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We study time-resolved charge transport in a superconducting nanowire using time-dependent
Landauer-Büttiker theory. We find that the steady-state Majorana zero-bias conductance peak
emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These
oscillations are absent for a trivial impurity state that otherwise shows a very similar steady-state
signal as the Majorana zero mode. Our results imply that time-resolved transport is an excellent
way to distinguish topologically nontrivial boundary states from trivial ones.

Topological quantum computing [1] is an active field
of research based on the key idea to reduce quan-
tum decoherence issues by using topologically protected
states [2, 3]. Majorana fermions are their own antipar-
ticles [4], and their condensed-matter analogues, Majo-
rana bound state or Majorana zero mode (MZM), retain
this feature [5]. They are thus considered to be promis-
ing candidates for technological advances in topological
quantum computing [6, 7] since their non-abelian statis-
tics allow performing quantum computation protected
from environmental perturbations [8]. Even though
various experimental signatures of MZM have been re-
ported [9–16], a clear and unambiguous detection and the
consequent control of these states has proven difficult so
far. For example, other types of bound states [17] or in-
terfacial impurity states (IS) also give rise to in-gap states
that contribute to transport or scanning tunneling spec-
troscopy signals. Therefore probes that unambiguously
distinguish between MZM and IS are highly desirable.

Time-resolved spectroscopies allow for studying the
dynamics of various processes such as charge transport
[18]. For instance, in a transport setup exhibiting the
MZM, there is no guarantee of instantly relaxing to a
steady-state configuration once the junction has been
“switched on” by, e.g., applying an external perturba-
tion. In contrast, the nonequilibrium problems are often
much richer and more interesting than equilibrium prop-
erties [19–21]. This is especially relevant when nowaday
transport measurements are pushing the temporal resolu-
tion to sub-picosecond regime [22–25], and these ultrafast
processes can be observed in real time.

In this Letter we propose time-resolved transport as
a probe in order to reveal the difference between topo-
logical MZM and ordinary IS. We simulate the tran-
sient dynamics in a quantum wire coupled to metallic
electrodes using the time-dependent Landauer–Büttiker
formalism [26–31] extended to include superconducting
states in a Nambu spinor representation. By comparing

FIG. 1. A schematic NSN junction where two normal metal
electrodes are connected to a nanowire where superconductiv-
ity is induced by the proximity effect from an adjacent s-wave
SC. The electrodes are connected to a source–drain voltage
VSD. The magnetic field ~B orients the spins along the z di-
rection.

the time-dependent build-up of a steady-state current af-
ter a sudden quench of the bias voltage between (i) a
topological state with MZM and (ii) a non-topological
state with trivial impurity end states, we discover that
the dynamics for (i) and (ii) look significantly different.
For case (i) the time-resolved current shows pronounced
oscillations that shift with the applied bias voltage and
correspond to transitions between the biased electrodes
and the MZM. By contrast, for case (ii) no such oscil-
lations are observed. The resulting Fourier spectra can
therefore be used as probes of a topological zero mode.

Model and method.—We consider a normal metal–
superconductor–normal metal (NSN) junction, see Fig. 1.
The superconducting central region of the junction is a
nanowire in proximity to an s-wave bulk SC with or-
der parameter ∆. The nanowire in addition features
a strong spin-orbit interaction (e.g., InSb [32, 33] or
InAs [12, 34]) which favors aligning the spins along the
±y direction. An external magnetic field parallel to the
nanowire breaks time-reversal symmetry and aligns the
spins along the ±z direction, introducing a Zeeman split-
ting VZ = gµBB/2 where g is the Landé factor and µB the

ar
X

iv
:1

90
2.

05
82

1v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
5 

Fe
b 

20
19



2

Bohr magneton. A suitable combination of these effects
has been shown to host a MZM in the nanowire, expo-
nentially localized at the edges [5, 9, 35–38]. Specifically
the infinite nanowire is in a topologically nontrivial phase
for VZ > ∆ > 0 [35, 36, 38], from which MZM emerge
in the case of a finite wire. For the present study, the
specific structure of the electrodes, other than being a
normal metal with relatively broad bandwidth (e.g., Au,
Ag or Cu), is unimportant as we concentrate on the ef-
fects within the nanowire.

We write the total Hamiltonian as Ĥ = Ĥe+Ĥc+Ĥw,
where the individual components for the electrodes and
coupling are characterized by the single-particle energy
dispersion in the electrodes εkλ and by the coupling ma-
trix elements Tjkλ between the states in the nanowire

and the electrodes [28]: Ĥe =
∑
kλ εkλĉ

†
kλĉkλ and Ĥc =∑

jkλ(Tjkλĉ
†
j ĉkλ + h.c.). Here kλ labels the k-th basis el-

ement in the λ-th electrode, and j labels the atomic sites
on the nanowire. The nanowire, in turn, is characterized
by [38, 39]

Ĥw =
∑
j

[
− J

2
(ĉ†j ĉj+1 + h.c.)− (µ− J)ĉ†j ĉj

−α
2

(iĉ†jσ2ĉj+1 + h.c.) + VZĉ
†
jσ3ĉj

+∆(ĉj↑ĉj↓ + h.c.)
]
, (1)

where J, µ, α, VZ, and ∆ are parameters for hopping,
chemical potential, spin-orbit coupling, Zeeman splitting,

and pairing potential, respectively. The operators ĉ
(†)
xs

annihilate (create) electrons with spin s ∈ {↑, ↓} in a re-
gion specified by x. The spin indices are summed when
suppressed and σ2,3 are Pauli matrices. For indices x, y
belonging either to the electrodes or to the nanowire, the
creation and annihilation operators satisfy the anticom-
mutation relations {ĉxs, ĉ†ys′} = δxyδss′ .

At times t > 0 the electrode energy levels are suddenly
shifted, corresponding to a quench of the bias voltage,
εkλ → εkλ + eVλ. For a two-terminal device (λ ∈ {S,D},
see Fig. 1) this out-of-equilibrium condition is defined by
the source-drain voltage VSD = VS − VD. The transport
setup is considered partition-free [40–42] meaning that
the whole system is initially contacted in a global thermo-
chemical equilibrium at unique chemical potential µ and
at inverse temperature β ≡ (kBT )−1.

For a compact notation we introduce Nambu
spinors [43–45] Φ̂x ≡ (Φ̂1

x, Φ̂
2
x, Φ̂

3
x, Φ̂

4
x)T ≡

(ĉx↑, ĉ
†
x↓, ĉx↓, ĉ

†
x↑)

T , and the anticommutation relation is

then understood componentwise {Φ̂µx, (Φ̂νy)†} = δxyδ
µν .

Here we denote quantities in the Nambu⊗spin space
by an underline. This representation allows for writing
the Hamiltonian for the nanowire in a Bogoliubov–de
Gennes form [46, 47]

Ĥw =
1

2

∑
j

[
Φ̂
†
jajΦ̂j + (Φ̂

†
jbjΦ̂j+1 + h.c.)

]
, (2)

where we introduced on-site and nearest-neighbor contri-
butions [39]

aj =
J − µ+ VZ −∆ 0 0
−∆ µ− J + VZ 0 0

0 0 J − µ− VZ ∆
0 0 ∆ µ− J − VZ


j

,

(3)

bj =


−J/2 0 −α/2 0

0 J/2 0 −α/2
α/2 0 −J/2 0

0 α/2 0 J/2


j

, (4)

respectively. The electrode and coupling parts of the
Hamiltonian are then also expanded in the Nambu⊗spin
basis although they do not involve the SC pair-

ing potential: Ĥe = 1
2

∑
kλ Φ̂

†
kλεkλΦ̂kλ with εkλ =

εkλdiag(1,−1, 1,−1) and Ĥc = 1
2

∑
jkλ(Φ̂

†
jT jkλΦ̂kλ+h.c.)

with T jkλ = Tjkλdiag(1,−1, 1,−1).
By using the nonequilibrium Green’s function ap-

proach [27] we conveniently access both transient and
steady-state responses in the setup above. The one-
electron Green’s function is defined as a contour-ordered
tensor product of the spinor field operators [44]

Gxy(z, z′) = −i〈Tγ [Φ̂x(z)⊗ Φ̂
†
y(z′)]〉 (5)

where the contour-ordering operator Tγ is taken for the
variables z, z′ on the Keldysh contour γ [27]. The form in
Eq. (5) automatically handles both normal and anoma-
lous components of the Green’s function [48]. In the Sup-
plemental Material [49] we show that the equations of
motion for the Green’s function are exactly the same as
those in Refs. [28, 30], and hence we derive in a similar
fashion a closed expression for the time-dependent one-
particle reduced density-matrix (TD1RDM) within the
nanowire, ρ(t) ≡ −iG<(t, t) from the lesser Green’s func-
tion. In order to obtain a closed solution to the equation
of motion we have described the electrodes within wide-
band approximation, where the electronic levels of the
nanowire are in a narrow range compared to the band-
width of the electrodes. The coupling strength between
the nanowire and the electrodes is characterized by the
frequency-independent tunneling rate Γλ.

As the TD1RDM gives us full information on the lo-
cal charge and current densities within the nanowire, we
calculate the total current through the nanowire by con-
sidering a bond current between two atomic sites. In
addition, the traditional bond-current operator has to be
adapted to include the contribution from the spin-orbit
coupling and from the SC pair potential [50–52]. In the
Supplemental Material [49] we derive the following ex-
pression for the bond current between the sites j and
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FIG. 2. Differential conductance versus applied bias voltage
for nanowires of varying length Nw. The zero-bias peak builds
up for sufficiently long nanowires (Nw & 50). The probabil-
ity density for the corresponding zero-energy modes shows
exponential localization around the wire edges for Nw = 60
(inset).

j + 1 within the nanowire:

Ij,j+1 = 2 Im
[
− J

2
(〈ĉ†j↑ĉ(j+1)↑〉+ 〈ĉ†j↓ĉ(j+1)↓〉)

− α

2
(〈ĉ†j↑ĉ(j+1)↓〉 − 〈ĉ†j↓ĉ(j+1)↑〉)

+ 2∆

j∑
m=1

〈ĉm↓ĉm↑〉
]
, (6)

where 〈·〉 denotes elements of the TD1RDM.
Emergence of the MZM.—Using Eq. (6) we calcu-

late the (steady-state) current-voltage characteristics for
nanowires of varying lengths. For the nanowire we choose
the parameters J = 1, α = 0.5, VZ = 0.25, ∆ = 0.1, and
µ = 0 [39]. This fixes the units to the hopping energy;
if the values of this quantity are in the eV regime, then
times are measured in the units of inverse hoppings which
is on the order of femtoseconds. The coupling strength
from the terminal sites of the nanowire to the electrodes
is chosen such that the tunneling rate Γλ = 0.01. The
bias voltage is applied symmetrically for the source and
drain electrodes VS = −VD ≡ V , and we consider the
zero-temperature limit.

In Fig. 2 we show the differential conductance against
the applied bias voltage (around a low voltage window).
We observe clearly how the MZM behaves as a “half a
fermion” on both terminals of the nanowire leading to
two peaks of half the conductance quantum. When the
coupling between the MZM becomes weaker by elongat-
ing the nanowire, the two peaks merge into one at exactly
zero bias voltage resulting in one conductance quantum.
The inset of Fig. 2 shows the exponential localization of
the MZM for Nw = 60.

Transient signature of the MZM.—We evaluate tran-
sient currents through a Nw = 50 nanowire by consider-
ing the two centermost sites in Eq. (6). We single out the
MZM by applying a small bias window so that the oscil-
lations in the time-resolved signal are only due to virtual

transitions from the biased Fermi level of the electrode
to the zero-energy mode in the nanowire. In Fig. 3(a) we
show the differential conductance for aNw = 50 nanowire
for three different cases: (1) ordinary SC wire (same as
Fig. 2 but for VZ = 0), (2) topological SC wire corre-
sponding to Fig. 2, and (3) an ordinary SC wire with an
impurity state localized at its edges. We model the impu-
rity states by modified tight-binding parameters [53, 54]
for the terminal sites in the nanowire, j = {1, Nw} in
Eqs. (3) and (4). More specifically, we use (modified pa-

rameters denoted by a tilde) µ̃ = J̃ = 0.1J , α̃ = 0.1α,

and ∆̃ = ṼZ = 0. For our purposes the exact formula-
tion is not too important as long as there is a separate
state within the gap with different topological character
compared to the MZM.

Importantly, while the steady-state dI/dV signals of
cases (2) and (3) look qualitatively similar (Fig. 3(a)),
the transient signals in Fig. 3(b) for the three cases is
qualitatively different. For the pristine wire without the
MZM the current signal is zero on average due to there
being no transport channels within the SC gap and the
small bias window. When the IS is present as an in-gap
state, the transient current rises rapidly but also satu-
rates relatively fast to its stationary value within couple
of hundred units of inverse hopping. (For hopping ener-
gies in the eV scale we have J−1 ∼ 0.658 fs.) The IS is
directly connected to the electrodes resulting in a strong
hybridization and in a relatively fast decay of the tran-
sient. In contrast, the MZM at the edges of the nanowire
have a different topological character being weakly cou-
pled to each other although they are far apart, and even
though the MZM is also directly connected to the elec-
trodes, the hybridization of the MZM is weaker resulting
in transient oscillations for thousands of time units, i.e.,
up to picoseconds. The decay rate can be approximated
by the expectation value of the tunneling rate operator:
γ =

∑2
j=1〈ϕj |Γ |ϕj〉, where Γ ≡

∑
λ Γλ and |ϕ〉 are the

IS or MZM eigenvectors, see the dashed lines in Fig. 3(b).
For identical wire-electrode coupling, the decay time 1/γ
of the MZM transient current is roughly 5 times the one
of the IS.

Crucially, the MZM additonally shows transient cur-
rent oscillations, unlike the IS. This striking difference
between the MZM and IS cases is clearly seen by taking
the Fourier transforms of the time-dependent signals, see
Fig. 3(c). The low-frequency regime shows pronounced
peaks for the MZM case, and the frequency of the first
peak exactly corresponds to the difference between the
biased Fermi level of the electrode and the MZM (indi-
cated by (i) in the figure). The analogous peaks in the
case of the IS are strongly diminished. Importantly, we
have also checked that by artificially increasing the decay
time for the IS case by decreasing the wire-electrode cou-
pling, there are still no pronounced transient oscillations
in the IS case. Before entering the band of all possible
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FIG. 3. (a) Differential conductance versus applied bias volt-
age for ordinary and topological SCs of length Nw = 50. The
shaded areas refer to the bias windows in panel (b). (b) Tran-
sient currents for applied bias voltages eV = {0.02, 0.05}J .
The dashed lines are given by (1− e−γt)ISS where ISS is the
steady-state current and γ is the decay rate, see text. (c)
Fourier spectra corresponding to panel (b). The shaded areas
(i)-(iii) result from different transitions, see text.

transitions outside the SC gap (ω ≥ 2∆ = 0.2, indicated
by (iii) in the figure) we observe additional transitions
between the MZM and states close to the gap edge (in-
dicated by (ii) in the figure). These resonances remain
independent of the applied voltage confirming that they
result from intra-level transitions within the nanowire.

Overall the transient features of the MZM are distinctly
different from the IS.
Conclusion.—We studied the time-dependent features

of Majorana zero modes in a superconducting nanowire
in contrast with trivial impurity bound states. The tran-
sient features related to MZM were found to be com-
pletely different than the ones resulting from a simple im-
purity model: The MZM transients were found to decay
very slowly with a pronounced oscillation frequency due
to a weak coupling between the MZM and the electrodes.
This finding could be utilized in possible detection and
identification of the MZM via ultrafast transport mea-
surements [22–25, 55]. In practice the sudden switch of
the bias voltage employed by us could be replaced by a
short light pulse in the THz regime to excite the system
away from its thermal equilibrium. Together with ultra-
fast optical switching of chiral superconductors [56, 57]
or nonequilibrium engineering of topologically nontriv-
ial states of matter [58–66] our findings highlight the
great potential of ultrafast techniques for advances to-
wards topological quantum computation.
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Supplemental Material: Distinguishing Majorana Zero Modes from Impurity States
through Time-Resolved Transport

TRANSPORT SETUP AND PARTITIONING THE GREEN’S FUNCTION

Even though in the main text we considered a two-terminal device, the description readily allows for a more general
treatment, and we now label by λ an arbitrary number of electrodes. The central region C, for which we had the
superconducting nanowire in the main text, can also take a more arbitrary shape. We only assume there to be no
direct connection between any of the electrodes but the coupling is always through the central region. Then, the
Hamiltonian for the full transport setup may be partitioned accordingly

h =


h11 0 · · · h1C

0 h22 · · · h2C
...

...
. . .

...
hC1 hC2 · · · hCC

 (S1)

with (hλλ′)kk′ = εkλδλλ′δkk′ for the electrodes, and (hCλ)mkλ = Tmkλ for the couplings. For the central region, hCC ,
we may use the “on-site” and “nearest-neighbor” contributions [Eqs. (3) and (4)], or consider some other arbitrary
structure. We further denote the matrices for the full transport setup as boldface symbols. It is important to notice
how the electrode blocks, hλλ = hλλ(z), are different for the vertical and horizontal branches of the Keldysh contour
due to the shift in energy levels at t > 0. Also, we stress here that the block structure in Eq. (S1) does not refer to the
Nambu⊗spin space but it is of dimension (Ne + 1)× (Ne + 1) where Ne is the number of electrodes. Each block then
accounts for the individual dimension of the corresponding partition. The matrix elements in the Green’s function in
Eq. (5) (indices x, y belonging either to the electrodes or to the central region) therefore label the transport setup in
the same block form

G =


G11 G12 · · · G1C

G21 G22 · · · G2C
...

...
. . .

...
GC1 GC2 · · · GCC

 . (S2)

We may derive the equation of motion for the Green’s function by

i∂zGxy(z, z′) = ∂z

[
θ(z, z′)〈Φ̂x(z)⊗ Φ̂

†
y(z′)〉 − θ(z′, z)〈Φ̂y(z′)† ⊗ Φ̂x(z)〉

]
(S3)

where the step function is defined on the Keldysh contour γ according to the contour-ordering operator Tγ [S1].
Evaluating the derivative gives

i∂zGxy(z, z′) = δ(z, z′)
{
Φ̂x(z), Φ̂

†
y(z′)

}
− i〈Tγ [i∂zΦ̂x(z)]⊗ Φ̂

†
y(z′)〉 (S4)

where the anticommutator gives simply δxy1 and the evolution of the spinor operator can further be derived from
its equation of motion. Depending on which region the index x belongs to (and the corresponding structure of the
Hamiltonian in that region), the time-evolution of the field operator is completely specified. The equations of motion
for the whole transport setup then take the matrix form [S1–S4]

[i∂z1− h(z)]G(z, z′) = δ(z, z′)1, (S5)

G(z, z′)
[
−i
←
∂ z′ 1− h(z′)

]
= δ(z, z′)1, (S6)

which the Green’s function satisfies being antiperiodic along the contour (Kubo–Martin–Schwinger boundary condi-
tion [S5, S6]).

We see that the equations of motion are the same as those of Ref. [S2, S3], hence we may in similar fashion, using the
Langreth rules [S1, S7], derive an equation for the equal-time lesser Green’s function with indices on the central region
G<CC . This is a key quantity as it relates to the time-dependent one-particle reduced density-matrix (TD1RDM) by
ρ
CC

(t) = −iG<CC(t, t). From now on we will only discuss quantities in the subspace of the central region, so we will
drop the subscript ‘CC’. The lesser Green’s function at the equal-time limit is given by [S2]

i
d

dt
G<(t, t)− [hCC(t), G<(t, t)] = −

[
GR ·Σ< +G< ·ΣA +Ge ? Σd

]
(t, t) + h.c. (S7)
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where the time-convolutions on the horizontal and vertical branches of the Keldysh contour are defined as [f ·g](t, t) =∫∞
0

dt̄f(t, t̄)g(t̄, t) and [f ?g](t, t) = −i
∫ β

0
dτf(t, τ)g(τ, t). The superscripts R,A,<, e, d refer to the retarded, advanced,

lesser, right and left Keldysh components, respectively [S1, S2]. The embedding self-energy, Σ, accounts for the
coupling between the central region and the electrodes [S3].

We note that the left-hand side of Eq. (S7) corresponds to a Liouville-type of equation for the density matrix of
an isolated central region whereas the right-hand side gives rise to an open transport setup as in connection to the
electrode environment. The time-convolutions on the right-hand side can further be identified as source and drain
terms, and the ones including the imaginary track of the Keldysh contour to include the initial contacting of the
separate regions. Importantly, within the so-called wide-band approximation (WBA) for the embedding self-energy,
Eq. (S7) becomes a closed equation for the equal-time lesser Green’s function and the TD1RDM can be solved
analytically.

SOLUTION TO THE EQUATION OF MOTION

In order to close the equation of motion we now describe the electrodes in the framework of wide-band approximation
(WBA), where the electronic levels of the central region are in a narrow range compared to the electrode bandwidth.
The validity of WBA has been discussed in, e.g., Refs. [S8–S11], and for the purpose of the present work (weak
coupling of the central region to electrodes of large bandwidth), this is a well-justfied approximation. In frequency
space the retarded Keldysh component of the embedding self-energy can then be written as

ΣR
λ,mn(ω) =

∑
k

Tmkλ
1

ω − εkλ + iη
T kλn ≈ −iΓλ,mn/2. (S8)

The advanced component is given simply by conjugating this. The other components of the self-energy (<, d) may
further be derived from the retarded and advanced components [S1, S2]. The time-domain quantities in Eq. (S7) are
then obtained by Fourier transforming. Looking at Eq. (S7) and the earlier work in Refs. [S2, S3] we may use the
fact that the same equations have the same solutions, i.e., including the Nambu⊗spin structure in the Hamiltonian
of the central region (e.g., spin-orbit coupling, Zeeman splitting and pairing field) adds no extra complication to the
evolution of the Green’s function. The only difference is in the Nambu⊗spin structure of the matrices.

It is useful to introduce a nonhermitian effective Hamiltonian heff = hCC − iΓ/2 for which the left and right
eigenvalue equations are

〈ΨL|heff = ε〈ΨL|; heff|ΨR〉 = ε|ΨR〉, (S9)

where the eigenvectors and eigenvalues correspond to the 4 × 4 Nambu⊗spin space. The solution for the TD1RDM
expanded in the left eigenbasis takes the explicit form [S3]

〈ΨL
j |ρ(t)|ΨL

k 〉 =
∑
λ

{
Γλ,jkΛλ,jk + VλΓλ,jk

[
Πλ,jk(t) +Π∗λ,kj(t)

]
+ V 2

λ Γλ,jke−i(εj−ε∗k)tΩλ,jk

}
, (S10)

where

Γλ,jk = 〈ΨL
j |Γλ|ΨL

k 〉, (S11)

Λλ,jk =

∫
dω

2π

f(ω − µ)

(ω + Vλ − εj)(ω + Vλ − ε∗k)
, (S12)

Πλ,jk(t) =

∫
dω

2π

f(ω − µ)ei(ω+Vλ−εj)t

(ω − εj)(ω + Vλ − εj)(ω + Vλ − ε∗k)
, (S13)

Ωλ,jk =

∫
dω

2π

f(ω − µ)

(ω − εj)(ω + Vλ − εj)(ω + Vλ − ε∗k)(ω − ε∗k)
.

(S14)

Here f(ω−µ) = (eβ(ω−µ) + 1)−1 is the Fermi function at inverse temperature β and chemical potential µ. Evaluating
the TD1RDM in a physically relevant basis, e.g., the localized site basis of the central region {|ϕ〉}, is then readily
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done as a basis transformation from the left eigenbasis to the desired one

〈ϕm|ρ(t)|ϕn〉 =
∑
jk

〈ϕm|ΨR
j 〉

〈ΨL
j |ΨR

j 〉
〈ΨR
k |ϕn〉

〈ΨR
k |ΨL

k 〉
〈ΨL
j |ρ(t)|ΨL

k 〉, (S15)

which follows from the biorthogonality of the left and right eigenvectors. The TD1RDM is then simply given by
evaluating the terms in Eqs. (S12), (S13) and (S14) for all indices j, k and time parameter t, and then inserting into
Eqs. (S10) and (S15).

The integrands in Eqs. (S12), (S13) and (S14) have a fairly simple analytic structure: The “1/(ω − z)” type of
terms have simple poles at ω = z whereas the Fermi function has simple poles at the Matsubara frequencies given by
ωn = (2n+1)π/(−iβ). Expressions similar to those in Eqs. (S12), (S13), (S14) have been found, e.g., in Refs. [S12, S13]
and integrated correspondingly using contour integration techniques. In Ref. [S3] the frequency integrals in Eqs. (S12),
(S13), (S14) were evaluated analytically in the zero-temperature limit to obtain a result for the TD1RDM in terms
of logarithms and exponential integral functions. Here we evaluate these integrals analytically at arbitrary (inverse)
temperature in the Fermi functions, and we will detail these steps next.

DETAILS OF THE FERMI INTEGRALS

Making a change of variables z = β(ω − µ) in Eq. (S12) gives

Λλ,jk = β

∫ ∞
−∞

dz

2π

1

(z − z1)(z − z2)(ez + 1)
(S16)

where we defined z1 = β(εj − µλ) and z2 = β(ε∗k − µλ) with µλ = µ+ Vλ. This integrand has simple poles at z = z1,
z = z2 and z = wn = i(π + 2πn), see Fig. S1. The spectrum of the complex eigenvalues of the nonhermitian matrix
heff is such that the eigenvalues, εj , lie in the lower-half plane (LHP) whereas the complex conjugated ones, ε∗k, lie
in the upper-half plane (UHP). For the “(z − zn)−1” contributions the residues are simply one and for the Fermi

FIG. S1. Poles in the complex z plane for the integrand in Eq. (S16). The locations of the poles are only for illustration.

function we have Res
[
(ez + 1)−1 , z = wn

]
= −1. Then, we can close the integral in Eq. (S16) in the UHP as shown

in Fig. S1, and using the residue theorem we get

Λλ,jk = iβ

[
1

z2 − z1

1

ez2 + 1
−
∞∑
n=0

1

(wn − z1)(wn − z2)

]
. (S17)

The infinite sum can be written as
∞∑
n=0

1

[i(π + 2πn)− z1] [i(π + 2πn)− z2]
=

∞∑
n=0

1

2πi
(
n+ iz1+π

2π

)
2πi
(
n+ iz2+π

2π

) = − 1

(2π)2

∞∑
n=0

1

(n+ a)(n+ b)

= − 1

(2π)2

1

b− a
[ψ(b)− ψ(a)] , (S18)

where we defined a = (iz1 + π)/2π, b = (iz2 + π)/2π, and ψ is the digamma function which is defined as the
logarithmic derivative of the gamma function, ψ(z) = d

dz log Γ(z) [S14]. We can then insert the result of the sum back
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into Eq. (S17) and couple the terms by simplifying

Λλ,jk =
i

ε∗k − εj

{
1

eβ(ε∗k−µλ) + 1
+

1

2πi

[
ψ

(
1

2
− β(ε∗k − µλ)

2πi

)
− ψ

(
1

2
− β(εj − µλ)

2πi

)]}
(S19)

where we also inserted back the definitions of z’s. It is important to notice that we did not do anything but manipula-
tions after using the residue theorem; the infinite sum was rewritten in terms of a special function ψ which is broadly
known in computational sciences and readily implemented for example in the GNU Scientific Library [S15]. Eq. (S19)
is our final result for Λλ,jk for arbitrary values of β. We note in passing that it would give completely equivalent
result if the integral was closed in the LHP.

Making the same change of variables in Eq. (S13) as in the previous case leads to

Πλ,jk(t) = β2

∫ ∞
−∞

dz

2π

e
i
β (z−z2)t

(z − z1)(z − z2)(z − z3)(ez + 1)
, (S20)

where we defined z1 = β(εj−µ), z2 = β(εj−µλ) and z3 = β(ε∗k−µλ). Also in this case we notice poles in the complex
plane, similarly as in Fig. S1. In this case, however, we may close the integral only in the UHP due to the exponential
in the numerator, and we get according to the residue theorem

Πλ,jk(t) = iβ2

[
e

i
β (z3−z2)t

(z3 − z1)(z3 − z2)(ez3 + 1)
−
∞∑
n=0

e
i
β (wn−z2)t

(wn − z1)(wn − z2)(wn − z3)

]
. (S21)

We may manipulate the infinite sum in Eq. (S21) as

∞∑
n=0

e
i
β (wn−z2)t

(wn − z1)(wn − z2)(wn − z3)
=

∞∑
n=0

e
i
β 2πi(n+

iz2+π
2π )t

2πi
(
n+ iz1+π

2π

)
2πi
(
n+ iz2+π

2π

)
2πi
(
n+ iz3+π

2π

)
=

i

(2π)3

∞∑
n=0

ex(n+b)

(n+ a)(n+ b)(n+ c)
, (S22)

where we defined a = (iz1 + π)/2π, b = (iz2 + π)/2π, c = (iz3 + π)/2π and x = −2πt/β. In this case the infinite sum
will give another type of special function, the hypergeometric function 2F1 [S16]:

i

(2π)3

∞∑
n=0

ex(n+b)

(n+ a)(n+ b)(n+ c)

=
i

(2π)3(a− b)(a− c)(b− c)

{
ebx
[
b− c
a

2F1(1, a, 1 + a, ex) +
c− a
b

2F1(1, b, 1 + b, ex) +
a− b
c

2F1(1, c, 1 + c, ex)

]}
.

(S23)

The hypergeometric function together with the Pochhammer symbol are defined as [S16, S17]

2F1(p, q, r, s) =

∞∑
n=0

(p)n(q)n
(r)n

sn

n!
, (p)n =

{
1 n = 1,

p(p+ 1) · · · (p+ n− 1) n > 0.
(S24)

Inserting the definitions for a, b, c and x (and also the previously introduced variables z) leads to

∞∑
n=0

e
i
β (wn−z2)t

(wn − z1)(wn − z2)(wn − z3)

=
−ie−πt/βe−i(εj−µλ)t

β2(ε∗k − εj)(ε∗k − εj − Vλ)

{
F(ε∗k − µλ, t, β) +

ε∗k − εj − Vλ
Vλ

F(εj − µλ, t, β)− ε∗k − εj
Vλ

F(εj − µ, t, β)

}
, (S25)

where we defined an auxiliary function

F(z, t, β) ≡ 1

iβz + π
2F1

(
1,

1

2
+

iβz

2π
,

3

2
+

iβz

2π
, e−2πt/β

)
. (S26)
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This calculation was only for the infinite sum in Eq. (S21). Inserting the definitions of z’s into the first term gives

e
i
β (z3−z2)t

(z3 − z1)(z3 − z2)(ez3 + 1)
=

e−i(εj−ε∗k)t

β2(ε∗k − εj)(ε∗k − εj − Vλ)

1

eβ(ε∗k−µλ) + 1
. (S27)

Combining the terms finally gives

Πλ,jk(t) =
i

(ε∗k − εj)(ε∗k − εj − Vλ)

{
e−i(εj−ε∗k)t

eβ(ε∗k−µλ) + 1
+ ie−πt/βe−i(εj−µλ)t×[

F(ε∗k − µλ, t, β) +
ε∗k − εj − Vλ

Vλ
F(εj − µλ, t, β)− ε∗k − εj

Vλ
F(εj − µ, t, β)

]}
(S28)

for arbitrary values of β. Similarly here, after using the residue theorem, we only manipulated the expressions
so that we could identify a known function 2F1. Conveniently, the hypergeometric function is also widely used in
computational sciences, and both fast and accurate implementations of it are available [S18].

In the third case, in Eq. (S14), we do the same change of variables as before to get

Ωλ,jk = β3

∫ ∞
−∞

dz

2π

1

(z − z1)(z − z2)(z − z3)(z − z4)(ez + 1)
, (S29)

where we defined z1 = β(εj − µ), z2 = β(εj − µλ), z3 = β(ε∗k − µλ) and z4 = β(ε∗k − µ). The pole structure is again
similar to the one shown in Fig. S1, and we may close also this integral in the UHP. Again, according to the residue
theorem we get as a result

Ωλ,jk = iβ3

{
1

(z3 − z1)(z3 − z2)(z3 − z4)(ez3 + 1)
+

1

(z4 − z1)(z4 − z2)(z4 − z3)(ez4 + 1)

−
∞∑
n=0

1

(wn − z1)(wn − z2)(wn − z3)(wn − z4)

}
. (S30)

The infinite sum may again be manipulated as

∞∑
n=0

1

[i(π + 2πn)− z1] [i(π + 2πn)− z2] [i(π + 2πn)− z3] [i(π + 2πn)− z4]

=

∞∑
n=0

1

2πi
(
n+ iz1+π

2π

)
2πi
(
n+ iz2+π

2π

)
2πi
(
n+ iz3+π

2π

)
2πi
(
n+ iz4+π

2π

)
=

1

(2π)4

∞∑
n=0

1

(n+ a)(n+ b)(n+ c)(n+ d)
, (S31)

where we defined a = (iz1 + π)/2π, b = (iz2 + π)/2π, c = (iz3 + π)/2π and d = (iz4 + π)/2π. Also this sum has an
expression in terms of the digamma function

1

(2π)4

∞∑
n=0

1

(n+ a)(n+ b)(n+ c)(n+ d)
=

1

(2π)4

[
ψ(a)

(a− b)(a− c)(a− d)
+

ψ(b)

(b− a)(b− c)(b− d)

+
ψ(c)

(c− a)(c− b)(c− d)
+

ψ(d)

(d− a)(d− b)(d− c)

]
. (S32)

Inserting the expressions for a, b, c and d, and then further the expressions for z1, z2, z3 and z4 leads to

∞∑
n=0

1

(wn − z1)(wn − z2)(wn − z3)(wn − z4)

=
i

2πβ3

{
1

(ε∗k − εj)(ε∗k − εj − Vλ)Vλ

[
ψ

(
1

2
+

iβ(εj − µ)

2π

)
− ψ

(
1

2
+

iβ(ε∗k − µλ)

2π

)]
− 1

(ε∗k − εj)(ε∗k − εj + Vλ)Vλ

[
ψ

(
1

2
+

iβ(εj − µλ)

2π

)
− ψ

(
1

2
+

iβ(ε∗k − µ)

2π

)]}
. (S33)



S6

Combining the terms in Eq. (S30) gives as the final result

Ωλ,jk

=

i

eβ(ε
∗
k
−µ)+1

− 1
2π

[
ψ
(

1
2 −

β(εj−µλ)
2πi

)
− ψ

(
1
2 −

β(ε∗k−µ)
2πi

)]
(ε∗k − εj)(ε∗k − εj + Vλ)Vλ

−
i

eβ(ε
∗
k
−µλ)+1

− 1
2π

[
ψ
(

1
2 −

β(εj−µ)
2πi

)
− ψ

(
1
2 −

β(ε∗k−µλ)
2πi

)]
(ε∗k − εj)(ε∗k − εj − Vλ)Vλ

(S34)

for arbitrary values of β.

Finally, inserting Eqs. (S19), (S28) and (S34) into Eq. (S10) gives then the TD1RDM at arbitrary temperature.
When the asymptotic behaviour of the digamma and hypergeometric function is studied, the results in Eqs. (S19),
(S28) and (S34) can be shown to reduce to those in Ref. [S3] at the zero-temperature limit (β → ∞) [S19]. We also
note that congruent results involving equivalent special functions have recently been reported in Refs. [S20–S22].

INCLUSION OF SUDDEN ELECTROMAGNETIC FIELDS IN THE CENTRAL REGION

It is also possible to include a sudden switch-on of an electromagnetic field in the Hamiltonian of the central
region. For example, this includes the possibility for a static potential profile (e.g. a gate voltage) umn, between
basis states m,n of the central region, to be added to the “on-site” contribution a [Eq. (3)]. Also, for the “nearest-
neighbor” contribution b [Eq. (4)], it is possible to consider a Peierls phase γmn = −γnm accounting for a magnetic
field (normalized to the flux quantum φ0 = h/2e) when traversed along a closed loop of states m,n. For a general

description, we simply consider a perturbed Hamiltonian h̃CC out of equilibrium (signified by a tilde), and use the
unperturbed Hamiltonian hCC in equilibrium. Then, a formula for the TD1RDM similar to Eq. (S10) can be derived
as [S3]

〈Ψ̃L
j |ρ̃(t)|Ψ̃L

k 〉 =
∑
λ

[
Γ̃λ,jkΛ̃λ,jk + Π̃λ,jk(t) + Π̃∗λ,kj(t) + Ω̃λ,jk(t)

]
, (S35)

where the introduced terms Γ̃ , Π̃ and Ω̃ take a slightly more intricate form compared to those in Eq. (S10) as the
eigenbases of the unperturbed and perturbed Hamiltonians, in general, do not need to be the same. Therefore, we
need to take the corresponding overlaps into account

Γ̃λ,jk = 〈Ψ̃L
j |Γλ|Ψ̃L

k 〉, (S36)

Λ̃λ,jk =

∫
dω

2π

f(ω − µ)

(ω + Vλ − ε̃j)(ω + Vλ − ε̃∗k)
, (S37)

Π̃λ,jk(t) =
∑
mn

〈Ψ̃L
j |ΨR

m〉〈ΨL
m|Ṽ λ|Ψ̃R

n 〉Γ̃λ,nk
〈ΨL
m|ΨR

m〉〈Ψ̃L
n |Ψ̃R

n 〉

∫
dω

2π

f(ω − µ)ei(ω+Vλ−ε̃j)t

(ω − εm)(ω + Vλ − ε̃n)(ω + Vλ − ε̃∗k)
, (S38)

Ω̃λ,jk(t) =
∑
mnpq

〈Ψ̃L
j |ΨR

m〉〈ΨL
m|Ṽ λ|Ψ̃R

n 〉Γ̃λ,np〈Ψ̃R
p |Ṽ

†
λ|ΨL

q 〉〈ΨR
q |Ψ̃L

k 〉
〈ΨL
m|ΨR

m〉〈Ψ̃L
n |Ψ̃R

n 〉〈Ψ̃R
p |Ψ̃L

p 〉〈ΨR
q |ΨL

q 〉

× e−i(ε̃j−ε̃∗k)t

∫
dω

2π

f(ω − µ)

(ω − εm)(ω + Vλ − ε̃n)(ω + Vλ − ε̃∗p)(ω − ε∗q)
, (S39)

where the tildes signify that the corresponding quantities are calculated from the perturbed Hamiltonian h̃CC , and

we explicitly defined a “bias-voltage matrix” Ṽ λ ≡ Vλ1 − (h̃CC − hCC). The eigenvalues {ε, ε̃} and eigenvectors

{ΨL/R, Ψ̃L/R} refer to the complex eigenvalues and to the left/right eigenvectors of heff and h̃eff = h̃CC − iΓ/2,

respectively. In the limit h̃CC → hCC the result in Eq. (S35) can be checked to reduce to Eq. (S10) [S19].

Similarly, for the TD1RDM with sudden electromagnetic fields in the central region in Eq. (S35), we can take the
integrals in Eqs. (S37), (S38) and (S39) and evaluate them in the same manner. This time the pole structure is only
a little more intricate due to different eigenvalues for the unperturbed and perturbed Hamiltonians but it can be
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handled exactly in the same way as above. For perturbed central regions at arbitrary β the explicit results are

Λ̃λ,jk =
i

ε̃∗k − ε̃j

{
1

eβ(ε̃∗k−µλ) + 1
+

1

2πi

[
ψ

(
1

2
− β(ε̃∗k − µλ)

2πi

)
− ψ

(
1

2
− β(ε̃j − µλ)

2πi

)]}
, (S40)

Π̃λ,jk(t) =
∑
mn

〈Ψ̃L
j |ΨR

m〉〈ΨL
m|Ṽ λ|Ψ̃R

n 〉Γ̃λ,nk
〈ΨL
m|ΨR

m〉〈Ψ̃L
n |Ψ̃R

n 〉
×

i

(ε̃∗k − ε̃n)(ε̃∗k − εm − Vλ)

{
e−i(ε̃j−ε̃∗k)t

eβ(ε̃∗k−µλ) + 1
+ ie−πt/βe−i(ε̃j−µλ)t×[

F(ε̃∗k − µλ, t, β)− ε̃∗k − εm − Vλ
ε̃n − εm − Vλ

F(ε̃n − µλ, t, β) +
ε̃∗k − ε̃n

ε̃n − εm − Vλ
F(εm − µ, t, β)

]}
, (S41)

Ω̃λ,jk =
∑
mnpq

〈Ψ̃L
j |ΨR

m〉〈ΨL
m|Ṽ λ|Ψ̃R

n 〉Γ̃λ,np〈Ψ̃R
p |Ṽ

†
λ|ΨL

q 〉〈ΨR
q |Ψ̃L

k 〉
〈ΨL
m|ΨR

m〉〈Ψ̃L
n |Ψ̃R

n 〉〈Ψ̃R
p |Ψ̃L

p 〉〈ΨR
q |ΨL

q 〉
e−i(ε̃j−ε̃∗k)t ×{

1

(εm − ε̃n + Vλ)(εm − ε̃∗p + Vλ)(εm − ε∗q)
1

2π
ψ

(
1

2
− β(εm − µ)

2πi

)
+

1

(ε̃n − εm − Vλ)(ε̃n − ε̃∗p)(ε̃n − ε∗q − Vλ)

1

2π
ψ

(
1

2
− β(ε̃n − µλ)

2πi

)
+

1

(ε∗q − εm)(ε∗q − ε̃n + Vλ)(ε∗q − ε̃∗p + Vλ)

[
i

eβ(ε∗q−µ) + 1
+

1

2π
ψ

(
1

2
−
β(ε∗q − µ)

2πi

)]
+

1

(ε̃∗p − εm − Vλ)(ε̃∗p − ε̃n)(ε̃∗p − ε∗q − Vλ)

[
i

eβ(ε̃∗p−µλ) + 1
+

1

2π
ψ

(
1

2
−
β(ε̃∗p − µλ)

2πi

)]}
. (S42)

Again, inserting Eqs. (S40), (S41) and (S42) into Eq. (S35) gives then the TD1RDM for a perturbed central region
at arbitrary temperature. Also here, the zero-temperature limit (β → ∞) presented in Ref. [S3], is recovered by the
asymptotics of the digamma and hypergeometric functions in Eqs. (S40), (S41) and (S42) [S19]. By careful inspection

of Eqs. (S40), (S41) and (S42) in the limit of unperturbed central region (Ψ̃ → Ψ and ε̃ → ε) it can be verified that
they reduce to Eqs. (S19), (S28) and (S34) [S19].

DERIVATION OF THE BOND CURRENT

We define the bond current flowing between site j and j + 1 in the nanowire (central device) by the rate of change
of the number of particles in the region comprising the left electrode and the first j sites in the nanowire:

N̂j =
∑
ks

ĉ†kLsĉkLs +

j∑
m=1

∑
s

ĉ†msĉms, (S43)

where k and m respectively label the basis elements in the left electrode and the sites in the nanowire, and s is a spin
index. The bond current between sites j and j + 1 is then defined by

Ij,j+1 ≡
d

dt
〈N̂j〉. (S44)

The temporal change in the number of particles can be derived from

d

dt
〈N̂j〉 = −i

〈[
N̂j , Ĥtotal

]〉
, (S45)

where we now separate the ‘normal’ and ‘superconducting’ contributions as Ĥtotal = Ĥnormal + Ĥ∆ with

Ĥnormal = ĤL + ĤR + Ĥc +

Nw∑
n=1

∑
ss′

(
εss
′
ĉ†nsĉns′ + h.c.

)
+

Nw−1∑
n=1

∑
ss′

(
Jss

′
ĉ†nsĉ(n+1)s′ + h.c.

)
, (S46)

Ĥ∆ = ∆

Nw∑
n=1

ĉn↑ĉn↓ + h.c., (S47)



S8

where we separated the “on-site” and “nearest-neighbor” contributions in the spin-dependent matrix elements of ε and
J . Also, the nanowire is coupled to the electrodes only via the terminal sites (1 and Nw), so the coupling Hamiltonian
takes the form

Ĥc =
∑
kss′

[(
T ss

′
kL1ĉ

†
kLsĉ1s′ + h.c.

)
+
(
T ss

′
kRNw ĉ

†
kRsĉNws′ + h.c.

)]
. (S48)

With the normal part of the Hamiltonian, the commutator in Eq. (S45) is nonzero only for the following terms

[
N̂j , Ĥnormal

]
=

[∑
ks

ĉ†kLsĉkLs, Ĥc

]
+

[
j∑

m=1

∑
s

ĉ†msĉms, Ĥc

]

+

[
j∑

m=1

∑
s

ĉ†msĉms,

Nw−1∑
n=1

∑
s′s′′

(
Js
′s′′ ĉ†ns′ ĉ(n+1)s′′ + Js

′′s′ ĉ†(n+1)s′′ ĉns′
)]

. (S49)

As the coupling Hamiltonian Ĥc has one creation (annihilation) operator in the nanowire and one annihilation (cre-
ation) operator in the electrode, so in principle the first two terms above can give a nonzero commutator, but it turns
out they cancel each other out. We are then left with the term on the second line which can be simplified to give[

N̂j , Ĥnormal

]
=
∑
ss′

Jss
′ (
ĉ†jsĉ(j+1)s′ − ĉ†(j+1)sĉjs′

)
. (S50)

The remaining calculation is the commutator with the ‘superconducting’ part where the nonzero contribution comes
from[
N̂j , Ĥ∆

]
=

[
j∑

m=1

∑
s

ĉ†msĉms, ∆

Nw∑
n=1

ĉn↑ĉn↓ + h.c.

]
=

j∑
m=1

(
∆ĉm↓ĉm↑ −∆ĉm↑ĉm↓ −∆∗ĉ†m↑ĉ

†
m↓ +∆∗ĉ†m↓ĉ

†
m↑

)
. (S51)

We may then insert Eqs. (S50) and (S51) into Eq. (S45) and further into Eq. (S44), and use the model parameters
for the nanowire (we have assumed a real pairing field) to obtain:

Ij,j+1 = −i

〈
−J

2

[
ĉ†j↑ĉ(j+1)↑ + ĉ†j↓ĉ(j+1)↓ −

(
ĉ†(j+1)↑ĉj↑ + ĉ†(j+1)↓ĉj↓

)]
− α

2

[
ĉ†j↑ĉ(j+1)↓ − ĉ†j↓ĉ(j+1)↑ −

(
ĉ†(j+1)↓ĉj↑ − ĉ

†
(j+1)↑ĉj↓

)]
+

j∑
m=1

∆
(
ĉm↓ĉm↑ − ĉm↑ĉm↓ − ĉ†m↑ĉ

†
m↓ + ĉ†m↓ĉ

†
m↑

)〉
. (S52)

This may further be simplified as in Eq. (6) in the main text.
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