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Summary paragraph 19 

Machine learning approaches are increasingly used to extract patterns and insights from the exploding 20 

universe of geospatial data, but current approaches may not be an optimal approach when system 21 

behavior is dominated by spatial or temporal context. Rather than amending classical machine learning, 22 

however, we argue that these contextual cues should be at the core of a modified approach – termed 23 

deep learning – to extract novel understanding and predictive ability for topics such as seasonal 24 

forecasting and modeling of long-range spatial connections across multiple time-scales. A critical further 25 

step will be a hybrid modeling approach coupling physical processes with deep learning versatility. 26 

 27 

1. Introduction 28 

Humans have always been striving to predict and understand the world, and the ability to make 29 

better predictions has given competitive advantages in diverse contexts (e.g., weather, 30 

diseases, or more recently financial markets). Yet the tools for prediction have substantially 31 

changed over time, from ancient Greek philosophical reasoning to non-scientific medieval 32 

methods like soothsaying, toward modern scientific discourse, which has come to include 33 

hypothesis testing, theory development and computer modelling underpinned by statistical 34 

and/or physical relationships, i.e., laws1. A success story in the geosciences is weather 35 

prediction, which has greatly improved through integration of better theory, increased 36 
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computational power, and established observational systems which allow for the assimilation of 37 

large amounts of data into the modeling system2. Nevertheless, we can only accurately predict 38 

the evolution of the weather on a time-scale of days, not months. Seasonal meteorological 39 

predictions, forecasting extreme events such as flooding or fire, and long-term climate 40 

projections are still major challenges. This is especially true for predicting dynamics in the 41 

biosphere, which is dominated by biologically mediated processes such as growth, or 42 

reproduction, and strongly controlled by the seemingly stochastic disturbances such as fires and 43 

landslides. Such problems have been rather resistant to progress in the past decades3.  44 

At the same time, a deluge of Earth system data has become available, with storage volumes 45 

already well beyond dozens of petabytes and with rapidly increasing transmission rates beyond 46 

hundreds of terabytes per day4. These data come from a plethora of sensors measuring states, 47 

fluxes, and intensive or time/space integrated variables, and representing fifteen or more orders 48 

of temporal and spatial magnitude. They include remote sensing from meters to hundreds 49 

kilometers above the Earth as well as in-situ observations (increasingly from autonomous 50 

sensors) at and below the surface and in the atmosphere, many of which are further being 51 

complemented by citizen science observations. Model simulation output adds to this deluge; the 52 

CMIP-5 dataset (Climate Model Intercomparison Project), used extensively by the scientific 53 

community for scientific groundwork towards periodic climate assessments, is over 3PB in size, 54 

and the next generation, CMIP-6, is estimated to reach up to 30PB5. While not observations, the 55 

model data share many of the challenges and statistical properties of observational data, 56 

including many forms of uncertainty. In summary, Earth System data are exemplary of all four of 57 

the “four V's” of Big Data: volume, velocity, variety, and veracity (Figure 1). One key challenge is 58 

to extract interpretable information and knowledge from this Big Data, possibly in near-real time 59 

and integrating between disciplines.  60 

Taken together, our ability to collect and create data far outpaces our ability to sensibly 61 

assimilate it, let alone understand it. Predictive ability in the last few decades has not increased 62 

apace with data availability. To get the most out of the explosive growth and diversity of Earth 63 

system data, we face two major tasks in the coming years: 1) extracting knowledge from the 64 

data deluge, and 2) deriving models which learn maximally from data, beyond traditional data 65 

assimilation approaches, while still respecting our evolving understanding of nature’s laws. 66 
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The combination of unprecedented data sources, increased computational power, and the 67 

recent advances in statistical modeling and machine learning offer exciting new opportunities for 68 

expanding our knowledge about the Earth system from data. In particular, many tools are 69 

available from the fields of machine learning and artificial intelligence, but they need to be 70 

further developed and adapted to geo-scientific analysis. Earth system science offers new 71 

opportunities, challenges and methodological demands, in particular for recent research lines 72 

focusing on spatio-temporal context and uncertainties (see Glossary). 73 

[Place Glossary around here] 74 

In the following sections we review the development of machine learning in the geoscientific 75 

context, and highlight how deep learning, i.e. the automatic extraction of abstract (spatio-76 

temporal) features, has the potential to overcome many of the limitations that have, until now, 77 

hindered a more wide-spread adoption of machine learning. We further lay out the most 78 

promising but also challenging approaches in combining machine learning with physical 79 

modelling.  80 

2. State-of-the-art in geoscientific machine learning 81 

Machine learning is now a successful part of several research-driven andoperational 82 

geoscientific processing schemes, addressing the atmosphere, the land surface and the ocean, 83 

but has co-evolved with data availability over the last decade. Early landmarks in classification 84 

of land cover and clouds emerged almost 30 years ago through the coincidence of high-85 

resolution satellite data and the first revival of neural networks6,7. Most major machine learning 86 

methodological development (e.g. kernel methods or Random forests) has subsequently been 87 

applied to geoscience and remote sensing problems, often when data suitable for pertinent 88 

methods became available8. Thus, machine learning has become a universal approach in geo-89 

scientific classification, and change and anomaly detection problems9,10-12. In the last few years, 90 

the field has begun to use deep learning to better exploit spatial and temporal structure in the 91 

data, features that would normally be problematic for traditional machine learning (e.g. Table 1, 92 

and next section). 93 

Another class of problems where machine learning has been successful is regression problems. 94 

An example is soil mapping, where measurements of soil properties and covariates exist at 95 

points sparsely distributed in space, and where a Random Forest, a popular and efficient 96 
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machine learning approach,  is used to predict spatially dense estimates of soil properties or soil 97 

types13,14. In the last decade, machine learning has attained outstanding results in the 98 

regression estimation of bio-geo-physical parameters from remotely sensed reflectances at local 99 

and global scales15,16,17. These approaches emphasize spatial prediction, i.e. prediction of 100 

properties which are relatively static over the observational time period.  101 

Yet, what makes the Earth System interesting is that it is not static, but dynamic. Machine 102 

learning regression techniques have also been utilized to study these dynamics by mapping 103 

temporally varying features onto temporally varying target variables in land, ocean and 104 

atmosphere domains. Since variables such as land- or ocean-atmosphere carbon uptake 105 

cannot be observed everywhere, one challenge has been to infer continental or global estimates 106 

from point observations, by building models, which relate climate and remote sensing co-107 

variates to the target variables. In this context, machine learning methods have proven to be 108 

more powerful and flexible than previous mechanistic or semi-empirical modelling approaches.. 109 

For instance an ANN with one hidden layer was able to filter out noise, predict the diurnal and 110 

seasonal variation of CO2 fluxes, and extract patterns such as an increased respiration in spring 111 

during root growth, which was formerly unquantified and not well represented in carbon cycle 112 

models18. Further developments have then allowed for the first time to quantify global terrestrial 113 

photosynthesis and evapotranspiration of water in a purely data-driven way19,20. Spatial, 114 

seasonal, interannual or decadal variation of such machine-learning-predicted fluxes are even 115 

being used as important benchmarks for physical land-surface and climate model evaluation21-116 
24. Similarly, ocean CO2 concentrations and fluxes have been mapped spatio-temporally with 117 

neural networks, where classification and regression approaches have been combined, both for 118 

stratifying the data and for prediction25. Recently random forests have also been used to predict 119 

spatio-temporally varying precipitation26. Overall, we conclude that a diversity of influential 120 

machine learning approaches have already been applied across all the major sub-domains of 121 

Earth system science and are increasingly being integrated into operational schemes and being 122 

used to discover new patterns, advance understanding and evaluate comprehensive physical 123 

models.  124 

Notwithstanding the success of machine learning in the geosciences, important caveats and 125 

limitations have hampered a wider adoption and impact of such methods. A few pitfalls such as 126 

the risk of naïve extrapolation, sampling or other data biases, ignorance of confounding factors, 127 

interpretation of statistical association as causal relation, or fundamental flaws in multiple 128 
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hypothesis testing (“p-fishing”) 27-29 should be avoided by best practices and expert intervention. 129 

More fundamentally, there are inherent limitations of currently-applied machine learning 130 

approaches. It is in this realm that the techniques of deep learning promise breakthroughs, as 131 

we explain in the paragraphs below.  132 

Classical machine learning approaches benefit from domain-specific, hand-crafted features to 133 

account for dependencies in time or space (e.g. cumulative precipitation derived from a daily 134 

time series), but rarely exploit spatio-temporal dependencies exhaustively. For instance, in 135 

ocean-atmosphere or land-atmosphere CO2 flux prediction19,25, mapping of instantaneous, local 136 

environmental conditions (e.g. radiation, temperature, humidity) to instantaneous fluxes is 137 

performed. In reality, processes at a certain point in time and space are almost always 138 

additionally affected by the state of the system, which is often not well observed and thus not 139 

available as a predictor. However, previous time steps and neighboring grid cells contain hidden 140 

information on the state of the system (e.g. a long period without rain-fall combined with 141 

sustained sunny days implies a drought). One example where both, spatial and temporal 142 

context are highly relevant, is the prediction of fire occurrence and characteristics such as burnt 143 

area and trace gas emissions. Fire occurrence and spread depends not only on instantaneous 144 

climatic drivers and sources of ignition (e.g. humans, lightning, or both) but also on state 145 

variables, such as the state and amount of available fuel3. Fire spread and thus the burnt area 146 

depends not only on the local conditions of each pixel but also on the spatial arrangement and 147 

connectivity of fuel, its moisture, terrain properties, and of course wind speed and direction. 148 

Similarly, classifying a certain atmospheric situation as a hurricane or extratropical storm 149 

requires knowledge of the spatial context such as size and shape of a geometry constituted by 150 

pixels, their values, and their topology. For instance, detecting symmetric outflow and a visible 151 

‘eye’ is important for detecting hurricanes and assessing their strength which cannot be 152 

determined alone by localized, single pixel values.  153 

Certainly, temporally dynamic properties (“memory effects”) can be represented by hand-154 

designed and domain-specific features in machine learning. Examples are cumulative sums of 155 

daily temperature, which are used to predict phenological phases of vegetation, and the 156 

standardized precipitation index (SPI30), which summarizes precipitation anomalies over the last 157 

months as a meteorological indicator of drought states. Very often, these approaches only 158 

consider memory in a single variable, ignoring interactive effects of several variables, although 159 

exceptions exist 22,31.  160 
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Machine learning can also use hand-designed features, such as terrain shape and 161 

topographical or texture features from satellite images, to incorporate spatial context 6. This is 162 

analogous to earlier approaches in computer vision where objects were often characterized by a 163 

set of features describing edges, textures, shapes and colors. Such features were then fed into 164 

a standard machine learning for localization, classification or detection of objects in images. 165 

Similar approaches have been followed for decades in remote sensing image classification8-10. 166 

Hand-designed features can be seen both as an advantage (control of the explanatory drivers) 167 

and as a disadvantage (tedious, ad hoc process, likely non-optimal), but certainly the concern of 168 

a restricted, and subjective choice of features rather than an extensive and generic approach 169 

remains a valid and important one. New developments in deep learning, however, no longer 170 

limit us to such approaches. 171 

3. Deep-learning opportunities in Earth system science 172 

Deep learning has achieved notable success in modelling ordered sequences and data with 173 

spatial context in the fields of computer vision, speech recognition and control systems32, as 174 

well as in related scientific fields in physics33-35, chemistry36 and biology37 (see also ref 38). 175 

Applications to problems in geosciences are in their infancy, but across the key problems 176 

(classification, anomaly detection, regression, space- or time dependent state prediction) there 177 

are promising examples arising (Table 1, Supplementary Box 1)39,40. Two recent studies 178 

demonstrate the application of deep learning to the problem of extreme weather, for instance 179 

hurricane, detection41,42 – already mentioned as a problematic question for traditional machine 180 

learning” They report success in applying deep-learning architectures to objectively extract 181 

spatial features define and classify extreme situations (e.g. storms, atmospheric rivers) in 182 

numerical weather prediction model output. Such approach enables rapid detection of such 183 

events and forecast simulations without using either subjective human annotation or methods 184 

that rely on predefined somewhat arbitrary thresholds for wind speed or other variables. In 185 

particular, such approach uses the information in the spatial shape of respective events such as 186 

the typical spiral for hurricanes. Similarly, for classification of urban areas the automatic 187 

extraction of multi-scale features from remote sensing data strongly improved the classification 188 

accuracy to almost always greater than 95%43.  189 

While deep learning approaches have classically been divided into spatial learning (e.g. 190 

convolutional neural networks for object classification) and sequence learning (e.g. speech 191 
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recognition), there is a growing interest in blending these two perspectives. A prototypical 192 

example is video and motion prediction44,45, which is strikingly similar to many dynamic 193 

geoscience problems. Here we are faced with time-evolving multi-dimensional structures, such 194 

as organized precipitating convection which dominates patterns of tropical rainfall, vegetation 195 

states which influence the flow of carbon and evapotranspiration. Studies are beginning to apply 196 

combined convolutional-recurrent approaches to geoscientific problems such as precipitation 197 

nowcasting (Table 1)46. Modelling atmospheric and ocean transport, fire spread, soil movements 198 

or vegetation dynamics are other examples where spatio-temporal dynamics are important, but 199 

which have yet to benefit from a concerted effort to apply these new approaches. 200 

In short, the similarities between the types of data addressed with classical deep learning 201 

applications and geoscientific data make a compelling argument for the integration of deep 202 

learning into geosciences (Figure 2): Images are analogous to two-dimensional data fields 203 

containing particular variables in analogy to color-triplets (RGB values) in photographs, while 204 

videos can be likened to a sequence of images and hence of 2D fields that evolve in time. 205 

Similarly, natural language and speech signals share the same multiresolution characteristics of 206 

dynamic time-series of Earth system variables. Furthermore, classification, regression, anomaly 207 

detection, and dynamic modeling are typical problems in both computer vision and geosciences.  208 

4. Deep-learning challenges in Earth system science 209 

The similarities between classical deep learning applications and geoscience applications 210 

outlined above are striking. Yet, numerous differences exist. For example, while classical 211 

computer vision applications deal with photos which have three channels (red, green, blue) 212 

hyperspectral satellite images extend to hundreds of spectral channels well beyond the visible 213 

range, which often induce different statistical properties to those of natural images. This 214 

includes spatial dependence and interdependence of variables violating the important 215 

assumption of identically, independent distributed data. Additionally, integrating multi-sensor 216 

data is not trivial since different sensors exhibit different imaging geometries, spatial and 217 

temporal resolution, physical meaning, content and statistics. Sequences of (multi-sensor) 218 

satellite observations also come with diverse noise sources, uncertainty levels, missing data 219 

and (often systematic) gaps (due to the presence of clouds or snow, distortions in the 220 

acquisition, storage and transmission, etc.).  221 
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In addition, spectral, spatial, and temporal dimensionalities raise computational challenges. The 222 

data volume is increasing geometrically and soon it will be necessary to deal with Petabytes/day 223 

globally. Currently, the biggest meteorological agencies have to process Terabytes per day in 224 

near real time. often at very high precision (32-bit, 64-bit). Further, while typical computer vision 225 

applications have worked with image sizes of 512 x 512 pixels, a moderate resolution (ca. 1km) 226 

global field has sizes of approximately 40000 x 20000 pixels, i.e. three orders of magnitude 227 

more. 228 

Last but not least, unlike the ImageNet benchmark (a data base of images with labels, e.g. “cat” 229 

or “dog”47) in the computer vision community, large, labeled geoscientific datasets do not always 230 

exist in geo-science, not only due to the sizes of the datasets involved, but also due to the 231 

conceptual difficulty in labeling data sets, e.g. determining “it’s a cat” vs “it’s a drought”, given 232 

that the second label is contingent on intensity and extent and can change according to 233 

methods, and there are not enough labeled cases for training. These aspects raise the 234 

challenge of working with a limited training set. More generally, geo-scientific problems are often 235 

underconstrained, leading to the possibility of models thought to be of high quality, which 236 

perform well in training and even test data sets, but deviate strongly for situations and data 237 

outside their valid domain (extrapolation problem), which is even true for complex physical Earth 238 

system models48. Overall, we identify at least five major challenges and avenues for the 239 

successful adoption of deep learning approaches in the geosciences: 240 

1. Interpretability: Improving predictive accuracy is important but insufficient. Certainly, 241 

interpretability and understanding are crucial in this arena, including visualization of the 242 

results for analysis by humans. Interpretability has been identified as a potential weakness 243 

of deep neural networks, and achieving it is a current focus in deep learning49. The field is 244 

still far from achieving self-explanatory models, and from causal discovery from 245 

observational data50,51. Yet, we should note that, given their complexity, also modern Earth 246 

system models are in practice often not easily traceable back to their assumptions, limiting 247 

their interpretability as well. 248 

2. Physical consistency: Deep learning models can fit observations very well, but predictions 249 

may be physically inconsistent or implausible, e.g. owing to extrapolation or observational 250 

biases. Integration of domain knowledge and achievement of physical consistency by 251 

teaching models about the governing physical rules of the Earth system can provide very 252 

strong theoretical constraints on top of the observational ones. 253 
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3. Complex and uncertain data: New deep learning methods are needed to cope with complex 254 

statistics, multiple outputs, different noise sources and high dimensional spaces. New 255 

network topologies that not only exploit local neighborhood (even at different scales), but 256 

also long-range relationships (e.g., for teleconnections) are urgently needed, but the exact 257 

cause-effect relations between variables are even not clear in advance and need to be 258 

discovered. Modelling uncertainties will be certainly an important aspect and will require to 259 

integrate concepts from Bayesian/probabilistic inference, which are directly addressing that 260 

(Glossary and 52).  261 

4. Limited labels: Methods need to be further developed which can learn from few labelled 262 

examples, by utilizing the information in related unlabeled observations, so-called 263 

unsupervised density modeling, feature extraction and semi-supervised learning53 (cf. 264 

glossary). 265 

5. Computational demand: There is a huge technical challenge regarding the high 266 

computational cost of current geoscience problems - good examples to address this 267 

includes Google Earth Engine, which allowed solving real problems from deforestation54 to 268 

lake55 monitoring, yet still without deep learning application. 269 

By addressing these challenges, deep learning could make an even bigger difference in the 270 

geosciences in comparison to classical computer vision, because in computer vision hand 271 

crafted features are derived from a clear understanding of the world (existence of surfaces, 272 

boundaries between objects, etc.), the mapping from the world to images, and assumptions 273 

about the (visual) appearance of world points (surface points, the state in 3D) on 2D images. 274 

Assumptions for successful processing include the assumption of Lambertian surfaces (i.e. 275 

intensity does not depend on the angle between surface and light source) which results in the 276 

classical assumption of constant intensity of the observation of a 3D point over time. In addition, 277 

changes in the world (the motion of objects) are in most cases modeled as rigid transformations, 278 

or non-rigid transformations that arise from physical assumptions and that are only valid locally 279 

(like in registration of brain structures, before and after removal of a tumor). Even complex 280 

problems in computer vision have been solved by hand-crafted features that reflect the 281 

assumptions and expectations arising from common world knowledge. In geoscience and 282 

climate science, such global, general assumptions are still partly missing. In fact, these 283 

assumptions and expectations are exactly the models we are looking for! All problems, from 284 

segmentation in remote sensing images to regression analysis of certain variables, have certain 285 
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assumptions that are known to be valid or at least good approximations. Yet, the less processes 286 

are understood, the fewer high-quality hand-crafted features for modeling are expected to exist. 287 

Thus, deep learning methods, particularly since they find a good representation from data, 288 

represent an opportunity to tackle geoscience and climate research problems. 289 

The most promising near-future applications include nowcasting, (i.e. prediction of the very near 290 

future, up to two hours in meteorology) and forecasting applications, anomaly detection and 291 

classification based on spatial and temporal context information (see examples in Table 1). A 292 

longer-term vision includes data driven seasonal forecasting, modelling of spatial long-range 293 

correlations across multiple time-scales, modelling spatial dynamics where spatial context plays 294 

an important role (e.g. fires), and detecting teleconnections and connections between variables 295 

that a human may not have thought about. 296 

Overall, we infer that deep learning will soon be the leading method for classifying and 297 

predicting space-time structures in the geosciences. More challenging is to gain understanding 298 

in addition to optimal prediction, and to achieve models that have maximally learned from data, 299 

while still respecting and taking advantage of the physical and biological knowledge. One 300 

promising but largely uncharted approach to achieving this goal is the integration of machine 301 

learning with physical modelling, which we explore in the following section.  302 

 303 

5 Integration with physical modelling 304 

Historically, physical modelling and machine learning have been often treated as “two different 305 

worlds” with very different scientific paradigms (theory-driven versus data-driven). Yet, in fact 306 

these approaches are complementary, with physical approaches in principle being directly 307 

interpretable and offering the potential of extrapolation beyond observed conditions, while data-308 

driven approaches are highly flexible in adapting to the data and are amenable to finding 309 

unexpected patterns (surprises). The synergy between the two approaches has been gaining 310 

attention 56-58, expressed in benchmarking initiatives59,60 and in concepts such as emergent 311 

constraints27,61,62. 312 

Here, we argue that advances in machine learning and in observational and simulation 313 

capabilities within Earth sciences offer an opportunity to more intensively integrate simulation 314 

and data science approaches in multiple fashions. From a systems modelling point of view there 315 
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are five points of potential synergy (Figure 3) [the numbers in the following list correspond to the 316 

circles in the figure]:  317 

1) Improving parameterizations (Fig. 3, linkage 1). Physical models require parameters but 318 

many of those cannot be easily derived from first principles. Here, machine learning can learn 319 

parameterizations to optimally describe the ground truth which can be observed or generated 320 

from detailed and high-resolution models through first principles. For example, instead of 321 

assigning parameters of the vegetation in an Earth system model to plant functional types (a 322 

common ad hoc decision in most global land surface models), one can allow these 323 

parameterizations to be learned from appropriate sets of statistical covariates, allowing them to 324 

be more dynamic, interdependent and contextual. A prototypical approach has been taken 325 

already in hydrology where the mapping of environmental variables (e.g. precipitation, surface 326 

slope) to catchment parameters (e.g. mean, minimum, maximum streamflow) has been learned 327 

from a few thousands catchments and applied globally to feed hydrological models63. Another 328 

example from global atmospheric modelling is learning the effective coarse-scale physical 329 

parameters of precipitating convection (e.g. the fraction of water that is precipitating out of a 330 

cloud during convection) from data or high-resolution models64,65.(the high-resolution models are 331 

too expensive to run, which is why coarse-scale parametrizations are needed). These learned 332 

parametrizations could lead to better representations of tropical convection66,67.  333 

2) Replacing a “physical” sub-model with a machine learning model (Fig. 3, linkage 2). If 334 

formulations of a submodel are of semi-empirical nature where the functional form has little 335 

theoretical basis (e.g. biological processes), this submodel can be replaced by a machine 336 

learning model if a sufficient number of observations are available. This leads to a hybrid model, 337 

which combines the strengths of physical modeling (theoretical foundations, interpretable 338 

compartments) and machine learning (data-adaptiveness). For example, we could couple well 339 

established physical (differential) equations of diffusion for transport of water in plants with 340 

machine learning for the poorly understood biological regulation of water transport conductance. 341 

This results in a more “physical model” that obeys accepted conservation of mass and energy 342 

laws, but the regulation (biological) is flexible and learned from data. Such principle has recently 343 

been taken to efficiently model motion of water in the ocean and specifically predict sea surface 344 

temperatures. Here, the motion field was learned via a deep neural network, and then used to 345 

update the heat content and temperatures via physically modelling the movement implied by the 346 

motion field68. Also a number of atmospheric scientists have begun experimenting with related 347 
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approaches to circumvent long-standing biases in physically based parameterizations of 348 

atmospheric convection65,69.  349 

The problem may become more complicated if physical model and machine learning 350 

parameters are to be estimated simultaneously while maintaining interpretability, especially 351 

when several sub-models are replaced with machine learning approaches. In the field of 352 

chemistry this approach has been used in calibration exercises and to describe changes in 353 

unknown kinetic rates while maintaining mass balance in biochemical reactors modeling70, 354 

which, albeit less complex, bears many similarities to hydrological and biogeochemical 355 

modelling.  356 

3) Analysis of model-observation mismatch (Fig. 3, linkage 3): Deviations of a physical model 357 

from observations can be perceived as imperfect knowledge causing model error, assuming no 358 

observational biases. Machine learning can help to identify, visualize and understand the 359 

patterns of model error, which allows also to correct model outputs accordingly. For example, 360 

machine learning can extract patterns from data automatically and identify those which are not 361 

explicitly represented in the physical model. This approach helps improving the physical model 362 

and theory. In practice, it can also serve to correct model bias of dynamic variables, or it can 363 

facilitate improved downscaling to finer spatial scales compared to tedious and ad hoc hand-364 

designed approaches71,72.  365 

4) Constraining sub-models (Fig. 3, linkage 4). One can drive a submodel with the output from a 366 

machine learning algorithm, instead of another (potentially biased) submodel in an offline 367 

simulation. This helps in disentangling model error originating from the submodule of interest 368 

from errors of coupled submodules. As a consequence, this simplifies and reduces biases and 369 

uncertainties in model parameter calibration or the assimilation of observed system state 370 

variables.  371 

5) Surrogate modeling or emulation: Emulation of the full (or specific parts of) a physical model 372 

can be useful for computational efficiency and tractability reasons. Machine learning emulators 373 

once trained can achieve orders of magnitude faster simulations than the original physical 374 

model without sacrificing significant accuracy. This allows for fast sensitivity analysis, model 375 

parameter calibration, and derivation of confidence intervals for the estimates. For example, 376 

machine learning emulators are used to replace computationally expensive, physics-based 377 
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radiative transfer models (RTMs) of the interactions between radiation, vegetation and 378 

atmosphere57,73,74 which are critical for the interpretation and assimilation of land surface remote 379 

sensing in models. Emulators are also used in dynamic modelling, where states are evolving, 380 

e.g. in climate modeling75 and more recently explored in vegetation dynamic models76. Further, 381 

given the complexity of physical models, emulation challenges are very good test beds to 382 

explore the potential of machine learning and deep learning approaches to extrapolate outside 383 

the ranges of training conditions. 384 

Some of the concepts in Figure 3 have already been adopted in a broad sense. For instance, 385 

point 3) relates to model benchmarking and statistical downscaling and model output 386 

statistics77,78. Here we argue that adopting a deep-learning approach will strongly improve the 387 

use of spatio-temporal context information for the modification of model output. Emulation (5) 388 

has been widely adopted in several branches of engineering and geosciences, mainly for the 389 

sake of efficient modelling, but tractability issues have not yet been explored in depth. Other 390 

paths, such as the hybrid modelling (Fig. 3, link 2), appear to be much less explored. 391 

Conceptually the hybrid approaches discussed before can be interpreted as deepening and 392 

“physicizing” a neural network (Figure 4), where the physical model comes on top of a neural 393 

network layers (see examples Fig. 4b-c). It contrasts the reverse approach discussed above 394 

where physical model output is produced and then corrected using additional layers of machine 395 

learning approaches. We believe that it is worthwhile pursuing both avenues of integrating 396 

physical modelling and machine learning. 397 

Figure 3 started from a system-modelling view and seeks to integrate machine learning. As an 398 

alternative perspective system knowledge can be integrated into a machine learning framework. 399 

This may include respective design of the network architecture36,79, physical constraints in the 400 

cost function for optimization58, or expansion of the training data set for under-sampled domains 401 

(i.e. physically based data augmentation)80. For instance, while usually a so-called cost-function 402 

like ordinary least squares penalizes model-data mismatch, it can be modified to also avoid 403 

physically implausible predictions for lake temperature modelling58. The integration of physics 404 

and machine learning models may not only achieve improved performance and generalizations 405 

but, perhaps more importantly, incorporates consistency and credibility of the machine learning 406 

models. As a by-product, the hybridization has an interesting regularization effect as physics 407 

discards implausible models. Therefore, physics-aware machine learning models should better 408 

combat overfitting, especially in low-to-medium sample sized datasets81. This notion is also 409 
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related to the direction of attaining explainable and interpretable machine learning models 410 

(“explainable AI”82), and to combining logic rules with deep neural networks83  411 

Recent advancements in two fields of methodological approaches have potential in facilitating 412 

the fusion of machine learning and physical models in a sound way: probabilistic 413 

programming52, and differentiable programming. Probabilistic programming allows for 414 

accounting of various uncertainty aspects in a formal but flexible way. A proper accounting for 415 

data and model uncertainty along with integration of knowledge by priors and constraints is 416 

critical for optimally combining the data-driven and theory-driven paradigms, including logical 417 

rules as done in statistical relational learning. In addition, error propagation is conceptually 418 

seamless, facilitating well founded uncertainty margins for model output. This capability is 419 

largely missing so far but crucial for scientific purposes, and in particular for management, or 420 

policy decisions. Differentiable programming allows for efficient optimization due to automated 421 

differentiation84,85. This greatly helps in making the large, non-linear and complex inversion 422 

problem computationally more tractable, and in addition allows for explicit sensitivity 423 

assessments, thus aiding in interpretability. 424 

 425 

6. Advancing science 426 

There is no doubt and there are numerous examples as discussed in this manuscript, that 427 

modern machine learning methods significantly improve classification and prediction skills. This 428 

alone has great value. Yet, how do they improve fundamental scientific understanding, given 429 

that in particular the outcome of complex statistical models remains hard to grasp? The answer 430 

can be found in the observations which have virtually always been the basis for scientific 431 

progress. The Copernican revolution was possible by precisely observing planetary trajectories 432 

to infer and test the laws governing them. While the general cycle of exploration, hypotheses 433 

generation and testing remains the same, modern data-driven science and machine learning 434 

can extract arbitrarily complex patterns in observational data to challenge complex theories and 435 

Earth system models (Supplementary Fig. 3). For instance spatially explicit global data-driven 436 

machine learning based estimates of photosynthesis, has indicated an overestimation of 437 

photosynthesis in the tropical rainforest by climate models86.  This mismatch has led scientists 438 

to develop hypotheses that enable a better description of the radiative transfer in vegetation 439 

canopies23 which has led to better photosynthesis estimates also in other regions, and better 440 

consistency with leaf level  observations.. Related data-driven carbon cycle estimates have 441 
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helped calibrating vegetation models and explain the conundrum of the increasing seasonal 442 

amplitude of the CO2 concentration in high latitudes87, which according to these results is 443 

caused by more vigorous vegetation in the high latitudes. In addition to data-driven theory and 444 

model building, extracted patterns are increasingly being used as a way to explore improved 445 

parameterizations in Earth system models65,69, and emulators are increasingly being used as a 446 

basis for model calibration88. In other words, the scientific interplay between theory and 447 

observation, of hypothesis generation and theory-driven hypothesis testing will prevail, but the 448 

complexity of hypotheses and tests inferred from data and the pace of this generation are 449 

changing by orders of magnitude, implying unprecedented, qualitative and quantitative progress 450 

of the science of the complex Earth system. 451 

 452 

7. Conclusion 453 
 454 
Earth sciences face the need to process large and rapidly increasing amounts of data to provide 455 

more accurate, less uncertain, and physically consistent inferences in the form of prediction, 456 

modeling and understanding the complex Earth system. Machine learning in general, and deep 457 

learning in particular, offer promising tools to build new data-driven models for components of 458 

the Earth system and thus for understanding of the Earth. The Earth system specific challenges 459 

shall further stimulate the development of methodologies, where we have four major 460 

recommendations.  461 

Recognition of the particularities of the data: multi-source, multi-scale, high dimensional, 462 

complex spatial-temporal relations, including non-trivial, and lagged long-distance relationships 463 

(teleconnections) between variables need to be adequately modelled. While the deep learning 464 

approach is well-positioned to address these data challenges, this may stimulate development 465 

of new network architectures, algorithms and approaches, in particular deep-learning 466 

approaches which address both spatial and temporal context at different scales (cf. Figure 4).  467 

Plausibility and interpretability of inferences: models should not only be accurate but also 468 

credible and aware of the physics governing the Earth system. Wide adoption of machine 469 

learning in the Earth sciences will be facilitated if models become more transparent and 470 

interpretable: their parameters and feature rankings should have a minimal physical 471 
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interpretation, and the model should be reducible/explainable in a set of rules, descriptors, and 472 

relations.   473 

Uncertainty estimation: Models should speak about their confidence and credibility. A strong 474 

integration of Bayesian/probabilistic inference will be an avenue to follow here, because they 475 

allow for explicit representation and propagation of uncertainties. In addition, identifying and 476 

treating extrapolation is a priority. 477 

Testing against complex physical models: the spatial and temporal prediction ability of machine 478 

learning should be at least consistent with the patterns observed in physical models. Thus we 479 

recommend testing the performance of machine learning methods against synthetic data 480 

derived from physical models of the Earth system. For instance, the models in Fig. 4b and c, 481 

which are applied to real data, should be tested across a broad range of dynamics as simulated 482 

by complex physical models. This is of particular relevance in conditions of limited training data 483 

and to assess extrapolation issues. 484 

Overall we suggest that future models should integrate process-based and machine learning 485 

approaches. Data-driven machine learning approaches to geo-scientific research will not 486 

replace physical modelling, but strongly complement and enrich it. Specifically, we envision 487 

various synergies between physical and data-driven models, with the ultimate goal of hybrid 488 

modelling approaches: they obey physical laws, feature a conceptualized and thus interpretable 489 

structure, and at the same time are fully data-adaptive where theory is weak. Importantly, the 490 

other way around also holds: machine learning research will benefit from plausible physically 491 

based relationships derived from the natural sciences. Among others, two major Earth system 492 

challenges resistant to past progress, the parameterization of atmospheric convection and the 493 

description of spatio-temporal dependency of ecosystems on climate and interacting geo-494 

factors, are open to be addressed with the approaches discussed here. 495 
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Tables  759 

 760 

Table 1: Geoscientific tasks, conventional approaches, their limitations and potential of deep 761 
learning approaches 762 

Analytical Task Scientific Task Conventional 
approaches 

Limitations Emergent or 
potential 
approaches 

Classification 
and anomaly 
detection 

    

 Finding extreme 
weather patterns 

Multivariate, 
threshold based 
detection 

Heuristic approach, 
ad hoc criteria used 

Supervised and 
Semi-supervised 
Convolutional 
Neural 
Networks41,42 

 Land-use and 
change detection 

Pixel-by-pixel 
spectral 
classification 

No or only shallow 
spatial context used 

Convolutional 
Neural Networks43 

Regression     
 Predict fluxes 

from atmospheric 
conditions 

Random forests 
Kernel methods 
Feedforward NNs 

Memory and lag 
effects not 
considered 

Recurrent neural 
networks, LSTMs 89 

 Predict 
vegetation 
properties from 
atmospheric 
conditions 

Semi-empirical 
algorithms 
(temperature sums, 
water deficits) 

Prescriptive in 
terms of functional 
forms and dynamic 
assumptions 

Recurrent neural 
networks90, possibly 
with spatial context 

 Predict river 
runoff in 
ungauged 
catchments 

Process-models or 
statistical models 
with hand-designed 
topographic 
features91 

Consideration of 
spatial context 
limited to hand-
designed features 

Combination of 
convolutional neural 
network with 
recurrent networks 

State 
Prediction 

    

 Precipitation 
nowcasting 

Physical modelling 
with data-
assimilation 

Computational 
limits due to 
resolution, data 
only used to update 
states 

Convolutional-
LSTM nets short-
range spatial 
context92 

 Downscaling and 
bias correcting 
forecasts  

Dynamic modelling 
and statistical 
approaches 

Computational 
limits; subjective 
feature selection 

Convolutional nets 
72, cGANs53,93  

 Seasonal 
forecasts 

Physical modelling 
with initial conditions 
from data 

Fully dependent on 
physical model, 
current skill 
relatively weak 

Convolutional-
LSTM nets with 
long-range spatial 
context 

 Transport 
modelling 

Physical modelling 
of transport 

Fully dependent on 
physical model, 
computational limits 

Hybrid physical-
convolutional 
network models94,68 
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 764 

 765 

 766 

Figures with captions 767 

 768 

 769 

770 
 771 

Figure 1: Big data challenges in the geoscientific context (Earth picture from 772 
https://nosc.noaa.gov/tpio/images/ObsSys.jpg) 773 

 774 
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 776 

Figure 2: Typical deep learning applications (left) and the geo-scientific problems they 777 
apply to (right). From top to bottom: 1) classification of extreme weather patterns using a 778 
unified convolutional neural network on climate simulation data 42 41, 2) statistical downscaling of 779 
climate model output 72, 3) short-term forecasting of climate variables95, and 4) modelling of 780 
dynamic time-series.96, 97 Image sources: https://smerity.com/articles/2016/google_nmt_arch.html; 781 
https://arxiv.org/abs/1612.02095;. 782 
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 784 

 785 

 786 

Figure 3: Linkages between physical models and machine learning: Depicted here is an 787 
abstraction of a part of a physical system, e.g. a climate model. The model consists of 788 
submodels which each have parameters, and forcing variables as inputs, and produce output, 789 
which can be input (forcing) to another sub-model. Data-driven learning approaches can be 790 
helpful in various instances, cf. the black-boxes and numbers. More detail in the text. ML = 791 
Machine Learning 792 
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 794 

Figure 4: Interpretation of hybrid modelling (circle 2 in Figure 3) as deepening and 795 
“physicsizing” a deep learning architecture by adding one or several (m) physical layers 796 
after the multilayer neural network (A). (B) and (C) are concrete examples, where (B) is from de 797 
Bezenac et al.68, where a motion field is learned with a convolutional-deconvolutional neural 798 
network, and the motion field further processed with a physical model. (C) models a biological 799 
regulation process (opening of the stomatal “valves” controlling water vapor flux from the 800 
leaves) with a recurrent neural network and processes this further with a physical diffusion 801 
model to estimate transpiration, which in turn influences some of the drivers, e.g. soil moisture. 802 
Basic scheme (A) modified after Goodfellow et al. 98. 803 
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Supplementary material and glossary 805 

Efficient modelling a dynamic non-linear system with recurrent neural networks 806 

Aforementioned state-of-the-art examples of mapping sequences of driving variables (e.g. 807 
meteorological conditions) onto target variables such as CO2 fluxes from ocean or land have considered 808 
instantaneous mapping without representation of state dynamics. Dynamic effects have either been 809 
considered by directly using observed states as predictors (e.g. vegetation state represented by 810 
reflectance) or by introducing hand-designed features. The general problem is depicted in the figure 811 
below, where the input acts on an unknown, unobservable system state, while the observable is both 812 
influenced by the past state and the current input. It is not a problem of forecasting a time series a few 813 
steps ahead, because the whole output sequence has to be predicted by the model. 814 

As an example, in the synthetic dynamic system below (one realization in Figure Box 1) we have three 815 
forcing variables x1, x2, x3 where two of them influence one (unobserved) state r according to 816 ݎ௧ାଵ = ݂൫ݔଵ,௧, ,ଶ,௧ݔ ,ଵ,௧ݔwith 817 ݂൫	௧൯,ݎ ,ଶ,௧ݔ ௧൯ݎ = ߬ ∙ ଵ,௧ݔ ∙ ଶ,௧ݔ ∙ ݁௫ଵ,௧ + (1 − ߬) ∙  ௧, 818ݎ

τ being a parameter determining the inertia of the dynamics of r, here set to 0.05. A target state y to be 819 
predicted evolves as a logistic map well known from ecology and chaos theory99:  820 ݕ௧ାଵ = ௧෥ݎ ∙ ௧ݕ ∙ (1 −  ௧), 821ݕ

where (contrary to the standard logistic map) the parameter ݎ௧෥  is not fixed but dynamic and dependent 822 
on r as 823 ݎ௧෥ = ௧ݎ	)݃ +  ଷ,௧), 824ݔ

 where g simply scales ݎ௧෥  onto the interval [2.5, 4] which implies dynamics varying with time between 825 
dampened oscillations, limit cycles and chaos. In the synthetic example 500 realizations of x1 and x2 as 826 
Gaussian i.i.d. variables are generated, while x3 is always a seasonal variable as in the Figure below. 827 
Obviously x1 and x2 are mimicking a stochastic forcing, whereas x3 represents a deterministic forcing 828 
(e.g. solar radiation varying diurnally and seasonally). 829 

The lower panel shows the performance of different approaches to model the ݕ௧  sequence given the 830 
sequences of ݔଵ  ௧, 831ݕ ଷ. With a feed-forward ANN or random forests it is hard to model the sequenceݔ…
even with including intuitive features which represent lagged or memory effects, such as lagged or 832 
cumulated x variables over the last 25 time steps. On the contrary, being turing-complete100 a recurrent 833 
NN has the potential to describe any dynamic system, and the challenge is the parameter estimation or 834 
training. In the specific case a simple LSTM101 with 8 cells was trained on 80% of the realizations and the 835 
results are shown here for the test set. Certainly, other modelling approaches such as dynamic Bayesian 836 
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approaches (e.g. hidden Markov models) exist as well for state estimation, and the relation to recurrent 837 
neural networks and deep learning is under research102. 838 

 839 

 840 

Supplementary Figure 1: Concept of modelling a dynamic system, i.e. mapping an input sequence to an 841 
output sequence, where a (hidden) dynamic state is involved. 842 
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843 

 844 

Supplementary Figure 2: Data-driven modelling of a synthetic geoscientific time-series depicted in (a) with 845 
dynamic effects. Shown are predictor variables x1, x2, x3, the resulting time-series of the system state 846 
(“observed” and modelled with an LSTM), and the parameter ݎ௧෥ of the logistic map. (b) While classical 847 
approaches including typical feature design fail to explain the dynamics (grey bars, RF = Random Forest, 848 
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ANN = feedforward ANN), a deep learning approach, long-short-term-memory neural network (LSTM) is 849 
able to explain almost all variance (red), without designing any features. 850 

 851 

 852 

Supplementary Figure 3: Cycle of hypothesis generation and testing in complex systems 853 
involving process-based models and extraction of patterns from observations. Such patterns are 854 
only a surprise, and constitute an puzzle, if state-of-the-art theory and models do not predict 855 
them. Machine learning allows to extract hidden and complex patterns, which should be 856 
confronted with modelled patterns. 857 
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Glossary 859 

Term Explanation 

Artificial Intelligence, Machine 
Learning & Deep Learning 

Artificial intelligence (AI) is the capacity of an algorithm for 
assimilating  information to perform tasks that are characteristic of 
human intelligence, such as recognizing objects and sounds, 
contextualizing language, learning from the environment, and 
problem solving. 
Machine learning (ML) is a field of statistical research for training 
computational algorithms that split, sort, transform a set of data in 
order to maximize the ability to classify, predict, cluster or discover 
new patterns in target datasets. 
Deep learning refers to ML algorithms that construct hierarchical 
architectures of increasing sophistication. Artificial neural networks 
with many layers are examples of deep learning algorithms. 

Bayesian inference Bayesian inference is a field in statistics and machine learning that 
develop methods for data analysis   based on updating the probability 
for an hypothesis based on observational evidence. The framework is 
mostly concerned about treating uncertainty, encoding prior beliefs 
and estimating error propagation when dealing with data and models.

Causal inference Causal inference links events, processes or properties in a system via 
a cause-effect connection. Recent observational causal inference try 
to discover causal relations from data.

Convolution Convolution is one of the most important operations in signal and 
image processing, and it can operate in 1D (e.g. speech), 2D (e.g. 
images) or 3D (e.g. video) objects. A convolutional filter is 
essentially a weight vector/matrix/cube that operates in a sliding 
window approach on the data. Depending on the kernel structure, the 
operation enhances some features of the data, such as edges, trends, 
or flat regions. The operation is embedded in convolutional neural 
networks at the neuron level, which extracts useful features from the 
previous layers.

Differentiable programming Differentiable programming refers to a programming paradigm to 
generate code that is automatically differentiated, such that its 
parameters can be seamlessly optimized. It generalizes current deep 
learning frameworks to arbitrary programs which may include the 
hybrid modelling approaches we discuss in section 5.  

Feedforward vs Recurrent networks An artificial neural network (ANN) is a computational algorithm that 
simulates how signals are transferred between a network of neurons, 
via synapses. In aan ANN, informationis transferred only in the 
forward direction while in a recurrent ANN the information can 
cycle/loop between the different nodes, creating complex dynamics, 
like memory, as seen in data.

Generative Adversarial Networks Family of unsupervised ML methods widely used to generate 
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(GAN) realistic samples from an unknown probability density function. 
GANs are formed by a neural network that generates plausible 
examples that try to fool a discriminator network that should discern 
real from fake examples.  

Memory effects Metaphoric term, meaning that the current behavior of a system 
cannot be explained without considering the effect of past states or 
forcing variables. 

Nowcasting & Forecasting To forecast a certain variable refers to establish a prediction of its 
value in the future, from days to centuries. Nowcasting refers to 
making that prediction in a very near future (e.g. predicting if it is 
going to rain in a couple of hours). 

Probabilistic programming Probabilistic programming is an approach to define probabilistic 
models with a unified high-level programming language.  Statistical 
inference is automatically achieved by built-in inference machines, 
freeing the developer from the difficulties of high-performance 
probabilistic inference. 
 

Radiative transfer models (RTMs) Mathematical models that describe how radiation at different 
wavelengths (e.g. visible light) propagates through different 
mediums (e.g. atmosphere, vegetation canopy) by simulating 
absorption, emission, transmission and scattering processes. 

Remote sensing Remote sensing deals with measuring the radiance at different 
wavelengths reflected or emitted from an object or surface. Remote 
sensing uses satellite or airborne sensors to detect and classify 
objects as well as to estimate geo-scientific variables of interest 
(temperature, salinity or carbon dioxide), based on propagated 
reflectance signals (e.g. electromagnetic radiation). 

Supervised & Unsupervised learning In supervised learning an algorithm learns the input-to-output 
relationship by being provided both the inputs and the respective 
outputs, e.g. a set of photos (inputs) and a set of corresponding labels 
(outputs). In unsupervised learning the algorithms do not have access 
to the labels, so the goal is to infer the underlying structure of the 
data (e.g. the algorithm automatically separates pictures with 
different statistical or even semantic properties, e.g. images of cats 
and dogs).

Teleconnections Teleconnections refer to climate anomalies related to each other at 
large distances (typically thousands of kilometers). Quantifying 
teleconnection patterns allows predicting key patterns on Earth, 
which are distant in space and time: e.g. predicting El Niño enables 
prediction of North American rainfall, snowfall, droughts or 
temperature patterns with a few weeks to months lead time. 

 860 
See https://developers.google.com/machine-learning/glossary/ and http://www.wildml.com/deep-learning-861 
glossary/ for more complete glossaries. 862 
 863 



Reichstein et al., Deep learning and process-understanding for data-driven Earth System science 

36 
 

 864 

 865 


	Postprint BGC_reichstein_nature_cover.pdf
	Slide Number 1




