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We discuss analytic fast-ion velocity distribution functions which are useful for basic plasma
modelling as illustrated for typical parameters of the future fusion plasma in the tokamak ITER. The
Maxwellian is by far the most widespread model for ions and electrons in tokamaks and stellarators.
The bi-Maxwellian and the drifting (bi-)Maxwellian are extensions allowing for anisotropy and bulk
plasma flow, respectively. For example, fast ions generated by wave heating in the ion cyclotron
range of frequencies are often described by bi-Maxwellians or so-called tail temperatures. The ring
distribution can serve as a basic building block for arbitrary distributions or as bump-on-tail in
stability studies. The isotropic slowing-down distribution is a good model for fusion a-particles.
The anisotropic slowing-down distribution occurs for anisotropic particle sources as is typical for
neutral beam injection. We physically motivate these distribution functions and present analytic
models in various coordinate systems commonly used by theorists and experimentalists. We further
calculate 1D projections of the distribution functions onto a diagnostic line-of-sight to gain insight
into measurements relying on the Doppler shift.

I. INTRODUCTION

Probably the most widely known velocity distribution
function of particles in all of physics is the Maxwellian
or Maxwell-Boltzmann distribution function which is on
the curriculum of most physics educations, see e.g. refer-
ences [1-3]. Maxwell’s ground-breaking idea was to de-
scribe the state of a gas by a distribution function f(v)
of velocities v. In his 1860 paper [4], he introduced his
distribution based on two requirements. First, the func-
tion should be spherically symmetric reflecting isotropy.
Second, the velocity components should be separable re-
flecting the independence of the three coordinate direc-
tions. The Maxwell distribution is the only distribution
fulfilling both requirements. (However, the velocity com-
ponents are not separable if relativistic effects are con-
sidered [3]). In 1867, he showed without reference to his
two original requirements that collisions do not change
his distribution [5]. Boltzmann showed in the following
decade that the Maxwellian is the most probable distri-
bution in an isolated system with a given particle number
and a given energy and that collisions will drive any dis-
tribution towards it, i.e. that it is the only stationary
solution [6, 7]. A collection of particles described by the
Maxwellian distribution is said to be in thermal equi-
librium which is an excellent approximation for rarefied
gases at moderate temperatures.

However, plasmas in tokamaks and stellarators are
never in complete thermal equilibrium. Fusion plasmas
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are much hotter than the environment and lose heat
rapidly. This heat loss must be balanced by a heat source
from fusion reactions or from auxiliary heating which pre-
vents the formation of a thermal equilibrium even in a
steady-state plasma. For example, the velocity distri-
bution function of fusion a-particles has a tail approxi-
mately of the form 1/v3 up to the birth velocity rather
than a Maxwellian tail [8-10]. The energetic particle pop-
ulations originating from neutral beam injection (NBI)
and electromagnetic wave heating in the ion cyclotron
range of frequencies (ICRF) are even highly anisotropic
in velocity space [11-15]. Nevertheless, Maxwellians have
often been assumed to approximate the bulk plasma with
success.

This tutorial reviews the Maxwellian distribution as
well as velocity distribution functions typical for plasma
scenarios with fusion or auxiliary heating: the drifting
Maxwellian and bi-Maxwellian, the ring distribution and
the isotropic and the anisotropic slowing-down distribu-
tions. In each case, we discuss the 1D projection of
the distribution which is highly important for diagnos-
tics viewing along a characteristic direction such as the
line-of-sight. These analytic velocity distribution func-
tions have many applications: to quickly model plasma
discharges, to interpret measurements with fusion plasma
diagnostics, to make theoretical investigations and com-
puter codes tractable, or to benchmark computer codes.
They can serve as first step to get an overview of a dis-
charge before turning to high-fidelity codes, and they
can aid diagnostic design in new tokamaks or stellara-
tors where the exact distribution function may not yet
be known.

We will introduce these common velocity distribution
functions in the most widespread coordinate systems in



plasma physics. It is often not explicitly stated or obvious
what exactly a distribution function refers to. Experi-
mentalists tend to consider fully transformed distribution
functions which include all Jacobians and normalization
factors. Many theorists, however, tend to simply sub-
stitute convenient variables into a 3D Cartesian velocity
distribution function but not actually transform it to the
new variables.

Fully 3D functions are described in 3D Cartesian,
cylindrical and spherical coordinates. Velocity distribu-
tion functions in magnetized fusion plasmas are axisym-
metric about the magnetic field vector (sometimes called
gyrotropic) to a good approximation due to the fast gy-
ration of the charged particles. Axisymmetric functions
can be described by two coordinates which are often cho-
sen to be 2D Cartesian or (F,p)-coordinates. E is the
energy and
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is the pitch of the particle where v and B are the veloc-
ity and magnetic field vectors, respectively. (This defi-
nition may sometimes have a minus sign if the magnetic
field and the current point in opposing directions so that
co-current passing ions have positive pitch.) Sometimes
distributions are assumed to be isotropic as for example
the Maxwellian according to Maxwell’s 1860 requirement
[4]. Isotropic functions can be described by just one co-
ordinate, commonly the speed or the energy. Finally,
the distribution of projected velocities onto a particular
direction is another important 1D description for many
diagnostics. The underlying velocity distribution is usu-
ally anisotropic to some degree. Hence some information
is lost in the projection.

This paper is organized as follows. Section II in-
troduces the various coordinate systems used in fusion
plasma physics. Section III transforms the Maxwellian to
these coordinate systems. Section IV discusses the drift-
ing bi-Maxwellian distribution and section V the topo-
logically different ring distribution which is described by
a very similar equation. Section VI reviews the slowing
down of particles with isotropic and anisotropic parti-
cle sources. Section VII briefly outlines a model for the
global phase-space distribution function parametrized in
three constants of motion of a particle. Section VIII con-
cludes this tutorial.

II. DISTRIBUTION FUNCTIONS IN VARIOUS
COORDINATES

In general, phase-space distribution functions are six-
dimensional, consisting of three position-space dimen-
sions and three velocity-space dimensions. The phase-
space distribution f%7(x,v) specifies the number of par-
ticles dN in an infinitesimal phase-space volume (dx, dv):

dN = fP(x,v)dxdv. (2)

The units of f6° are [s3/mf]. 1In this tutorial we
consider local velocity distribution functions, such that
only the three velocity-space dimensions are relevant.
The velocity-distribution function in the infinitesimal
position-space volume element dx is defined by

dN = 3P (v)dvdx. (3)

Dividing both sides by dx introduces the density dn in
the infinitesimal velocity-space volume dv

dn = f3P(v)dv. 4)

The units of f3P are also [s3/m°)]. The density is ob-
tained by integration which provides the normalization
condition for the distribution function:

n= /f3D(v)dv. (5)

Various representations of distribution functions are com-
monly used in the plasma physics literature. We first
consider convenient 3D Cartesian velocity coordinates for
fusion plasmas. Particles in magnetized plasmas gyrate
quickly about the magnetic field vector so that veloc-
ity distribution functions are axisymmetric about B to a
good approximation. Hence it is advantageous to align
one of the coordinate axes with the magnetic field vector.
This axis is called v V11 and v, o are the velocity com-
ponents perpendicular to the magnetic field. The velocity
distribution function fgfl’r(v” ,U11,V12) gives the density
in an infinitesimal velocity-space volume:

dn = fgvgr('l)“,'UL1,’ULQ)d'UHd'Ule’ULQ. (6)

Axisymmetric functions do not depend on the gyrophase
~. Hence it is advantageous to introduce the cylindrical
coordinates (v),v1,7) such that

U1l =L cos?, (7)

V19 = v, siny. (8)

v, is the perpendicular velocity, which is related to v

and v, 5 by
CAREY v+l 9)

Substitution of v, 1 and v, o gives a convenient represen-
tation of 3D axisymmetric functions in two coordinates,
fggr(v”,v 1), since the ignorable gyrophase v drops out.
The density in an infinitesimal velocity-space volume is

dn = fgjajr(vu ,v1)dvjdvidvuys. (10)

This substitution does not correspond to a transforma-
tion of the velocity distribution function to the cylin-
drical coordinates (v,v..y). The distribution function
fEE (v, v1) still represents the 3D Cartesian velocity
space density but it is parametrized in cylindrical co-
ordinates. The velocity distribution function could for-
mally be written as fg’agr(v”,m_(m_l,vu)) to state the



dependence of v; on the underlying Cartesian coordi-
nates v 1 and v s (equation 9) but this is not usually
done. For a full transformation to cylindrical coordi-
nates we also need to express the velocity-space volume
element in cylindrical coordinates. The Jacobian of the
transformation from Cartesian to cylindrical coordinates
is

8(U|| y ULl UJ_Q)

J = det
a(v\l y UL, 7)

=v], (11)

so that the density in the small velocity-space volume is
given by

d?’L = fggr(v\|7vl)vldv|\ded7~ (12)

Integration over  conveniently reduces the number of
dimensions. The density is then given by

dn = 2mv fE5 (v),v1)dvjdo, . (13)

Distribution functions computed with the
TRANSP/NUBEAM code [16], which is implemented
at most tokamaks, are usually presented in (E,p)-
coordinates. This coordinate system is probably the
most widespread among experimentalists working with
velocity or distribution functions. The 2D coordinate
transformations between (v, v1) and (£, p) are

1 9 9 [2F
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where m is the particle mass. The definition of the pitch
in equation (1) and the transformation in equation (14)
show that the pitch p € [—1;1]. It is the cosine of the
so-called pitch angle. The Jacobians for the forward and
backward transformations are

e |
Jv||,vl*>E’P = det d(E,p) my/1—p?’
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The density in the infinitesimal area dEdp is
2F 2F 2F
dn = 2m\| == 22 [ p/ ==, V1 —p2\/ == |dEdp.
n ™ m3 fCar (p m ) p m P
(16)

(However, the units of the distribution in the actual out-
put file of TRANSP are [1/cm?/eV/(d2/47)] where dQ)
is the solid angle. As dQ = 2ndp, dQ/47 = dp/2, so
that we have to divide the TRANSP output by two to
obtain the distribution function in the often used (E, p)-
coordinates.)

Sometimes the speed is used instead of the energy. The

speed is
v = /v + vt + i, (17)

The 2D coordinate transformations between (v), v ) and
(v,p) are

v = ,/vﬁ + 0%,
v
p= L , vy =+1—p%v. (18)
1/vﬁ—i—vi

The Jacobians for forward and backward transformations
between (v,v.) and (v,p) are

U” = pv,

v VL
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The density in the infinitesimal area dvdp is

dn = 2mv? 20 (pv, V1- p%) dvdp. (20)

One can also arrive at this result by transforming the
density in (E,p)-coordinates (equation 16) to (v,p)-
coordinates. These coordinates are related by the usual
definition of kinetic energy

1
E = 5mqﬂ. (21)

The Jacobians for forward and backward transformations
between speed and energy are

PR S
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Whereas gyrotropic functions are described by two vari-
ables, isotropic distribution functions are described by
just one variable, most often the speed or the energy. If
the spherical coordinates (v,n, ) are substituted into an
isotropic distribution function, the two angles drop out
and we can write the isotropic distribution function as

3D (v). This function represents a 3D Cartesian veloc-
ity space density parametrized in spherical coordinates.
The density in the infinitesimal velocity-space volume el-
ement is

=muv. (22)

dn = v?sin ¢ f&2 (v)dvdnd( (23)

where v? sin ¢ is the Jacobian of the transformation from
Cartesian to spherical coordinates. As the isotropic func-
tion 2P (v) does not depend on the angles, the density
can be expressed as function of the speed alone by inte-
gration over the angles:

dn = 47?20 (v)dv. (24)
The energy is another popular coordinate. In terms of

energy, we get
2F 2F
3 Ctar (\/m>dE- (25)

dn = 4r













































