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Abstract

Quantum emitters (QEs) coupled to structured baths can localize multiple photons around them and
form qubit-photon bound states. In the Markovian or weak coupling regime, the interaction of QEs
through these single-photon bound states is known to lead to effective many-body QE Hamiltonians
with tuneable but yet perturbative interactions. In this work we study the emergence of such models in
the non-Markovian or strong coupling regime in different excitation subspaces. The effective models
for the non-Markovian regime with up to three excitations are characterized using analytical methods,
uncovering the existence of doublons or triplon states. Furthermore, we provide numerical results for
systems with multiple excitations and demonstrate the emergence of polariton models with optically
tuneable interactions, whose many-body ground state exhibits a superfluid-Mott insulator transition.

1. Introduction

Quantum systems coupled to a common environment experience interactions mediated by the bath excitations
[1]. In quantum electrodynamics, this is the basic mechanism behind the forces between electrons, atoms, or
molecules. Those interactions can be tuned if one controls the coupling to the bath, which opens up exciting
possibilities in quantum information. One of the most prominent examples in this context is that of two-level
quantum emitters (QEs) coupled to the free-space electromagnetic field, resulting in the well known dipole—
dipole interactions between QEs [2, 3]. Unfortunately, these interactions are generally accompanied by
spontaneous emission, which limits their applications. The latter can be avoided if the density of modes at the
transition frequency vanishes, since the spontaneous decay rate is proportional to that quantity. This occurs, for
instance, if one embeds QEs in a cavity such that QEs are far-off resonance from the cavity modes [4, 5].

Another way of canceling spontaneous emission while obtaining exchange interactions among QEs is by
endowing the bath with a periodic structure, which strongly influences the density of states [6]. In fact, band gaps
where the density of states vanishes can emerge, so that spontaneous emission in that bath can be prevented, but
still interactions between the emitters can be mediated by virtual processes via the common bath [7, 8].
Experiments with atoms, quantum dots, or superconductors interacting with structured bath has renewed the
interest in investigating these phenomena [9-15]. Other experimental scenarios involving cold atoms in optical
lattices with state-dependent potentials are amenable to the same description, and thus the appearance of
analogous phenomena have been predicted [16, 17] and have recently been observed [18].

The theoretical description of the interactions mediated by a bath is relatively simple in the so-called
Markovian limit [2, 3, 19]. There, it is possible to derive a master equation for the QEs only, where the bath
degrees of freedom are traced out. This effective description contains both Hamiltonian and dissipative Lindblad
terms. The latter vanishes if the QEs transition frequency lies in the band gap, whereas the first one describes the
interactions between the QEs mediated by the bath, where one of them is excited when another one is de-excited.
The emergence of dipole—dipole interactions in this scenario, which opens the door to investigate spins models
with long range interactions [20—-22], can be attributed to the existence of a single-photon bound states [7]. An
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Figure 1. (a) Scheme of the model: several QEs are coupled to a structured bosonic bath with energy dispersion ex. Though, we
schematically plotted a 1D bath, the results can be extended to higher dimensions. (b) Pictorial representation of the doublon states
hopping between QEs.

intuitive picture [21] is that the single-photon bound state acts as an off-resonant cavity mode that mediates
interaction between the QEs. The strength and functional form of these interactions depend on the QE-bath
coupling strength, detuning as well as the band-dispersion relation. Although, these interactions can be made
relatively strong to overcome other dissipative mechanism, their predicted strength is ultimately limited by the
Markovian conditions under which these effective description has been derived.

In this work, we study the effective many-body Hamiltonians emerging when QEs couple to structured baths
beyond the Markovian limit, and investigate to which point the dipole—dipole description survives in this
regime. Furthermore, we study the consequences on the effective QE interactions of the emergence of multi-
photon bound states, which were recently predicted in the single QE regime [15, 23-26], but whose impact in the
multi QE situation has not yet been fully considered. Our analysis allows us to uncover qualitatively different
interaction Hamiltonians, in which multi-photon bound states (doublons/triplons) hop from QE to the other,
and analytically characterize them up to three excitations. With more excitations, we numerically characterize
the emergent polariton models using density matrix renormalization group (DMRG), and show that their
interactions can be controlled optically through the QE-bath interactions, allowing us to probe the quantum
phase transition between superfluid and Mott insulator.

This manuscript is organized as follows. In section 2, we explain the model that will be used throughout the paper
and review the results in the Markovian limit to have them as reference for the next section. In section 3, we study the
single excitation subspace, deriving an effective Hamiltonian to describe the dipole—dipole interaction for two and
many QEs. In sections 4-6, we study the two-excitation subspace for both the two and many QE regimes. Since the
phenomenology in this regime differs significantly from what is expected in a Markovian description, we use section 4
to explain the analytical tools we use to characterize it, and describe qualitatively the main features that emerge in this
subspace, namely, the scattering of two polariton modes and the hopping of doublon states. This emergent dynamics
will be discussed in detail in sections 5 and 6, respectively. In section 7, we analytically characterize the three excitation
subspace, and then go to the many-excitations regime to numerically explore a superfluid to Mott-insulator phase
transition appearing in the ground state of the systems. Finally, we summarize our results and conclude in section 8.

2. Setup and Markovian limit

2.1. Model
As shown schematically in figure 1(a), we consider N, > 1 QEs with two energy levels {|g);, |e);} (j = 1,...,N)
coupled to a structured bath. The total Hamiltonian of the system reads (with # = 1):

9] . .
H=Hy+ Y aaja+ — > (e *mglol, + h.c), )
R R

where Hy = w,>_ j\’i ) o, describes an array of N, two-level QEs with transition frequency w,. Periodic boundary
conditions (PBCs) for the bath are used, so we can label its modes in terms of the quasi-momentum k. Here, ay,
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(alf ) is the annihilation (creation) operator of the bath mode with quasi-momentum k, ¢ is the energy
dispersion relation, Nis the total number of bath modes, and 2 is the QE-bath coupling strength. We assume
that the bath has a single band of width W, although the results can be easily extended to other situations. To
obtain analytical results, we will go into the continuum limit, where N — 0o so thatk becomes a continuous
vector, and we can replace sums by integrals. Finally, o/ 5 = |a); (Blare the spin operators for the jth QE and n;
its corresponding vector position. We note that the we have assumed a spatially local system-bath coupling,
which results in a k-dependent coupling of the form Q. = Qe =% /\/N. Despite this simplification, we are still
able to capture non-Markovian effects emerging from non-trivial energy dispersions, €, as we show in the next
section.

In optical and microwave implementations, we require that ) < w,, min &, so the counter-rotating terms
for the QE-bath coupling can be neglected. For convenience, we will work in the rotating frame at the frequency
miney, which amounts to taking

Ny

Hy=AY ol, )

j=1

where A = w, — min g. A crucial feature of the Hamiltonian in equation (1) is that the number of excitations,
defined as

Nexe = Z aljak + Z O—ge) (3
k j

is conserved. This allows us to derive effective models separately in the subspaces with different numbers of
excitations. In this work, we will concentrate on the few-body scattering and bound-state behaviors in the
subspaces with N, = 1,2, 3, and the quantum phase transitions in the ground states of the subspaces with
many excitations.

Though most of the expressions we derive are valid for an arbitrary energy dispersion e (see appendices), in
the main text we focus on the results for a 1D tight-binding model, where the energy dispersion reads:

e = 2] — 2] cosk, (4)

with Jbeing the hopping strengthand k = 0, 27/N, ..., 27 (N — 1) /N. Notice, we have implicitely taken the
distance between the bosonicssites, aqg = 1, as the unit of length.

2.2. QEs as hard-core bosons

For the analytical calculations performed in this paper, it is convenient to describe QEs using hard-core bosons.
In this representation, we replace aée — bj, where b;is an annihilation operator fulfilling bosonic commutation
relations, and we restrict the Hilbert space to the states with (bjT)2 = 0. In practical terms, this can be done by
writing:

S U Qh s
HA:A.Zlbjbij?Zlbjbjbjbj (5)
= =

and taking the U — oo limit, which forbids double occupation of the b; modes.
In the case of many QEs, we assume that they are equally spaced, which allows us to work in Fourier space by
defining b; = -, by ™. The quadratic part of the Hamiltonian is Hy = -, H), with

9] . .
H, = Z€kﬂ£ak + Ab;bp + —=> (a/b, + by 1) 6)
K N

that commute with each other (i.e., [H,, Hy'] = 0), where the photon momentum k = p + Kis given by the
QE quasi-momentum p and the reciprocal momentum K of the sublattice, and z = N/N},is the number of bath
modes per unit cell. The hard-core interaction part H,. becomes

U
Hpe = — Z bg-kpl b;—pl b%*sz%Jer‘ %)

2Nb PiP»q

2.3. Markovian limit

Let us here remind the results obtained in the Markovian limit when the QEs transition frequency lies within the
band-gap, which means that A < 0,and |A|, W > 2. In thatlimit, one can eliminate the bath degrees of
freedom using standard quantum optics techniques and obtain an effective Hamiltonian for the QEs [2, 3]. For
two QEs with relative position d = n, — ny, one obtains:

H)" = Hy + Vaa(d)(of o5 + o507), (8)
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where Vy4(d) is the dipole—dipole interaction strength, which in the limit N — oo, reads:

dk  elkd
Via@ = @ [ 9
aa(d) P A o &)
for a general D-dimensional bath and o] = (07" = oJ, = (},). For many QEs, one obtains
H%::HA+§:%ﬂdr—qxﬁb;+aﬁﬁ) (10)
ij
Note that the dipole—dipole interaction for many QEs is the same as for two QEs under the Markov
approximation. For the 1D tight-binding model, one obtains [20]
02
Vag = ———e 9/¢ (11
|A]

with the decay length € = In~!(|A]/J). We will use these effective Hamiltonians as a baseline to compare with
the results of the next sections. In particular, we will see what is the regime of validity, and how it has to be
modified outside that regime. To do that, we will first study analytically up to the three-excitation manifold, and
finally perform DMRG calculations for the case with many excitations.

3. Single excitation

In this section we study the physics of the single excitation subspace. This regime has been extensively studied in
the literature (see, for instance, [26] and references therein). Here, we will review results that are relevant for the
other sections, and also derive simple formulas for the emergent effective models.

We divide this section in two parts: in section 3.1 we study the situation when only two QEs are coupled to
the bath, deriving an effective exchange interaction Hamiltonian valid in a particular region of the (A /], 2/])
parameter regime that we will define. In section 3.2, we study the situation with many QEs and derive an effective
hopping model in the lowest band, which can be defined in all parameter regimes. In both regimes, when
|A] > € werecover the effective spin models predicted for the Markovian limit in equations (8)—(10). However,
in the strong-coupling limit, 2 > ], A, an effective spin model can still be derived to characterize the hopping of
the strong hybridized QE and photon, i.e., a polariton, where the effective hopping strengths are dramatically
enhanced compared to those in the Markovian regime.

3.1.Two QEs
The single-excitation eigenstates for the system with two QEs can be generally written as |¥;,) = 3]|0) with

Bl = b + wby + > fLiay. (12)
k

The coefficients u; », 4, ), and (k) for all the eigenstates (including bound states and scattering states) can be
obtained by solving the Schrodinger equation H|W;,) = E;»|¥;),) (see appendix A). The probability weights of
symmetric and anti-symmetric modes b] = (b & b;)/+/2 inthe eigenstate [¥; ) are Z2=* = |(0]b, 5}/0) *

In general, the two lower eigenstates, |¥;,_.) = 37.|0), represent the symmetric and anti-symmetric
superpositions of two local single-excitation bound states around the QEs. However, as we will show below (and
already derived in [26]), only the symmetric bound state survives in certain parameter regimes. In the regime
where both bound states exist, the Hamiltonian can be projected into the subspace spanned by these two bound
states, which gives rise to the following effective model for the low energy part of the spectrum:

H{ = E.B10, + B 615 (13)
A basis transformation converts this Hamiltonian into a hopping model
=t ~f
Hyl = Eo ) B Bj + tee (By B2 + h.c), (14)
j=12

for the two localized Wannier modes 51,2 = (B, + B.)/~J2,where Ey = (E,, + E,_)/2isthe effective
chemical potential and t. = (E;+ — E;_) /2 is the effective hopping strength.

If the distance d between two neighboring QEs is sufficiently large, the two nearly degenerate ground states
with E; ; ~ E|_ describe the single-excitation bound states localized around two individual QEs. These two
bound states begin to hybridize with each other as d decreases. When the distance d is much smaller than the
localization length of the bound states, the strong mixing of the bound states induces the energy level splitting
2t.gr around Ey. If the splitting is large enough, the anti-symmetric bound state energy merges in the continuum
and the state is not bound anymore. For example, for the 1D bath with the tight-binding dispersion relation, the
symmetric bound state always exists, but the anti-symmetric bound state can only be found in the regime

4
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Figure 2. The effective hopping strength, t. = (E;+ — E;_) /2, in the A—2 plane for the 1D tight binding dispersion relation. J is
chosen as the unitand (a)d = 1(b)d = 2.

A < Q2d/2 [26]. Obviously, the effective hopping model of equation (14) cannot be defined when only the
symmetric bound state exists. In this paper, we mainly focus on the regime where both bound states exist, such
that the low-energy physics of the single excitation is described by the effective Hamiltonian (14), where the
relevant parameter is the hopping strength f.¢.

As shown in figure 2, in the Markovian |A| > {2 and strong coupling 2 >> ], A regimes, a parameter
regime that we denote as the arc region, the photon is strongly localized around QEs. Thus, the effective
chemical potential E, ~ E; g tends to the energy E, 5 of the bound state around a single QE. The effective hopping
strength when ¢ < E, can be approximated by t. ~ —Z30% Y¢/\/E g(E;p — 4]) (see appendix A), where
the single-particle weight and the decay length are

dk 1 !
_ 2 -
ZIB - |:1 + Q f 27[_ (ElB — Ek)z] >

-1
£ = {ln%[z - % + % EisBip — 4])]} . (15)

In the Markovian limit, the effective hopping strength t.;t ~ —Juge| A /J|'~¢ decays exponentially with the
distance d, where Ji = J2?/ /A, such that it reproduces the result of equation (11). In the strong coupling limit,
the effective hopping strength t.¢ = —Jr (©2/])' ¢ also decays exponentially, however, J.¢ = J /2, which
means that the coupling strengths are significantly enhanced due to the strong hybridization between QE
excitation and photon.

In figure 2, the effective hopping strength t.¢is shown in the A — €2 plane for two QEs with d = 1,2 coupled
to the 1D tight-binding bath. For A < 0, |t.g| increases monotonically and saturates to /2 in the strong
coupling limit. For A > 0, |t.¢| increases to the maximal value at {2, slightly above the boundary
Q = J2A/d,and decreases to J/2 in the strong coupling limit 2 > J, A. The Rabi frequency §2,,,x maximizing
|tegr] is highlighted by the dashed red lines in figure 2.

3.2. QE array

Let us now consider the situation where we have many QEs coupled to every z bath lattice sites. By imposing
PBCs for the QE array, the excitations will have z + 1 bands for the QE propagation, although here we focus on
the lowest energy band. Using the intuition from the previous section (see also [26]), we expect that the bath
mediates QE interactions giving rise to a polariton propagating in the QE lattice. Let us now explain how to
characterize this emergent behavior.

Since we are restricting in this section to the single excitation subspace, the hard-core interaction
Hamiltonian plays no role, and therefore the single-particle modes with different quasi-momenta p in the first
Brillouin zone are decoupled. Thus, the QE-bath Hamiltonian is quadratic and can be diagonalized,

Hy = >, Ei\(p) J6] ; 1Bp», by the annihilation (creation) operator 3,5 (3 ; ,) of the single polariton with
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momentum p and dispersion relation E; y(p) in the A-th band, where A € [0, 1,2, -+, z] labels the different
energy bands. In the polariton mode 3 ; 410), the probability weight of QE mode of quasimomenta p being in the
excited state is given by:

Zia(p) = |{0lb, 35,10) 2. (16)
The dynamics in the lowest band (i.e., A = 0)is given by:
H{) = PHyP =Y Ey(p) 3} Bps (17)
P

where Pis the projector into the states ﬂ;lO) = ﬂ; 1—0l0) in thelowestband A = 0,and E; (p) = Ejy—o(p) its energy

dispersion relation. The Wannier modes can be obtained via Fourier transform as BJ =3, Bp elPn / /N, which
describes the local single-excitation bound state around the jth QE. In terms of these local Wannier modes, the
effective Hamiltonian in the coordinate space can be written as

H =3 t15 By (18)
i’
with hopping strengths
1 .
tijp = Fh Z Ei(p)elP®i—np), (19)
P

In the arc region, the dominant hopping constant ¢; ~ —# 6;; can be deduced from the first order degenerate
perturbation theory, where t; = J (1 — Zp). In the Markovian and large Rabi coupling limit, ff = J2?/A? and
]/2 agrees with J.¢in the two-QE case.

In the large d limit, the vanishing t; — 0 indicates that the local Wannier modes reduce to the single-
excitation bound states localized around different individual QEs. As the lattice spacing decreases, t;becomes
finite and the local Wannier modes hybridize with each other to form the dispersive polariton band. Here, we
note that since PBC for the QE array is applied, the translational symmetry ensures that the number of states in
the lowest band is the same as the QF number due to the Bloch theorem. However, if the QE array has finite size
and we have open boundary condition, like it occurs for two QEs coupled to the bath, some polariton modes
may vanish in certain parameter regimes due to the boundary effect, as we showed in previous section.

In figure 3, the nearest neighbor (NN) and next-nearest neighbor (NNN) hopping strengths ,_1 , in the
A—Q plane are shown for the 1D tight-binding dispersion relation. In the arc region of the A—{2 plane, the
Wannier mode in the lowest band is the single excitation bound state strongly localized around each individual
QE, and the overlap of two Wannier modes exponentially decays with the localization length £ < 1. Asaresult,
the NN hopping strength #; ~ t.¢can be determined by the hopping strength in the two-QE case, and the long
range hopping strength #~.; ~ 0.In the Markovian limit |A| >> €, the single particle weight
Zin=0(p) = Zi(p) ~ 1showsthatthe polariton state in the lowest band is mostly composed of QE excitations,
and the band is only slightly deformed from a completely flat one. In the strong coupling limit 2 > J, A, the
reduced Z; (p) ~ 1/2 exhibits the strong hybridization of QE excitation and bath photon modes, which gives
rise to the finite width ~2J of the polariton band.

Non-Markovian effects emerge in the intermediate regime, where the long range hopping strengths #;-.; in
general do not vanish, as shown in figures 3(c) and (d). In the small €2 /] limit, the hopping strengths saturate to
t1/] = —0.424and t,/] = 0.085 for d = 2 when the detuning A /J > 2. This saturation can be understood
using the single-excitation band structure in the limitof 2 — 0.If0 < A < A; = g_r/qand Q/Jis small, the
lowest band states are mostly composed of photons in the bath and the lowest band has awidth ~A. If A > A,
the width of the lowest band saturates to A at small Q, and t; — 2(—1)!sin(w/d) /[7d (1?2 — d~?)].

Summing up, we have derived and characterized the effective hopping model emerging in the single-
excitation subspace when many QE are coupled periodically to the bath modes. In particular, we have shown it
reduces to an effective tight-binding model in the arc region of the A—2 plane. In the Markovian regime
|A] > Q (strong coupling limit 2 > ], A), the effective model describes the propagation of the bare QE
excitation (the hybridized QE-photon polariton excitation with the single particle weight 1/2). In the latter, the
effective NN hopping is significantly enhanced compared to that in the Markovian regime.

4. General features of two excitation subspace

The dynamics with more than one QE excitation can be characterized by the effective spin model of

equation (10) only in the Markovian limit. To the best of our knowledge, the use of that effective model beyond

the Markovian regime is not justified, and how to characterize the dynamics in the whole A—(2 plane is not clear
yet. In this section, we pedagogically review the tools on how to treat both the two and many QE situation in the

6
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Figure 3. The effective NN and NNN hopping strengths for the 1D tight binding dispersion relation of bath: (a)—(b) The NN hopping
strength in the A—Q plane ford = 1and d = 2, respectively. (c)-(d) The NNN hopping strength in the A—{2 plane ford = 1 and
d = 2, respectively.

two-excitation sector, and explain qualitatively the emergent features. In particular, we will see that two different
types of excitations appear in the two-excitation subspace, namely, the scattering states of two single polaritons
and the doublon states formed by two bound polaritons, as we show schematically in figure 1(b). Then, we
discuss them in detail in sections 5 and 6, respectively.

4.1.Two QEs
When only two QEs are coupled to the bath, the general two-excitation eigenstate has the form
[W20) = VZaa b bJ10) + > @ Rab]10) + 3" 0y, (k, K)aga))[0). (20)
k,j=1,2 Kk’

The eigenvalue E; , of [, ), the probability weight Z, , and the wavefunctions ¢, , (k), ¢,, k), ¢,,(k, k') canbe
obtained from the analytical structure of the Green function G,(w) = f dtG,(t)e™" in the frequency domain
[25], where G,(t) = —i(0]ay(t) oy (t) o a}|0) O(t) in the time domain, and o, € (by 2, ax, ay) (see

appendix B).
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Figure 4. For the 1D tight-binding dispersion relation of photons, the first three bands including two scattering bands and one
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d=2A/]=-LQ/J=1dxA/]=0,Q/]=1(xA/] = 1,9/]=1(®.

The ground state energy corresponds to the smallest isolated pole of G,(w) in the first Riemann surface. As
we shall discuss in section 5.1, the ground state describes two repulsive polaritons localized around two different
QEs, where the localization behavior is analyzed by the ground state wavefunctions in section 5.1. We also
construct a variational wavefunction and an effective Hamiltonian to describe the low energy physics in the two-
excitation subspace.

Apart form the pole corresponding to the ground state, one can also find two additional isolated poles
corresponding to higher excited states in certain parameter regime (see section 6.1 and appendix B). These two
states can be illustrated in the following way: for a single QE with two photons, it has been demonstrated that the
two photons can be both localized around the QE and form a two-excitation bound state [23, 25, 26], which is
referred to as the doublon state, schematically depicted in figure 1(b). Here, the two higher excited states
represent the symmetric and anti-symmetric superpositions of doublon states around different QEs. The
properties of the doublon state is studied in section 6.1, where an effective hopping model for the doublon is
derived.

4.2. QE array

Here, two new types of states appear compared to the single-excitation regime, i.e., the scattering state of two
polaritons and the propagating doublon state. For a system with two excitations in the QE array, the eigenstate at
quasi-momentum q has the general form

[Dar(@) = > f,(P)bd, by _[0) + Zéfbxp, K)by, a1 p:xl0)
p ps

+ X L K Kad,cal ) l0), 1)
p,K.K’

where the momenta p and q are restricted to the first Brillouin zone of the QE’s sublattice. One can introduce the
four-point Green function G,(q, t) = —i (0], (¢) vy (t) o{f a§|0> 0 (¢) in the time domain, where the operators
ay € (bg/24p> bg/2+p> Aq/21p+x)and @, € (bg/2—p> Aq/2—p+K> Aq/2—p+k')- Its Fourier transform

Gy(q, w) = f dtG,(q, t)el" gives the dispersion relation E,) (q) of the state |¥,(q)) in the band ), the
wavefunctions f, (p), f,, (P, K),and f, (p, K, K'). The energy band structure in the two-excitation subspace can
be determined from the analytical structure of G,(q, w) (see appendix C).

In figure 4, we show the three lowest bands of the two excitation subspace for different sets of system
parameters with 1D tight-binding dispersion relation. The bands corresponding to the scattering of two
polaritons are identified by the continuum in figure 4 (in gray shading), where the lowest band belongs to them.
The scattering properties will be studied in detail in section 5, where an effective two-body Hamiltonian is
established to describe the low energy dynamics of two polaritons. Between the scattering continuum, the single
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Figure 5. The single-photon, Vs (n), and two-photon wavefunctions, ¢,g(n, m), as defined in the text, for a cos(k) bath dispersion
and a QE with detunings A/J = —1(a)and A/J = 4 (b), where /] = landd = 2.

isolated band appears in the midgap, which corresponds to the propagating doublon, which can be described
with an effective hopping model as we show in section 6.

5. Two excitations: standard polaritons

5.1. Two-QE ground state
In this subsection, we study the ground state of the two excitation subspace when two QEs coupled to the
photonic bath. In particular, (i) we compute the exact ground state wavefunction; (ii) we construct a variational
ansatz to reveal the properties of the ground state; and (iii) we derive an effective Hamiltonian to describe the
low-energy dynamics in the so-called arc region.

The ground energy E is determined by the position of the isolated pole in the first Riemann surface of Gy(w),
more precisely, Eg is the smallest solution of the equation

Zmzy o
o=t Ec — Eix — Ex
where E; ) and Z;’, are defined in section 3.1. The ground state configuration is visualized by the wavefunctions
¥ (k) and p, (k, k') (their analytical expressions are given in appendix B). In the left and right panels of figure 5, we
show the wavefunctions ¢, (n) = 32 ¢ (k) eikn / VN and py;(n, m) = 30 0,6 (k, K)ekn K -m /N in the
coordinate space for A/J] = —1 and A /] = 4, respectively, where the distance d = 2and 2/] = 1.For A/] = —1,
the ground state is mostly composed of QE excitations with hard-core interaction, thus the two excitations repulse
each other and prefer to localize around two different QEs, as shown in figures 5(a) and (c). For A /] = 4, the ground
state is dominated by the free photons, and the single excitations localized around different QEs hybridize with each
other, as shown in figures 5(b) and (d).

This repulsive interaction between the two excitations can also be identified by the energy difference
O0Eg = Eg — 2Epthe ground state energy E and the energy of the excitations localized around two individual

9



10P Publishing

New J. Phys. 20 (2018) 105005

T Shietal

\3 -05 -04 -03 -02 -01 0 085 0.90 0.95 1.00 R
G II|----|----| B T
o0 i B |
(a)
4t
3t
~
~—
S|
1F
0k : : : :
-4 -2 0 2 4
AT
S -020 -0.15 -0.10 -0.05
¢
QQQ) 5- ]
(©)
4t
3t
~
~—
S 2t
1t
O' 1 1 1 1 1 £ 1 1 1 1
-4 -2 0 2 4 -4 -2 0 2 4
AT AJJ
Figure 6. The energy difference 6Eg and the weight p, as defined in the main text, ford = 1 (a)~(b)and d = 2 (c)—(d).

QE:s far apart from each other. In figures 6(a) and (c), we show 8Eg in the A—Q plane ford = 1and 2,
respectively. In the arc region, the energy difference 6Eg ~ 0. This is because the two single-excitation bound
states are strongly localized around different QEs, which suppresses their interaction. In the regime A > 0and
Q/] < 1, the non-interacting photon excitations dominate in the bound state, and 6Eg ~ 0. In the vicinity of
the boundary Q = /2A/d, where the anti-symmetric bound state 37]0) vanishes, there is a still a considerable
probability for the QEs to be excited, while having a large overlap between the two single-excitation bound
states. This induces the interaction between the two Wannier modes such that 0Eg < 0, as shown by the dark
(blue) regions in figures 6(a) and ().

The low energy dynamics of the single excitation subspace is governed by the effective Hamiltonian H
projected into the subspace spanned by the polariton modes 3%|0). Therefore, we expect that the two-excitation
ground state describing the two interacting polaritons is mostly composed of the low energy excitations
33210) /+/2.. In figures 6(c) and (d), we show the probability p = 3, _,[(0]32[W,c) [* /2 to find two (anti-)
symmetric excitations 37%|0) /+/2 in the exact ground state |U,). Here, we note that in the regime A > Q2d/2
the anti-symmetric mode 37|0) vanishes, and the probability is defined as p = |(0]3%]|¥yg) |*/2, namely, only
the symmetric mode is taken into account. The large probability p > 0.85 even in the non-Markovian regime
shows that the excitations 372|0) /+/2 dominate the ground state, which indicates that the low energy dynamics
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in the single and two-excitation subspaces can be described by some interacting Hamiltonian for the polariton
modes 37]0).

A remarkable feature of the two excitation ground state is that the first order correlation matrix
M; = (] «), for operators oj = by 5, ax, and the two-photon wavefunction ¢, (k, k’) at most have two
dominating singular values in the whole A—2 plane. This fact inspires us to construct a variational ansatz
[Uyy) = N SV 2(712 —4H)0) / 2 for the ground state by two deformed single-excitation modes defined by:

= L] b)) + Y ey, 23)
V2 x
where v, are real numbers, ¢, (k) are orthonormal wavefunctions, and the normalization fac-
tor Ny = 3 (1 + v2)%/2.
Under the normalization constraint Y, |¢ (k) 1, the minimization of the variational energy
E = (I, |H|¥,,) with respect to ¢,(k) indicates that the variational function should have the form

1 o
o (k) = _ ko

JNoN er — &
where e, is a variational parameter, 7, = (1 + ge~*4) /{/2, and the normalization factor
1 1+ ocosk-d
Ny==S """~ (25)
N

(e; — Ek)z

=

(24)

In terms of the variational parameters v, and e,, the variational ground state energy can be written as
1
E= V{ZA + S TIAVZ +vi(A + v)es
2 o

1 V
+ T 0'(1 + 3) ZQ - Z Ia( (T) > (26)
R ]

where

1 1+ ocosk-d
L) =—=> ——F—. (27)
N5 e, — &k

One can minimize the ground state energy with respect to v, and e, to find the optimal variational state | ¥y,).
Figures 7(a) and (b) show the overlap p, between |,,) and the exact ground state for 1D tight-binding dispersion
relationatd = 1, 2. The fact that p, > 0.98 in all parameter regimes underscores the accuracy of our variational
state [0, ,).

If we define the normalized symmetric and anti-symmetric modes vy . = 7. / {1 + v of the variational
state, we can calculate the overlap between these modes and the single-particle ones, 3%|0), given by
.= (0] ﬁinN, .10} |. The symmetric mode 'yL) . 10) only deviates slightly from the bare single-particle mode

1|0>, ie,py > 0.99,in the whole parameter space, including the non-Markovian regimes (not shown). On the
contrary, the mode ’yTN |0} is very different from the anti-symmetric single-particle mode 37 |0) in the vicinity of
theboundary A = QZH/ 2, as shown in figures 7(c) and (d) for d = 1, 2. Furthermore, in the regime
A > Q%d/2, the anti-symmetric bound state vanishes and the VTNZ .10) / /2 dominates the ground state. This is
why the probability p, which measures the overlap between the exact and the variational wavefunction, is still
very large in this non-Markovian regime.

In the so-called arc region, p. ~landv, = v_ indicates that the ground state [¥,,) ~ (3] 33|0), where the
small component of the double occupation states 3 ;[2 1.,10) in [¥y,) shows the hard-core nature of 3 ;f|0>. Asa

result, we can construct the effective spin model
ot e | 1 N 5 1
Hep = ter (5,705 + 5, 07) + Z]szUzz + ZEG(%Z + 7)) + Z]z + Ey (28)

for the single and two excitations subspaces, where ], = Eg — 2E, and the spin operators &;_, , denote the
(annhilation) operator of the local Wannier modes, i.e., 5i_; , = (.. In the Markovian regime the spin

operators &; become the bare QE transition operator o ,, while in the strong coupling regime 5; denotes the
annihilation operator of the strongly hybridized polariton mode.

5.2.Many QEs
For two QEs, the two-excitation ground state can be described by two interacting single-excitations 37%0) /~/2.
In this subsection, we investigate the scattering of two excitations in the periodic QE array coupled to the
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photonic bath. As discussed in section 4, the two-excitation spectrum is obtained by the four-point connected
Green function (see appendix C), which displays a band structure due to the PBC imposed. To study the low
energy scattering of two individual polaritons, we derive the energy-dependent two-body interaction in the
whole parameter plane using the Feshbach treatment [27]. We demonstrate that the effective interaction
strength between two polaritons can be tuned by the detuning A and the Rabi frequency 2. In particular, the
hardcore nature of two excitations justifies the validity of the spin model in the arc region.

Let us first derive the effective Hamiltonian describing the lowest band of two-excitation spectrum using the
Feshbach treatment. For the incident state 3 I, Jé] J[I,Pl 0) of two polaritons with total momentum q and energy E,
the scattering state [¥,(qQ)) = [¥2p(q)) + |P2q(q)) can be written as the superposition of [¥1p(q)) = P|¥s(q))
and [¥0(q)) = Q|¥ic(q)), where Pand Q = 1 — Pare the projectors into the lowest and higher bands, i.e., the
‘open’ and ‘closed’ channels in the Feshbach resonance.

By eliminating the higher energy band in the Schrédinger equation, the component |¥,p(q)) in the lowest
channel obeys the secular equation

Hest (E)[¥5p(q)) = EIW,p(q)). (29)

The effective Hamiltonian H.¢(E) = H, e(flf) + PH,, (E) P describes the scattering of two excitations in the lowest
band by

1
Hine(E) = N >~ Uini(qs E)by by_p bg—p,bp,» (30)
PiP24
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Figure 8. The low-energy two-body interaction in the parameter plane, where (a)d = land (b)d = 2.

where the effective two-body interaction

1 z/: Zin(p)Zix(q — p) (31)

(]int(q: E) = |\
Nppov E = Enxp) — Eiv(q — p)

depends on the incident energy E, and the summation does not include the contribution from the lowest band.
The component

Wao(q)) =

E_ o, QHin(E) [W2p(q)) (32)
in the closed channel follows from the Schrédinger equation, which is a bound state of two excitations in the
higher energy bands. Thus, the closed channel component will not contribute to the scattering wavefunction in
the asymptotic limit.

We characterize the scattering process of two low-energy polaritons at the band bottom by the effective
interaction Uy = Z(0) Un (0, Ep), which we plot in figure 8 for d = 1,2 inthe A— plane. Inthe A > 0
regime, the polariton mode 3 I,lO) is mostly composed of bath photons for small €, so the interaction strength

U.gris extremely softened. As 2 increases, the weight of QE excitation in the mode 3 ;r,l 0) becomes larger, and the
effective interaction Ugincreases accordingly. This means a wide range of U.¢ can be achieved by tuning the
Rabi frequency 2and A.

In the Markovian regime, the single-particle weight Z; ~ 1and alarge gap (compared with the bandwidth)
separates the lowest band and the higher energy bands, which result in the divergent interaction U,gand the
small component ||¥,o(q)) |? in the closed channel. Thus, the low-energy dynamics can be described by the

i
be approximated by the bared QE transition operator. In the strong coupling regime, Z; ~ 1/2 and the two-

body interaction U,gbetween strongly hybridized polaritons is divergent. Therefore, the spin model is also valid
in thisregion,and &;” ~ [3; denotes the local Wannier mode with the strong on-site interaction.

effective spin model Her = 3- ;1 tj—j 5j+ gy projected in the lowest band, where the spin operator &; ~ o can

6. Two excitations: doublons

6.1. Two-QE doublon state

As it occurred for the single-photon bound states, only for a given region of the A—{2 parameter space, two
bound states |¥, ) with higher energies E, . than Eg appear in the spectrum. The exact condition for the
existence of two bound states is determined via the Green function approach in appendix B. The localization
behavior of two bound states can be understood by inspecting their wavefunctions ¢; 4 (n) and ¢, 4 (n, m),
which we plotin figure 9, ford = 2,€2/] = 2,and A /] = —1. There, we observe that the two bound states are
the symmetric and anti-symmetric superpositions of the two-photon bound states [25] localized around
different QEs.
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Figure 9. The wavefunctions of the symmetric and anti-symmetric bound states are shown in the left and right panels, where
d=2,Q/] =2,and A/] = —1. The single-photon wavefunction ;4 (n) and the two-photon wavefunction ¢,  (n, m) are shown
in the upper and lower rows.

When both doublons exist an effective hopping model for them can be constructed, which reads:

Hdoublon = MUp Z d]Td] + tD(ledZ + d;dl)> (33)
j=1,

where le describes the generation of the doublon Wannier mode (¥, ) — (—1)!|%¥,_))/~/2 localized around
the Ith QE with the chemical potential p, = (E,; + E,_) /2 and the effective hopping
strength tp = (E;4 — E;_) /2.

In figure 10 we plot the hopping strength 5 in the A—§2 plane for d = 1, 2. For fixed distance d and small
Rabi coupling, the large localization length of the doublon Wannier modes gives rise to a strong hybridization
between them and a large energy level splitting 2¢p. As a result, the two doublon states vanish by merging into the
continuum of scattering band. As the Rabi frequency or the distance d increases, the localization length is shorter
than d, and the overlap between two doublon Wannier modes becomes smaller. Therefore, the energy level
splitting 2¢p, is reduced, so one can find two doublon states and define the effective hopping strength tp,. This
intuitive picture also explains why the regime where these bound states vanish shrinks as the distance d increases,
as shown in figure 10(b).

6.2. Many QEs
For many QEs, we already saw in figure 4, that a doublon band (E,5(q), in red triangles) appears in the midgap of
the scattering bands, whose dispersion depends strongly on the parameter regime. For example, for A /] = 1
and ) /] = 1in figure 4(f), the doublon band has a visible curvature which implies that the doublons have a
large hopping strength, whereas for A /] decreases to —1 in figure 4(d), the doublon band is very flat which tell us
that the doublons are mostly localized.

To gain more intuition of the features of this doublon band, we plot the coordinate space structure of the
doublon in figure 11 using the Fourier transforms f, (r), f,,(r, m),and f, (r, n, m) of the functions
f,®)s fra (P> K)sand f, (p, K, K') defined in equation (21). Here, f,(r) is the amplitude of having two excited
QEs separated by a distance r, f;,(r, m) is the amplitude of finding one photon at the position m and one excited
QE separated from the photon by a distancer, and f, (r, n, m) is the amplitude of detecting two photons at
positions nand m. In figure 11, we observe thatford = 2, A/] = 0 and()/] = 2, the square norms
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Figure 11. The left and right panels display the wavefunctions of the doublon states with momentum g = 0 in the first two doublon
bands, respectively, whered = 2, A/] = 0and /] = 2. In the first row, the wavefunctions | f, (n) |* and | f,, (m, m) |* are shown by
the solid blue curves and dashed red curves, where the QE excitation in f, (m, m) is set at the origin. The wavefunctions | f, (n, m)[?
are shown in the second row.
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If,®, |f,,(r, m)]*,and |f, (r, n, m)|* of the state with ¢ = 0in the first two isolated bands display that the
two polaritons attract each other to form a propagating doublon. One can also see that the two polaritons are
tightly bound in the lowest doublon band but loosely bound in the higher doublon band.

From the doublon state, |¥,5(q)), and its dispersion relation E,5(q), we can construct the effective doublon
Hamiltonian as follows:

Haoublon = Z t:?—mdidm’ (34)

n,m

which describes the hopping of the doublon mode d,{]0). In the single doublon space, d, = [0) (¥,5(n)]is
defined by the Wannier state [Uyp(n)) = 3 q e 19| Wyp(q)) / \/ﬁh localized around QE at the position n. The
effective hopping strength of the doublon is

= Y Eap(@e o, (35)
Ny q
where the NN hopping strength ¢ . _, is ; (the effective hopping strength in the two-QE case). We note that in
the dilute gas limit, where the density of doublons <1, the effective hopping model Hyoypion 1 still valid.

7.Many excitations

In this section, we study the spectrum for the N-excitation subspaces (with N > 2), focusing on the QE-array
situation. In the first subsection, we apply the Green-function approach to characterize analytically the emergent
dynamicsin the N = 3 subspace, finding a continuum band that describe two types of scattering processes, i.e.,
the scattering of three individual polaritons and that between one polariton and one doublon. There exists also
an isolated band in which the three excitations form a bound state (referred to as the triplon state) and co-
propagate along the QE array.

Even though the Green-Function method can be in principle extended for larger excitation number, it becomes
very challenging due to the emergence of many topologically inequivalent Feynman diagrams. Thus, in the second
subsection we use the intuition developed in the previous sections to numerically characterize the ground state
properties of the system using DMRG [28, 29]. In particular, we will be able to show that one can go from a regime
where the system behaves as a Mott-insulator to a superfluid behavior, just by tuning the system parameters.

7.1. Three excitations

In this subsection, we study the properties of three excitations using the Green function method (see

appendix D). In figure 12, we show the band structures for three excitations for two cases with A = 0 and lattice
spacingd = 1. Thelowest continuum band describes the scattering between three individual polaritons, while
the second continuum band is composed of the scattering states between one polariton and one doublon. In the
three-polariton scattering band, the two-body interaction between polaritons can be tuned by 2 and A, as
shown in section 5. With relatively large Rabi frequencies £2/] = 5, 6, the midgap opens between the two lowest
scattering bands, and a triplon band (denoted by the red triangles) with dispersion relation Es5(q) appears. In
the triplon band, the explicit analytic form of the triplon state |¥;5(q)) reads:
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Figure 13. The triplon wavefunctions in the coordinate space for 2/J = 5, A = 0,and d = 1. (a) The probability to find two QE
excitations around one QE excitation at the origin ( f); (b) the probability to find two QE excitations around one photon at the origin
(fowa); (c) the probability to find two photons around one QE excitation at the origin ( f,4p); (d) the probability to find two photons
around one photon at the origin ().

[Tsp(@) = 3 f;, ki, k)b b bI 4 10) + S fiy (kiy ko, KOy b al o (]0)
Lk, kik.K

+ Z fbuu(kl’ ky, K, K3)bl-<r1a1:f2,K2a;—k1—kz,K3|0>
ki kKoK

+ Y fuk, ke, K;, Ky, K3)aE1’KIaiz’Kzag_kl_kaJO). (36)
koK KoK

In figures 13(a)—(d), we plot the triplon wavefunctions in real coordinate space, by Fourier transforming the
functions f, (k;, k), f,,, ki ko, K), £, ki, ko, Ky, K3), £ (ky, ko, Ky, Ky, K3), respectively. As we observe in the
figure, the wavefunction has a bound-state behavior, where the QE excitations and photons are localized around
each other. The effective hopping model

Htriplon = E tllllm T; T (37)
n,m

for the triplon has the same form as equation (34). In the single triplon subspace, T, = |0) (¥35(n)|is defined by
the three-excitation bound state [¥35(n)) = Zq e 197 Ws(q)) / \/ﬁb localized around QE at the position n, and
the effective hopping strength is

ty = L > Esp(q)eat®—m, (38)
N, q

7.2. Superfluid to Mott insulator transition
Let us finally consider the situation of many excitations in the QE array situation. With the intuition we
developed with the results of the previous section, we know that when the coupling is very strong, {2 > J, or
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top. Panels (a) and (c) show the 10 largest eigenvalues of Fj,, j3. Panels (c) and (d) show the scaling of F,, j, versus R = |i — j|, where
the markers are numerical values and the lines are least square fitting results.

when we are in the deep Markov regime, |A| > ], §2, we expect to have very localized bound states around the
QEs. However, as one deviates from that conditions, the localization length of the bound states grows leading to
strong hybridizing effects between the localized excitations. In this section, we explore whether this localization
length change leads to a superfluid-Mott insulating phase transition in the ground state of the system.

To obtain a detailed quantitative understanding, we study the system numerically using the DMRG method
[28,29]. The DMRG algorithm is a variational method within the class of matrix product states and its nature
imposes two constraints on the numerical studies. First, one should adopt open boundary conditions as this is
more suitable for DMRG. The Bloch bands and momentum introduced for periodic systems cannot be defined
for open systems but the physical properties should be the same if the system is sufficiently large. Secondly, the
number of excitations on the bath sites should have an upper bound, that we denote as C, because the
computational cost of DMRG is related to the Hilbert space dimensions of the lattice sites. C should be large
enough such that the numerical results reflect the true physics. The ground states have been computed using
DMRG in various cases and we find that C = 5 is sufficient because increasing it to 6 does not change the results
significantly. This implies, however, that these results cannot be obtained with the bosonization employed to
describe the single-excitation regime, which is why we employ DMRG to obtain them.

The total number of excitations N,y is a conserved quantity so different N sectors can be studied
separately. It is possible to access both the superfluid and the Mott insulating phases only if N, is equal to the
number of impurity sites Nj,,. For convenience, we work in real space representation, unlike in the other
sections where we mostly work in reciprocal space representation. We label the unit cells using Roman letters 7, j
etc and the lattice sites (both the impurity and bath) within a unit cell using Greek letters «, 3 etc. The creation/
annihilation operators for both all lattice sites can be expressed on a equal footing as a;|, / a,,. The first thing we
would like to confirm is the existence of two phases in the system. The diagnostic tool we use is the correlation
function matrix E, js = (a;} a;3) with ia (jB) interpreted as the row (column) index. Figure 14 shows the
eigenvalues of Fj,, jzin the system with Njp,, = Nexe = 80at A = 0.0,0.2 and various different (2. The single-
excitation bound states in the large 2 regime are very localized so we expect to see Mott insulator behavior,
where Fj,, j3has multiple eigenvalues of similar magnitudes corresponding to the multiple modes occupied by
the excitations. When the spatial extent of the single-excitation bound states increases, the system transits to the
superfluid phase where most excitations occupy the same mode so Fj,, jghas only one dominant eigenvalue. The
low-energy effective theory for the superfluid phase is a Luttinger liquid theory, which predicts that
Fojo ~ i — jl to the first order [30]. Figure 14 shows two examples of least square fitting of F;,,, ja» Where we
choosei = 10and 5 < |i — j| < 55 because the power law scaling is not expected to be accurate if iand/or jare
too close to the edge orif |i — j|is too small. One can see that fis basically independent of &, with an
approximate value of —0.177 at A = 0.0J, Q = 0.15] and —0.154at A = 0.2], Q = 0.40]. The von Neumann
entanglement entropy also provides valuable information about the system. This quantity is defined as
S = —Tr(p, In p,) where p, is the reduced density matrix of the left L, unit cells of the chain. For the superfluid
phase, the functional form of Sis

S(Ly) = gln [£ sin (wLL—A)] +g+F (39)

™

where cis the central charge of the Luttinger liquid, gis a constant, and Fis a non-universal oscillating term [31].
Figure 15 shows two examples of least square fitting of Sin the system with Njy,, = Ny = 80, where we choose
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Figure 15. The von Neumann entanglement entropy S in the system with N, = Nexe = 80. The numerical values are shown as blue
stars and the yellow lines are least square fitting results.

10 < Ly < 70 and discard those close to 0 or L to avoid edge effect. It turns out that the oscillating term is
negligibleand ¢ = 1.0157 (¢ = 1.059 5) for A = 0.0], Q = 0.15] (A = 0.2], 2 = 0.40]). This suggests that
the superfluid state is a one-component Luttinger liquid with ¢ = 1. In the Mott insulating phase at larger €2, Sis
almost constant in the bulk of the system as one expects for a 1D gapped phase.

8. Conclusions

To sum up, we have studied the emergent dynamics of many QEs interacting with structured photonic
reservoirs in the non-Markovian and many excitation regimes. In the two- and three-excitation subspaces,
we provide analytical formulas for both the energies and wavefunctions of the relevant states governing the
dynamics for arbitrary bath dimension and energy dispersion. We apply these formulas to study the case ofa
nearest-neighbor tight-binding one-dimensional bath and uncover several phenomena which are oblivious
in perturbative descriptions. First, we show the emergence of effective hopping models in parameter
regimes far from the Markovian ones, with the advantage of having stronger dipole—dipole couplings as
compared to the perturbative regimes. Second, we also predict the emergence of new hopping models in
the excited part of the spectrum, in which doublon/triplon states hop between the different QEs coupled to
the bath. Finally, we numerically characterize the ground state in the many excitation sector of these
quantum optical models, and show how the ground state can undergo an optically driven Mott-superfluid
phase transition controlled by the localization length of the bound states. An interesting research direction
is to apply the theoretical toolbox developed in the manuscript to study higher dimensional structured
baths [32-34].

Appendix A. Single excitation
In this Appendix, we solve the Schrédinger equation to study the single excitation bound states of two-QEs with
distance d = |d|and the QE array with the lattice spacingz = N/N,, where d = n, — n is the vector

connecting two QEs. Without loss of generality, we choosen; = 0andn, = d for two QEs. The parameters
uy,), U, and the wavefunction f, (k) are determined by the Schrédinger equation as

Q
Auy ) + ﬁzk:fk(k) = Ennug,

0 .
Auy y + W; elkdf, (k) = Epnu, s

B0+ (s + ) = i f 0, (A1)
By solving equation (A.1), we obtain the following equation to determine the bound state energies:
G '(Eipuyr =0, (A.2)
and the vectors uL = (uy 4, uy +), where the Green function
Gw) = ! (A3)

w—A = Y4(w) = Bo(w)ox
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is defined by the Pauli matrix o, and the self-energies

Yi(w) = Q_z Z _ v
¢ N9 w—g +i0t
2 ik-d
Solw) =5 — ¢ (Ad)

N 97 w— g +i0t

For the (anti-) symmetric bound state with energy E, - , the parameters u; . = +u, . = u./+/2,and the
wavefunction

Q1+ ek

k) = ,
f/\( ) \/2N " Eli — &k

(A.5)

where

_ 2?1+ cosk-d
Ut =1+ —3 ———— (A.6)
N L (BEix — &)
is determined by the normalization condition.
The bound state energies F, . and the parameters w7} are the poles and the corresponding residues of the
Green function

1 B Zi
w— A=W F Sow) 5 w— Epy+i0t
where Z3 gives the probability | (0|b..3}]0) |* to detect the modes b[0) = (b, £ b)) /+/2 in the eigenstate
/31]0). As we show in the main text, there are certain parameter regimes in which the anti-symmetric state merges

into the continuum and only a single bound state exists. However, when both bound states exist a low-energy
effective Hamiltonian can be written:

HY = E,818, + B B3, (A-8)

obtained by projecting onto the subspace with the symmetric and anti-symmetric bound states.

In the Markovian limit |A| > Q (A < 0), the single excitation bound state is extremely localized, such that
the effective hopping |t.g| < |A[. Thus, the single particle bound state energies E; . ~ Ejp + f.¢ canbe
expanded around the single-excitation bound state energy

0? 1

Ep=A+ —
1 N;A—é‘k

Gi(w) =

(A7)

~A (A.9)

in the presence of one QE. The secular equation determines the hopping strength

QZZIB eik-d
b
N K ElB — &k

teff = (A.10)

where
o 1 -
Zig=|1+ — _ . A.11
’ [ N ; (Eip — Ek)z] 1D

In the strong coupling limit €2 /] >> 1, the single excitation bound state is also localized, as a result, the effective
hopping t.¢is determined by equation (A.10), where Ejg ~ 2.

For the periodic QE array coupled to the photonic bath, the eigenstates form polariton bands. For the quasi-
momentum p, the eigenstate 3 ; ,|0) of Hamiltonian Hy, has the energy E; ,(p), where the creation operator

ﬁ’[f) \ = Up) b;f + Yk frray of the polariton in the A band is determined by the secular equations

Q
Aupy + — > fir = En(@) tipy,
NEA

Q
& fion f”pk = En(®f- (A.12)

Appendix B. Green functions of two-excitation in two QEs

In this appendix, we derive the exact form of the two-excitation Green function G,(w) for two QEs. The
quadratic Hamiltonian in equation (1) is taken as the unperturbed part. In the interaction picture, the two-
particle Green function reads
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. ptoo N1
_i<0|Ta2,](t)a1,I(t)a;a;eilf—x Fi#)dr’) o)

Ga(t) = =
’ <0|’Te*if,: Hr<f/>df’|o>

, (B.1)

where o, () and H/(t) are the operator cj_; , and the hard-core interaction H; = UZ]- b]T b]T b;b; / 2 inthe
interaction picture.

By expanding the unitary evolution operator in equation (B.1), the Fourier transform
Gy (w) = [Ga(W)]y + [G2(w)], can be written as the free propagation part

[Ga(@lo = —i [ dret (0] Taz (Dani(t)af allo), (B2)

and the connected part

+00 X +00
(G ()], = f_ dtew[(—i)z f_ dh (Teus 1 (£) o1 (£) 0 b Hy (1)),

1 +o00 .
o0 dndn(Tan (o (1)a] ol Hi) Hi(e),

where (---), denotes the connected Green function on the vacuum state.
Using the Wick theorem, we obtain

[Go@)le =2 10 (@) T (@)L (w) (B.4)
i’

by the convolutions

/

ngaz (W)= lf c;iGalj(W/)Gazj(W — '),
i
7 : dw’ / /
Halaz (w) = lf > Gjal(w )Gjaz(w - W ):
s
. dw/ / !
T j(w) = lf;c;]j/(w )Gj(w — W, (B.5)

and the Dyson expansion
Tji(w) = Ubjy + Ullyy()U + --- = Ubj + » Ullj (W) Tj, j(w) (B.6)
J
of the scattering T-matrix, where G,j(w) = fdtGaj(t)ei'“”, Gjo(w) = fdthu,(t)ei’W‘t, and Gjj (w) =
fdtG]-j/(t)eW are the Fourier transforms of the single-excitation Green functions G,;(t) =
—i(Ola(t)b}lO) 0(t), Gjo (1) = —i(0|b;(t)10) 0 (¢), and G (1) = —i(Olbj(t)b;ﬁlO) 0 (t), respectively. Solving

the matrix equation (B.6), we obtain T (w) = —II"}(w).
Due to the fact Gy1(w) = G,y(w) and Gi5(w) = Gy1(w), the T-matrix can be diagonalized as

TW) =Y Tw)ls) (sl (B.7)
s==+

in the symmetric and anti-symmetric scattering channels |[+) = (1, £1) /+/2, where the eigenvalues are
-1

1 1 ZOZS
Ti(w) = — == —A (B.8)
I (w) + sl (w) 2 \Noet W — Eix — Ery
The connected Green function in the diagonalized basis becomes
(G ()l = D I} g, () T)TT 0, (@), (B.9)
s==+
where the ‘bubble’ term
M0, @) = 30 8/ 0, (@), T o, (@) = 30§71 0, (@), (B.10)

j=1,2 j=1,2

In the interacting channel s = =+, the bound state energy E,, is determined by the pole of T(w), i.e.,
T;(Eys) = 0. The corresponding residue
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-1
S 1 a 50 1, —

ZO == [— Z Z]/\Z]th))%)\/] (B.ll)

N, o=+

in the vicinity of the pole E»;and IT;, ,, (E,,) result in the probability
7z ’

Zns = _0( > azlf;Zf;’/h;;X] (B.12)

4 MN,o=4

to detect two QEs in the excited states, the wavefunction
zZ; VANV AT .
ppll) = |20 S0 ZORINT () 4 gemikd) (B.13)
N yyoes 2hgavhgin

of the j-QE in the excited state with one photon of momentum k in the bath, and the amplitude

JZ AV < "
0 P Bty + hodo) x (1 + soe k(1 + geKd) (B.14)
4N AV, o=+ hs,k)\hs,k’)\’

Prs (k> k/) =

to find two photons with momentak and k/, where ki, \y = E»s — Ejx — Eix, hsin = Eas — & — Eins
and hs,kk’ = Ezs — & — €K-

The ground state analyzed in section 5.1 has the smallest energy in the symmetric subspace s = +. The
symmetric and anti-symmetric doublon states studied in section 6.1 correspond to the isolated pole with higher
energy in the subspace s = + and that in the subspace s = —. The eigenenergies and the wavefunctions of the
ground state and the doublon states are determined by T; (E,;) = 0 and equations (B.12)—(B.14).

The doublon states with higher energies in the s = =+ channels only exist for certain parameters. The
symmetric bound state exists if £y, > 2E,_and T\(E; ) > 0, while the anti-symmetric bound state can be
found if the single-excitation bound state 3 i|0> existsand T (E; ) > 0.Inthe Markovian limit and strong
coupling regime, one can always find two higher-energy bound states in the + channels.

Appendix C. Green functions of two-excitation in QE array

In this appendix, we derive the equation to determine the band structure in the two-excitation spectrum, and the
two-excitation wavefunctions f, (p), f,,(p> K),and £, (p, K, K').

The band structure can be identified by the position of the poles and branch cuts of G,(q, w) for two
excitations o] ab|0) with momenta p, = q/2 4 p. In the interaction picture, the Green function G,(q, t) in the
time domain reads

Lt N
0|Ta2,1(t)al,j(t)afage_‘ffoo Hye(t')dt |0>

Ga(g, 1) = —i — (C.1
<0|Te*i1,x H1<”>df’|o>
The expansion of the unitary evolution operator gives rise to the Fourier transform
G2(q, w) = [Ga(q, Wy + [G2(q, W), Where
[G2(q, w)lo = —i f dre™" (0l () au 1 (1) o a3]0) (C2)
describes the free propagation part, and
[G2(q, W = f dtew[(—i)2 f dt (Ta, (1) g 1 (1) o @ Hye (1))
1, .
S [ dndey (T () 0n (1) o] 0 Hye (6) Hic (1)
+ o] (C.3)
is the connected part.
Using Wick theorem, we obtain
2 _
[GZ ((b W)]c = Fnalaz(q) P> W) T(q’ w) Halaz(q) P> w) (C4)
b
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by the convolutions
Mo o) =1 [ S5Gop, ()G @ = ),
Mayon(@ P> ) =i f d—th )Gy o — &),
(g, w) = Z f—Gb( +p', )G (% —pw— w’), (C.5)

and the scattering T'matrix
T(q, w) = U+ Ully(q, w)U + --- = U + Ullp(q, w)T(q, w), (C.6)
where the Green functions are G, (w) = —ifdtei”t(ai(t)b;W(t), Gy, (W) = —ifdtei”t(bp(t)aD@(t),
and Gy (p, w) = —i f drel! (b, (1) bg}@(t), respectively. Solving equation (C.6), we obtain
T(q w)= 1, '(q, w + i07)

—1
1 Zix(p)Zix(q — p)
== (C.7)
le pgzx w — En(p) — Eix(q — p)

and [Gy(q, w)]..

The poles and residues of T, (q, w) determine the doublon dispersion relation E,5(q) and band structure of
scattering states, respectively. For the doublon state [, p(q)), the residue of T>(q, w) in the vicinity of E;5(q)
and II,, ,,(q, p, E25(q)) give rise to the wavefunctions

L@
Z VARY. ,
L) = /\ZA; N () n(p)Zix(p)
f k, K) = Q 2Z5(q) Zl)\(P+)ZlA’(P,)
ab\™ -

Nyz 5% hw®) k)
[ (P) + bt (p)]

Z,(q)
V4 Ty , C.8
N %j (P Ziv(p) TP (®) (C.8)

f, &k, K, K) = Q?

where hyy (p) = Ez5(q) — Ein(p) — Eiv(p)), hx(p) = Eap(qQ) — Eix(p,) — &k+p,and
hxx (p) = Ezp(q) — EK+p, — EK+p - The wavefunctions can be Fourier transformed to real space to give

f, @), £, (r, m),and f, (r, n, m), which represent the amplitudes of having two excited QEs that are separated
by a distance r, having one photon at the position m and one excited QE separated from the photon by a distance
r, and having two photons at the positions n and m.

Appendix D. Three-excitation spectrum

In this appendix, we study the properties of three excitations in the QE array by the Green function approach.
The triplon state has the form

[Wsp(q)) = > f, ks, kz)blzbﬂ-zb;kﬁkJO)

loky
+ 3 foakn o, KB b al oy (10)
KoK
+ Z fbaa (ky, Ky, Ko, K3)b1:1a1:z,Kz a:lr*krkz,l(sl(»
kik KK
LY ke K K Kl a1 o
koK KoK

Similar to the analysis of two excitations, we introduce the three-excitation Green function
Gs(t) = —i{0[Tas (D ar (D au(t)af a0}, (D.2)

whose Fourier transform G;(w) = f dtel“*G;(t) determines the three-excitation spectrum including scattering
and triplon bands. The three excitations have the total quasi-momentum q. The wavefunctions

1,k k), ., (g, ko, K, (ks ko, Ky, K3),and f, (ky, ks, K, K;, K3) are obtained by the residues of Green
functions Gs(w) in the vicinity of poles with (a) oy = by, ay = by,, a3 = bg_i, 1,3 (b) 4 = by, @ = by,

3 = Aq_k—k,K; (O) . = by, v = Ay, K, W = Aq_k kK aNd (d) @ = ik 02 = Ak, B = gk -k Ky
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In the interaction picture, the Green function Gs(t) becomes

. oo N
<0|Ta3,1(t)az,l(t)oq,l(t)afaza;e i He(ehd |0>

Gs(t) = —i _ o
<0|']é*ij,oO Hhc(t’)dt’|0>

Using the Dyson expansion, the connected part [G;(w)], reads

[G3(W)]. = fdwlfdwlfdwzfdwz

—PGaleI(wl)T(q —Ppw—w)
N
X Gayby, (W2) Gash, (W — w1 — w2)
X E(q> Pp P{> W, Wi, W{)

1 /! !/ !/
X EPGbpi“l(wl)T(q —pp w — wh)

/
X Gbp/zaz(wg) GbP%%(w - W — W;)» (D.4)
where P denotes the permutation of o , 3, and the three-excitation T-matrix satisfies the equation

T(q, py» Pjs w» Wi, wp) = Gp(q — Py — Ppy W — Wi — wy)
+—Z f—Gh(Q*Pl kK, w—w —w
X Gb(k) Wk)T(q - k: W — Wk)TS(Cb k: P1§ W, Wk» W{) (DS)

The branch cuts of T; correspond to the scattering bands describing both the scattering of three individual
polaritons and that between a single doublon and one polariton. The pole of T5 determines the triplon band,
where three polaritons form the bound state and co-propagate on the lattice.

In the vicinity of the triplon pole, the three-excitation T-matrix has the form

F(pp wl)F(p{’ w{)

T3(q, py> P w> Wi, Wy) = D.6
3(g9, py p; b W) wa3q+i0+ (D.6)
It follows from equation (D.5) that the residue function F(p,, w;) obeys
2 . dwi
Fppw) =301 [ S2Gu(a — py — k Esn(@) — w1 — wi)
Nb k 2
x T(q — k, Esp(q) — wi)Gi(k, wi) F(k, wy). (D.7)
By the residue theorem, one can carry out the integral over wy and obtain
2
F(p) w) = VZZM(k)Gb(q —p; — k, E3p(q) — w; — En(k)
b kA
x T(q — k, Esp(q@) — Enn(k) F(k, Ep\(K)). (D.8)
Setting w; = E ), (p,), we can establish the matrix equation
for = Z Moo (Bss(@) fiy (D.9)
for fi, = F(k, E;»(k)), where the matrix
2
My l[Esp(@)] = ﬁZu(k)T(q —k, Esp(q) — Enn(k))
b
X Gy(q — p — k, E3p(qQ) — Eix(p) — Ein(k)). (D.10)

The triplon energy is determined by det[M(E35(q)) — I = 0,and f, , is the eigenstate corresponding to the
zero eigenvalue of M(E35(q)) — I, which gives rise to the residue function F (p,, w;) by equation (D.8).
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The residues in the vicinity of the pole E;5(q) leads to the wavefunctions
1
fh(pp Pz) = —PZ Zl)\l(Pl)le\z(pz)T(q — Pp E3B(q) - El)\l(pl))
6N, A
X Gp(ps> E3p(@) — Ein (P) — Ein, (P, 00

fia(P 22 K0 = P 2002 e (b 5 T
2T(q — py> Esp(q) — El/\l(pl))fpl)\l + T(q — p3 E35(q) — €p,+x) F (P35 p,+K)
Esp(q) — Ein(p) — Ein(py) — &p,k
2T(q — py> E3(Q) — Ein(PD)f, \, + T(q = Pss Esp(q) — Enn,(P))f, 5,

- Exs(q) — Eu, (p) — Eux,(p,) — Ein(py)
f (P Py Ko K) = &ZPB D Zin (P Z1x, (P2) 210, (P5)
Nyz M 2(5p2+K2 - El)\z(Pz))
T(q = pp Esp(@) — Ein (P, 5, + 2T(q — Py, Esp(@) — &p,41) F(Pys Ep, k)
(Esp(@) — Eix(P) — €p,1x, — Epytk3) (E35(q) — Ein (D) — €p,4k, — E1,(P3))
T(q = pp Esp(@) — Ei (PS5, + 2T(q — o Esp(@) — Enn,(P))f, ),
 (Esslq) — Ein (P — Ein(Py) — &px) (Bss(@) — Eiy (p) — Einy(py) — Enn(ps) |
o Py 3 Zixn(PDZ1x,(P2) 210 (P3)
6Nyzvz 50, epik — Ein(py)
2E38(qQ) — 2€p +K, — Ep,+K, — Epyrks — Eix,(Py) — Ein(p3)
(Esp(@) — €p+K — Ep,+K, — Ep,+Ky) (E35(Q@) — €p vk, — Ep,+k, — Eixy(P3))
" T(q — pp> E3(q) — &p,+x)F(Py> €p,1K)
(Esp(@) — €p4x; — Ein(Py) — €paxs) (B3B(@) — €p 4k, — Ein,(Py) — Ein(p3)
2E35(q) — 2E15,(P) — €p,4+K, — Ep,+k; — Eix,(Py) — Ein(p3)
 (Esslq) — Eixn(p) — €p,+k — Epitks) (E3s(@) — Ein(py) — €p,4x, — Eix(P3)
T(q — py> Esp(q) — ElAl(Pl))fpl,\]

. (Esp(@) — Ein(p) — Ein(Py) — €p,aky) (E3p(q@) — Ein () — Eix,(py) — Eix(p3) ’

>

fa(pp P2> I<1; KZ: K3) =

where the total momentum q = p, + p, + p;. The Fourier transforms of these wavefunctions give rise to the
wavefunctions in the coordinate space shown in section 7.
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