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With advancing age, healthy adults typically exhibit decreases in performance across many different cognitive
abilities such as memory, processing speed, spatial ability, and abstract reasoning. However, there are marked
individual differences in rates of cognitive decline, with some adults declining steeply and others maintaining
high levels of functioning. To move toward a comprehensive understanding of cognitive aging, it is critical
to know whether individual differences in longitudinal changes interrelate across different cognitive abilities.
We identified 89 effect sizes representing shared variance in longitudinal cognitive change from 22 unique
datasets composed of more than 30,000 unique individuals, which we meta-analyzed using a series of
multilevel metaregression models. An average of 60% of the variation in cognitive changes was shared across
cognitive abilities. Shared variation in changes increased with age, from approximately 45% at age 35 years
to approximately 70% at age 85 years. There was a moderate-to-strong correspondence (r = .49, congruence
coefficient = .98) between the extent to which a variable indicated general intelligence and the extent to which
change in that variable indicated a general factor of aging-related change. Shared variation in changes did not
differ substantially across cognitive ability domain classifications. In a sensitivity analysis based on studies
that carefully controlled for dementia, shared variation in longitudinal cognitive changes remained at upward
of 60%, and age-related increases in shared variation in cognitive changes continued to be evident. These
results together provide strong evidence for a general factor of cognitive aging that strengthens with advancing

adult age.

Public Significance Statement

A longstanding question in cognitive aging has been “Does it all go together when it goes?” This
meta-analysis indicates that aging-related declines are interrelated across different domains of thinking.
For instance, adults who decline steeply in their memory relative to other adults as they get older are also
likely to decline steeply in reasoning and processing speed relative to others over the same period of time.
These key insights into how changes in different abilities interrelate suggest that theories and interventions
for cognitive aging will benefit from considering mechanisms that cut across several different domains of
thinking in addition to mechanisms that are specific to each individual domain.
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How Many Causes Are There of Aging-Related
Decrements in Cognitive Functioning? (Salthouse, 1994)

With advancing age, adults typically exhibit decreasing perfor-
mance across many different domains of cognitive function. Al-
though it is sometimes assumed that cognitive aging is a phenom-
enon confined to very late adulthood that only affects a small
subset of diseased individuals, there is now strong evidence that
aging-related cognitive declines begin to emerge at least as early as
middle adulthood, occur fairly continuously with the passage of
time, affect individuals without diagnosed pathologies, and occur
throughout the entire distribution of psychological and physical
health (Salthouse, 2004a, 2009). Normative aging-related decre-
ments are large. Cross-sectional studies estimate correlations be-
tween adult age and abstract reasoning, visuospatial ability, epi-
sodic memory, and processing speed at between approximately

= —40 and r = -.60 (Salthouse, 2004b). Longitudinal studies
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indicate shallower decline in earlier adulthood and are more con-
sistent with cross-sectional estimates for later adulthood (Schaie,
1994). When practice effects associated with repeated assessments
of individuals followed over time, selective attrition, and cohort
effects are taken into account, the apparent gap between longitudinal
and cross-sectional estimates of aging-related declines narrows sub-
stantially (Lindenberger, Singer, & Baltes, 2002; Lovdén, Ghisletta,
& Lindenberger, 2004; McArdle, Ferrer-Caja, Hamagami, & Wood-
cock, 2002; Ronnlund, Nyberg, Bickman, & Nilsson, 2005; Salt-
house, 2016).

Crucial to a complete account of cognitive aging is its dimen-
sionality, that is, the structure and magnitude of correlations
among changes in cognitive abilities (Lindenberger, von Oertzen,
Ghisletta, & Hertzog, 2011; Rabbitt, 1993). Whereas research
approaches stemming from cognitive-experimental traditions often
seek to uncover specific psychological mechanisms for aging-
related declines in individual cognitive tasks, approaches stem-
ming from differential psychology have taken seriously the hy-
pothesis that aging-induced changes in general psychological
factors, or even a single psychological factor, may largely account
for aging-related declines across many different cognitive abilities
(Salthouse, 1991). Such common factor hypotheses of cognitive
aging have been popular for several decades. For instance, accord-
ing to Salthouse (1988), the hypothesis that an “age-related reduc-
tion in some type of general-purpose processing resource contrib-
utes to impaired cognitive performance appears to be the only
explanation with sufficient generality to account for the age dif-
ferences observed across a variety of cognitive tasks™ (p. 238).
Verhaeghen and Salthouse (1997) concluded that ‘“age-related
influences on a wide range of cognitive variables are shared” and
that “age-related changes in the cognitive system are associated
with a decline in some general and fundamental mechanism”
(p. 231). Salthouse (2016) more recently commented that “if the
contribution of general influences is at least moderate, explana-
tions of domain-specific age relations will need to be supple-
mented with explanations of general age relations to fully account
for cognitive aging phenomena” (p. 1545). Relatedly, Birren
(1964), Craik (1983), and Welford (1965) have argued that aging-
sensitive psychological resources may limit performance in a large
variety of cognitive domains.

Importantly, the question of “how many causes are there” of
cognitive aging (Salthouse, 1994) can be addressed at multiple
levels of analysis, including the psychological, social, and biolog-
ical. The key question that has been the topic of much research,
and which is the focus of the current meta-analysis, is the dimen-
sionality of cognitive aging at the psychological level of analysis.
As Tucker-Drob (2011a) has clarified, a single general psycholog-
ical cause could “be the outcome of multiple independent biolog-
ical mechanisms, each broadly affecting cognition” (p. 341). Re-
latedly, Deary, Cox, and Ritchie (2016, p. 198) have proposed a
model of multiple “formative . . . biological elements giving rise to
a reflective, psychometric general” psychological dimension, and
Lindenberger, Li, and Bickman (2006) hypothesized that “changes
in behavioral repertoires are accompanied by continuous changes
in multiple brain-behavior mappings” (pp. 713-714). In other
words, rather than directly seeking to identify the many biological
and experiential causes that likely exist for cognitive aging, we
seek to reveal the extent to which aging-related changes in differ-
ent cognitive abilities occur along a common statistical dimension.

Even though we cannot presently identify the totality of specific
causal processes that underlie aging-related cognitive declines, or
directly enumerate the number of such specific causal mecha-
nisms, analyses that characterize the dimensionality of aging-
related cognitive changes are an important descriptive step that
may prove invaluable for guiding ongoing research into specific
mechanisms of cognitive aging, and the cognitive dimensions on
which they act.

What’s Change Got to Do With It?
(Lindenberger et al., 2011)

Historically, approaches to testing for shared aging-related ef-
fects across multiple cognitive domains have relied on cross-
sectional mediation approaches. For instance, early work tested the
extent to which cross-sectional age differences in cognitive abili-
ties such as reasoning, visuospatial ability, and episodic memory
were mediated by hypothesized “processing resources,” such as
information processing speed (Lindenberger, Mayr, & Kliegl,
1993; Salthouse, 1996) and working memory capacity (Salthouse,
1990). More recent work of this sort (e.g., Salthouse, 2004b) has
tested the extent to which cross-sectional age differences in a range
of cognitive abilities are mediated by a common higher order
general intelligence factor. Such cross-sectional shared influence
approaches (Tucker-Drob & Salthouse, 2011) have generally in-
dicated that substantial proportions of age-related effects on dif-
ferent cognitive abilities are mediated by a general intelligence
factor, although some residual age effects on individual abilities
typically remain.

As has been pointed out by several scholars, cross-sectional
mediation approaches reflect, to a large extent, patterns of mean
age differences across domains but are unable to directly test
whether individual differences in rates of cognitive change are
shared across domains (Hofer & Sliwinski, 2001; Horn, 1970;
Kalveram, 1965; Lindenberger & Pétter, 1998). When the goal is
to test for mediation of aging-related differences in cognitive
abilities, either by a processing resource (e.g., processing speed) or
by a general factor, cross-sectional approaches are quite limited.
As put by Lindenberger and Potter (1998), cross-sectional medi-
ation “does not offer a test of the basic mediation assumption. All
it does is tell us how the world may look if that assumption were
true” (p. 227). Hofer, Flaherty, and Hoffman (2006) similarly
wrote that “high levels of association between time-dependent
processes can result simply from average population age differ-
ences and not necessarily from associations between individual
‘rates of aging’” (p. 165), and Maxwell and Cole (2007) referred
to cross-sectional mediation approaches as “often highly mislead-
ing” (p. 23). More recently, Lindenberger et al. (2011) formally
demonstrated that high levels of “explained age-related variance”
obtained using cross-sectional mediation approaches may stem
from either similar average mean age trends, from within-time (but
not longitudinal) correlations between the putative mediator and
outcome variable, or some mixture of the two. They characterized
the link between cross-sectional mediation approaches and devel-
opmental codependencies over time about which researchers seek
to make inferences as “brittle and volatile” (p. 40). Indeed, exam-
ples of strong cross-sectional overlap but much weaker associa-
tions among longitudinal changes have been reported for the
associations between cognitive abilities and sensory functions
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(e.g., Anstey, Hofer, & Luszcz, 2003; Lindenberger & Ghisletta,
2009), and cognitive abilities and physical functions (Ritchie,
Tucker-Drob, Starr, & Deary, 2016). Note that the opposite also
appears to occur: Abilities that dissociate cross-sectionally, such as
verbal knowledge and perceptual speed, have been found to show
correlated change when probed longitudinally (e.g., Ghisletta,
Rabbitt, Lunn, & Lindenberger, 2012). Thus, the weaknesses of
cross-sectional data for indexing the interrelations among time-
based developmental associations are not only a logical possibility,
but—in at least some substantively important empirical circum-
stances—a reality.

Does It All Go Together When It Goes?
(Rabbitt, 1993)

Fundamental to accurately assessing the dimensionality of cog-
nitive aging are longitudinal approaches that index within-person
changes in multiple cognitive abilities over time. Such approaches
can be used to test whether individual differences in rates of
intraindividual longitudinal changes across different cognitive
abilities are interrelated, as would be predicted by common factor
theories of cognitive aging. Given that individual differences in
cognitive abilities are moderately stable from middle childhood
forward (e.g., Deary, 2014; Humphreys & Davey, 1988; Tucker-
Drob & Briley, 2014), correlated individual differences in static
levels of different cognitive abilities in adulthood could be a
vestige of an interdependence that came into existence earlier in
life (e.g., effects of schooling on multiple cognitive functions
during childhood) but no longer exists in adulthood. In contrast,
correlated (i.e., “coupled”) individual differences in longitudinal
rates of adult cognitive change are more likely to reflect systems
of influence that are unfolding during adulthood (Tucker-Drob,
2011b). Examining such associations among individual differ-
ences in longitudinal cognitive changes allows one to ask directly
whether individuals who are declining particularly rapidly relative
to their peers in one ability are more likely to be declining rapidly
(or to be improving less) relative to their peers in a different
cognitive ability, and whether those remaining relatively intact in
one ability are also likely to remain relatively intact in another
ability. In other words, longitudinal data allow researchers to ask
the question “does it all go together when it goes?” (Rabbitt, 1993)
at the level of correlated interindividual differences in intraindi-
vidual change (Baltes, Reese, & Nesselroade, 1977). This precise
question is foundational for addressing common factor theories of
cognitive aging. As Deater-Deckard and Mayr (2005) wrote, “The
ultimate answer to the question of whether cognitive aging is a
general factor or a multifaceted phenomenon will come from
careful longitudinal data . . . that allow uncovering the dimension-
ality of change across a wide range of cognitive abilities” (p. 25).

Factor Analysis Since Spearman: Where Do We
Stand? What Do We Know? (Carroll, 1989)

One reason to suspect that longitudinal aging-related declines
might be correlated across cognitive abilities is what Deary (2000,
p- 6) has described as “arguably the most replicated result in all
psychology,” namely, that individual differences in cognitive abil-
ities, measured at a single point in time, are positively correlated
with one another. This positive manifold of correlations was orig-

inally discovered by Spearman (1904), and served as the basis for
the hypothesis that a common statistical dimension, or what Spear-
man termed general intelligence (g), underlies substantial propor-
tions of variation in different cognitive abilities. Spearman formal-
ized this hypothesis using factor analysis, which tests whether an
observed matrix of variable intercorrelations can be closely ap-
proximated by a model in which all variables interrelate by way of
their mutual relations with an unobserved latent factor. In the time
since Spearman (1904), factor analytic methods have established
that individual differences in cognitive abilities fit a hierarchical
structure in which narrow abilities (often indexed by individual
tests) load on broader cognitive ability domains (e.g., abstract
reasoning, spatial ability, verbal ability, episodic memory, working
memory, and processing speed), which in turn load on a single
higher order g factor (Carroll, 1993). Typically, g accounts for
upward of 50% of the variance in the first-order ability domains
(Carroll, 1993; Tucker-Drob, 2009). Whether g should be treated
as a veridical psychological entity or simply as a statistical short-
hand for conveniently summarizing an otherwise high dimensional
matrix of correlations has been a topic of tremendous theoretical
interest (Bartholomew, Deary, & Lawn, 2009; Dickens, 2007;
Kievit et al., 2018; Kovacs & Conway, 2016; Thurstone, 1938; van
der Maas et al., 2006) and ideological consternation and debate
(Gould, 1981) over the past century. One view is that higher-order
factors such as g are “defining a working reference frame, located
in a convenient manner in the ‘space’ defined by all behaviors of
a given type” (Cronbach & Meehl, 1955, pp. 277-278). A different
view is that general intelligence is a “genuine construct” (Gignac,
2016, p. 69) that causally influences the behaviors through which
it is expressed (e.g., Panizzon et al., 2014; Spearman, 1904).

The goal of this article is to provide meta-analytic, descriptive
evidence on the dimensionality of cognitive change in adulthood.
This goal is compatible with both above-described views of gen-
eral intelligence, though the two views will diverge in the inter-
pretation of the results. That a moderately strong general factor
underlies individual differences in different cognitive abilities at a
single point in time suggests the possibility, but does not guaran-
tee, that a general factor may underlie individual differences in
rates of change in different abilities over time. In other words, the
statistical dimensions along which individual differences in cog-
nitive abilities emerge over the course of development may cor-
respond to the dimensions along which individual differences in
cognitive aging occur. Salthouse (1988) proposed that declines in
general processing resources may underlie aging-related declines
in different cognitive abilities, specifically noting strong “parallels
between processing resources and intellectual g” (p. 251). Juan-
Espinosa et al. (2002) provided an anatomic metaphor for life span
growth and decline of cognitive abilities (see also Baltes, Corne-
lius, Spiro, Nesselroade, & Willis, 1980; Schaie, 1962; Tetens,
1777; Werner, 1948). They proposed that, in the same way that
age-related growth and shrinkage of the human bones is organized
by the anatomical structure of the human skeleton, individual
differences in human cognitive abilities may have an inherent
structure along which growth and decline naturally occur (see
Baltes, Lindenberger, & Staudinger, 2006, for a summary of this
line of thought).

Of course, the factor structure of cognitive aging could barely,
if at all, resemble the structure of individual differences in cogni-
tive abilities measured at a static point in time. For instance, the
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structure of static individual differences in cognitive ability levels
in early adulthood may primarily be reflective of how heteroge-
neity in environmental experience is structured over childhood
(e.g., experiences that foster growth in one ability tend to co-occur
with other experiences that foster growth in other abilities), from
the broad effects of cognitively enriching experiences on many
different cognitive abilities over child development, or from the
broad effects of intellectual engagement and achievement motiva-
tion on many different cognitive abilities over child development
(Dickens, 2007; Tucker-Drob, 2013; Tucker-Drob, Briley, &
Harden, 2013; for an early exploration of these ideas, see Baltes,
Nesselroade, & Cornelius, 1978). In contrast, heterogeneity in
aging-related cognitive declines may stem from specific neurode-
generative processes in different neural structures and functions
that each subserves a different ability. Indeed, the correlates of
levels of cognitive abilities in both childhood and adulthood,
including indices of socioeconomic status and physical health have
typically failed to significantly predict individual differences in
aging-related cognitive declines (Ritchie et al., 2016; Tucker-
Drob, Johnson, & Jones, 2009). Moreover, there is little consistent
evidence that individual differences in levels of cognitive abilities
are systematically correlated with individual differences in
changes in those abilities (Verhaeghen, 2013). Thus, although
individual differences in cognitive aging may conform to a simi-
larly low dimensional structure as that underlying static individual
differences in cognitive abilities, individual differences in cogni-
tive aging do not appear to simply reconstitute static individual
differences present during earlier periods of life.

The factor structure of individual differences in cognitive
changes over adulthood may drive transformations in the factor
structure of individual differences in cognitive abilities with ad-
vancing age. This becomes clear when one considers that individ-
ual differences in a trait at a particular adult age represent a
mixture of individual differences in the levels in that trait that have
existed since early adulthood and individual differences in changes
in that trait thereafter. As per Hofer and Sliwinski (2001; cf.
Hertzog, 1985), the covariance between abilities x and y at time ¢
is a function of the covariance between the abilities at time
baseline, the level-change covariances, and the covariance be-
tween changes from baseline to time ¢. If individual differences in
levels of different abilities covary moderately in early adulthood,
and individual differences in subsequent changes in those abilities
are uncorrelated or correlate very weakly, then we would expect
the correlation between ability levels to decline with advancing
age. If individual differences in levels of different abilities covary
moderately in early adulthood, and individual differences in sub-
sequent changes in those abilities are strongly correlated, then we
would expect the correlation between ability levels to increase
with advancing age. Finally, if the magnitude of the correlation
between individual differences in levels of different abilities in
early adulthood is similar to the magnitude of the correlation
between individual differences in subsequent changes in those
abilities, then we would expect the correlation between ability
levels to remain relatively constant with advancing age. As Hofer
and Sliwinski (2001) write, “as time elapses, the magnitude of the
covariance becomes increasingly due to the covariance associated
with rates of change relative to the other sources of covariance.
Therefore, in older samples of individuals, more time will have
transpired and this will increase the contribution . . . that reflects

individual differences in rates of ageing” (p. 346). Indeed, this
rationale has been the motivation behind several investigations of
the dedifferentiation hypothesis that abilities become increasingly
correlated with adult age (see Baltes et al., 1980 and Reinert, 1970
for early investigations of the dedifferentiation hypothesis; see
Cox et al.,, 2016, for an investigation of the dedifferentiation
hypothesis with respect to neurostructural connectivity). In a factor
analytic model, the prediction is that a common g factor should
account for increasing variance in abilities with age. Evidence for
aging-related dedifferentiation of cognitive abilities has been
mixed (see Tucker-Drob, 2009, for a review and negative evidence
from a large cross-sectional sample).

Building on earlier work by Baltes, Nesselroade, Reinert, and
others, de Frias, Lovdén, Lindenberger, and Nilsson (2007) ex-
tended the dedifferentiation hypothesis to predict transformations
in the factor structure of aging-related changes over time. Theo-
rizing that “an ensemble of common sources increasingly domi-
nates development of intellectual abilities” (de Frias et al., 2007, p.
382, italics in original) in adulthood, de Frias et al. (2007) pre-
dicted that there are age-related increases in “the degree to which
changes in a single cognitive ability are associated with changes in
other abilities,” (de Frias et al., 2007, p. 382) which they termed
the dynamic dedifferentiation hypothesis.

How Should We Measure ‘“Change” — Or Should We?
(Cronbach & Furby, 1970)

Historically, major impediments to progress in longitudinal re-
search on individual differences in change over time stemmed
from the unavailability of suitable methods for analyzing longitu-
dinal data. Perhaps the most intuitive approach to analyzing
change is to calculate observed difference scores between test
scores at baseline and follow-up measurement occasions. However
when such “raw change scores” are calculated from measures that
themselves have less than perfect reliability, issues surrounding
unreliability and regression to the mean compound to such a
degree that the true signal of interest—individual differences in
cognitive change—becomes highly obscured. Cronbach and Furby
(1970) for example wrote that “‘raw change’ or ‘raw gain’ scores
formed by subtracting pretest scores from posttest scores lead to
fallacious conclusions, primarily because such scores are system-
atically related to any random error of measurement” (p. 68), and
that “investigators who ask questions regarding gain scores would
ordinarily be better advised to frame their questions in other ways”
(p- 80).

Sophisticated methods now exist for analyzing longitudinal data
that avoid the many pitfalls associated with raw change scores.
These include growth curve models (which are typically specified
as structural equation models, hierarchical linear models, mixed
effects models, or random coefficient models; McArdle & Nessel-
roade, 2003; Raudenbush & Bryk, 2002) and latent difference
score models (which are typically specified as structural equation
models; Kievit et al., 2017; McArdle & Nesselroade, 1994). Both
growth curve and latent difference score models estimate latent
factors representing change in systematic variance over time.
Growth curve models form latent slope factors (random coeffi-
cients) that represent systematic individual differences in longitu-
dinal change that conform to a specified functional form, such that
random error (which is, by definition, unsystematic over time) is
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captured by time-specific residuals. Latent difference score models
form latent change factors from occasion-specific latent factors
that use psychometric measurement models to confine random
measurement error to test-specific uniquenesses. Thus, by model-
ing systematic variance in longitudinal change, both growth curve
models and latent difference score models are in principle able to
limit biases that would otherwise result from random error, such as
regression to the mean, variance inflation, and correlation attenu-
ation for which “raw change” score approaches are infamous.' We
provide a formal treatment of multivariate growth curve and latent
difference score models in Appendix A.

Over the past 15 years or so, several studies have capitalized on
multivariate growth curve and latent difference score models of
interrelations among individual differences in changes over time.
For instance, noting that the processing speed theory of cognitive
aging had been rarely examined in longitudinal data, Zimprich and
Martin (2002) reasoned that “if processing speed constitutes an
important limiting factor for cognitive functioning, then a person
with a specific longitudinal change in processing speed should
show a comparable change in other intellectual abilities” (p. 690).
Applying latent difference score models to four-year longitudinal
data from older adults, they reported that individual differences in
changes in processing speed were correlated with individual dif-
ferences in changes in fluid intelligence at r = .53. Wilson et al.
(2002) extended this work from the bivariate to the multivariate
context. They used growth curve modeling to estimate correlations
among individual differences in seven different cognitive vari-
ables, including measures of working memory, visual spatial abil-
ity, perceptual speed, fluency, episodic memory, and verbal
knowledge. When they submitted this correlation matrix to prin-
cipal component analysis, they found that a single component
accounted for 61.6% of the variance in individual differences in
cognitive changes. Several more recent studies have combined
factor analytic models and growth curve approaches in the form of
“factors of curves” models (McArdle, 1988) to estimate common
variance in individual differences in cognitive changes. Linden-
berger and Ghisletta (2009) reported that a single common factor
accounted for 60% of the variance in 13-year longitudinal declines
in multiple cognitive variables from the Berlin Aging Study.
Tucker-Drob (2011a) reported that a single common factor ac-
counted for 63% of the variance in longitudinal changes in abstract
reasoning, spatial visualization, episodic memory, and processing
speed composites in participants from the Virginia Cognitive Ag-
ing Project over up to 7 years. Using 20-year longitudinal data
from middle-aged to very old adults from the U.K., Ghisletta et al.
(2012) reported that a single common factor accounted for two
thirds of the variance in longitudinal changes in fluid and crystal-
lized intelligence, perceptual speed, and memory.

Several questions remain. First, whereas the studies highlighted
above have indicated that approximately 60% of the variance in
aging-related cognitive declines is shared across domains, other
reports have reported much lower estimates of shared variance. For
instance, in longitudinal data from a subset of participants from the
Einstein Aging Studies, Sliwinski and Buschke (2004) reported
correlations between individual differences in longitudinal
changes in memory, speed, and fluency ranging between » = .16
and r = .33. Thus, a meta-analytic estimate of the magnitude of
shared variance across aging-related changes in cognitive abilities
is necessary to distinguish whether the true effect is in the range of

50-60% or more, as suggested by some studies, or in the range of
15-30%, as suggested by others. It is particularly informative to
compare the magnitude of shared variance in longitudinal change
to shared variance in levels from the same studies, to test whether
cognitive aging is to a greater, lesser, or comparable extent
domain-general as has been established for static individual dif-
ferences in cognitive abilities (Carroll, 1993; Spearman, 1904).
Meta-analysis also provides the opportunity to test whether shared
variance differs according to the type of cognitive ability, and
according to other moderators, such as the age range within adult-
hood under study. We therefore conducted a meta-analysis to
answer these questions. We also conduct the first formal test of the
congruence of factor loading patterns of levels and slopes, allow-
ing us to determine the extent to which the common factor of
cognitive aging represents a similar dimension as the general
intelligence factor (Carroll, 1993; Spearman, 1904).

Method

Literature Search

Our goal was to collate a comprehensive meta-analytic database
containing estimates of shared variation in normal-range aging-
related longitudinal changes in two or more cognitive abilities
from the corpus of published research. For a study to be considered
for inclusion in our meta-analysis, it needed to report an estimate
of shared variation in normative aging-related longitudinal
changes in measures of two or more different cognitive abilities.
Shared variation in change could take the form of correlations or
covariances between longitudinal growth curve slopes or latent
difference scores, or loadings of longitudinal growth curve slopes
or latent difference scores on a common factor (see Appendix A
for an overview of the statistical basis for such multivariate models
of longitudinal changes). We compiled an initial set of articles
based on Table 1 from Tucker-Drob, Briley, Starr, and Deary
(2014), which listed (but did not meta-analyze) past major studies
reporting relations among rates of change in two or more cognitive
variables using a statistical method (e.g., growth curve modeling or
latent difference score modeling) for modeling systematic change
over time, as separate from random error. We then sought to
expand this set in a number of ways. First, we examined the
reference sections of each of the papers that met our inclusion
criteria to identify further papers that might warrant inclusion, and
performed this process iteratively for every new paper included.
Second, we used Google Scholar to search for papers citing the
included papers to identify further papers that might warrant
inclusion, and performed this process iteratively for every new
paper included. Third, we performed searches using Google
Scholar with combinations of at least one search term from each of
the following categories longitudinal change (longitudinal, change,

' Both growth curve models and latent difference score models are
advantageous for limiting bias that is associated with random measurement
error, though they are less effective in limiting bias that results from
systematic measurement confounds, such as the influences of variation in
manual dexterity on performance on several different tasks. In many
circumstances, statistical modeling approaches have limited effectiveness
in controlling for confounds that result from study design and task selec-
tion.
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slope, growth curve, difference score), cognitive (cognitive, cog-
nition, ability, intelligence), and aging (aging, ageing, adult, adult-
hood).

We excluded studies that primarily focused on clinical popula-
tions, studies of child and adolescent populations (individuals
under 18 years of age), studies that solely employed dementia
screening instruments (e.g., the Mini Mental State Exam [MMSE])
to index cognitive abilities, studies that only examined shared
variation in aging-related longitudinal changes in different markers
of the same cognitive ability, studies that did not correct (or
provide information that could be used to correct) estimates for
unreliability (e.g., not using growth curve modeling, latent differ-
ence score modeling, or disattenuated correlations among raw
change scores), studies that only reported change in shared varia-
tion (e.g., a “curve of factors” model) but not shared variation in
change (e.g., a “factor of curves” model, a bivariate or multivariate
[parallel process] growth model), publications that examined
within-person correlations in abilities over time but did not exam-
ine between-person correlations in wave-, time-, or age-based
longitudinal change, and publications in languages other than
English.

When more than one publication based on the same sample met
our inclusion criteria, we retained the study that reported the
longest longitudinal timespan or changes in the largest number of
abilities measured. In instances in which two different publications
based on the same sample each contained unique information (e.g.,
one publication reported results for more abilities, but the other
publication analyzed data from a longer longitudinal timespan), we
entered results from both studies, and included appropriate down-
weights and clustering terms for each, as further described below.

Recording Effect Sizes

The key effect sizes that we recorded for the current meta-
analysis were estimates of communality from a factor model fit to
longitudinal changes in indicators of two or more ability domains.
These communality estimates can intuitively be conceptualized as
indices of shared variation in cognitive changes across ability
domains, or as the proportion of variation in change in an ability
that is accounted for by a common factor of changes in multiple
abilities (see the end of Appendix A for a formal treatment of
communality). When a factor model is fit directly to longitudinal
slopes, the communality is computed as the standardized factor
loading squared. When a single correlation is reported between
longitudinal changes in only two variables, that correlation is a
direct estimate of communality. This is because, when a factor
model is fit to two variables, the standardized loading of each of
the two variables on that factor is calculated as the square root
of their correlation. When the loading is squared to compute
proportion of variance accounted for, this returns the original
correlation. Thus, (a) when a correlation was reported between
rates of longitudinal changes in only two cognitive variables, we
recorded this correlation as the communality; (b) when standard-
ized loadings on a common factor of longitudinal changes in three
or more cognitive variables was reported, we recorded the squared
standardized loading as the communalities; (c) when correlations
or covariances were reported between rates of longitudinal
changes in three or more cognitive variables were reported, we fit
a factor model to the matrix so as to derive standardized factor

loadings, which we then squared and recorded as the communal-
ities. We also recorded the proportions of shared variance in levels
(i.e., communalities for growth curve and latent difference score
levels) for each variable, such that we could make direct compar-
isons of shared variance in change to shared variance in levels.

We recorded supplemental information, including information
necessary for calculating meta-analytic precision weights, as de-
scribed below. For growth curve models, this included the variance
in latent levels and slopes of the respective cognitive variables, the
time-specific residual variances, and the within-variable level-
slope correlation. For latent difference score models, this included
the variance in latent levels and changes of the respective cognitive
ability factors, the within-factor level-change correlation, and the
loadings and unique variances for each for each individual indi-
cator of the latent factors. To facilitate interpretability, all param-
eters were rescaled to reflect latent level variances of 1.0. We
additionally recorded the time intervals between each assessment
wave, and the sample size at each assessment wave.

We made a number of additional decisions according to the
following guidelines. When results were broken down by age
group, we entered the parameters from the age groups, rather than
parameters from the pooled analysis. When results were available
for both individual tests and composites based on multiple tests
representing the same ability, we entered the results for the com-
posites. In cases in which an article only provided sample sizes for
the number of completed waves (e.g., 400 individuals completed
four waves, 350 individuals completed only three waves, 250
completed only three waves), but sample sizes per assessment
wave were not provided, we treated the missingness as if it were
entirely attributable to dropout (as opposed to, e.g., enrolling new
participants at later waves, or participants skipping waves). Stan-
dardized estimates greater than 1.0 were top-coded to 1.0. All
parameters were coded to reflect scaling in which higher scores
indicated better performance. For instance, if a reaction time (RT)
measure had a negative loading on a factor, the sign was changed
to a positive loading. In situations in which the entire set of
parameters required was not provided in the article, but full lon-
gitudinal multivariate covariance matrices were provided, we an-
alyzed the covariance matrices with multivariate growth curve or
latent difference score models to derive the full set of parameters.
In situations in which the complete set of pairwise correlations
between latent slopes was provided for three or more cognitive
ability domains, we derived factor loadings on a common slope
factor for use in the meta-analysis. Further information about
specific coding decisions made for individual studies is provided
in the online supplemental materials.

Coding Moderators

We additionally coded a variety of characteristics of the effect
sizes, samples, and studies as potential moderators of effect size
magnitudes.

Mean Age at Baseline Wave was recorded for all studies. When
the mean age at baseline was not provided, but an age range at
baseline was provided, we coded the midpoint of that age range.

Mean Age at Level was calculated for all studies based on the
best available information. The latent level represents individual
differences at the age or point in time at which the growth curve
basis coefficient is set to zero. Thus, the choice of how to center
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time or age in a growth curve model affects the interpretation of
the growth curve level. If, for example, age is centered at 70, then
the level in an age-based growth model should be interpreted as
representing individual differences at age 70, even if the average
age at baseline is different (e.g., 60). For age-based modeling, the
age at latent level is the age at which the growth curve slope is
equal to 0. For time-based modeling (including latent difference
score modeling), the age at latent level is the average age of the
participants at Time O (i.e., baseline).

Longitudinal Time Lag was recorded as the average amount of
time that passed between the first and last occasion of measure-
ment for those individuals who completed the final wave of the
study.

Broad versus Narrow Ability was recorded for each outcome
measure under study. An outcome measure was coded as a broad
ability (1) if it was a latent factor or composite index formed from
multiple different measures of the same cognitive domain. An
outcome measure was coded as a narrow ability (0) if it was
measured with a single test. Latent factors derived from alternate
forms of the same test were considered indices of narrow abilities.

Cognitive Ability Domains were coded for each outcome under
study, regardless of whether the domain was measured with a
single test or a broader composite or factor. The following domains
were coded: processing speed, episodic memory, working mem-
ory, spatial ability, reasoning, verbal knowledge, and prospective
memory.

Mean Rate of Longitudinal Change was coded for each outcome
under study, when available. This information is reflected in the
mean of the growth curve slope (also commonly referred to as a
fixed effect) or the mean of the latent difference score. All re-
corded means were scaled in units of level standard deviations of
level per year.

Deriving Meta-Analytic Precision-Weights

Initially, we sought to obtain standard errors for the key effect
size estimates of interest (the communalities), or information from
which we could derive such standard errors, such as 95% confi-
dence intervals or exact p values. This would enable us to weight
the contribution of each effect size to the meta-analytic estimate by
the precision of that effect size, as is considered best practice in
meta-analysis (Cheung, 2015). However, upon reviewing the stud-
ies that met inclusion criteria for our meta-analysis, only a minor-
ity reported the necessary information for the communalities (stan-
dard errors were more consistently available for the mean rates of
longitudinal change). Typically, when standard errors are not
available, a meta-analysis is conducted using sample size weight-
ing. However, in the context of longitudinal research, weighting by
sample size alone is problematic, as several characteristics of the
dataset beyond sample size determine the precision of the esti-
mates. For instance, the number of occasions, the amount of
time-specific measurement error variance relative to the amount of
level and slope variance, the time intervals between occasions, and
the degree of attrition across waves all affect the precision of
parameter estimates from longitudinal growth curve models
(Brandmaier, von Oertzen, Ghisletta, Lindenberger, & Hertzog,
2018; Brandmaier, von Oertzen, Ghisletta, Hertzog, & Linden-
berger, 2015; von Oertzen & Brandmaier, 2013). As described in
Appendix B, we developed algorithms designed to capitalize on

formal mathematical theorems of effective error in growth curve
modeling and latent difference score modeling (Brandmaier, von
Oertzen, et al., 2018; also see Brandmaier, Wenger, et al., 2018) to
derive meta-analytic weights proportional to the asymptotic pre-
cision of the communality effect size estimates.

Our meta-analytic focus was on the magnitude of shared vari-
ance between the individual differences in longitudinal changes in
two or more cognitive variables (i.e., the communalities). We
therefore developed our weighting algorithm to produce weights
proportional to the inverse sampling variances (i.e., inverse of the
squared standard error) of the level and slope communalities
(equivalent to the correlation, as described earlier) in bivariate
growth curve models and latent difference score models. In cal-
culating precision weights, we made a number of simplifying
assumptions. First, we assumed that change occurred linearly over
time, and that the growth curve model was specified in terms of
time since baseline (as opposed to, e.g., occasion number or age).
We also assumed that level-slope covariances were negligible (a
more complex algorithm that included information about these
covariances performed no better at approximating sampling-
variance-based weights in a simulation analysis) and that variable-
specific autocorrelations in the latent difference score model were
negligible. As our algorithm assumed that shared variance was
inferred from bivariate “parallel process” growth curve or latent
difference score models, we took the following approach to con-
solidating information from results of multivariate “factor of
curves” models, so as to calculate weights for ability-specific
loadings when more than one other ability was being modeled. For
information pertaining to the first of the two variables, we input the
level variance, slope/change variance, time-specific/residual vari-
ance, and indicator-loading information for the variable for which
we were deriving the weight. For information pertaining to the
second of the two variables, we calculated average estimates for
level variance, slope/change variance, time-specific/residual vari-
ance, and indicator loading taken across the remaining abilities
modeled after first standardizing to a common metric.” This ap-
proach is somewhat conservative, as it does not give extra weight
to estimates derived from more complex multivariate models,
compared with less complex bivariate models (all effect size
estimates are treated as if derived from bivariate models).

Constructing Downweights to Account for Multiple
Effect Sizes per Study

In addition to constructing precision weights proportional to the
inverse sampling variances, we constructed a downweighting
scheme to correct for the fact that many of the studies contributed
multiple effect sizes for shared slope variance and shared level

2 For example, if a study provided loadings for processing speed slope,
memory slope, and reasoning slope on a common factor of growth curve
slopes, the weight for the squared loading for processing speed would be
derived by inputting into the algorithm the level variance, slope variance,
and time-specific variance for processing speed as information for the x
variable. For the y variable, the average level variance for memory and
reasoning, average slope variance for memory and reasoning, and average
time-specific variance for memory and reasoning would be input as infor-
mation. The time lags and sample sizes are generally constant across
variables, such that no specific accommodations need to be made for
inputting this information.
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variance. For instance a study in which one factor is fit to the levels
and a separate factor is fit to the slopes of indices of five different
abilities would produce five estimates of shared level variance
(i.e., five squared loadings on the first factor) and five estimates of
shared slope variance (i.e., five squared loadings on the second
factor). All of these estimates contain unique and important infor-
mation. However, they clearly are not independent. To ensure that
studies that measured more variables were not given dispropor-
tional leverage on meta-analytic estimates by virtue of contributing
a greater number of effect size estimates, we constructed additional
“downweights” proportional to the reciprocal number of effect
sizes contributed for a given effect size type. Thus, in the above
example of a multivariate model of changes in five abilities, the
downweights for both shared level variance and shared slope
variance would be equal to one fifth (.20). If not for this down-
weighting, all else being equal, a study with N = 300 and 20
variables could have greater leverage on the meta-analytic estimate
of shared change variance than a study with N = 1,000 and only
two variables. Downweighting corrects for this potential bias.
Moreover, as described in further detail below, we implemented a
multilevel modeling approach that accounts for the statistical de-
pendencies that arise when multiple effect sizes are derived from
the same sample.

Constructing a More Restrictive Meta-Analytic
Dataset for Dementia-Controlled Sensitivity Analyses

We also conducted sensitivity analyses to examine the extent to
which results were driven by the presence of substantial sub-
samples of individuals with dementia in the primary studies (cf.
Sliwinski, Hofer, & Hall, 2003). To this end, we constructed an
additional meta-analytic dataset based on the above-described pro-
cedures using only those studies that met at least one of the
following criteria: (a) data from an individual were excluded from
any wave at which that individual met criteria for dementia diag-
nosis or scored in the cognitive impairment range on a dementia
screening instrument (e.g., MMSE scores of 23 and below), (b) the
reported rate of dementia in the sample was less than 1% over the
entire study period, or (c) dementia status was included as a
time-varying covariate. In practice, this often involved entering
different results from those entered for the main meta-analytic
dataset. For instance, Sliwinski et al. (2003) reported separate
results for their complete sample (“All Participants”) and a
dementia-free (“Noncases”) subsample. In this case, we entered
the results from the dementia-free subsample into this more re-
strictive dataset in place of those from the complete sample that
were entered into the primary meta-analytic dataset. Similarly,
Lindenberger and Ghisletta (2009) reported results from models
with and without controls for age, time to death, and a dichoto-
mous marker of likely dementia. In this case, we entered the results
from the model with controls into this more restrictive dataset in
place of those from the model without controls that were entered
into the primary meta-analytic dataset. Tucker-Drob (2011a) and
Ritchie et al. (2016) did not report full results excluding partici-
pants with likely dementia (both reported that sensitivity analyses
that excluded likely dementia cases did not substantively change
results), but because we had access to the raw data, which con-
tained MMSE scores, we reanalyzed those two datasets excluding
data from any wave at which an individual scored in the cognitive

TUCKER-DROB, BRANDMAIER, AND LINDENBERGER

impairment range on the MMSE (i.e., scores of 23 and below).
Tucker-Drob (2011b) and Ghisletta et al. (2012) did not remove
data from participants with dementia or control for dementia
status. Unverzagt et al. (2012; their Table 3) reported a dementia
event rate of 7.2% (and an incidence rate of 19.2/1,000 person-
years) in the sample analyzed by Tucker-Drob (2011b) during the
longitudinal period observed. We therefore excluded Tucker-Drob
(2011b) from this more restrictive dataset. In contrast, Ghisletta et
al. (2012) estimated a dementia prevalence of 20 of 6,203 in their
sample. Because this estimated dementia prevalence was less than
1%, we retained results from Ghisletta et al. (2012) in this more
restrictive dataset. Finally, Tucker-Drob et al. (2014) analyzed data
from a sample of 857 individuals, 48 of whom (5.6%) were
diagnosed with dementia and provided cognitive scores during the
study period. Results were reported for a model that controlled for
dementia as a time-varying covariate, and were therefore included
in both the primary meta-analytic dataset and the more restricted
meta-analytic dataset. Studies included in the primary meta-
analytic dataset that did not indicate the dementia rate or report a
method for dealing with participants with dementia (e.g., all results
reported by Rast & Hofer, 2014), along with those reporting
nontrivial rates of dementia (e.g., Lemke & Zimprich, 2005, as
reported in Sattler et al., 2015), were excluded from this more
restrictive dataset.

Analytic Approach: Multilevel Metaregression Models

We meta-analyzed effects sizes using a metaregression frame-
work in which the effect sizes of interest were regressed onto
hypothesized moderators of the effect sizes, using a weighted fit
function that incorporates precision weights and downweights of
the outcome variables. Because many of the individual studies
included in the meta-analytic dataset contributed effect sizes for
multiple variables, we specified metaregression models as two-
level models, in which total effects were decomposed into within-
and between-study components.

An unconditional multilevel metaregression model of effect size
ES; ; for outcome i in study j can be written as:

ES;; = ES; + u;;, (1

where ES; represents an inferred study-specific effect size that is
allowed to have a mean and a (between-study) variance oz (a
so-called random effect), and u,; is a within-study deviation from
the study-specific mean that is assumed to have a mean of zero and
a (within-study) variance (rﬁi . In this unconditional model the total
variance of ES; ; is therefore ’gpecified as the sum of between-study
and within-study variation, i.e.:

2 2 2
O-ES,»J - 0-ES/- + O-Lt,»_j' (2)

The unconditional metaregression model can be expanded to
allow for predictors (so-called moderators) at the within-study
level, the between-study level, or a combination of the two. Such
a conditional multilevel metaregression model can be written as:

k i
ES,»,j=b0+Ebk/gxk_i-i-u,-j+2bl~xlj+uj, 3)
1 % : 1

where b, is a regression intercept, b, is a regression coefficient of
. . . j. . .
the effect size on within-study variable X, » by is a regression
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coefficient of the effect size on between-study variable Xy Uy isa
within-study residual, and u; is a between-study residual. Within-
study and between-study residuals are specified to have means of
zero and freely estimated variances. Variances may also be esti-
mated for selected within-study regression coefficients (bkj), such
that they constitute random slopes representing between-study
variation in the magnitude of the within-study regression effect.
Random slopes may be allowed to covary with between-study
residuals.

When relevant, we included precision weights by specifying
them at the level of the individual effect sizes (i.e., as within-
cluster weights). Downweights were specified at the level of the
contributing samples (i.e., as between-cluster weights). Weights
were rescaled such that the products of the within-cluster and
between-cluster weights sum to the total number of effect sizes in
the metaregression model (Asparouhov, 2008). Models were esti-
mated in Mplus (Muthén & Muthén, 1998 -2017). Data cleaning,
derivation of weights, and plotting were conducted in R (R Core
Team, 2016).

Results

Description of Dataset

Descriptive information for each of the studies that contributed
effect size estimates to the meta-analysis is provided in Table 1. In
total, we identified 89 effect sizes representing shared variance in
cognitive change in 98 cognitive outcomes from 22 unique data-
sets composed of more than 30,000 unique individuals in total.
Note that multivariate analyses in which a factor model is fit to the
slopes provide individual estimates for the slope variance of each
of the variables analyzed and individual estimates for shared
variance of each of the variables analyzed. However, bivariate
analyses provide individual estimates for the slope variance of
each of the two variables but only provide a single estimate for
shared variance between the two variables. Because some studies
employed bivariate approaches, the number of total shared vari-
ance estimates is slightly lower than the number of total variables.

Of the 89 estimates of shared variance, 74 were derived from
growth curve models and 15 were derived from latent difference
score models. Across the 89 shared variance estimates, number of
waves ranged from 2 to 12, with a median of 5, a mean of 5.45, and
a standard deviation of 2.40. Across the 89 shared variance esti-
mates, the total time elapsed from beginning to end of the study
ranged from 2.81 to 21 years, with a median of 8.41, a mean of
10.33 years, and a standard deviation of 4.59 years. Across the 89
estimates of shared variance, the average age at baseline wave
ranged from 35.42 years to 84.92 years, with a median of 64.90, a
mean of 66.27 years, and a standard deviation of 11.32 years. The
average age at latent level ranged from 35.42 years to 85.00 years,
with a median of 69.53, a mean of 66.72 years, and a SD of 11.64
years. The correlation between the average age at baseline and the
average age at latent level was .91.

Of the 98 outcomes analyzed, 26 indexed processing speed, 35
indexed episodic memory, 3 indexed working memory, 9 indexed
spatial ability, 12 indexed reasoning, 12 indexed verbal knowl-
edge, and 1 indexed prospective memory. Forty-three outcomes
were classified as broad ability composites or factors and 55 were
classified as specific (narrow) measures. Rast and Hofer (2014) did

not report mean rate of longitudinal change for any outcome in
their paper, and Lemke and Zimprich (2005) did not report mean
rate of longitudinal change for memory. Of the remaining 75
outcomes, 20 indexed processing speed, 27 indexed episodic mem-
ory, 1 indexed working memory, 8 indexed spatial ability, 10
indexed reasoning, and 9 indexed verbal knowledge. Of these, 40
outcomes were classified as broad ability composites or factors
and 35 were classified as specific measures.

Mean Change

To produce a meta-analytic estimate of mean cognitive change,
we fit a two-level unconditional metaregression model, with the
individual effect size estimates of mean change weighted by their
inverse sampling variance and the inverse number of effect sizes
contributed by the associated dataset to the complete meta-analytic
dataset. The mean change was —.051 (SE = .007, p < .0005).> This
indicates that, on average, cognitive performance decreased by
approximately one-twentieth of a standard deviation per year, that
is, half a standard deviation per decade. In this two-level model
that decomposed effect size variation into within-sample and
between-sample components, the within-sample standard devia-
tion of mean change estimates was .022 (SE = .002, p < .0005;
variance = .022%> = .00048) and the between-sample standard
deviation of mean change estimates was .027 (SE = .004, p <
.0005, variance = .027% = .00073). This indicates that mean rates
of longitudinal change varied substantially across outcomes and
across samples.

Level-Slope Correlations

The variable-specific level-slope correlations ranged from —.67
to .84. In a two-level unconditional metaregression model, with the
individual effect sizes weighted by the inverse number of effect
sizes contributed by the associated dataset, the mean level-slope
correlation was —.042 (SE = .047, p = .362). Five level-slope
correlations were exactly zero. Two of these came from Zimprich
and Martin (2002), and two came from Lemke and Zimprich
(2005), who appear to have fixed these parameters to O rather than
estimating them. One came from Sliwinski and Buschke (2004),
who appeared to have freely estimated the association to be exactly
zero. When these five effect sizes were excluded, the weighted
mean remained at very close to zero (—.047; SE = .049, p = .347).
Finally, to facilitate comparisons with results pertaining to slope
communalities, which were the primary focus of the current meta-
analysis, we calculated the within-variable level-slope correla-
tions, weighting by the corresponding slope communality preci-
sions and the inverse number of effect sizes contributed by the
associated dataset. This estimate was .001 (SE = .045, p = .989)
in the complete dataset, and .000 (SE = .047, p = .996) when
excluding the five effects that were exactly zero. A histogram of
within-variable level-slope correlations is depicted in the left panel
of Figure 1. It is important to note that the level-slope correlation
is dependent on how time is coded in the growth curve model
(Biesanz, Deeb-Sossa, Papadakis, Bollen, & Curran, 2004; Rovine
& Molenaar, 1998). Because the tendency was for time to be coded

* To maintain consistency with results of other analyses, we used the
downweights constructed for the complete dataset, even though there were
some missing estimates for mean rate of change.
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Figure 1. Left: Histogram of the within-variable level-slope correlations, weighted by the inverse number of
effect sizes contributed by the associated dataset. Weights are scaled to sum to the total number of effect sizes
(98). The dashed vertical line represents the weighted meta-analytic estimate (—.042) for the level-slope
correlation. To facilitate comparisons with results pertaining to slope communalities, the solid vertical line
depicts the weighted meta-analytic estimate (.001) for the level-slope correlations using the slope communality
weights. Right: Level-slope correlation plotted as a function of age at level. The overlaid regression line
represents the model-implied trend and its 95% confidence interval from a metaregression model that is weighted
by the inverse number of effect sizes contributed by the associated dataset. The positive association between age
at level and the level-slope correlation is significant at p = .031, but is not significant when restricting analyses
to effect sizes for which age at level is greater than 50 (87 observations, p = .243).

such that time = 0 corresponded to either the baseline measure-
ment wave or the earlier end of the age range of the sample, it may
be most appropriate to interpret these level-slope correlations as
representing the relation between early ability levels and subse-
quent change. To test whether this association was dependent on
the age at which the growth curve level was centered (as indicated
in the Method section, for age-based modeling, this is the age at
which the growth curve slope is equal to 0; for time-based mod-
eling, this is the average age of the participants at Time 0), we fit
a two-level metaregression model with age at (latent) level as the
independent variable and the level-slope correlation as the depen-
dent variable, weighted by the downweights, and allowing for a
random regression intercept. Results of this analysis, superim-
posed on a scatterplot, are presented in the right panel of Figure 1.
Results indicated a significant positive association between age at
level and the level-slope correlation (b = .006, SE = .003, p =
.031). However, the 95% confidence interval for this age effect
only excluded O prior to approximately age 50 years, where data
were sparse. Moreover, the association was not significant when
restricting analyses to effect sizes for which age at level is greater
than 50 (87 observations, p = .243), or when the metaregression is
additionally weighted by the slope communality weights (p =
.050).

Distributions of Communality Precision Weights

As expected from previous treatments of power to detect cor-
related change (Hertzog, Lindenberger, Ghisletta, & von Oertzen,
2006; Rast & Hofer, 2014), slope communality precision values
were substantially lower than level communality precision values.
To index the relative precision of the estimates, we calculated
ratios of the precisions of the slope communality estimates to the
level communality estimates for each variable. The distribution of
these ratios is depicted as a histogram in Figure 2. It can be seen
that this distribution was right-skewed, with the majority of ratios
falling within the O to .20 range. No ratio achieved a value of 1.0
or higher. The median ratio was .072, indicating that the slope
communalities tend to be approximately 7% as precise as the level
communalities.

Distributions of Level and Slope Communalities

The distributions of level and slope communalities are depicted
as histograms in Figure 3. Level communality estimates ranged
from .086 to 1.0. In an unconditional two-level metaregression
model, weighted by the respective precision of the individual
estimates and by the inverse number of effect sizes contributed by
the associated dataset, the mean level communality was .558



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individua

COUPLED COGNITIVE CHANGES 285

200 M

15

o i

I I
0.0 0.2 0.4
Communality precision ratio

Figure 2. Histogram of the ratios of slope communality precision to level
communality precision. The vertical dashed line depicts the median value
(.072). All ratios are substantially less than 1.0, indicating that the slope
communalities tend to be estimated with substantially less precision than
the level communalities.

(SE = .029, p < .0005). This indicates that 56% of the variance
in static individual differences is shared across abilities. In this
two-level model that decomposed effect size variation into
within-sample and between-sample components, the within-
sample standard deviation of level communality estimates was
123 (SE = .026, p < .0005, variance = .123% = .015) and the
between-sample standard deviation of level communality esti-
mates was .047 (SE = .012, p < .0005, variance = .047% = .002).

Slope communality estimates ranged from .004 to 1.0. In
an unconditional two-level metaregression model, weighted by the
respective precision of the individual estimates and by the inverse
number of effect sizes contributed by the associated dataset, the
mean slope communality was .600 (SE = .029, p < .0005). This
indicates that, on average, 60% of individual differences in aging-
related cognitive change is shared across abilities. In this two-level
model that decomposed effect size variation into within-sample
and between-sample components, the within-sample standard de-
viation of slope communality estimates was .209 (SE = .021, p <
.0005, variance = .209% = .044) and the between-sample standard
deviation of slope communality estimates was .076 (SE = .028,
p = .006, variance = .076> = .006). This indicates that the
majority of variation in effect size estimates occurs within sam-
ples, potentially as a function of characteristics of the individual
cognitive abilities or cognitive ability variables. Cross-sample
variation, alternatively, could reflect characteristics of the partic-
ipants (e.g., age) and study design (e.g., time lag, or growth curve
vs. latent difference score modeling).*

The meta-analytic estimates for the mean slope and level
communalities were very similar (.558 for level communalities
and .600 for slope communalities). We were interested in

whether slight differences in estimates stemmed from differ-
ences in the distributions of individual estimates or from dif-
ferences in the relative contributions of these estimates to the
meta-analytic mean resulting from employing differing sets of
precision weights for the levels and the slopes. In other words,
it is possible that unobserved heterogeneity in effect sizes is
correlated with aspects of the study design that are differently
correlated with the two sets of precision weights, such that
weighting slope communalities and level communalities results
in estimates that are representative of different theoretical pop-
ulations of studies. We therefore ran a sensitivity analysis to
determine whether differences in the meta-analytic effect size
estimates for levels and slope communalities converged or
diverged when using the same set of precision weights. We
reran the unconditional metaregression model for the level
communalities using the precision weights for the slopes. In this
model, the estimate for the mean level communality was .585
(SE = .024, p < .0005), even closer to the mean slope com-
munality estimate of .600. This can be taken as further evidence
that the mean level and slope communalities are extremely
similar.

Probing for Publication Bias

One important consideration in meta-analysis is whether the
corpus of effect sizes included in the meta-analytic dataset consti-
tute an unbiased representation of the true distribution of effects
within the population at large. We would expect the meta-analytic
dataset to be biased and unrepresentative if, for example, there is
a tendency for authors to be more likely to submit articles, or
journal editors to accept articles, reporting results in which effect
size estimates are large, or p values are small. This phenomenon is
known as publication bias. We would also expect the meta-
analytic dataset to be biased and unrepresentative in cases in which
authors run multiple models, analyze multiple variables, or make
multiple alternative data cleaning decisions, but only report results
of a subset producing larger effect sizes or smaller p values. This
phenomenon is known as p-hacking.

To probe for evidence of publication bias, p-hacking, or other
types of systematic biases, we produced plots in which the preci-
sion of the individual effect size estimates is plotted against the
estimates themselves. These plots are known as funnel plots be-
cause, when publication bias is low and true population effects are
fairly homogeneous, these plots represent an inverted funnel, in
which effect sizes are more tightly distributed when estimated
more precisely and more widely distributed when estimated less
precisely. Under unbiased conditions, the funnel should be sym-
metrical, with an approximately equal number of estimates above
and below the meta-analytic mean. The apex of the funnel, which
contains the effect sizes estimated with the highest levels of
precision, should be centered close to the meta-analytic mean. The
typical pattern thought to be indicative of possible publication bias
is one in which lower precision estimates closer to 0 are conspic-

* For two-wave designs, latent difference score models can identically
be expressed as growth curve models. The effect of LDS versus LGM
modeling can therefore be equivalently interpreted as the effect of two
versus more than two waves of data collection.
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Figure 3. Histograms of level communalities and slope communalities. Histograms are weighted by the
respective precision of the individual estimates and by the inverse number of effect sizes contributed by the
associated dataset. In each panel, weights are scaled to sum to the total number of effect sizes (89). The dashed
vertical line represents the weighted meta-analytic estimate of the mean communality for the levels (.558) and
slopes (.600), respectively. To facilitate comparisons across level and slope communalities, the solid vertical line
depicts the weighted meta-analytic estimate for the level communalities using the slope communality weights

(.585).

uously missing, such that the bottom area of the funnel is asym-
metrical.

Funnel plots for the level and slope communality estimates are
depicted in Figure 4. It can be seen that both plots are symmetrical
and that the most precise estimates are centered within the distri-
butions, close to the respective meta-analytic means. To formally
test funnel asymmetry (cf. Stanley & Doucouliagos, 2014) we
regressed precision against communality estimates, with and with-
out weighting by precision. For level communality, the p values
for the weighted and unweighted regressions were .298 and .759,
respectively. For slope communality, the p values for the weighted
and unweighted regressions were .486 and .271, respectively.
Thus, there was no evidence that effect size estimates were sys-
tematically associated with the precisions at which they were
estimated, as might occur under conditions of publication bias or
p-hacking.

Congruence of Level and Slope Structures

We were next interested in the extent to which the common
dimension of change corresponded to the common dimension of
levels. Alternatively put, we were interested in whether the extent
to which the slope communality for a given variable was predicted
by the level communality for that variable. To accomplish this, we
fit a two-level metaregression model with (latent) level commu-
nalities as the independent variable and slope communalities as the
dependent variable, weighted by the dependent variable precision
weights and downweights, and allowing for a random regression
intercept, a random regression slope, and an intercept-slope cova-
riance. The unstandardized regression coefficient (fixed effect)
was .620 (SE = .129, p < .0005). To give a further sense of this
correspondence, the weighted correlation between the vector of
level communalities and the vector of slope communalities was
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Figure 4. Funnel plots of level communalities and slope communalities. Effect size estimates are on the x axis
and precision of the estimates are on the y axis. In each panel, precision values were scaled such that they sum
to the total number of effect sizes (89). It can be seen that both plots are approximately symmetrical. To formally
test funnel asymmetry, we regressed effect size estimates on precision, with and without weighting by precision.
For level communality, the p values for the weighted and unweighted regressions were .298 and .759,
respectively. For slope communality, the p values for the weighted and unweighted regressions were .486 and
.271, respectively. Thus, there was no evidence that effect size estimates were systematically associated with the
precisions at which they were estimated, as might occur under conditions of publication bias or p-hacking.
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r = .488. When the vectors being correlated contained loadings
(i.e., the square root of communalities), rather than communalities,
the weighted correlation increased to .507. A scatterplot of the
association between level communalities and slope communalities
is provided in the top panel of Figure 5.

As an alternative approach to indexing the correspondence
between the change and level factors, we computed Tucker’s
congruence coefficients (Lorenzo-Seva & ten Berge, 2006), which
are on the same scale as a correlation coefficient (—1 to +1).
Whereas the correlation coefficient indexes the correspondence
between relative ordering of factor loadings across solutions, the
congruence coefficient additionally takes into account the absolute
magnitudes of factor loadings. The unweighted congruence coef-
ficient representing the congruence of level and slope structures
was .968. When weighted using both the slope precision estimates
and downweights, the congruence coefficient increased to .982.
These very large values reflect the fact that, in addition to display-
ing similar relative orderings, the level and slope factor loadings
were very similar in their overall magnitudes. This was also

reflected in the earlier analysis indicating that the meta-analytic
estimates for the mean slope and level communalities were very
similar.

It was possible that the similarities of level and slope structures
derived from heterogeneity in sample-level characteristics (e.g.,
quality of measurement, selection of variables, participant compo-
sition) that affect communality estimates, and did not actually
reflect the extent to which level and slope communalities corre-
sponded for individual variables within a given study. To test this
possibility we reran the two-level metaregression model with level
communalities as the independent variable and slope communali-
ties as the dependent variable, first centering level communality
estimates within sample. The unstandardized regression coefficient
(fixed effect) from this analysis was .708 (SE = .167, p < .0005),
even larger than those from the earlier analysis of uncentered data,
indicating that level and slope communalities indeed tended to
correspond for individual variables within each study. Moreover,
the weighted correlation between the vector of level communali-
ties and the vector of slope communalities, both centered within
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Figure 5. Scatterplots of the association between level communality estimates and slope communality
estimates with (top) and without (bottom) centering estimates within dataset. The area of each point corresponds
to the precision of the communality estimate, with larger points representing more precise communalities.
Precision weights are scaled to sum to the total number of effect sizes (89).

sample, was r = .486. When the vectors being correlated contained
loadings (i.e., the square root of communalities), centered within
sample, the weighted correlation was r = .462. A scatterplot of the
association between centered level communalities and centered
slope communalities is provided in the bottom panel of Figure 5.
Note that because centering removes information about the abso-
lute magnitude of the factor loading, Tucker’s congruence coeffi-
cients cannot be calculated from the centered data.

Domain-Specific Communality Estimates

Next, we were interested in obtaining conditional mean esti-
mates for level and slope communalities in each of the several
cognitive ability domains that were measured in the individual
studies. To obtain these estimates we fit separate metaregressions
to the level and slope communalities associated with the 98 out-
comes in the dataset with effect-coded predictors representing six
of the cognitive ability domains (episodic memory, working mem-
ory, spatial ability, reasoning, verbal knowledge, and prospective
memory), with processing speed omitted as the base group (cf.
Cohen, Cohen, West, & Aiken, 2003). The coefficients on each of
the predictors were then combined with the regression intercepts

using the delta method (Ver Hoef, 2012) to produce the conditional
mean estimates for level and slope communalities in each cogni-
tive ability domain. Metaregressions were weighted by the respec-
tive precision of the dependent variables (the individual commu-
nality estimates) and by the inverse number of effect sizes
contributed by the associated dataset. To test whether communality
estimates differed across domains, we assessed the decrement in fit
associated with constraining all six regression parameters to zero.
In other words, for both level communalities and slope commu-
nalities, we compared the fit of a model in which each of the seven
cognitive ability domains was allowed to have its own mean
communality to one in which the mean communality was con-
strained to be invariant across cognitive ability domains.

Results are reported in Table 2. Mean level communalities
ranged from .491 for episodic memory to .704 for reasoning. Mean
slope communality estimates ranged from .320 for prospective
memory slope to .684 for spatial ability slope. Constraining all
level communality estimates to be invariant across abilities re-
sulted in a significant loss of model fit, x*(6) = 32.454, p < .0005.
Constraining all slope communality estimates to be invariant
across abilities also resulted in a significant loss of model fit,
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Table 2
Domain-Specific Effect Size Estimates

Ability-specific effect

Deviation from

Domain size estimate SE p value grand mean SE p value
Level communalities
Processing speed 551 .046 <.0005 —.033 .041 411
Episodic memory 491 .016 <.0005 —.093 .016 <.0005
Working memory 492 .010 <.0005 —.092 .015 <.0005
Spatial ability .640 .036 <.0005 .056 .029 .054
Reasoning 704 .026 <.0005 120 .033 <.0005
Verbal knowledge .665 .071 <.0005 .081 .056 152
Prospective memory 546 NA NA —.039 NA NA
Grand mean across domains .584 .019 <.0005 .000 NA NA
Longitudinal slope communalities
Processing speed slope .690 .050 <.0005 127 .044 .004
Episodic memory slope 579 .054 <.0005 .016 .045 721
Working memory slope .562 .025 <.0005 —.001 .025 977
Spatial ability slope .684 .097 <.0005 120 .082 .140
Reasoning slope .644 .037 <.0005 .081 .030 .007
Verbal knowledge slope 463 .073 <.0005 —.100 .069 .145
Prospective memory slope .320 .015 <.0005 —.243 .023 <.0005
Grand mean across domains .563 .026 <.0005 .000 NA NA
Longitudinal slope means (change per year)
Processing speed slope —.068 .008 <.0005 —.0227 .0057 <.0005
Episodic memory slope —.046 011 .001 —.0011 .0057 851
Working memory slope —.025 NA NA .0207 NA NA
Spatial ability slope —.058 .008 <.0005 —.0125 .0024 <.0005
Reasoning slope —.057 011 <.0005 —.0113 .0045 .012
Verbal knowledge slope —.019 .009 .032 .0268 .0051 <.0005
Prospective memory slope NA NA NA NA NA NA
Grand mean across domains —.045 .008 <.0005 .000 NA NA

Note. Models were fit as effect-coded two-level metaregressions with a random intercept for sample. The coefficients for each of the predictors were then

combined with the mean of the regression intercept using the delta method (Ver Hoef, 2012) to produce the conditional mean estimates for each cognitive
ability domain. Metaregressions were weighted by the respective precision of the individual estimates and by the inverse number of effect sizes contributed
by the associated dataset. Models were fit separately for Level Communalities, Slope Communalities, and Slope Means. Standard errors (SE) and p values
are not reported for Prospective Memory communality, because there was only one data point for Prospective Memory in the meta-analytic dataset. Standard
errors (SE) and p values are not reported for Working Memory mean slope, because there was only one mean slope estimate for Working Memory in the
meta-analytic dataset. There were no mean slope estimates for Prospective Memory in the meta-analytic dataset. Constraining all level communality
estimates to be invariant across abilities resulted in a significant loss of model fit, x*(6) = 32.454, p < .0005. Constraining all slope communality estimates
to be invariant across abilities also resulted in a significant loss of model fit, X2(6) = 15.914, p = .014. Constraining all slope mean estimates to be invariant
across abilities resulted in a significant loss of model fit, x*(5) = 27.256, p = .0001. These results indicate that communality estimates and slope means

differed across cognitive ability domains.

X2(6) = 15.914, p = .014. These results indicate that communality
estimates differed across cognitive ability domains. Individual
post-hoc contrasts (uncorrected for false discovery) between the
ability-specific level communalities and the simple grand mean
indicated that episodic memory and working memory had signif-
icantly lower level-communality estimates than the grand mean
estimate across domains, and reasoning had a significantly higher
level-communality estimate than the grand mean estimate. Indi-
vidual post-hoc contrasts (also uncorrected for false discovery)
between the ability-specific slope communalities and the grand
mean indicated that processing speed and reasoning had signifi-
cantly higher slope-communality estimates than the grand mean
estimate. Note, however, that because of variability in the number
of effect sizes associated with the individual domains, significance
levels do not correspond closely to effect sizes.

Figure 6 is a path diagram representing the key results from the
domain-specific analyses. This path diagram depicts a single com-
mon factor of levels and a single common factor of slopes, with
levels and slopes of the seven individual cognitive ability domains
loading on the respective factors. Superimposed on the paths from

the common factors to the individual domains are standardized
loadings, which are computed as the square root of the domain-
specific communality estimates.

Domain-Specific Estimates of Mean Change

Next, we were interested in obtaining conditional mean esti-
mates for the mean rates of longitudinal change in each of the
ability domains. To obtain these estimates we fit separate metare-
gressions to the level and slope communalities associated with the
75 available outcomes in the dataset with effect-coded predictors
representing five of the cognitive ability domains (episodic mem-
ory, working memory, spatial ability, reasoning, verbal knowl-
edge), with processing speed omitted as the base group (cf. Cohen
et al., 2003), and additional parameters derived from the primary
parameters using the delta method (Ver Hoef, 2012). Note that no
mean change estimates were available for prospective memory.
Metaregressions were weighted by the inverse sampling variance
of the individual estimates and by the inverse number of effect
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Figure 6. Path diagram representing meta-analytic estimates for standardized factor loadings of levels of
individual cognitive abilities on a general factor of levels (left) and standardized factors loadings of longitudinal
slopes of individual cognitive abilities on a general factor of changes (right). Variances were omitted from the
diagram. Standardized factor loadings were calculated by taking the square root of the respective communalities.
Reason. = Reasoning; Verbal Know. = Verbal knowledge; Prosp. Memory = Prospective memory.

sizes contributed by the associated dataset to the complete meta-
analytic dataset.

Results are reported in the bottom portion of Table 2. Mean
change was —.045 standard deviations per year on average across
abilities. Processing speed displayed particularly steep declines,
with a mean estimate of —.068 standard deviations per year. In
contrast, verbal knowledge displayed particularly shallow de-
clines, with a mean estimate of —.019 standard deviations per year.
The estimate for working memory change was also shallow, but
because this estimate was only derived from one effect size it is
unlikely to be very reliable. Constraining all slope mean estimates
to be invariant across abilities resulted in a significant loss of
model fit, XZ(S) = 27.256, p = .0001. Individual contrasts indi-
cated that processing speed, spatial ability, and reasoning dis-
played significantly more decline (more negative) than the grand
mean estimate across domains, and verbal knowledge displayed
significantly less (less negative) decline than the grand mean
estimate.

Age and Other Moderators of Communality
Effect Sizes

We went on to test a number of additional moderators of
effect size estimates for both slope communality and level
communality. We were particularly interested in the static and
dynamic versions of the age dedifferentiation hypothesis, which
respectively predict increasing level communalities and in-
creasing slope communalities with age. An important consid-
eration for testing these hypotheses concerns how the basis
coefficients for the growth curve slopes were parameterized.
Centering relative to a constant (e.g., subtracting 65 years)
changes the interpretation of growth curve levels but does not
change the interpretation of growth curve slopes (Biesanz et al.,
2004). Thus, age-related differences in the covariance structure
of levels are dependent on the age at which the basis coeffi-
cients are centered, whereas age-related differences in the co-
variance structure of the slopes are dependent on the age
composition of the sample, but do not depend on the age at

which the basis coefficients are centered. The most appropriate
test of the static dedifferentiation hypothesis therefore involves
testing age at level as the moderator, whereas the most appro-
priate test of the dynamic dedifferentiation hypothesis involves
testing the actual age composition of the sample as the moder-
ator. As an index of the age composition of the sample, we rely
on mean age at baseline.

Age moderation was estimated with two-level metaregression
models with communalities as the dependent variable, weighted by
the dependent variable precision weights and downweights, and
allowing for a random regression intercept. Because mean age at
baseline is a between-sample characteristic, we did not estimate
random regression slopes. Results are reported in the upper portion
of Table 3. We did not find evidence consistent with the static age
dedifferentiation hypothesis. Both age at level and mean age at
baseline were unrelated to level communalities (b = .001, SE =
.002, p = .587; b = .000, SE = .002, p = 911, respectively).
However, we did find considerable evidence for the dynamic age
dedifferentiation hypothesis. Mean age at baseline was positively
related to slope communalities (b = .005, SE = .002, p = .001).
As expected, the association between age at level and slope com-
munalities was weaker and nonsignificant (b = .003, SE = .002,
p = .060).

To further visualize the moderation of slope communalities
by age, we produced a scatterplot of the relation between mean
age at baseline and slope communalities, and the metaregres-
sion implied a linear relation between these two variables. This
plot can be found in the left panel of Figure 7. According to the
two-level metaregression model, mean slope communalities
increased from approximately 45% at age 35 years to approx-
imately 70% at age 85 years. As can be seen, however, there
were very few data points associated with mean baseline ages
lower than 50 years. To ensure that the association between
mean baseline age and slope communalities was not simply
driven by high leverage exerted by these data points, we reran
the metaregression model only including effect sizes associated
with mean baseline ages greater than 50 years. As reported in
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Table 3

Parameter Estimates for Additional Moderators of Meta-Analytic Effect Sizes

Level communality

Slope communality

Coefficient Coefficient
Moderator (unstandardized) SE P (unstandardized) SE P
Mean age at baseline (years) .000 .002 911 .005 .002 .001
Mean age at baseline (age > 50 years only) .002 .002 218 .004 .002 .013
Age at level (years) .001 .002 .587 .003 .002 .060
Time lag (years) .007 .007 358 .002 .008 818
Number of waves .000 .008 950 .017 014 236
LDS (1) versus LGM (0) —.056 .069 415 —.184 .069 .008
Age-based (1) versus Time-based (0) —.086 .066 .194 .070 .063 270
Broad (1) versus Narrow (0) ability —.022 .053 677 .107 .053 .044
Mean rate of change —.363 960 705 —1.156 1.362 .396

Note. Moderators were tested individually. Two-level metaregressions were weighted by the respective precision of the individual communality estimates
and by the inverse number of effect sizes contributed by the associated dataset, with random intercepts estimated. Because of substantial variability within
datasets for Mean rate of change, we also allowed for a random regression slope and an intercept-slope covariance. SE = standard error; LDS = Latent

difference score model; LGM = Latent growth curve model.

Table 3, results were nearly identical (b = .004, SE = .002, p =
.013) to those obtained from analyses of the entire meta-
analytic sample (b = .005, SE = .002, p = .001).

Other moderators tested included the time lag of the longi-
tudinal study, the number of waves, whether the statistical
analysis was a latent difference score model or a latent growth
curve model, whether a broad or narrow cognitive ability was
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measured, and whether the change was modeled as occurring as
a function of age or time. Parameter estimates, standard errors,
and p values are reported in Table 3. It can be seen that none of
these moderators was significantly related to level communality
estimates. Two moderators were significantly related to slope
communalities. First, slope communalities derived from latent
difference score models tended to be lower than those obtained
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Figure 7. Slope communality plotted as a function of mean age at baseline for full meta-analytic dataset (left)
and for dementia-controlled sensitivity analyses (right). The area of each point corresponds to the precision of
the slope communality estimate, with larger points representing more precise communalities. The overlaid
regression lines represent the metaregression model-implied linear trends and their 95% confidence intervals. For
the full dataset, the positive association between slope communality and mean age at baseline remained (p =
.013) when restricting analysis to estimates derived from mean ages at baseline that were greater than 50 years.
For the dementia-controlled sensitivity analyses, the positive association between slope communality and mean
age at baseline also remained (p < .0005) when restricting analysis to estimates derived from mean ages at

baseline that were greater than 50 years.
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from growth curve models. Second, slope communalities for
broad abilities tended to be higher than those for narrow abil-
ities.

Finally, we tested whether the mean rate of change in a variable
was related to its level or slope communality estimate. One might
expect that individual differences in changes in variables that
exhibit greater mean change are more strongly shared with indi-
vidual differences in changes with other variables. This was not the
case. Mean rate of change in a variable was unrelated to either its
slope or level communality. In other words, variables that exhib-
ited steeper mean rates of longitudinal aging-related decline were
not more likely to share individual differences in longitudinal
change more strongly with other variables.

Simultaneous Analysis of Multiple Moderators

Next, we sought to determine whether each of the associations
identified above persisted in a simultaneous model. Thus, we fit a
two-level metaregression model in which level communalities,
mean age at baseline, whether a latent difference score (vs. growth
curve) model was used, whether the outcome was a broad ability
(vs. a narrow ability), and effect-coded indicators of cognitive
ability domains were predictors of slope communalities. Models
were weighted by the respective precision of the dependent vari-
able and by the inverse number of effect sizes contributed by the
associated dataset. To maintain consistency with the above-
described univariate analyses, we allowed for a random intercept,
a random slope for the regression effect of level communalities on
slope communalities, and a covariance between the random inter-
cept and the random slope.

Parameter estimates from the simultaneous analysis are reported
in Table 4. Level communality and mean age at baseline remained
significant moderators of slope communalities. Whether slope
communalities were derived latent difference score versus growth
curve models and whether slope communalities were for broad
versus narrow abilities were no longer significant predictors.

Dementia-Controlled Sensitivity Analyses

The more restrictive dataset only containing effect sizes from
studies in which dementia status was carefully controlled con-
tained 49 effect sizes representing shared variance in change in 49
outcomes from nine unique samples. Because the more restrictive
dataset did not contain bivariate approaches (all were multivari-
ate), the number of total shared variance estimates is equal to the
number of total variables. All estimates came from growth curve
models. Across the 49 estimates of shared variance, the average
age at baseline wave ranged from 35.42 years to 84.92 years, with
a median of 64.90, a mean of 67.01 years and a standard deviation
of 12.92 years. Of the 49 outcomes analyzed, 12 indexed process-
ing speed, 17 indexed episodic memory, 8 indexed spatial ability,
6 indexed reasoning, 6 indexed verbal knowledge, and 1 indexed
prospective memory. Twenty-four outcomes were classified as
broad ability composites or factors and 25 were classified as
specific measures.

Level communality estimates ranged from .20 to 1.0. In an
unconditional two-level metaregression model, weighted by the
level precision weights and downweights, the mean level commu-
nality was .516 (SE = .017, p < .0005), and .573 (SE = .037,p <

Table 4
Parameter Estimates From Simultaneous Analysis Predicting
Slope Communalities

Predictor Parameter SE p value
Level communality 535 151 <.0005
LDS (1) vs. LGM (0) —.100 .061 .104
Broad (1) versus Narrow (0) ability .061 .045 169
Mean age at baseline .003 .001 .007
Processing speed .105 .036 .004
Episodic memory .039 .045 377
Working memory .070 .023 .002
Spatial ability .007 .089 936
Reasoning ability .034 .038 375
Verbal knowledge —.094 .059 112
Prospective memory —.161 NA NA

Note. Two-level metaregressions were weighted by the respective preci-
sion of the individual communality estimates and by the inverse number of
effect sizes contributed by the associated dataset. We allowed for a random
intercept, a random slope for the regression effect of level communalities
on slope communalities, and a covariance between the random intercept
and the random slope. Cognitive ability domains were effect coded, with
processing speed omitted as the base group. All parameters for cognitive
ability domains therefore represent the deviation of the mean communality
estimate for the respective ability domain from the simple grand mean
across domains. A parameter representing the deviation of the processing
speed mean from the simple grand mean across all ability domains was
derived from the other parameters using the delta method (Ver Hoef,
2012). Standard errors (SE) and p values are not reported for prospective
memory, because there was only one data point for prospective memory in
the meta-analytic dataset. LDS = Latent difference score model; LGM =
Latent growth curve model.

.0005) when weighted by the slope precision weights and down-
weights. Slope communality estimates ranged from .084 to 1.0. In
an unconditional two-level metaregression model, weighted by the
slope precision weights and downweights, the mean slope com-
munality was .651 (SE = .037, p < .0005). Because the estimates
for mean level and slope communalities from this more restrictive
sensitivity analysis are very similar to those from the full meta-
analytic dataset, it can be inferred that the key finding that approx-
imately half or more of the variance in aging-related cognitive
changes are shared across domains is not a simple artifact of
confounds associated with dementia status.

We tested whether the earlier-reported association between
mean age at baseline and slope communality persisted in this
more restrictive dataset that only contained effect sizes from
studies in which dementia was carefully controlled. In a two-
level metaregression model, weighted by the slope communal-
ity precision weights and downweights, and allowing for a
random regression intercept, mean age at baseline was posi-
tively related to slope communalities (b = .007, SE = .001, p <
.0005; results from the full sample reported earlier were b =
.005, SE = .002, p = .001). Moreover, when we reran the
metaregression model only including effect sizes associated
with mean baseline ages greater than 50 years, results were
nearly identical (b = .008, SE = .002, p < .0005). The right
panel of Figure 7 provides a scatterplot of the relation between
mean age at baseline and slope communalities, and the linear
association implied by the metaregression. The fact that this
dynamic dedifferentiation pattern of age-related increases in
shared variance in change was present in this more restrictive
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dataset indicates that the pattern is not a simple epiphenomenon
of the increased prevalence of dementia at later ages.

Discussion

Common factor theories of human cognitive aging have been
popular for some time. Cross-sectional approaches to testing
such theories, although capable of capturing information about
overlapping mean age trends, are not able to directly gauge the
extent to which interindividual differences in different cogni-
tive abilities change in tandem. For more than 15 years, re-
searchers have used longitudinal approaches to estimate cova-
riation among individual differences in rates of aging-related
change in different abilities over time. The goal of the current
meta-analysis was to systematically compile and meta-analyze
results of these longitudinal studies to provide an estimate of
the overall magnitude of shared variance in aging-related cog-
nitive changes and test for moderators of the magnitude of
shared variance in aging-related cognitive changes.

A primary finding of this meta-analysis is that individual dif-
ferences in longitudinal changes in different cognitive abilities
changes are moderately to strongly correlated with one another. A
model in which individual differences in longitudinal cognitive
changes are specified to load on a common change factor indicates
that an average of 60% of the variance in aging-related cognitive
changes is explained by the common factor. This relatively high
estimate indicates that individuals who decline precipitously in, for
example, processing speed relative to their peers, are also likely to
be declining precipitously in, for example, reasoning and episodic
memory relative to their peers. Moreover, even though verbal
knowledge exhibited relatively shallow mean rates of longitudinal
change, individual differences in verbal knowledge change loaded
together with individual differences in changes in other cognitive
abilities. This indicates that individuals who show greater decline
in a cognitive ability showing strong mean decline are less likely
to show positive change or stability in verbal knowledge, for which
mean decline is quite shallow.

Remarkably, the magnitude of variance in cognitive ability
levels that was explained by a general intelligence factor was 56%,
extremely similar to the proportion of shared variance in rates of
change. Moreover, there was a moderate-to-strong correspondence
between a variable’s loading on the general intelligence factor and
the extent to which changes in that variable loaded on a general
cognitive change factor. When indexed with a correlation coeffi-
cient, which quantifies the relative ordering of communality esti-
mates across indicators, the correspondence between level and
slope communalities was moderate (r = .49). When indexed with
a congruence coefficient, which takes into account the absolute
magnitudes of communality estimates in addition to their relative
orderings, this correspondence was strong (congruence coeffi-
cient = .98). The positive correspondence between level and slope
communalities was evident even within datasets (i.e., even after
centering estimates at study-specific communality means), sug-
gesting that it is not an artifact of unobserved sources of between-
study heterogeneity (e.g., the demographic composition of partic-
ipants or specific aspects of the longitudinal design) that could
systematically affect factor loadings. Importantly, however, differ-
ences in communality estimates across cognitive ability domain
classifications were rather small, and there was not an apparent

correspondence between mean level and slope communality esti-
mates across domain classifications. Thus the positive association
between level and slope communality estimates for individual
study variables may not be driven by correspondence of effect
sizes within domains, but instead be attributable to other features
of the variables, such as their construct validity or aspects of
measurement.

It is useful to compare results from the current meta-analysis
to those obtained from three studies that we did not include in
the meta-analysis because of the unavailability of information
necessary for calculating precision weights. These three studies
can therefore be treated as opportunities for out-of-meta-
analytic-sample cross-validation. First, Christensen et al.
(2004) and Hofer et al. (2002) estimated correlations between
longitudinal growth curve slopes for cognitive measures in the
Canberra Longitudinal Study. Christensen et al. (2004) report
correlations of .42 for memory slope—RT slope, .71 for memory
slope—processing speed slope, and .70 for reaction time slope—
processing speed slope. Hofer et al. (2002) similarly report
correlations of .67 for memory slope—verbal slope, .65 for
memory slope-speed slope, and .46 for verbal slope-speed
slope. These estimates are all very similar to the mean estimate
of 60% shared variance in change from the current meta-
analysis. Second, Anstey et al. (2003) reported a correlation
between growth curve slopes for memory and processing speed
of .62 in an unadjusted model, and .50 in a model that excluded
individuals with possible cognitive impairment and adjusted for
a host of covariates. Again, these estimates are very similar to
those from the current meta-analysis. Third, the analysis of
longitudinal data from the Religious Orders Study by Wilson et
al. (2002) was of particularly high quality. Wilson et al. (2002)
used growth curve (random coefficient) modeling to produce a
correlation matrix of individual differences in longitudinal
slopes for seven different cognitive variables, including mea-
sures of working memory, visual spatial ability, perceptual
speed, fluency, episodic memory, and verbal knowledge. Wil-
son et al. (2002) found that a single principal component
accounted for 61.6% of the variance in individual differences in
cognitive changes, an estimate strikingly close to the estimate
of 60% of shared variance in cognitive change obtained in the
current meta-analysis. Importantly, Wilson et al.’s (2002) anal-
ysis found that this proportion was nearly identical (61.8%)
after accounting for practice effects. A handful of other studies
(e.g., Ferrer et al., 2005; Tucker-Drob, 2011a) have also re-
ported that shared variance among aging-related changes per-
sists after controlling for practice effects. However, because
most studies did not include sufficient information regarding
the role of practice effects, we were not well positioned to
formally test their role in the current meta-analysis.

Because the general factor of individual differences in cog-
nitive abilities is moderately stable beginning in middle child-
hood (Deary, 2014; Humphreys & Davey, 1988; Tucker-Drob
& Briley, 2014), static individual differences in adult cognitive
abilities may substantially reflect processes that have unfolded
over child development. Thus, the finding of similarly strong
common factors of levels and slopes indirectly suggests that
cognitive decline may operate along a similar general dimen-
sion as does cognitive development. As Juan-Espinosa et al.
(2002) have suggested, the structure of life span changes in
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cognitive abilities may be invariant in much the same way that
the structure of changes in human anatomy are invariant: Just as
age-related growth and shrinkage of the human bones is orga-
nized by the anatomical structure of the human skeleton, indi-
vidual differences in human cognitive abilities may have an
inherent structure along which growth and decline naturally
occur (see also Baltes, Lindenberger, & Staudinger, 2006; Rein-
ert, 1970; Schaie, 1962; Tetens, 1777; Werner, 1948). Consis-
tent with this proposal, Rhemtulla and Tucker-Drob (2011)
reported evidence for a general factor of longitudinal changes
across cognitive, psychomotor, and preacademic domains in
more than 8,000 children followed between ages 3 and 7 years.
Moreover, Tucker-Drob (2009) reported consistent evidence for
a general intelligence factor across the age range from 4 to 101
years. Gignac (2014) reported similar results across the age
range from 2.5 to 90 years. Cheung, Harden, and Tucker-Drob
(2016) found consistent evidence for a general intelligence
factor across the range from O to 6 years. Moreover, Cheung et
al. (2016) found that the general intelligence factor, but not the
domain-specific factors, became increasingly heritable with
age, suggesting that a “generalist” genetic architecture (Kovas
& Plomin, 2006) may undergird substantial portions of individ-
ual differences in child cognitive development.

The present findings add an important qualification to two-
component theories of adult intellectual development (Kiihn &
Lindenberger, 2016; Lindenberger, 2001; Tetens, 1777), such as
the Cattell-Horn theory of fluid and crystallized intelligence
(Gf/Ge theory; Cattell, 1971; Horn, 1989) or the mechanics versus
pragmatics theory of cognition (Baltes, 1987). These theories build
on the observation that cognitive abilities diverge in their associ-
ations with age, presumably reflecting differences in the relative
importance of biological and cultural influences. In this meta-
analysis, we replicated the well-known pattern of flat or shallow
mean declines in verbal knowledge and steep mean declines in
fluid/mechanic abilities, such as processing speed, episodic mem-
ory, and reasoning. Despite these pronounced differences in pat-
terns of mean decline, all seven cognitive abilities, including
verbal knowledge, showed strong and rather uniform loadings on
a common factor of change. Indeed, we did not find any indication
that the mean change in an outcome was related to the extent to
which individual differences in change in that outcome were
shared with other outcomes. What this means is that individuals
who decline less in abilities such as perceptual speed or reasoning
are likely to improve more on verbal knowledge relative to others.
In other words, in spite of relatively stark differences between
mechanic and pragmatic abilities in their patterns of mean aging-
related declines, individual differences in longitudinal changes in
mechanic and pragmatic abilities were moderately coupled. Meth-
odologically, this finding adds weight to the assertion that cross-
sectional methods, which are dominated by the contribution of
ability differences in mean age trends, do not adequately reflect the
implications of models involving covariance of change (Hofer &
Sliwinski, 2001; Kalveram, 1965; Lindenberger et al., 2011; Lin-
denberger & Potter, 1998).

The finding that older mean baseline age was associated with
slope communalities is consistent with what has been termed the
dynamic dedifferentiation hypothesis. Motivated by a general con-
straint theory of neurodegeneration and cognitive decline, de Frias
et al. (2007), predicted this precise pattern of increasing shared

variance in change with advancing adult age. In the meta-analytic
dataset, the dynamic dedifferentiation pattern was appreciable.
According to the linear moderation model that we fit, the mean
expected slope communality at age 35 years is 42%, increasing to
72% by age 85 years. This result is consistent with the hypothesis
that “an ensemble of common sources increasingly dominates
development of intellectual abilities” (de Frias et al., 2007, p. 382).

In contrast, we did not find evidence supporting the static
dedifferentiation hypothesis, which predicts that a global sources
of change should give rise increasing shared variance among
ability levels with advancing adult age (cf. Hofer & Sliwinski,
2001; Tucker-Drob, 2009). In other words, neither mean age at
baseline nor age at level was associated with level communalities.
Increasing correlations among static individual differences with
age are predicted to arise when the shared variance in change is
larger than the shared variance in levels. Here we find that these
proportions are nearly identical. This may explain why it appears
that the covariance structure of individual differences is stationary,
or homeostatic, over much of adult age. However, particularly in
light of the positive evidence for dynamic dedifferentiation, it is
possible that had more samples with large proportions of older
individuals been included, a static dedifferentiation pattern would
have emerged.

One necessary limitation of the meta-analytic dataset is that
different studies employed different modalities of measuring the
constructs and of modeling change over time. Some studies em-
ployed growth curve models whereas other studies employed
latent difference score models. Those employing growth curve
models differed from one another in their coding of time (e.g.,
whether change was assumed to occur as a function of age at
measurement or time since baseline measurement), and in whether
they included nonlinear (e.g., quadratic) components of change in
addition to linear components. We tested for differences in effect
sizes across age- versus time-based approaches as potential mod-
erators. However, it would have been particularly informative had
the original studies analyzed data using a standardized set of
modeling strategies. Similarly, studies differed in both the specific
assessments used and in the cognitive abilities measured. To
address this, we restricted the meta-analytic dataset to only those
effects that represented associations across (and not within) cog-
nitive ability domains. According to Spearman’s (1927) theorem
of “indifference of the indicator,” as long as a sufficiently diverse
array of cognitive measures is used (Little, Lindenberger, & Nes-
selroade, 1999), the same latent factor may be triangulated on
across different sets of measures. This theorem has been validated
empirically (Johnson, Bouchard, Krueger, McGue, & Gottesman,
2004).

It is important to reiterate our statement from earlier in this
article that the finding that a single common factor accounts for
upward of half of the variance in individual differences in age-
related changes in different cognitive abilities indicates that a large
proportion of variation in cognitive aging can be organized by a
single cognitive dimension, but does not imply that a single social,
genetic, or neurobiological cause of cognitive aging is likely.
Ghisletta et al. (2012) wrote:

While we presented strong evidence that the dimensionality of cog-
nitive aging is low, we cannot, based on the present behavioral
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evidence, draw strong conclusions about the number and nature of the
underlying driving factors. (p. 267)

Tucker-Drob, Reynolds, et al. (2014) similarly wrote:

[O]ur finding that a global dimension can account for large pro-
portions of variation in aging-related cognitive changes in older
adulthood indicates that late-life cognitive aging is manifest in a
largely global pattern of change across multiple variables, but does
not indicate that a single cause is responsible for global changes. It
is very possible, if not likely, that many thousands of genetic and
environmental causes of cognitive aging exist. What the current
findings indicate is that . . . these many causes tend to operate at
very broad levels to affect many forms of cognition. (p. 164)

Indeed, for the cross-domain coupling among aging-related
cognitive changes documented here to represent a meaningful
property of the cognitive aging process, rather than a simple
epiphenomenon of a less interesting mechanism, we would
expect the finding to persist after controlling for key socioeco-
nomic and medical variables that are known to be associated
with cognitive abilities. One important potential confound that
we considered was dementia status. Because dementia is asso-
ciated with impairment across multiple cognitive abilities, it is
conceivable that correlated changes across cognitive abilities
are induced by mean differences in declines between demented
and nondemented groups (Harrington et al., 2018; but see Boyle
et al., 2013 and Sibbett, Russ, Pattie, Starr, & Deary, 2018), but
not a more general characteristic of covariation among cogni-
tive declines within the respective groups. Our sensitivity anal-
yses indicated that this was not the case. Even when we per-
formed the meta-analysis on a highly restricted dataset only
containing studies that excluded data from person-waves at
which dementia was present, controlled for dementia status as a
time-varying covariate, or provided an estimate of a low rate of
dementia in the sample, the key finding of cross-domain cou-
pling among aging-related cognitive changes persisted. In fact,
inspection of results of each of these individual studies indi-
cates that the overall pattern is present in each study. Some
individual studies included a wider range of control variables
beyond dementia, and continued to document evidence for a
general factor of aging-related cognitive change. For instance,
Tucker-Drob (2011b) reported substantial coupling among
aging-related changes in reasoning, processing speed, and epi-
sodic memory even after controlling for age, sex, years of educa-
tional attainment, MMSE score, and baseline performance levels.
Tucker-Drob, Briley, et al. (2014) similarly reported that strong
evidence for a general factor of longitudinal cognitive change
persisted even after controlling for a host of carefully measured
demographic, physical health, and medical variables, including
forced expiratory volume, walk time, grip strength, smoking sta-
tus, cardiovascular disease status, hypertension status, diabetes
diagnosis, along with early life 1Q, educational attainment, sex,
age, and time lag. Lindenberger and Ghisletta (2009) reported that
after controlling for age, time to death, and dementia risk, a general
factor of change went from accounting for 60% of the variance to
65% of the variance in cognitive changes. Overall then, the evi-
dence is very consistent with the conclusion that the factor struc-
ture of cognitive aging is more than an epiphenomenon of a small
and obvious set of simple confounding variables. Rather, a com-

mon factor of cognitive change may be a more fundamental
description of the cognitive aging process.

Even accepting the conclusion that coupled aging-related
cognitive changes represent a meaningful property of the cog-
nitive aging process, the question remains as to whether the
common factor of aging identified in the current meta-analysis
represents a coherent entity that is directly affected by biolog-
ical and contextual etiological factors for cognitive aging and
affects changes in individual cognitive domains. An equally
logical possibility is that the common factor of change repre-
sents an emergent property of dynamical systems processes that
occur more directly between etiological factors and ability
domains. In the Introduction to this article, we refrained from
taking a position on this issue. Complex systems approaches,
such as graph-theoretic network models, for representing inter-
relations among individual differences in aging-related changes
may be able to faithfully, or perhaps even more accurately,
present the patterns of change interrelations that were captured
by the factor analytic approach taken here (cf. van der Maas et
al., 2006). When summarizing general patterns in complex
networks, global metrics may be used (Borsboom, Cramer,
Schmittmann, Epskamp, & Waldorp, 2011). In this sense, com-
mon factors and global network metrics capture general patterns
of covariance in the data, while eliding nuance. We believe that
both approaches are useful, albeit imperfect, insofar as they
convey the most salient and robust patterns present in the data.

In summary, we found that more than half of the variance in
cognitive changes is shared across cognitive abilities. Specifi-
cally, the meta-analytic estimate of average change communal-
ity was 60%, which is very similar to the estimate of 56% for
shared variance in levels. Moreover, we found that shared
variance in changes increased with age, from approximately
40% at age 35 years to approximately 70% at age 85 years.
These patterns persisted at full strength in a sensitivity analysis
based on studies that carefully controlled for dementia. These
results together provide strong evidence for a general factor of
cognitive aging that strengthens with advancing adult age.
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Appendix A

Multivariate Models of Longitudinal Changes

Here we provide an overview of the statistical basis of the
studies meta-analyzed. These can generally be classified as mul-
tivariate growth curve models and multivariate latent difference
score models. As described below, both statistical models take
similar forms.

Multivariate Growth Curve Models

A multivariate growth curve model for a set of cognitive out-
comes measured repeatedly over time can be written as:

Yltlwn = iw,n + Altdwan - Syon + e[[]w,n, (Al)

where Y[1],, , is the score Y of person n on variable w at time #; i, ,,
is the level for person n on variable w; s,,, , is the longitudinal slope
for person n on variable w, and e[1],,, is a disturbance for person
n on variable w at time r. The term A[r],, , represents a set of
growth curve basis coefficients that define the shape of the longi-
tudinal changes over time. In the common case of linear growth
curve modeling, these basis coefficients can be set to the amount
of time (e.g., in years) that has passed between baseline measure-
ment (e.g., the first wave of assessment) and each subsequent
assessment for person n on variable w, or they can be set to the age
of individual n at each assessment on variable w (e.g., in years,
often centered relative to a meaningful early age e.g., 21 years for
early adulthood or 65 years for the beginning of old age). For
time-based modeling, it is common for the basis coefficients A[z]
to be specified using the average or target time between assess-
ment waves rather than the person-specific time-lags. The basis
coefficients need not be specified to be linear over time or age.
Longitudinal changes may be better represented as occurring non-
linearly, in which case the basis coefficients A[7] may be specified
as nonlinear functions of time or age. Additional growth curve
slopes, for example, slopes representing quadratic components of
change over time or retest effects may also be specified using
separate sets of basis coefficients. In the current meta-analysis, we
were constrained by the original modeling decisions of the authors
of the primary studies (e.g., whether to specify basis coefficients as
functions of age or time, or whether to include additional growth
curve slopes beyond those representing linear change).’

Multivariate Latent Difference Score Curve Models

A multivariate latent difference score model, in which several
sets of cognitive outcomes are each measured at both baseline and
a single follow-up wave, can be written in a similar form as the

multivariate growth model above:
Yltlwan =N, iy, + N, -8, T eltwan, (Alb)

where Y[7],,, , is the score Y of person n on indicator z of latent
variable w at time 7 (0 for baseline and 1 for follow-up wave; or to

scale the difference score in annual units, 0 for baseline and the
average or target number of years since baseline for follow-up
wave), and A, _is a time-invariant factor loading relating the latent
variable w to indicator z. As in the multivariate growth model, i,,,,,
is the level for person n on (now latent) variable w, and s, , is the
longitudinal change over time for person n on variable w. Whereas
error in the growth curve model is separated from true change by
virtue of being modeled as disturbance from a systematic function
of change over time, error in the latent difference score model is
separated from true scores psychometrically by specifying indica-
tors to be functions of common factor w and time-specific
indicator-specific errors, e[t],, ., which represent a combination
of indicator-specific true score variability and error of measure-
ment.

Level and Change Covariance Structure

Regardless of whether longitudinal changes are modeled using a
multivariate growth curve approach or a multivariate latent differ-
ence score approach, the person-specific levels and slopes for each
variable can be allowed to freely covary with one another as
follows:

Cov(iw.m SW.VL) =

- 5 -
g
1n
2
T i i
1nw2.n 2.n
iy i o+ 0'1'2.1»,,
: ) (A22)
Sin DStn beStn St
2
a; a; L. O [
LnS2n 2520 bwnrS2n S1S2n 95
2
g; i [oF o [y
oSwn 28w BeaSwon StnSwon S2,n5wn Swn

This covariance matrix can be written more compactly as a joint
covariance matrix of levels and slopes, as follows:

3 Eﬁ]

COV(l’w,n, Sw,n) = Ei s = |:2 E (A2b)

waSw,n

5 There was a small number of papers included in the current meta-
analysis that specified growth curves involving nonlinear slopes in addition
to linear slopes. For instance, Ghisletta et al. (2012) estimated linear and
quadratic growth curve slopes, but because the quadratic slopes were not
significant, they did not estimate their covariances across abilities. Addi-
tionally, both Ghisletta et al. (2012) and Tucker-Drob (2011a) estimated
additional nonlinear slopes representing practice effects, which were not a
direct focus of the current meta-analysis. Many studies simply estimated
linear growth curve models. Thus, we exclusively coded the relevant data
from the linear components of longitudinal changes.

(Appendices continue)
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Key components of this covariance matrix are: a submatrix 3,
that includes level variances on its diagonal and level-level cova-
riances off its diagonal, a submatrix 3 that includes slope vari-
ances on its diagonal and slope-slope covariances off its diagonal,
and a submatrix X that includes within-variable level-slope co-
variances on its diagonal and cross-variable level-slope covari-
ances off its diagonal. When this covariance matrix is freely
estimated, it is sometimes referred to as a “parallel process” model.

Higher-Order Factors of Curves

Rather than allowing the person-specific levels and slopes for
each variable to freely covary, as in Equations A2a and A2b above,
the interrelations among levels and among slopes can be approx-
imated by common factors. The factor portions of such a “factor of
curves” model can be written as:

iw,n (A3 a)

=1 4+\N -F. +u
TlW A'IW Fl’n ulw.n
and

Sy = T, TN Fontug (A3b)
where 7, and 7, are the mean level and slope for variable w, \;

is the loadmg of the person-specific level of variable w on the
common factor of the levels, F; ,; A, is the loading of the person-
specific slope of variable w on the common factor of the slopes,
F,,; u; s a person-specific unique factor for the level of variable
w, and'u ., 1s a person-specific unique factor for the slope of
variable w. Typically, within-variable covariances between level
and slope unique factors are freely estimated; all remaining cova-
riances among uniqueness are fixed to 0, and the level and slope
common factors are assumed to have means of 0 and are allowed

to freely covary with one another.

The approximation of level and slope covariances by the higher-
order factor of curves model is given in matrix notation as:
3, . =~AVA +0,

wnw,n

(A4)

where A is a 2w X m matrix of loadings for the levels and slope
of each variable w on m common factors (typically two factors:
one common factor of levels and one common factor of slopes), ¥
is an m X m covariance matrix of the common factors, and ® is a
2w X 2w covariance matrix of level and slope unique factors
(typically with unique factor variances on the diagonals, within-
variable level-slope covariances freely estimated, and between-
variable level-slope covariances fixed to zero).

Communality is the term used in factor analysis for the propor-
tion of variance in a variable that is explained by a common factor.
In the context of a factor of curves model, we are specifically
interested in the proportions of variance in the growth curve levels
and slopes that are explained by the common factors of levels and
slopes respectively. Communality can be computed as

shared variance

Communality = -
Y~ “total variance
. 2, 2
_ shared variance __MN-op (AS)
shared variance + unique variance  \2. g% + g2’

where \ is the common loading of the variable-specific level or
slope on the common factor of levels or slopes, o2 is the variance
of that common factor, and o2 is the variance of the unique factor
of the variable-specific level or slope. For cases in which the factor
loading has already been standardized (such that the standardized
variance of the factor is 1 and the total variance in the outcome is
1), the communality is simply calculated as the square of that
standardized factor loading. Level and slope communalities are the
primary outcomes of the current meta-analysis.

Appendix B

Computation of Precision Weights

The raw meta-analytic precision weights, w;, were computed as:

W, =i Tiy Np, (B
where N; is the complete sample size (at the first wave), and r;
and r;, are the reliabilities of the i-th pair of growth curves (or
difference scores, respectively) analyzed. The reliabilities were
each downweighted by the observed missing data patterns using
the theorem in Appendix B of von Oertzen and Brandmaier (2013)
to properly account for attrition. By definition, the weights are
always positive. Raw weights were converted to scaled weights,
such that they sum to the total number of effect sizes included in
the metaregression model.

As described in the Method section (under Analytic Approach:
Multilevel Metaregression Models), precision weights were imple-

mented in combination with downweights that adjusted for the
number of effect sizes contributed per sample. Precision weights
were specified at the level of the individual effect sizes (i.e., as
within-cluster weights) and downweights were specified at the
level of the contributing samples (i.e., as between-cluster weights).
For multilevel metaregression models, between-cluster weights
were scaled such that the products of the within-cluster and
between-cluster weights summed to the total number of effect
sizes in the meta-analytic dataset.
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