure to the non-arbitrary disfluency
distribution in native Dutch), which would increase over the course of
the experiment due to exposure to the disfluency distribution at hand.
The Atypical Group may also start out with a disfluency bias toward
low-frequency referents in early trials, but, as a result of more and more
exposure to the atypical disfluency distribution, this may actually
change to a disfluency bias toward high-frequency referents in later
trials. Alternatively, if listeners are not sensitive to the distribution of
disfluencies in native speech, no group differences would be expected.

As described in detail below, the procedure of Experiment 1 in-
volved presenting participants with a set of image pairs, which was
repeated four times across an experimental session. The advantage of
this design was that ‘early’ trials (e.g., in block 1) were identical to
‘later’ trials (e.g., in block 4), facilitating comparison of the disfluency
bias as the experiment progressed. However, repetitions of items may
have allowed for item-level priming, which could possibly serve as an
alternative explanation for the findings in Experiment 1. Therefore,
Experiment 2 was identical to Experiment 1 without repeating items in

an experimental session. Thus, Experiment 2 assessed the contribution
of item-level priming to the results of Experiment 1.

The second aim of the present study is to investigate whether
adaptation in the processing of disfluencies, induced by distributional
learning, is similar for native and non-native speech. Recall that Bosker
et al. (2014a) did not observe a disfluency bias for low-frequency re-
ferents when listening to a non-native speaker, which they explained in
terms of the more irregular disfluency distribution in non-native
speech. This interpretation predicts that, when listening to a non-native
speaker with a highly regular disfluency distribution, we may expect a
disfluency bias in non-native speech to arise after all. Alternatively, if
the absence of a disfluency bias is due to attenuated prediction in non-
native speech in general, we should not find a disfluency bias for any
non-native speaker.

Experiment 3 was designed to address this second question. It was
identical to Experiment 1 (two groups listening to fluent and disfluent
instructions) except that this time all materials were produced by a non-
native speaker of Dutch with a strong foreign accent. If listeners adjust
their predictive strategies based on the particular disfluency distribu-
tions at hand, regardless of talker identity, we should find similar
learning behavior in Experiment 3 as in Experiment 1 (i.e., gradually
stronger disfluency bias for low-frequency referents in Typical Group;
gradually opposite disfluency bias in Atypical Group). If, however, non-
native disfluencies do not induce any prediction, neither groups in
Experiment 3 should show any disfluency bias.

Experiment 1

Method

Participants. Native Dutch participants (N=41) with normal
hearing were recruited from the Max Planck Institute’s participant pool.
Participants in all experiments reported in this study gave informed
consent as approved by the Ethics Committee of the Social Sciences
department of Radboud University (project code: ECSW2014-1003-
196). Data from eleven participants were excluded due to trouble with
eye-tracking calibration (n=8) and due to technical issues with audio
presentation (n=3), leaving a total of 30 participants for analysis (23
females, 7 males; mean age= 22; range=19–33). Half of these par-
ticipants were assigned to the Typical Group, the other half to the
Atypical Group (see procedure).

Materials and design. Materials were adapted from Bosker et al.
(2014a). These involved a set of 30 low-frequency (LF; mean log fre-
quency=0.38, SD=0.28) and 30 high-frequency objects in the form
of line drawings (HF; mean log frequency= 2.07, SD=0.29) taken
from Severens, Lommel, Ratinckx, and Hartsuiker (2005). All images
had high name agreement (LF= 96.7, SD= 3.64; HF=97.3,
SD= 3.49), were of common gender selecting the Dutch article de, and
were scaled to have a maximal length/width of 300 pixels. Each LF
image was paired four times with a different HF image, avoiding pho-
nological overlap between pair members, resulting in 4 unique sets of
30 LF-HF image pairs. For a complete list, see Table S1 in the
Supplementary Material.

In Bosker et al. (2014a), a female native speaker of Dutch had been
recorded, producing each image label in a fluent sentence frame (Klik
op de [target] “Click on the [target]”) and in a disfluent sentence frame
(Klik op uh… de [target] “Click on uh… the [target]”). From these re-
cordings, three natural sounding fluent sentence tokens (Klik op) and
three disfluent sentence tokens (Klik op uh…) were excised. Also, target
fragments including the article de were excised (i.e., all speech from the
onset of the article de up to the offset of the target label), half from a
fluent recording, half from a disfluent recording. These target fragments
were randomly assigned to one of the three fluent sentence tokens
(resulting in a fluent instruction), and to one of the three disfluent
sentence tokens (resulting in a disfluent instruction). Note that, as a
consequence of this cross-splicing, target words were identical across

Fig. 1. Example display of an image pair, consisting of one low-frequency
(igloo) and one high-frequency object (hand). Position on screen of the low-
frequency and high-frequency item (left vs. right) was counter-balanced across
trials. Participants in the Typical Group heard disfluent instructions to click on
low-frequency objects (LF) and fluent instructions to click on high-frequency
objects (HF). Conversely, participants in the Atypical Group heard disfluent
instructions to click on high-frequency objects and fluent instructions to click
on low-frequency objects.
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fluent and disfluent conditions. Also note that the difference between
the fluent and disfluent condition was located in the sentence frame,
with the disfluent condition additionally containing the filler uh, as well
as differing in several other prosodic characteristics (e.g., longer syl-
lable durations, higher pitch; see Bosker et al., 2014a).

Procedure. Participants were tested individually in a sound-at-
tenuating booth. They were seated at a distance of approximately 60 cm
in front of a screen with a remote EyeLink 1000 eye-tracking system (SR
Research) and listened to stimuli over headphones at a comfortable
volume. Stimulus presentation was controlled by Experiment Builder
software (SR Research), sampling the right eye at 500 Hz.

Each session started with telling the participant a cover story about
the purpose of the eye-tracking experiment. The experiment supposedly
tested the extent to which listeners could correctly follow up instruc-
tions from various speakers. Purportedly, recordings had been made of
20 speakers, including both native and non-native speakers of Dutch,
who had been instructed to name images using a standard instruction
template, namely Klik op de [target] “Click on the [target]”. This cover
story was motivated by the need to justify the presence of disfluencies
in the speech. Moreover, it meant that listeners might plausibly attri-
bute the disfluencies to difficulty in word retrieval. Participants in
Experiment 1 were explicitly told they would be listening to speech
from a native speaker.

Half of the participants had been assigned to the Typical Group, the
other half to the Atypical Group. The experimental procedure was
identical for both groups: all participants were presented with 50%
fluent (Klik op…) and 50% disfluent spoken instructions (Klik op uh…)
to click on one of two images. Crucially, the two groups differed in the
distribution of LF and HF targets across fluent and disfluent conditions.
The Typical Group exclusively heard fluent instructions followed by HF
targets and disfluent instructions followed by LF targets. As such, the
presence of the filler uh was a highly reliable cue to an upcoming LF
referent. Conversely, the Atypical Group exclusively heard fluent in-
structions combined with LF targets and disfluent instructions com-
bined with HF targets. Hence, in this group, the filler uh was a highly
reliable cue to an upcoming HF referent.

Before starting the eye-tracking experiment, participants were fa-
miliarized with the images and their labels. All images used in the main
task were shown to the participants together with the label used to refer
to the images. After 3–6 trials (randomly selected), participants’ at-
tention and recognition accuracy was verified by presenting them one
image from the previous 3–6 trials and asking them to type in the
corresponding label.

The eye-tracking experiment started with a nine-point calibration
procedure. On each trial, participants first had to click with the com-
puter mouse on a blue rectangle in the middle of the screen to center
their eye gaze and mouse position. This screen was immediately fol-
lowed by two images, centered in the left and right halves of the screen
(see Fig. 1). The position of LF and HF images (left or right) was ran-
domized and counter-balanced across participants. After a 2 s preview,
the auditory stimulus was presented. Participants were instructed to
listen to and follow up the spoken instructions using a standard com-
puter mouse. The images stayed on the screen until the participant
responded by clicking on one of the presented images. After an inter-
trial interval of 1 s, the next trial started automatically.

Participants were presented with the four sets of 30 image pairs in
sequence (total of 120 trials), with a random order of trials within each
block. Following the eye-tracking experiment, participants were de-
briefed about what they thought the purpose of the experiment was,
whether they had noticed a correlation between disfluency and target
frequency, and the extent to which they believed the cover story.
Although many participants noticed the relatively high disfluency in-
cidence, none of the participants reported awareness of the disfluency
distribution they had been allocated to.

Results

Mouse clicks. Participants were very accurate in their mouse clicks:
only in 7 trials (< 0.2%) did participants select the competitor image
over the target image. Before analyzing the reaction times (RTs), trials
with incorrect clicks or outlier RTs (> 2SD above the mean;
n= 56;< 2%) were excluded from analyses. Raw reaction times (RTs),
calculated from target word onset (in ms), from Experiment 1 are given
in Fig. S1 in the Supplementary Material. Mean (SD) reaction times
were: HFTypical = 940 (318); LFTypical = 989 (322); HFAtypical = 965
(278); LFAtypical = 1013 (291); see also Fig. 2.

Log-transformed RTs were analyzed using a Linear Mixed Effects
Regression analysis (Baayen, Davidson, & Bates, 2008) as implemented
in lme4 library (version 1.0.5; Bates, Maechler, Bolker, & Walker, 2015)
in R (R Development Core Team, 2012). The fixed effects structure
included Group (categorical predictor with two levels using deviation
coding: Typical coded as −0.5, Atypical as +0.5), Frequency (cate-
gorical predictor with two levels using deviation coding: High Fre-
quency coded as −0.5, Low Frequency as +0.5), Trial Number (con-
tinuous predictor, z-scored to improve convergence), and all
interactions. By-participant and by-item random intercepts were in-
cluded; adding random slopes for fixed effects resulted in non-con-
vergence of models. Statistical significance was assessed at the 0.05
significance level by checking whether effects had absolute t-values
exceeding 2 (Baayen, 2008).

This model revealed a main effect of Frequency (β=0.052,
SE=0.020, t = 2.616), indicating longer RTs for LF targets; and a main
effect of Trial Number (β=−0.050, SE=0.005, t =−10.323), in-
dicating shorter RTs for later trials. No overall difference between the
two groups was found, but an interaction between Group and Trial
Number (β=−0.025, SE=0.009, t =−2.633) revealed a more pro-
nounced order effect for the Atypical Group. This suggests that the
Atypical Group started out with slower responses than the Typical
Group, but RTs decreased more in the Atypical Group than in the
Typical Group as the experiment progressed (cf. Fig. 2), likely as a re-
sult of adaptation to the atypical disfluency distribution.

Eye fixations – Disfluent speech. Prior to the analyses, blinks and
saccades were excluded from the data. Only fixations on the images
themselves were coded as looks toward a particular image. The eye
fixation data were downsampled to 250 Hz for simplicity.

The fluent and disfluent condition differed considerably in the time
at which certain words were presented, which prevented us from
combining the data from the fluent and disfluent conditions into one
analysis. Therefore, separate analyses were run per fluency condition
(cf. Bosker et al., 2014a). Also, as this study focused on anticipation of

Fig. 2. Modelled reaction times (RTs) in ms from Experiment 1 (native speaker)
as a function of the trial number, split by target frequency (solid lines show low-
frequency targets, dashed lines show high-frequency targets) and group
(Typical Group in gray, Atypical Group in black), as predicted by the Linear
Mixed Effects Regression model.
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linguistic content as evidenced in eye fixations, gaze patterns were
evaluated in time windows before any acoustic information regarding
the target had been encountered.

In the disfluent condition, the time window of interest started from
uh onset +100ms (to correct for the minimal time it takes to launch a
saccade; Altmann, 2011) up to article onset (not target onset, because
the article de may already have contained coarticulatory cues to the
target referent); see Fig. 3 (mean length: 798ms). Note that Fig. 3
shows the data separately for the first and second half for illustration
purposes only, to allow visual inspection of distributional learning for
the two groups; all statistical analyses involved Trial Number as a
continuous predictor.

We statistically tested the binomial variable fixations on low-fre-
quency referents (0=no, 1= yes) in the disfluent condition at a
sample-by-sample level using a Generalized Linear Mixed Model
(GLMM; Quené & Van den Bergh, 2008) with a logistic linking function
as implemented in the lme4 library in R. We selected this analysis
method because it allows for crossed random effects for participants
and items (Quené & Van den Bergh, 2008), it can model both the time
course on a given trial as well as order effects across trials surfacing as
the interaction between Time and Trial Number (Mirman, Dixon, &
Magnuson, 2008), and because similar analysis methods were used in
Bosker et al. (2014a). This particular GLMM included fixed effects of
Group (categorical predictor with two levels using dummy coding,
mapping the Typical Group onto the intercept), Time (continuous
predictor, z-scored to improve convergence), Trial Number (continuous
predictor, z-scored to improve convergence), and all interactions. By-
participant and by-item random intercepts were included, but no
random slopes since this resulted in non-convergence of models.

Note that the Typical Group was mapped onto the intercept and, as
such, simple effects should be interpreted with respect to the Typical
Group only. The model revealed significant effects of Time (β=0.054,
SE=0.005, z= 10.264, p < 0.001; the proportion of looks to low-
frequency referents gradually increased in the time window of interest
for the Typical Group), no effect of Trial Number (p= 0.292), but a
significant interaction between Time and Trial Number (β=0.046,

SE=0.005, z= 8.627, p < 0.001; a steeper increase in proportion of
looks to low-frequency referents in the time window of interest as the
experiment progressed).

Interactions with the predictor Group revealed differential effects in
the Atypical Group. An interaction between Group and Time
(β=−0.080, SE=0.007, z=−10.865, p < 0.001) showed a relative
decrease in the proportion of looks to low-frequency referents in the
time window of interest in the Atypical Group. An interaction between
Group and Trial Number (β=−0.083, SE=0.007, z=−11.179,
p < 0.001) showed that, in contrast to the Typical Group, the overall
proportion of looks to low-frequency referents decreased as the ex-
periment progressed in the Atypical Group. Finally, a three-way inter-
action between Group, Trial Number, and Time (β=−0.084,
SE=0.007, z=−11.408, p < 0.001) showed a steeper decrease in
proportion of looks to low-frequency referents in the time window of
interest as the experiment progressed in the Atypical Group.

Finally, Fig. 3 seems to show some unexpected gaze patterns prior to
uh onset in the two groups. For instance, the Atypical Group would
seem to have a preference for the LF referent in this early time window
in the first half of the experiment, while the Typical Group seems to
have a slight preference in this early time window in the second half of
the experiment. To statistically assess potential early looking pre-
ferences, we calculated logit transformed fixation proportions to the LF
and HF referents in the early time window from sound onset up to uh
onset for each participant. These were tested statistically using a linear
mixed model with the predictors Trial Number, Group, and Frequency
(categorical predictor, low vs. high), and all their interactions, with by-
participant random intercepts. No effects were found for any of the
predictors nor any interactions (all t < 1.2), suggesting that these early
patterns in Fig. 3 were spurious.

Eye fixations – Fluent speech. In the fluent condition, the time
window of interest started from sound onset+ 100ms (correcting for
saccade launch time) up to article onset, because, as mentioned above,
the article may have contained coarticulatory cues to the target referent
(see Fig. 4; mean length: 267ms). Note that this involved a con-
siderably shorter time window compared to the disfluent condition, as a

Fig. 3. Proportion of looks, in disfluent trials only, from Experiment 1 (native speaker) to high-frequency objects (dashed lines) and low-frequency objects (solid
lines), separately for the two groups and the two halves of the experiment. Time in ms is calculated from sound onset. Vertical lines represent the (mean) onsets of
words in the sentence. The gray rectangle indicates the time window of interest as identified for the statistical analyses. Note that the data are shown separately for
the first and second half for illustration purposes only; all statistical analyses involved the predictor Trial Number.
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consequence of the more fluent speaking style.
Since we hypothesized that disfluent speech might induce antici-

patory looks to low-frequency referents in the Typical Group, we con-
versely predict that fluent speech might induce anticipatory looks to
high-frequency referents in the Typical Group (and vice versa for the
Atypical Group). We statistically tested participants’ fixations to high-
frequency referents in this time window. The binomial variable fixations
on high-frequency referents (0= no, 1= yes) in the fluent condition at
a sample-by-sample level were entered into a GLMM with a logistic
linking function as implemented in the lme4 library in R. This GLMM
followed an identical structure as the GLMM for the disfluent condition,
including the predictors Group, Time, Trial Number, and all interac-
tions.

Note that the Typical Group was mapped onto the intercept; simple
effects should thus be interpreted with respect to the Typical Group
only. The model revealed an effect of Time (β=0.022, SE=0.009,
z= 2.422, p= 0.015), indicating that the proportion of looks to high-
frequency referents gradually increased over the course of the time
window for the Typical Group. In addition, we found a negative effect
of Trial Number (β=−0.029, SE=0.009, z=−3.108, p= 0.002),
showing that the overall proportion of looks to high-frequency referents
gradually decreased over the course of the experiment for the Typical
Group. We found no evidence for an interaction between Time and Trial
Number (p= 0.613), suggesting that the gaze patterns of the Typical
Group in the time window of interest did not change for fluent trials
over the course of the experiment.

Interactions with the predictor Group again revealed differential
effects in the Atypical Group. An interaction between Group and Time
(β=−0.053, SE=0.013, z=−4.059, p < 0.001) showed that the
proportion of looks to high-frequency referents decreased across the
time window of interest in the Atypical Group. An interaction between
Group and Trial Number (β=0.046, SE=0.013, z= 3.565,
p < 0.001) showed that, unexpectedly, the overall proportion of looks
to high-frequency referents increased as the experiment progressed in
the Atypical Group. However, a three-way interaction between Group,
Trial Number, and Time (β=−0.034, SE=0.013, z=−2.613,

p= 0.009) showed a steeper decrease in fixations to high-frequency
referents over the course of the time window of interest as the experi-
ment progressed in the Atypical Group.

Discussion

The data from Experiment 1 demonstrated differential distributional
learning in the Typical vs. the Atypical Group. Upon encountering a
disfluency, the Typical Group showed a slight preference to fixate low-
frequency referents at the outset of the experiment, which considerably
increased as the experiment progressed. This suggests that the Typical
Group used the more typical disfluency distribution to adjust their
predictive strategies during the experiment. Note, however, that we did
not find evidence for anticipation of high-frequency referents in fluent
trials for the Typical Group, but the time window allowing for antici-
patory looking behavior was of course much shorter. Furthermore, the
fluent trials could be argued to be ‘less salient’ than the disfluent trials,
because the latter contained an explicit filled pause uh. Adaptation to
‘implicit’ fluency may be argued to be more difficult than adaptation to
‘explicit’ disfluency.

The Atypical Group started out with the same preference for low-
frequency referents in disfluent trials, likely reflecting the typical dis-
fluency distribution in natural speech. However, the Atypical Group
adjusted their predictive strategies in the opposite direction: as a con-
sequence of the atypical disfluency distribution in the experiment, the
Atypical Group learnt to anticipate high-frequency referents upon
hearing a disfluency in later trials. This distributional learning was also
reflected in the fluent condition: there, the Atypical Group learnt to
look away from the high-frequency referent (i.e., anticipate the low-
frequency referent). Finally, additional support comes from the RT
analysis. This showed that the Atypical Group started out with slower
RTs compared to the Typical Group, presumably because of the atypical
distribution of disfluencies. As the experiment progressed, the Atypical
Group demonstrated a steeper decrease in response latencies compared
with the Typical Group, suggesting stronger adaptation to the dis-
fluency distribution at hand.

Fig. 4. Proportion of looks, in fluent trials only, from Experiment 1 (native speaker) to high-frequency objects (dashed lines) and low-frequency objects (solid lines),
separately for the two groups and the two halves of the experiment. Time in ms is calculated from sound onset. Vertical lines represent the (mean) onsets of words in
the sentence. The gray rectangle indicates the time window of interest as identified for the statistical analyses. Note that the data are shown separately for the first
and second half for illustration purposes only; all statistical analyses involved the predictor Trial Number.
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An anonymous reviewer suggested that the observed learning pat-
terns in the Typical and Atypical Group in Experiment 1 may alter-
natively be explained in terms of item-level priming. Recall that a given
image occurred as the target image in the spoken instructions four times
in an experimental session (each time paired with a different compe-
titor image). Hence, the results from Experiment 1 may also be argued
to have arisen from item-level priming: if a participant heard “igloo” in
a disfluent sentence in the beginning of the experiment, then hearing a
disfluency later in the experiment could have primed the specific item
“igloo”. In order to investigate the contribution of item-level priming to
the results of Experiment 1, Experiment 2 was identical to Experiment 1
except that no items were repeated in Experiment 2.

Experiment 2

Method

Participants. Native Dutch participants (N=40) with normal
hearing were recruited from the Max Planck Institute’s participant pool.
At debriefing, 3 participants reported to have detected the particular
disfluency distribution they were exposed to in the experiment (2 from
the Typical Group; 1 from the Atypical Group). Their data were ex-
cluded, leaving a total of 37 participants for analysis (29 females, 8
males; mean age=22; range=18–31). A number of 18 participants
were assigned to the Typical Group, and 19 to the Atypical Group.

Materials and design. In Experiment 2, the image materials from
Experiment 1 were re-used together with an additional set of images
(more line drawings selected from Severens et al., 2005), such that
repetitions of items were avoided. The complete set of 120 low-fre-
quency (LF; mean log frequency=0.19, SD=0.25) and 120 high-fre-
quency objects (HF; mean log frequency= 1.91, SD=0.42) is given in
Table S1 in the Supplementary Material. Each LF image was paired with
a single HF image, avoiding phonological overlap between pair mem-
bers, resulting in 120 unique LF-HF image pairs.

A new female native speaker of Dutch was recorded, producing each
image label in fluent (Klik op de [target] “Click on the [target]”) and
disfluent sentence frames (Klik op uh… de [target] “Click on uh… the
[target]”). These new native recordings were manipulated in Praat
using the same procedure as in Experiment 1: article+ target fragments
were excised and cross-spliced onto six different (fluent and disfluent)
sentence tokens.

Procedure. Each of the 120 unique LF-HF pairs was presented only
once in a random order. The position of LF and HF images (left or right)
was randomized and counter-balanced across trials and participants, as
well as which of the two pair members was the target vs. competitor.
The rest of the procedure of Experiment 2 was identical to Experiment
1, including the cover story, explicit instructions about listening to a
native speaker of Dutch, the group design, and post-experimental de-
briefing. Several participants noticed the frequent occurrence of dis-
fluencies in the experiment, but only 3 out of 40 participants explicitly
reported (after the experiment) the (typical/atypical) disfluency dis-
tribution they had been exposed to. These participants were excluded
from analyses.

Results

Mouse clicks. Participants were very accurate in their mouse clicks:
only in 1 trial (< 0.1%) did a participant select the competitor image
over the target image. Before analyzing the reaction times (RTs), this
incorrect trial and trials with outlier RTs (> 2SD above the mean;
n= 113;< 3%) were excluded from analyses. Raw reaction times
(RTs), calculated from target word onset (in ms), from Experiment 2 are
given in Fig. S2 in the Supplementary Material. Mean (SD) reaction
times were: HFTypical = 945 (208); LFTypical = 1038 (224);
HFAtypical = 988 (269); LFAtypical = 1085 (277); see also Fig. 5.

A Linear Mixed Effects Regression analysis tested the log-

transformed RTs. This analysis involved the same structure as the one
reported for Experiment 1, testing for effects of Group, Frequency, Trial
Number, and all interactions. Statistical significance was assessed at the
0.05 significance level by checking whether effects had absolute t-va-
lues exceeding 2.

The results from this model were very similar to those in Experiment
1. The model revealed a main effect of Frequency (β=0.096,
SE=0.010, t = 9.500), indicating longer RTs for LF targets; and a main
effect of Trial Number (β=−0.034, SE=0.003, t =−11.710), in-
dicating shorter RTs for later trials. No overall difference between the
two groups was found, but an interaction between Group and Trial
Number (β=−0.035, SE=0.006, t =−5.890) revealed a more pro-
nounced order effect for the Atypical Group. This suggests that the
Atypical Group started out with slower responses than the Typical
Group, but RTs decreased more in the Atypical Group than in the
Typical Group as the experiment progressed (cf. Fig. 5), likely as a re-
sult of adaptation to the atypical disfluency distribution.

Eye fixations – Disfluent speech. Prior to the analyses, blinks and
saccades were excluded from the data. Only fixations on the images
themselves were coded as looks toward a particular image. The eye
fixation data were downsampled to 250 Hz for simplicity.

Similar to Experiment 1, the fluent and disfluent condition were
analyzed separately. In the disfluent condition, the same time window
as previously was used, starting from uh onset+ 100ms up to article
onset; see Fig. 6 (mean length: 806ms).

We statistically tested the binomial fixations on low-frequency re-
ferents in the disfluent condition using a GLMM with identical structure
as the one reported in Experiment 1. Note that this also entailed that the
Typical Group was mapped onto the intercept, meaning that main ef-
fects should be interpreted with respect to the Typical Group only.

This GLMM did not reveal a significant effect of Time (β=−0.008,
SE=0.005, z=−1.461, p < 0.144), suggesting that, overall, the
proportion of looks to low-frequency referents did not gradually change
in the time window of interest for the Typical Group. However, we did
find an effect of Trial Number (β=0.043, SE=0.005, z= 8.158,
p < 0.001), indicating an increase in the proportion of looks to low-
frequency referents as the experiment progressed. Moreover, an inter-
action between Time and Trial Number (β=0.025, SE=0.005,
z= 4.869, p < 0.001) demonstrated a steeper increase in proportion
of looks to low-frequency referents in the time window of interest as the
experiment progressed.

Interactions with the predictor Group revealed differential effects in
the Atypical Group. An interaction between Group and Time
(β=−0.028, SE=0.007, z=−3.861, p < 0.001) showed a relative
decrease in the proportion of looks to low-frequency referents in the

Fig. 5. Modelled reaction times (RTs) in ms from Experiment 2 (native speaker;
no item repetitions) as a function of the trial number, split by target frequency
(solid lines show low-frequency targets, dashed lines show high-frequency
targets) and group (Typical Group in gray, Atypical Group in black), as pre-
dicted by the Linear Mixed Effects Regression model.
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time window of interest in the Atypical Group. An interaction between
Group and Trial Number (β=−0.114, SE=0.008, z=−15.068,
p < 0.001) showed that, in contrast to the Typical Group, the overall
proportion of looks to low-frequency referents decreased as the experi-
ment progressed in the Atypical Group. Finally, a three-way interaction
between Group, Trial Number, and Time (β=−0.016, SE=0.007,
z=−2.220, p= 0.026) showed a steeper decrease in proportion of
looks to low-frequency referents in the time window of interest as the
experiment progressed in the Atypical Group.

Finally, similar to Experiment 1, we statistically tested for early
looking preferences in the time window from sound onset up to uh onset
for each participant. Again, no statistical evidence was found for early
looking preferences for either HF or LF referents in either group.

Eye fixations – Fluent speech. In the fluent condition, the time
window of interest started from sound onset+ 100ms up to article
onset; see Fig. 7 (mean length: 422ms).

We statistically tested participants’ fixations on high-frequency re-
ferents in this time window by means of another GLMM with identical
structure as used in Experiment 1. Note that the Typical Group was
again mapped onto the intercept; simple effects should hence be in-
terpreted with respect to the Typical Group only.

The model revealed an effect of Time (β=0.037, SE=0.007,
z= 4.973, p < 0.001), indicating that the proportion of looks to high-
frequency referents gradually increased over the course of the time
window for the Typical Group. In addition, we found a negative effect
of Trial Number (β=−0.053, SE=0.008, z=−6.626, p < 0.001),
showing that the overall proportion of looks to high-frequency referents
gradually decreased over the course of the experiment for the Typical
Group. Contrary to predictions, we also found a negative interaction
between Time and Trial Number (β=−0.038, SE=0.007,
z=−5.063, p < 0.001), suggesting that the proportions of looks to
high-frequency referents stabilized in the time window of interest for
the Typical Group over the course of the experiment.

Interactions with the predictor Group revealed differential effects in
the Atypical Group. An interaction between Group and Trial Number
(β=0.051, SE=0.011, z= 4.596, p < 0.001) showed that the overall

proportion of looks to high-frequency referents decreased as the ex-
periment progressed in the Atypical Group. No interaction between
Group and Time (p= 0.315) and no three-way interaction between
Group, Trial Number, and Time (p= 0.958) were observed.

Discussion

The results from Experiment 2 mirror those from Experiment 1. As
the experiment progressed, participants in the Typical Group – upon
encountering a disfluency – showed an increase in their preference to
fixate low-frequency referents. This suggests, once again, that the
Typical Group used the more typical disfluency distribution to adjust
their predictive strategies during the experiment. In contrast, the
Atypical Group adjusted their predictive strategies in the opposite di-
rection: as a consequence of the atypical disfluency distribution, the
Atypical Group learnt to anticipate high-frequency referents upon
hearing a disfluency. Additional support comes from the RT data
showing that the Atypical Group started out with slower RTs compared
to the Typical Group, presumably because of the atypical distribution of
disfluencies. As the experiment progressed, the Atypical Group de-
monstrated a steeper decrease in response latencies compared with the
Typical Group, suggesting stronger adaptation to the disfluency dis-
tribution at hand. Crucially, these findings were obtained without item
repetitions in Experiment 2, removing the possibility for item-level
priming. Therefore, they show that the very similar outcomes of
Experiment 1 are most likely explained in terms of distributional
learning rather than item-level priming.

Experiment 3

Experiment 3 was designed to address the second question of the
present study, investigating whether adaptation in the processing of
disfluencies, induced by distributional learning, is similar for native and
non-native speech. Note that Bosker et al. (2014a) did not find a dis-
fluency bias for low-frequency referents when participants listened to a
non-native speaker. Experiment 3 assessed whether a disfluency bias in

Fig. 6. Proportion of looks, in disfluent trials only, from Experiment 2 (native speaker; no item repetitions) to high-frequency objects (dashed lines) and low-
frequency objects (solid lines), separately for the two groups and the two halves of the experiment. Time in ms is calculated from sound onset. Vertical lines represent
the (mean) onsets of words in the sentence. The gray rectangle indicates the time window of interest as identified for the statistical analyses. Note that the data are
shown separately for the first and second half for illustration purposes only; all statistical analyses involved the predictor Trial Number.
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non-native speech may arise after all if the non-native speaker at hand
has a highly regular disfluency distribution. In order to increase our
chances of finding evidence for a disfluency bias in non-native speech
and to facilitate comparison to Bosker et al. (2014a), we repeated Ex-
periment 1 (i.e., not Experiment 2) with non-native speech materials.

Method

Participants. Native Dutch participants (N=38) with normal
hearing were recruited from the Max Planck Institute’s participant pool.
Data from six participants were excluded due to technical failures
(n= 3) or trouble with eye-tracking calibration (n=3). In addition, at
debriefing, two participants reported to have detected the particular
disfluency distribution they were exposed to in the experiment (both
from the Atypical Group); their data were also excluded. After exclu-
sions, data from a total of 30 participants were left for analysis (25
females, 5 males; mean age= 22; range= 19–25), half of whom were
assigned to the Typical Group, the other half to the Atypical Group.

Materials and design. For Experiment 3, we adapted the non-native
speech materials from Bosker et al. (2014a). These involved the same
types of recordings as the native materials but this time produced by a
female non-native speaker of Dutch (L1 Romanian, LoR=3.5 years,
self-estimated CEFR level A1/A2, very limited experience using Dutch
in daily life), with a strong foreign (Romanian) accent (average ac-
centedness rating of 6.1 on a 9-point scale; cf. Bosker et al., 2014a).
Again target fragments were excised and spliced onto one of three
fluent sentence tokens and one of three disfluent sentence tokens. As a
result, stimuli in Experiment 3 were identical to those in Experiment 1,
except for the presence of a strong foreign accent.

Procedure. The procedure of Experiment 3 was identical to that of
Experiment 1 (including the cover story, assigning participants to one
of two groups, debriefing, etc.), except that this time participants were
explicitly instructed that they would be presented with speech from a
non-native speaker of Dutch. Although, once again, many participants
noticed the relatively high disfluency incidence, only two participants
explicitly reported (after the experiment) the (atypical) disfluency dis-
tribution they had been exposed to, and as a consequence were

excluded from analyses.

Results

Mouse clicks. Participants were perfectly accurate in their mouse
clicks; no participant ever selected a competitor image over a target
image. Before analyzing the reaction times, trials with outlier RTs
(> 2SD above the mean; n= 101;< 3%) were excluded from analyses.
Raw reaction times (RTs), calculated from target onset (in ms), from
Experiment 3 are given in Fig. S3 in the Supplementary Material. Mean
(SD) reaction times were: HFTypical = 1017 (272); LFTypical = 1098
(288); HFAtypical = 1045 (273); LFAtypical = 1126 (269); see also Fig. 8.

A Linear Mixed Effects Regression analysis tested the log-trans-
formed RTs. This analysis involved the same structure as the one re-
ported for Experiment 1, testing for effects of Group, Frequency, Trial
Number, and all interactions. Statistical significance was assessed at the

Fig. 7. Proportion of looks, in fluent trials only, from Experiment 2 (native speaker; no item repetitions) to high-frequency objects (dashed lines) and low-frequency
objects (solid lines), separately for the two groups and the two halves of the experiment. Time in ms is calculated from sound onset. Vertical lines represent the
(mean) onsets of words in the sentence. The gray rectangle indicates the time window of interest as identified for the statistical analyses. Note that the data are shown
separately for the first and second half for illustration purposes only; all statistical analyses involved the predictor Trial Number.

Fig. 8. Modelled reaction times (RTs) in ms from Experiment 3 (non-native
speaker) as a function of the trial number, split by target frequency (solid lines
show low-frequency targets, dashed lines show high-frequency targets) and
group (Typical Group in gray, Atypical Group in black), as predicted by the
Linear Mixed Effects Regression model.
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0.05 significance level by checking whether effects had absolute t-va-
lues exceeding 2.

This model revealed an effect of Frequency (β=0.081, SE=0.018,
t = 4.410; longer RTs for LF targets) and Trial Number (β=−0.067,
SE=0.004, t =−16.260; shorter RTs in later trials), similar as in
Experiment 1. No overall difference between the two groups was found,
and, in contrast to Experiment 1, no interaction between Group and
Trial Number could be established (β=0.014, SE=0.008, t = 1.800).
As such, there was no evidence for either Group showing a different
order effect, even though, numerically, the Typical Group seemed to
show a slightly steeper slope (cf. Fig. 8).

Eye fixations – Disfluent speech. Prior to the analyses, blinks and
saccades were excluded from the data. Only fixations on the images
themselves were coded as looks toward a particular image. The eye
fixation data were downsampled to 250 Hz for simplicity.

Similar to Experiment 1, the fluent and disfluent condition were
analyzed separately. In the disfluent condition, the same time window
as previously was used, starting from uh onset+ 100ms up to article
onset; see Fig. 9 (mean length: 813ms).

We statistically tested the binomial fixations on low-frequency re-
ferents in the disfluent condition using a GLMM with identical structure
as the one reported in Experiment 1. Note that this also entailed that the
Typical Group was mapped onto the intercept, meaning that main ef-
fects should be interpreted with respect to the Typical Group only.

This GLMM revealed significant effects of Time (β=−0.034,
SE=0.006, z=−6.040, p < 0.001; initially, participants in the
Typical Group started out looking away from the low-frequency re-
ferent over the course of the time window), Trial Number (β=0.022,
SE=0.006, z= 3.924, p < 0.001; the proportion of looks to low-fre-
quency referents gradually increased across the experiment for the
Typical Group), and an interaction between Time and Trial Number
(β=0.033, SE=0.006, z= 5.896, p < 0.001), indicating that parti-
cipants in the Typical Group actually looked more and more at the low-
frequency referent over the course of the time window of interest as the
experiment progressed. These outcomes resemble those from
Experiment 1, except that in Experiment 1 we did not observe a main
effect of Time.

Interactions with the predictor Group revealed differential effects in
the Atypical Group. A marginally significant interaction between Group
and Time (β=−0.013, SE=0.008, z=−1.711, p= 0.087) suggests
that participants in the Atypical Group tended to look away from the
low-frequency referent over the course of the time window. A sig-
nificant interaction between Group and Trial Number (β=0.075,
SE=0.008, z= 9.572, p < 0.001) showed that the proportion of looks
to low-frequency referents increased (i.e., stabilized) as the experiment
progressed in the Atypical Group, despite the fact that the disfluency uh
only occurred before high-frequency referents in the Atypical Group.
Finally, a three-way interaction between Group, Trial Number, and
Time (β=0.039, SE=0.008, z= 5.044, p < 0.001) showed that this
gradual increase in proportion of looks to low-frequency referents was
even greater in later trials in the Atypical Group.

Finally, similar to Experiment 1, we statistically tested for early
looking preferences in the time window from sound onset up to uh onset
for each participant. We found no statistical evidence for early looking
preferences for either HF or LF referents in either group.

Eye fixations – Fluent speech. In the fluent condition, the time
window of interest started from sound onset+ 100ms up to article
onset; see Fig. 10 (mean length: 313ms).

We statistically tested participants’ fixations on high-frequency re-
ferents in this time window by means of another GLMM with identical
structure as used in Experiment 1. Note that the Typical Group was
again mapped onto the intercept; simple effects should hence be in-
terpreted with respect to the Typical Group only.

The model did not reveal any effect of Time (p= 0.371) but did
show an effect of Trial Number (β=0.062, SE=0.011, z= 5.385,
p < 0.001; the overall proportion of looks to high-frequency referents
gradually increased across the experiment for the Typical Group).
However, an interaction between Time and Trial Number (β=−0.042,
SE=0.011, z=−3.694, p < 0.001) demonstrated that the overall
proportion of fixations to high-frequency referents decreased over the
course of the experiment for the Typical Group. Finally, only one in-
teraction with Group was found (Group * Trial Number: β=0.078,
SE=0.016, z= 4.823, p < 0.001) showing that the proportion of
looks to high-frequency referents increased as the experiment

Fig. 9. Proportion of looks, in disfluent trials only, from Experiment 3 (non-native speaker) to high-frequency objects (dashed lines) and low-frequency objects (solid
lines), separately for the two groups and the two halves of the experiment. Time in ms is calculated from sound onset. Vertical lines represent the (mean) onsets of
words in the sentence. The gray rectangle indicates the time window of interest as identified for the statistical analyses. Note that the data are shown separately for
the first and second half for illustration purposes only; all statistical analyses involved the predictor Trial Number.
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progressed in the Atypical Group.

Omnibus analysis

The primary difference in gaze patterns between Experiment 1 and
Experiment 3 was that, in Experiment 1, the Typical Group anticipated
low-frequency referents in disfluent trials, while the Atypical Group
learnt to anticipate high-frequency referents in disfluent trials. By
contrast, in Experiment 3, the Typical Group did learn to anticipate
low-frequency referents in disfluent trials, but the Atypical Group did
not adjust to the atypical disfluency distribution. In order to statistically
assess this difference between experiments, an additional analysis was
performed on the combined data from Experiment 1 and 3.

In this omnibus analysis, the crucial factor of interest was whether
the three-way interaction between Group, Trial Number, and Time was
significantly modulated by Experiment (i.e., a four-way interaction
between Group, Trial Number, Time, and Experiment). A statistical
comparison between the model including the four-way interaction and
the model without the interaction effect (using the anova() function in
R) revealed that including the four-way interaction significantly im-
proved model quality (χ2(1)= 127.31, p < 0.001). The four-way in-
teraction between Group, Trial Number, Time, and Experiment was
reliable in the omnibus GLMM (β=0.120, SE=0.011, z=11.282,
p < 0.001). This suggests that comprehenders adapt to atypical dis-
fluency distributions (i.e., learning to anticipate high-frequency re-
ferents upon hearing a disfluency) when listening to native speech, but
not when listening to non-native speech.

Discussion

The data from Experiment 3 demonstrated differential patterns of
distributional learning for the Typical vs. the Atypical Group. The
Typical Group, although starting out with a slight preference for high-
frequency referents in disfluent trials, showed a gradual increase in
looks to low-frequency referents as the experiment progressed. This
suggests that the Typical Group was able to adjust their predictive

strategies to the more typical disfluency distribution, even when pro-
duced by a non-native speaker. However, no evidence was found for
anticipation of high-frequency referents in fluent trials for the Typical
Group.

The Atypical Group did not show evidence for distributional
learning. No evidence was found for anticipatory looks to high-frequency
referents in disfluent trials, nor to low-frequency referents in fluent
trials. Also no interaction with Group was observed in the RT analysis of
Experiment 3. Thus, while for native speech we found the strongest
evidence for distributional learning in the Atypical Group, no evidence
was found for adaptation to a non-native atypical disfluency distribu-
tion.

General discussion

The present study demonstrated that listeners adapt to the experi-
mental distributions of disfluencies in native and non-native speech.
However, the distributional learning observed for native speech
(Experiments 1 and 2) was qualitatively different from the distribu-
tional learning observed for non-native speech (Experiment 3).

In Experiment 1, we found that exposure to a ‘typical’ disfluency
distribution (uh’s before low-frequency referents, no uh’s before high-
frequency referents) led to a gradual increase in anticipatory fixations
to low-frequency referents upon hearing the disfluency uh. Conversely,
exposure to the opposite ‘atypical’ disfluency distribution (uh’s before
high-frequency referents, no uh’s before low-frequency referents) led
listeners to shift their initial disfluency-driven predictive strategies to-
wards high-frequency referents. Additionally, Experiment 2 demon-
strated that the same conclusions held when items were not repeated
within an experimental session, removing the possibility for item-level
priming. As such, Experiments 1 and 2 show empirical evidence for
distributional learning in the online processing of disfluencies, pro-
viding support for the associative account of the disfluency bias.
Associations between disfluency and the frequency of occurrence of
following referents can be learnt and causally shape the disfluency bias,
even within a single experimental session.

Fig. 10. Proportion of looks, in fluent trials only, from Experiment 3 (non-native speaker) to high-frequency objects (dashed lines) and low-frequency objects (solid
lines), separately for the two groups and the two halves of the experiment. Time in ms is calculated from sound onset. Vertical lines represent the (mean) onsets of
words in the sentence. The gray rectangle indicates the time window of interest as identified for the statistical analyses. Note that the data are shown separately for
the first and second half for illustration purposes only; all statistical analyses involved the predictor Trial Number.
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Of course, the ‘typical’ and ‘atypical’ distributions used in the pre-
sent study represent rather extreme examples of disfluency distribu-
tions; they do not reflect the much more balanced disfluency distribu-
tion observed in spontaneously produced (native and non-native)
speech (De Jong, 2016). Nevertheless, we think that the present find-
ings obtained with these arguably unnatural distributions are highly
relevant and carry implications for our understanding of the processing
of more natural fluent and disfluent speech, based on three arguments.

First, even though the ‘typical’ and ‘atypical’ disfluency distribu-
tions were extreme, participants generally did not explicitly notice an
association between (dis)fluency and target word characteristics (ex-
cept for three participants in Experiment 2 and two participants in
Experiment 3, all excluded from analyses). As such, the distributional
learning observed here likely involves mechanisms of implicit learning
that may well generalize to more natural conversation. Second, al-
though the distributions used here may be argued to be unnatural, si-
milar arguments can be raised against other previously used distribu-
tions in earlier studies on disfluency processing. These typically fully
crossed the factor Fluency with the particular target manipulation at
hand (e.g., disfluency was equally likely to occur before known vs.
unknown objects; Arnold et al., 2007), which also deviates considerably
from the natural disfluency distribution in native speech (i.e., biased
towards more complex referents). Finally, although disfluencies oc-
curring before high-frequency referents are unlikely (compared to oc-
curring before low-frequency referents), they are not rare (De Jong,
2016). Based on these arguments, we propose that the present findings
should be taken as a case in point: Listeners are demonstrated to be
capable of implicitly tracking different disfluency distributions. Further
research is required to investigate the stability and robustness of this
type of distributional learning when it comes to more natural and more
balanced disfluency distributions.

A related issue concerns the fact that the present evidence for dis-
tributional learning in disfluency processing was obtained using rela-
tively simple two-image visual displays. The use of minimally complex
visual arrays was motivated by (1) the desire to provide participants
with as much opportunity as possible to adapt; and (2) wanting to stay
as close as possible to the methods used in Thacker et al. (2018b) and
Bosker et al. (2014a) to allow for comparison across studies. Whether
similar distributional learning may be observed in more natural en-
vironments remains an open question. It is known that empirical evi-
dence for prediction in language processing (typically measured as
anticipatory eye movements in the visual world paradigm) is found as a
function of the speech rate of the spoken stimuli, the amount of pre-
view, the instructions, visual complexity, etc. (Ferreira, Foucart, &
Engelhardt, 2013; Huettig & Guerra, 2019). Therefore, the present re-
sults show that listeners are capable of implicitly tracking different
disfluency distributions in highly controlled lab environments, but fu-
ture work may explore the limits of this behavior in arguably more
natural settings.

One implication of finding distributional learning in disfluency
processing is that adaptation to disfluency distributions likely also
played a role in earlier studies on disfluency processing (e.g., Arnold
et al., 2007; Barr & Seyfeddinipur, 2010; Heller et al., 2014). As ex-
plained above, these studies mostly used more balanced distributions,
which also do not reflect the true natural disfluency distribution in
spontaneous speech (De Jong, 2016). This may reduce the disfluency
bias as listeners receive more and more exposure to the unnaturally
balanced disfluency distribution (although few studies reported and/or
tested for learning effects; see Introduction), leading to a potential
underestimation of the true effect size of the disfluency bias in natural
language comprehension. Future experiments should therefore include
tests for learning effects.

Experiment 3 presented some constraints on a purely associative
account by investigating non-native speech. When exposed to a ‘typical’
disfluency distribution produced by a non-native speaker, we also
found evidence for distributional learning (similar to the Typical Group

in Experiment 1): listeners could learn to use the disfluencies produced
by a non-native speaker to predict upcoming low-frequency referents.
However, evidence for distributional learning in non-native disfluency
processing was only found in the Typical Group. The Atypical Group in
Experiment 3 did not show adaptation to the non-native atypical dis-
fluency distribution, even though the disfluency distribution was
identical to the one used in the Atypical Group in Experiment 1.

The differential tracking of disfluencies in native and non-native
speech suggests, first, that non-native disfluencies can guide the dis-
fluency bias when presented in a native-like distribution. The fact that the
Typical Group in Experiment 3 could learn to anticipate low-frequency
referents following non-native disfluencies shows that listeners do not
abandon prediction altogether when listening to a non-native talker. As
long as there is sufficient evidence of a native-like use of disfluencies in
a non-native talker’s utterances, listeners can adjust their predictive
strategies to cleverly make use of the disfluency cues in non-native
speech – extending the initial claims by Bosker et al. (2014a).

At the same time, listeners in the Atypical Group in Experiment 3
did not learn to predict high-frequency referents after hearing a non-
native uh, despite the atypical disfluency distribution being as in-
formative about the following referent as the typical distribution. This
finding cannot be explained by a purely associative account of dis-
fluency processing, since the associations between disfluency and re-
ferents’ frequency of occurrence were equally strong in the two dis-
tributions and across experiments. Instead, the absence of evidence for
learning from a non-native atypical disfluency distribution suggests that
listeners also draw pragmatic inferences about the likely cause of dis-
fluencies – in line with an inferential account of the disfluency bias. It
could be that exposure to a few atypical disfluent instructions (i.e.,
hearing the non-native talker say uh before high-frequency words like
“hand” or “car”) led listeners to infer that the non-native talker at hand
had considerable production difficulty retrieving even simple words in
Dutch. Based on this inference, they may have taken the non-native
disfluencies to not be predictive of the word to follow – in spite of the
clear distributional cues indicating otherwise. As a result, they did not
anticipate high-frequency referents after disfluencies and also did not
adjust their predictive strategies as a function of the disfluency dis-
tribution they were exposed to.

Thus, the present study argues for a combination of associative and
inferential processes to explain the disfluency bias in native and non-
native speech. The experiments demonstrate that listeners track asso-
ciations between disfluencies and following words and can adjust their
anticipatory processing to these associations built up over the course of
a single experimental session, in line with an associative account of the
disfluency bias. At the same time, there are constraints on this dis-
tributional learning. Listeners can draw inferences about the cause of
disfluencies which in turn may modulate the extent to which listeners
adjust their predictive strategies, potentially accounting for the lack of
distributional learning in the Atypical Group in Experiment 3.

A possible mechanism underlying distributional learning in dis-
fluency processing may be prediction error. In predictive coding fra-
meworks, learning depends on violations of expectations: the detection
of differences between expected sensory input and actual sensation
(Chang, Dell, & Bock, 2006; Ramscar, Dye, & McCauley, 2013). One
specific prediction of a predictive coding framework is that dis-
confirmed predictions (in contrast to confirmations) lead to greater
prediction error and hence to faster learning. This may explain why in
our first two native speech experiments we observed the greatest ad-
justments (in RTs and looking behavior) and fastest learning in the
Atypical Group, not in the Typical Group. Potentially, the contrast be-
tween participants’ original expectations (uh typically precedes low-
frequency referents) and the experienced atypical disfluency distribu-
tion (uh suddenly only precedes high-frequency referents) induced
greater prediction error and thus most evidence of distributional
learning.

The distributional learning observed in the present experiments
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supports viewing the brain as a “prediction machine” (Clark, 2012),
modifying perception and behavior so as to reduce error signals.
Moreover, it shows that distributional learning in language compre-
hension is not limited to the linguistic content (i.e., phonology, syntax,
semantics) of the communicative message; listeners even track such
performance cues as disfluencies. Thus, the current results highlight the
central role of prediction and adaptation in every aspect of spoken in-
teraction (Pickering & Gambi, 2018). One implication following from
this observation is that other metalinguistic, or even contextual, cues
may also be actively tracked by listeners in online language compre-
hension, such as background noise (cf. McQueen & Huettig, 2012).

At the same time, the present outcomes demonstrate that the brain
is no ‘dumb’ prediction machine. Distributional learning is sensitive to
contextual cues that may modulate adaptation. Specifically, the same
distributional cues were present in the atypical disfluency distributions
in Experiments 1–3, yet only evidence for adaptation was found in
Experiments 1 and 2. One parallel study to the present modulation of
disfluency adaptation, driven by talker-identity, was carried out by
Kraljic et al. (2008). They demonstrated modulation of phonetic
adaptation induced by contextual factors, reporting that listeners do not
adapt to a particular talker’s lisp when there are incidental factors that
explain the phonetic mispronunciation (e.g., a pen in the mouth; Kraljic
et al., 2008). Phonetic adaptation has been successfully modeled using
Bayesian inference and belief-updating frameworks (Kleinschmidt &
Jaeger, 2015). In such frameworks, listeners are thought to not only use
previous experience with cue distributions to predict upcoming mate-
rial, but also to track situation-specific statistics, tuning their expecta-
tions based on top-down knowledge, with behavioral consequences.
Thus, the parallels of the present findings on disfluency adaptation to
earlier work on phonetic, syntactic, and semantic adaptation call for a
unified, domain-general computational treatment of adaptation to lin-
guistic, metalinguistic, and contextual cues in interactive communica-
tion.
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